advertisement

WGA Rescources

Abstract #60616 Published in IGR 16-4

Continuous non-cell autonomous reprogramming to generate retinal ganglion cells for glaucomatous neuropathy

Parameswaran S; Dravid SM; Teotia P; Krishnamoorthy RR; Qiu F; Toris C; Morrison J; Ahmad I
Stem Cells 2015; 33: 1743-1758


Glaucoma, where the retinal ganglion cells (RGCs) carrying the visual signals from the retina to the visual centers in the brain are progressively lost, is the most common cause of irreversible blindness. The management approaches, whether surgical, pharmacological, or neuroprotective do not reverse the degenerative changes. The stem cell approach to replace dead RGCs is a viable option but currently faces several barriers, such as the lack of a renewable, safe, and ethical source of RGCs that are functional and could establish contacts with bona fide targets. To address these barriers, we have derived RGCs from the easily accessible adult limbal cells, re-programmed to pluripotency by a non nucleic acid approach, thus circumventing the risk of insertional mutagenesis. The generation of RGCs from the induced pluripotent stem (iPS) cells, also accomplished non-cell autonomously, recapitulated the developmental mechanism, ensuring the predictability and stability of the acquired phenotype, comparable to that of native RGCs at biochemical, molecular and functional levels. More importantly, the induced RGCs expressed axonal guidance molecules and demonstrated the potential to establish contacts with specific targets. Furthermore, when transplanted in the rat model of ocular hypertension, these cells incorporated into the host RGC layer and expressed RGC-specific markers. Transplantation of these cells in immune-deficient mice did not produce tumors. Together, our results posit retinal progenitors generated from non-nucleic acid-derived iPS cells as a safe and robust source of RGCs for replacing dead RGCs in glaucoma. This article is protected by copyright. All rights reserved.

Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE.

Full article

Classification:

2.17 Stem cells (Part of: 2 Anatomical structures in glaucoma)
11.8 Neuroprotection (Part of: 11 Medical treatment)



Issue 16-4

Change Issue


advertisement

Oculus