advertisement

Topcon

List of abstracts related to

53999 Accuracy of Matching Optic Discs with Visual Fields: The European Structure and Function Assessment Trial (ESAFAT)
van der Schoot J; Reus NJ; Garway-Heath DF; Saarela V; Anton A; Bron AM; Faschinger C; Holló G; Iester M; Jonas JB; Topouzis F; Zeyen TG; Lemij HG
Ophthalmology 2013; 120: 2470-2475

Listed by Classification


2.14 Optic disc (5130 abstracts found)


94827 Glaucoma Diagnostic Testing: The Influence of Optic Disc Size
Scheuble P
Klinische Monatsblätter für Augenheilkunde 2022; 239: 1043-1051 (IGR: 22-2)


94682 Optical coherence tomography in the setting of optic nerve head cupping reversal in secondary childhood glaucoma
Elhusseiny AM
Journal of AAPOS 2021; 25: 236-239 (IGR: 22-2)


94576 Disc Hemorrhages are Associated with Localized Three-Dimensional Neuroretinal Rim Thickness Progression in Open-Angle Glaucoma
Margeta MA
American Journal of Ophthalmology 2022; 234: 188-198 (IGR: 22-2)


94772 Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Artificial Intelligence
Panda SK
American Journal of Ophthalmology 2022; 236: 172-182 (IGR: 22-2)


94368 Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA
Han X
American Journal of Human Genetics 2021; 108: 1204-1216 (IGR: 22-2)


94488 Quantitative assessment of retinal changes in COVID-19 patients
Oren B
Clinical and Experimental Optometry 2021; 104: 717-722 (IGR: 22-2)


94760 Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone
Nakahara K
British Journal of Ophthalmology 2022; 106: 587-592 (IGR: 22-2)


94346 Mirna Expression in Glaucomatous and TGFβ2 Treated Lamina Cribrosa Cells
Lopez NN
International journal of molecular sciences 2021; 22: (IGR: 22-2)


94988 Choroidal microvasculature dropout is spatially associated with optic nerve head microvasculature loss in open-angle glaucoma
Song MK
Scientific reports 2021; 11: 15181 (IGR: 22-2)


94848 Vessel Density Loss of the Deep Peripapillary Area in Glaucoma Suspects and Its Association with Features of the Lamina Cribrosa
Jeon SJ
Journal of clinical medicine 2021; 10: (IGR: 22-2)


94542 Disc hemorrhage following peripapillary retinoschisis in glaucoma: a case report
Lee WJ
BMC Ophthalmology 2021; 21: 253 (IGR: 22-2)


94380 Decorin-An Antagonist of TGF-β in Astrocytes of the Optic Nerve
Schneider M
International journal of molecular sciences 2021; 22: (IGR: 22-2)


94705 Vertical Position of the Central Retinal Vessel in the Optic Disc and Its Association With the Site of Visual Field Defects in Glaucoma
Sawada Y
American Journal of Ophthalmology 2021; 229: 253-265 (IGR: 22-2)


94660 A New Smartphone-Based Optic Nerve Head Biometric for Verification and Change Detection
Coleman K
Translational vision science & technology 2021; 10: 1 (IGR: 22-2)


94556 Optic disc morphology in primary open-angle glaucoma versus primary angle-closure glaucoma in South India
Parikh R
Indian Journal of Ophthalmology 2021; 69: 1833-1838 (IGR: 22-2)


94964 Clinical Features of Advanced Glaucoma With Optic Nerve Head Prelaminar Schisis
Sung MS
American Journal of Ophthalmology 2021; 232: 17-29 (IGR: 22-2)


94609 A Case Report on Premature Twins: Primary Congenital Glaucoma or Large Cupping Disks Mimicking Primary Congenital Glaucoma?
Nakakura S
Cureus 2021; 13: e17108 (IGR: 22-2)


94640 Joint optic disc and optic cup segmentation based on boundary prior and adversarial learning
Luo L
International journal of computer assisted radiology and surgery 2021; 16: 905-914 (IGR: 22-2)


94942 Association of Optic Disc Tilt and Torsion with Open-Angle Glaucoma Progression Risk: Meta-Analysis and Meta-Regression Analysis
Ha A
American Journal of Ophthalmology 2021; 232: 30-39 (IGR: 22-2)


