advertisement

Topcon

Abstract #66307 Published in IGR 17-3

Optic nerve head and intraocular pressure in the guinea pig eye

Ostrin LA; Wildsoet CF
Experimental Eye Research 2015; 146: 7-16


The guinea pig is becoming an increasingly popular model for studying human myopia, which carries an increased risk of glaucoma. As a step towards understanding this association, this study sought to characterize the normal, developmental intraocular pressure (IOP) profiles, as well as the anatomy of the optic nerve head (ONH) and adjacent sclera of young guinea pigs. IOP was tracked in pigmented guinea pigs up to 3 months of age. One guinea pig was imaged in vivo with OCT and one with a fundus camera. The eyes of pigmented and albino guinea pigs (ages 2 months) were enucleated and sections from the posterior segment, including the ONH and surrounding sclera, processed for histological analyses - either hematoxylin and eosin (H&E) staining of paraffin embedded, sectioned tissue (n = 1), or cryostat sectioned tissue, processed for immunohistochemistry (n = 3), using primary antibodies against collagen types I-V, elastin, fibronectin and glial fibrillary acidic protein (GFAP). Transmission and scanning electron microscopy (TEM, SEM) studies of ONHs were also undertaken (n = 2 & 5 respectively). Mean IOPs ranged from 17.33 to 22.7 mmHg, increasing slightly across the age range studied, and the IOPs of individual animals also exhibited diurnal variations, peaking in the early morning (mean of 25.8, mmHg, ∼9 am), and decreasing across the day. H&E-stained sections showed retinal ganglion cell axons organized into fascicles in the prelaminar and laminar region of the ONHs, with immunostained sections revealing collagen types I, III, IV and V, as well as elastin, GFAP and fibronectin in the ONHs. SEM revealed a well-defined lamina cribrosa (LC), with radially-oriented collagen beams. TEM revealed collagen fibrils surrounding non-myelinated nerve fiber bundles in the LC region, with myelination and decreased collagen posterior to the LC. The adjacent sclera comprised mainly crimped collagen fibers in a crisscross arrangement. Both the sclera and LC were qualitatively similar in structure in pigmented and albino guinea pigs. The well-organized, collagen-based LC of the guinea pig ONH is similar to that described for tree shrews and more similar to the human LC than that of other rodents that lack collagen. Based on these latter structural similarities the guinea pig would seem a promising model for investigating the relationship between myopia and glaucoma.

College of Optometry University of Houston, 4901 Calhoun, Houston, TX 77004, USA. Electronic address: lostrin@central.uh.edu.

Full article

Classification:

5.3 Other (Part of: 5 Experimental glaucoma; animal models)
2.14 Optic disc (Part of: 2 Anatomical structures in glaucoma)
6.1 Intraocular pressure measurement; factors affecting IOP (Part of: 6 Clinical examination methods)



Issue 17-3

Change Issue


advertisement

Oculus