advertisement
Magnesium (Mg2+) is one of the major elements required to maintain normal metabolism and ionic balances in ocular tissues. The physiological role of Mg2+ is mediated through maintaining the Na+-K+-ATPase on membrane, favoring energy-generating reactions, replication of DNA and protein synthesis. Despite the wide availability of this element, hypomagnesemia has been associated with many human ailments. Recent studies highlighted the association of hypomagnesemia and, thereby, supplementation of Mg2+ in the management of eye diseases. Glaucoma, senile cataract and diabetic retinopathy were associated with low level of extracellular Mg2+. The neurovascular protective effects of Mg2+ mediated through activation of endothelial nitric oxide synthase and inhibition of endothelin-1 eventually result in vasodilatation of retinal vessels. Mg2+ can maintain the lens sodium pump activity and antioxidant status and block the calcium channels and release of glutamate in nerve endings. Furthermore, it can prevent the apoptosis of retinal ganglion cells. All these effects contribute to its being a pharmacological agent against ocular diseases. However, clinical trials are scant. This article discusses the role of Mg2+ as a possible therapeutic agent in the management of glaucoma, cataract and diabetic retinopathy.
Full article
3.8 Pharmacology (Part of: 3 Laboratory methods)
3.6 Cellular biology (Part of: 3 Laboratory methods)
11.8 Neuroprotection (Part of: 11 Medical treatment)