94974 Central retinal vascular trunk deviation in unilateral normal-tension glaucoma
Choung HK
PLoS ONE 2021; 16: e0254889 (IGR: 22-2)


94978 Characteristics of Central Visual Field Progression in Eyes with Optic Disc Hemorrhage
David RCC
American Journal of Ophthalmology 2021; 231: 109-119 (IGR: 22-2)


94346 Mirna Expression in Glaucomatous and TGFβ2 Treated Lamina Cribrosa Cells
Rangan R
International journal of molecular sciences 2021; 22: (IGR: 22-2)


94760 Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone
Asaoka R
British Journal of Ophthalmology 2022; 106: 587-592 (IGR: 22-2)


94848 Vessel Density Loss of the Deep Peripapillary Area in Glaucoma Suspects and Its Association with Features of the Lamina Cribrosa
Park HL
Journal of clinical medicine 2021; 10: (IGR: 22-2)


94640 Joint optic disc and optic cup segmentation based on boundary prior and adversarial learning
Xue D
International journal of computer assisted radiology and surgery 2021; 16: 905-914 (IGR: 22-2)


94380 Decorin-An Antagonist of TGF-β in Astrocytes of the Optic Nerve
Dillinger AE
International journal of molecular sciences 2021; 22: (IGR: 22-2)


94974 Central retinal vascular trunk deviation in unilateral normal-tension glaucoma
Kim M
PLoS ONE 2021; 16: e0254889 (IGR: 22-2)


94827 Glaucoma Diagnostic Testing: The Influence of Optic Disc Size
Petrak M
Klinische Monatsblätter für Augenheilkunde 2022; 239: 1043-1051 (IGR: 22-2)


94942 Association of Optic Disc Tilt and Torsion with Open-Angle Glaucoma Progression Risk: Meta-Analysis and Meta-Regression Analysis
Chung W
American Journal of Ophthalmology 2021; 232: 30-39 (IGR: 22-2)


94682 Optical coherence tomography in the setting of optic nerve head cupping reversal in secondary childhood glaucoma
VanderVeen DK
Journal of AAPOS 2021; 25: 236-239 (IGR: 22-2)


94556 Optic disc morphology in primary open-angle glaucoma versus primary angle-closure glaucoma in South India
Kitnarong N
Indian Journal of Ophthalmology 2021; 69: 1833-1838 (IGR: 22-2)


94964 Clinical Features of Advanced Glaucoma With Optic Nerve Head Prelaminar Schisis
Jin HN
American Journal of Ophthalmology 2021; 232: 17-29 (IGR: 22-2)


94609 A Case Report on Premature Twins: Primary Congenital Glaucoma or Large Cupping Disks Mimicking Primary Congenital Glaucoma?
Terao E
Cureus 2021; 13: e17108 (IGR: 22-2)


94488 Quantitative assessment of retinal changes in COVID-19 patients
Aksoy Aydemır G
Clinical and Experimental Optometry 2021; 104: 717-722 (IGR: 22-2)


94978 Characteristics of Central Visual Field Progression in Eyes with Optic Disc Hemorrhage
Moghimi S
American Journal of Ophthalmology 2021; 231: 109-119 (IGR: 22-2)


94988 Choroidal microvasculature dropout is spatially associated with optic nerve head microvasculature loss in open-angle glaucoma
Shin JW
Scientific reports 2021; 11: 15181 (IGR: 22-2)


94772 Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Artificial Intelligence
Cheong H
American Journal of Ophthalmology 2022; 236: 172-182 (IGR: 22-2)


94542 Disc hemorrhage following peripapillary retinoschisis in glaucoma: a case report
Seong M
BMC Ophthalmology 2021; 21: 253 (IGR: 22-2)


94660 A New Smartphone-Based Optic Nerve Head Biometric for Verification and Change Detection
Coleman J
Translational vision science & technology 2021; 10: 1 (IGR: 22-2)


94705 Vertical Position of the Central Retinal Vessel in the Optic Disc and Its Association With the Site of Visual Field Defects in Glaucoma
Araie M
American Journal of Ophthalmology 2021; 229: 253-265 (IGR: 22-2)


94576 Disc Hemorrhages are Associated with Localized Three-Dimensional Neuroretinal Rim Thickness Progression in Open-Angle Glaucoma
Ratanawongphaibul K
American Journal of Ophthalmology 2022; 234: 188-198 (IGR: 22-2)


