advertisement
We investigated the feasibility and efficacy of using a specific sphingosine 1-phosphate (S1P1) receptor agonist, CYM-5442, to slow or block retinal ganglion cell (RGC) loss in endothelin-1 (ET-1) induced RGC loss. A single intravitreal injection of ET-1 (20pmol/ul), a potent vasoactive peptide that produces retinal vessels vasoconstriction, was used to induce and characterize RGC-specific cell death. CYM-5442 (1 mgr/kg) or vehicle was administered intraperitoneally for five consecutive days after ET-1-induced RGC loss. The functional extent of RGC loss injury was evaluated with pattern visual evoked potentials (VEP) and electroretinography. RGCs and retinal nerve fiber layer (RNFL) thickness were assessed in vivo using optical coherence tomography and ex vivo using Brn3a immunohistochemistry in flat-mounted retinas. ET-1 caused significant RGC loss and function loss one week after intravitreal injection. VEP showed preserved visual function after CYM-5442 administration compared to vehicle-treated animals (11.95 ± 0.86 μV vs 3.47 ± 1.20 μV, n = 12) (p < 0.05). RNFL was significantly thicker in the CYM treated-animals compared to the vehicle (93.62 ± 3.22 μm vs 77.72 ± 0.35 μm, n = 12) (p < 0.05). Furthermore, Brn3a immunohistochemistry validated this observation, showing significantly higher RGCs numbers in CYM treated rats than in the vehicle group (76,540 ± 303 vs 52,426 ± 1,932 cells/retina, n = 9) (p = 0.05). CYM-5442 administration was associated with significant retinal cleaved caspase-3 deactivation, indicating reduced apoptotic levels. The results of the present study further demonstrate the important role of S1P1 receptor agonists to lessen intravitreal ET-1 induced RGC loss.
Department of Surgery, Medical and Social Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain. Electronic address: roman.blanco@uah.es.
Full article11.8 Neuroprotection (Part of: 11 Medical treatment)
11.14 Investigational drugs; pharmacological experiments (Part of: 11 Medical treatment)