94368 Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA
Steven K
American Journal of Human Genetics 2021; 108: 1204-1216 (IGR: 22-2)


94988 Choroidal microvasculature dropout is spatially associated with optic nerve head microvasculature loss in open-angle glaucoma
Lee JY
Scientific reports 2021; 11: 15181 (IGR: 22-2)


94640 Joint optic disc and optic cup segmentation based on boundary prior and adversarial learning
Pan F
International journal of computer assisted radiology and surgery 2021; 16: 905-914 (IGR: 22-2)


94488 Quantitative assessment of retinal changes in COVID-19 patients
Aydemır E
Clinical and Experimental Optometry 2021; 104: 717-722 (IGR: 22-2)


94556 Optic disc morphology in primary open-angle glaucoma versus primary angle-closure glaucoma in South India
Jonas JB
Indian Journal of Ophthalmology 2021; 69: 1833-1838 (IGR: 22-2)


94942 Association of Optic Disc Tilt and Torsion with Open-Angle Glaucoma Progression Risk: Meta-Analysis and Meta-Regression Analysis
Shim SR
American Journal of Ophthalmology 2021; 232: 30-39 (IGR: 22-2)


94660 A New Smartphone-Based Optic Nerve Head Biometric for Verification and Change Detection
Franco-Penya H
Translational vision science & technology 2021; 10: 1 (IGR: 22-2)


94705 Vertical Position of the Central Retinal Vessel in the Optic Disc and Its Association With the Site of Visual Field Defects in Glaucoma
Shibata H
American Journal of Ophthalmology 2021; 229: 253-265 (IGR: 22-2)


94576 Disc Hemorrhages are Associated with Localized Three-Dimensional Neuroretinal Rim Thickness Progression in Open-Angle Glaucoma
Tsikata E
American Journal of Ophthalmology 2022; 234: 188-198 (IGR: 22-2)


94974 Central retinal vascular trunk deviation in unilateral normal-tension glaucoma
Oh S
PLoS ONE 2021; 16: e0254889 (IGR: 22-2)


94827 Glaucoma Diagnostic Testing: The Influence of Optic Disc Size
Brinkmann CK
Klinische Monatsblätter für Augenheilkunde 2022; 239: 1043-1051 (IGR: 22-2)


94609 A Case Report on Premature Twins: Primary Congenital Glaucoma or Large Cupping Disks Mimicking Primary Congenital Glaucoma?
Kuroda N
Cureus 2021; 13: e17108 (IGR: 22-2)


94848 Vessel Density Loss of the Deep Peripapillary Area in Glaucoma Suspects and Its Association with Features of the Lamina Cribrosa
Park CK
Journal of clinical medicine 2021; 10: (IGR: 22-2)


94368 Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA
Qassim A
American Journal of Human Genetics 2021; 108: 1204-1216 (IGR: 22-2)


94760 Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone
Tanito M
British Journal of Ophthalmology 2022; 106: 587-592 (IGR: 22-2)


94380 Decorin-An Antagonist of TGF-β in Astrocytes of the Optic Nerve
Ohlmann A
International journal of molecular sciences 2021; 22: (IGR: 22-2)


94978 Characteristics of Central Visual Field Progression in Eyes with Optic Disc Hemorrhage
Do JL
American Journal of Ophthalmology 2021; 231: 109-119 (IGR: 22-2)


94346 Mirna Expression in Glaucomatous and TGFβ2 Treated Lamina Cribrosa Cells
Clark AF
International journal of molecular sciences 2021; 22: (IGR: 22-2)


94772 Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Artificial Intelligence
Tun TA
American Journal of Ophthalmology 2022; 236: 172-182 (IGR: 22-2)


94964 Clinical Features of Advanced Glaucoma With Optic Nerve Head Prelaminar Schisis
Park SW
American Journal of Ophthalmology 2021; 232: 17-29 (IGR: 22-2)


94978 Characteristics of Central Visual Field Progression in Eyes with Optic Disc Hemorrhage
Hou H
American Journal of Ophthalmology 2021; 231: 109-119 (IGR: 22-2)


94974 Central retinal vascular trunk deviation in unilateral normal-tension glaucoma
Lee KM
PLoS ONE 2021; 16: e0254889 (IGR: 22-2)


94556 Optic disc morphology in primary open-angle glaucoma versus primary angle-closure glaucoma in South India
Parikh SR
Indian Journal of Ophthalmology 2021; 69: 1833-1838 (IGR: 22-2)


94978 Characteristics of Central Visual Field Progression in Eyes with Optic Disc Hemorrhage
Hou H
American Journal of Ophthalmology 2021; 231: 109-119 (IGR: 22-2)


94988 Choroidal microvasculature dropout is spatially associated with optic nerve head microvasculature loss in open-angle glaucoma
Hong JW
Scientific reports 2021; 11: 15181 (IGR: 22-2)


94576 Disc Hemorrhages are Associated with Localized Three-Dimensional Neuroretinal Rim Thickness Progression in Open-Angle Glaucoma
Zemplenyi M
American Journal of Ophthalmology 2022; 234: 188-198 (IGR: 22-2)


94488 Quantitative assessment of retinal changes in COVID-19 patients
Atesoglu HI
Clinical and Experimental Optometry 2021; 104: 717-722 (IGR: 22-2)


94772 Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Artificial Intelligence
Devella SK
American Journal of Ophthalmology 2022; 236: 172-182 (IGR: 22-2)


94640 Joint optic disc and optic cup segmentation based on boundary prior and adversarial learning
Feng X
International journal of computer assisted radiology and surgery 2021; 16: 905-914 (IGR: 22-2)


94368 Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA
Marshall HN
American Journal of Human Genetics 2021; 108: 1204-1216 (IGR: 22-2)


94978 Characteristics of Central Visual Field Progression in Eyes with Optic Disc Hemorrhage
Hou H
American Journal of Ophthalmology 2021; 231: 109-119 (IGR: 22-2)


94346 Mirna Expression in Glaucomatous and TGFβ2 Treated Lamina Cribrosa Cells
Tovar-Vidales T
International journal of molecular sciences 2021; 22: (IGR: 22-2)


94942 Association of Optic Disc Tilt and Torsion with Open-Angle Glaucoma Progression Risk: Meta-Analysis and Meta-Regression Analysis
Kim CY
American Journal of Ophthalmology 2021; 232: 30-39 (IGR: 22-2)


94760 Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone
Shibata N
British Journal of Ophthalmology 2022; 106: 587-592 (IGR: 22-2)


94609 A Case Report on Premature Twins: Primary Congenital Glaucoma or Large Cupping Disks Mimicking Primary Congenital Glaucoma?
Fujio S
Cureus 2021; 13: e17108 (IGR: 22-2)


94660 A New Smartphone-Based Optic Nerve Head Biometric for Verification and Change Detection
Hamroush F
Translational vision science & technology 2021; 10: 1 (IGR: 22-2)


94380 Decorin-An Antagonist of TGF-β in Astrocytes of the Optic Nerve
Iozzo RV; Fuchshofer R
International journal of molecular sciences 2021; 22: (IGR: 22-2)


94974 Central retinal vascular trunk deviation in unilateral normal-tension glaucoma
Kim SH
PLoS ONE 2021; 16: e0254889 (IGR: 22-2)


94760 Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone
Mitsuhashi K
British Journal of Ophthalmology 2022; 106: 587-592 (IGR: 22-2)


94609 A Case Report on Premature Twins: Primary Congenital Glaucoma or Large Cupping Disks Mimicking Primary Congenital Glaucoma?
Hirose Y
Cureus 2021; 13: e17108 (IGR: 22-2)


94368 Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA
Bean C
American Journal of Human Genetics 2021; 108: 1204-1216 (IGR: 22-2)


94660 A New Smartphone-Based Optic Nerve Head Biometric for Verification and Change Detection
Murtagh P
Translational vision science & technology 2021; 10: 1 (IGR: 22-2)


94978 Characteristics of Central Visual Field Progression in Eyes with Optic Disc Hemorrhage
Proudfoot J
American Journal of Ophthalmology 2021; 231: 109-119 (IGR: 22-2)


94942 Association of Optic Disc Tilt and Torsion with Open-Angle Glaucoma Progression Risk: Meta-Analysis and Meta-Regression Analysis
Chang IB
American Journal of Ophthalmology 2021; 232: 30-39 (IGR: 22-2)


94576 Disc Hemorrhages are Associated with Localized Three-Dimensional Neuroretinal Rim Thickness Progression in Open-Angle Glaucoma
Ondeck CL
American Journal of Ophthalmology 2022; 234: 188-198 (IGR: 22-2)


94988 Choroidal microvasculature dropout is spatially associated with optic nerve head microvasculature loss in open-angle glaucoma
Kook MS
Scientific reports 2021; 11: 15181 (IGR: 22-2)


94978 Characteristics of Central Visual Field Progression in Eyes with Optic Disc Hemorrhage
Proudfoot J
American Journal of Ophthalmology 2021; 231: 109-119 (IGR: 22-2)


94488 Quantitative assessment of retinal changes in COVID-19 patients
Goker YS
Clinical and Experimental Optometry 2021; 104: 717-722 (IGR: 22-2)


94772 Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Artificial Intelligence
Senthil V
American Journal of Ophthalmology 2022; 236: 172-182 (IGR: 22-2)


94556 Optic disc morphology in primary open-angle glaucoma versus primary angle-closure glaucoma in South India
Thomas R
Indian Journal of Ophthalmology 2021; 69: 1833-1838 (IGR: 22-2)


94942 Association of Optic Disc Tilt and Torsion with Open-Angle Glaucoma Progression Risk: Meta-Analysis and Meta-Regression Analysis
Kim YK
American Journal of Ophthalmology 2021; 232: 30-39 (IGR: 22-2)


94609 A Case Report on Premature Twins: Primary Congenital Glaucoma or Large Cupping Disks Mimicking Primary Congenital Glaucoma?
Tabuchi A
Cureus 2021; 13: e17108 (IGR: 22-2)


94772 Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Artificial Intelligence
Krishnadas R
American Journal of Ophthalmology 2022; 236: 172-182 (IGR: 22-2)


94978 Characteristics of Central Visual Field Progression in Eyes with Optic Disc Hemorrhage
Zangwill LM
American Journal of Ophthalmology 2021; 231: 109-119 (IGR: 22-2)


94488 Quantitative assessment of retinal changes in COVID-19 patients
Kızıltoprak H
Clinical and Experimental Optometry 2021; 104: 717-722 (IGR: 22-2)


94368 Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA
Tremeer M
American Journal of Human Genetics 2021; 108: 1204-1216 (IGR: 22-2)


94760 Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone
Fujino Y
British Journal of Ophthalmology 2022; 106: 587-592 (IGR: 22-2)


94576 Disc Hemorrhages are Associated with Localized Three-Dimensional Neuroretinal Rim Thickness Progression in Open-Angle Glaucoma
Kim J
American Journal of Ophthalmology 2022; 234: 188-198 (IGR: 22-2)


94660 A New Smartphone-Based Optic Nerve Head Biometric for Verification and Change Detection
Fitzpatrick P
Translational vision science & technology 2021; 10: 1 (IGR: 22-2)


94772 Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Artificial Intelligence
Buist ML
American Journal of Ophthalmology 2022; 236: 172-182 (IGR: 22-2)


94609 A Case Report on Premature Twins: Primary Congenital Glaucoma or Large Cupping Disks Mimicking Primary Congenital Glaucoma?
Kiuchi Y
Cureus 2021; 13: e17108 (IGR: 22-2)


94488 Quantitative assessment of retinal changes in COVID-19 patients
Ozcelık KC
Clinical and Experimental Optometry 2021; 104: 717-722 (IGR: 22-2)


94660 A New Smartphone-Based Optic Nerve Head Biometric for Verification and Change Detection
Aiken M
Translational vision science & technology 2021; 10: 1 (IGR: 22-2)


94978 Characteristics of Central Visual Field Progression in Eyes with Optic Disc Hemorrhage
Kamalipour A
American Journal of Ophthalmology 2021; 231: 109-119 (IGR: 22-2)


94760 Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone
Matsuura M
British Journal of Ophthalmology 2022; 106: 587-592 (IGR: 22-2)


94576 Disc Hemorrhages are Associated with Localized Three-Dimensional Neuroretinal Rim Thickness Progression in Open-Angle Glaucoma
Coleman AL
American Journal of Ophthalmology 2022; 234: 188-198 (IGR: 22-2)


94368 Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA
An J
American Journal of Human Genetics 2021; 108: 1204-1216 (IGR: 22-2)


94942 Association of Optic Disc Tilt and Torsion with Open-Angle Glaucoma Progression Risk: Meta-Analysis and Meta-Regression Analysis
Park KH
American Journal of Ophthalmology 2021; 232: 30-39 (IGR: 22-2)


94368 Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA
Siggs OM
American Journal of Human Genetics 2021; 108: 1204-1216 (IGR: 22-2)


94772 Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Artificial Intelligence
Perera S
American Journal of Ophthalmology 2022; 236: 172-182 (IGR: 22-2)


94576 Disc Hemorrhages are Associated with Localized Three-Dimensional Neuroretinal Rim Thickness Progression in Open-Angle Glaucoma
Yu F
American Journal of Ophthalmology 2022; 234: 188-198 (IGR: 22-2)


94978 Characteristics of Central Visual Field Progression in Eyes with Optic Disc Hemorrhage
Nishida T
American Journal of Ophthalmology 2021; 231: 109-119 (IGR: 22-2)


94660 A New Smartphone-Based Optic Nerve Head Biometric for Verification and Change Detection
Combes A
Translational vision science & technology 2021; 10: 1 (IGR: 22-2)


94760 Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone
Inoue T
British Journal of Ophthalmology 2022; 106: 587-592 (IGR: 22-2)


94576 Disc Hemorrhages are Associated with Localized Three-Dimensional Neuroretinal Rim Thickness Progression in Open-Angle Glaucoma
de Boer JF
American Journal of Ophthalmology 2022; 234: 188-198 (IGR: 22-2)


94978 Characteristics of Central Visual Field Progression in Eyes with Optic Disc Hemorrhage
De Moraes CG
American Journal of Ophthalmology 2021; 231: 109-119 (IGR: 22-2)


94368 Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA
Gharahkhani P
American Journal of Human Genetics 2021; 108: 1204-1216 (IGR: 22-2)


94760 Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone
Azuma K
British Journal of Ophthalmology 2022; 106: 587-592 (IGR: 22-2)


94660 A New Smartphone-Based Optic Nerve Head Biometric for Verification and Change Detection
Keegan D
Translational vision science & technology 2021; 10: 1 (IGR: 22-2)


94772 Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Artificial Intelligence
Cheng CY; Aung T
American Journal of Ophthalmology 2022; 236: 172-182 (IGR: 22-2)


94760 Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone
Obata R
British Journal of Ophthalmology 2022; 106: 587-592 (IGR: 22-2)


94368 Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA
Craig JE
American Journal of Human Genetics 2021; 108: 1204-1216 (IGR: 22-2)


94576 Disc Hemorrhages are Associated with Localized Three-Dimensional Neuroretinal Rim Thickness Progression in Open-Angle Glaucoma
Chen TC
American Journal of Ophthalmology 2022; 234: 188-198 (IGR: 22-2)


94978 Characteristics of Central Visual Field Progression in Eyes with Optic Disc Hemorrhage
Girkin CA
American Journal of Ophthalmology 2021; 231: 109-119 (IGR: 22-2)


94772 Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Artificial Intelligence
Thiéry AH
American Journal of Ophthalmology 2022; 236: 172-182 (IGR: 22-2)


94760 Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone
Murata H
British Journal of Ophthalmology 2022; 106: 587-592 (IGR: 22-2)


94368 Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA
Hewitt AW
American Journal of Human Genetics 2021; 108: 1204-1216 (IGR: 22-2)


94978 Characteristics of Central Visual Field Progression in Eyes with Optic Disc Hemorrhage
Liebmann JM; Weinreb RN
American Journal of Ophthalmology 2021; 231: 109-119 (IGR: 22-2)


94368 Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA
Trzaskowski M
American Journal of Human Genetics 2021; 108: 1204-1216 (IGR: 22-2)


94772 Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Artificial Intelligence
Girard MJA
American Journal of Ophthalmology 2022; 236: 172-182 (IGR: 22-2)


94368 Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA
Macgregor S
American Journal of Human Genetics 2021; 108: 1204-1216 (IGR: 22-2)


92622 Evaluation of the optic nerve head vessel density in patients with limited scleroderma
Kılınç Hekimsoy H
Therapeutic advances in ophthalmology 2021; 13: 2515841421995387 (IGR: 22-1)


92198 Comparison of spectral domain optical coherence tomography parameters between disc suspects and "pre-perimetric" glaucomatous discs classified on disc photo
Shah SN
Indian Journal of Ophthalmology 2021; 69: 603-610 (IGR: 22-1)


92015 Determinants of lamina cribrosa depth in healthy Asian eyes: the Singapore Epidemiology Eye Study
Tun TA
British Journal of Ophthalmology 2021; 105: 367-373 (IGR: 22-1)


92617 Characterizing and quantifying the temporal relationship between structural and functional change in glaucoma
Chu FI
PLoS ONE 2021; 16: e0249212 (IGR: 22-1)


92075 Clinical Evaluation of Unilateral Open-Angle Glaucoma: A Two-Year Follow-Up Study
Nam JW
Chonnam medical journal 2021; 57: 144-151 (IGR: 22-1)


92764 Ten-year-and-beyond longitudinal change of ß-zone parapapillary atrophy in glaucoma: association with retinal nerve fibre layer defect
Bak E
British Journal of Ophthalmology 2022; 106: 1393-1398 (IGR: 22-1)


92464 Acute Onset Optic Disc Hemorrhage Following Pharmacologic Mydriasis
Scott JA
Journal of Glaucoma 2021; 30: e379-e381 (IGR: 22-1)


92750 Differences in clinical presentation of primary open-angle glaucoma between African and European populations
Bonnemaijer PWM
Acta Ophthalmologica 2021; 99: e1118-e1126 (IGR: 22-1)


92602 The influence of axial myopia on optic disc characteristics of glaucoma eyes
Rezapour J
Scientific reports 2021; 11: 8854 (IGR: 22-1)


92223 A Wide-Field Optical Coherence Tomography Normative Database Considering the Fovea-Disc Relationship for Glaucoma Detection
Kim H
Translational vision science & technology 2021; 10: 7 (IGR: 22-1)


92768 Effect of trabeculectomy on optic nerve head and macular vessel density: an optical coherence tomography angiography study
Miraftabi A
International Ophthalmology 2021; 41: 2677-2688 (IGR: 22-1)


92466 Racial Differences in the Rate of Change in Anterior Lamina Cribrosa Surface Depth in the African Descent and Glaucoma Evaluation Study
Girkin CA
Investigative Ophthalmology and Visual Science 2021; 62: 12 (IGR: 22-1)


92264 Diagnostic capability of different morphological parameters for primary open-angle glaucoma in the Chinese population
Li R
BMC Ophthalmology 2021; 21: 151 (IGR: 22-1)


92801 Time-Course Changes in Optic Nerve Head Blood Flow and Retinal Nerve Fiber Layer Thickness in Eyes with Open-angle Glaucoma
Kiyota N
Ophthalmology 2021; 128: 663-671 (IGR: 22-1)


92496 Comparative Study of Lamina Cribrosa Thickness Between Primary Angle-Closure and Primary Open-Angle Glaucoma
Wanichwecharungruang B
Clinical Ophthalmology 2021; 15: 697-705 (IGR: 22-1)


92266 Transpupillary collagen photocrosslinking for targeted modulation of ocular biomechanics
Gerberich BG
Biomaterials 2021; 271: 120735 (IGR: 22-1)


92028 Associating the biomarkers of ocular blood flow with lamina cribrosa parameters in normotensive glaucoma suspects. Comparison to glaucoma patients and healthy controls
Krzyżanowska-Berkowska P
PLoS ONE 2021; 16: e0248851 (IGR: 22-1)


92735 Microvascular and structural alterations in the optic nerve head of advanced primary open-angle glaucoma compared with atrophic non-arteritic anterior ischemic optic neuropathy
Hondur G
Graefe's Archive for Clinical and Experimental Ophthalmology 2021; 259: 1945-1953 (IGR: 22-1)


92536 Nasal displacement of retinal vessels on the optic disc in glaucoma associated with a nasally angled passage through lamina cribrosa
Sawada Y
Scientific reports 2021; 11: 4176 (IGR: 22-1)


92764 Ten-year-and-beyond longitudinal change of ß-zone parapapillary atrophy in glaucoma: association with retinal nerve fibre layer defect
Bak E
British Journal of Ophthalmology 2022; 106: 1393-1398 (IGR: 22-1)


92267 Evaluation of ganglion cell-inner plexiform layer thickness in the diagnosis of preperimetric glaucoma and comparison to retinal nerve fiber layer
Deshpande GA
Indian Journal of Ophthalmology 2021; 69: 1113-1119 (IGR: 22-1)


92014 The role of clinical examination of the optic nerve head in glaucoma today
Sihota R
Current Opinions in Ophthalmology 2021; 32: 83-91 (IGR: 22-1)


92494 A multi-scale convolutional neural network with context for joint segmentation of optic disc and cup
Yuan X
Artificial Intelligence in Medicine 2021; 113: 102035 (IGR: 22-1)


92764 Ten-year-and-beyond longitudinal change of ß-zone parapapillary atrophy in glaucoma: association with retinal nerve fibre layer defect
Bak E
British Journal of Ophthalmology 2022; 106: 1393-1398 (IGR: 22-1)


92563 Rates of Retinal Nerve Fiber Layer Thinning in Distinct Glaucomatous Optic Disc Phenotypes in Early Glaucoma
David RCC
American Journal of Ophthalmology 2021; 229: 8-17 (IGR: 22-1)


92286 ELUCIDATION OF THE ROLE OF THE LAMINA CRIBROSA IN GLAUCOMA USING OPTICAL COHERENCE TOMOGRAPHY
Andrade JCF
Survey of Ophthalmology 2022; 67: 197-216 (IGR: 22-1)


92711 Smartphone-based Ophthalmic Imaging Compared With Spectral-domain Optical Coherence Tomography Assessment of Vertical Cup-to-disc Ratio Among Adults in Southwestern Uganda
Idriss BR
Journal of Glaucoma 2021; 30: e90-e98 (IGR: 22-1)


92038 Recent developments in the use of optical coherence tomography for glaucoma
Vazquez LE
Current Opinions in Ophthalmology 2021; 32: 98-104 (IGR: 22-1)


92561 Commentary review on peripapillary morphological characteristics in high myopia eyes with glaucoma: diagnostic challenges and strategies
Chen YH
International Journal of Ophthalmology 2021; 14: 600-605 (IGR: 22-1)


92142 Relative micro- and macrodiscs-a challenge in optical coherence tomography-based glaucoma diagnostics?
Mardin C
Ophthalmologe 2021; 118: 608-613 (IGR: 22-1)


92764 Ten-year-and-beyond longitudinal change of ß-zone parapapillary atrophy in glaucoma: association with retinal nerve fibre layer defect
Bak E
British Journal of Ophthalmology 2022; 106: 1393-1398 (IGR: 22-1)


92464 Acute Onset Optic Disc Hemorrhage Following Pharmacologic Mydriasis
Scott JA
Journal of Glaucoma 2021; 30: e379-e381 (IGR: 22-1)


91933 Rate of visual field decay in glaucomatous eyes with acquired pits of the optic nerve
Mahmoudinezhad G
British Journal of Ophthalmology 2021; 105: 381-386 (IGR: 22-1)


92466 Racial Differences in the Rate of Change in Anterior Lamina Cribrosa Surface Depth in the African Descent and Glaucoma Evaluation Study
Belghith A
Investigative Ophthalmology and Visual Science 2021; 62: 12 (IGR: 22-1)


92494 A multi-scale convolutional neural network with context for joint segmentation of optic disc and cup
Zhou L
Artificial Intelligence in Medicine 2021; 113: 102035 (IGR: 22-1)


92711 Smartphone-based Ophthalmic Imaging Compared With Spectral-domain Optical Coherence Tomography Assessment of Vertical Cup-to-disc Ratio Among Adults in Southwestern Uganda
Tran TM
Journal of Glaucoma 2021; 30: e90-e98 (IGR: 22-1)


92764 Ten-year-and-beyond longitudinal change of ß-zone parapapillary atrophy in glaucoma: association with retinal nerve fibre layer defect
Kim YW
British Journal of Ophthalmology 2022; 106: 1393-1398 (IGR: 22-1)


92223 A Wide-Field Optical Coherence Tomography Normative Database Considering the Fovea-Disc Relationship for Glaucoma Detection
Lee JS
Translational vision science & technology 2021; 10: 7 (IGR: 22-1)


92014 The role of clinical examination of the optic nerve head in glaucoma today
Sidhu T
Current Opinions in Ophthalmology 2021; 32: 83-91 (IGR: 22-1)


92028 Associating the biomarkers of ocular blood flow with lamina cribrosa parameters in normotensive glaucoma suspects. Comparison to glaucoma patients and healthy controls
Czajor K
PLoS ONE 2021; 16: e0248851 (IGR: 22-1)


92563 Rates of Retinal Nerve Fiber Layer Thinning in Distinct Glaucomatous Optic Disc Phenotypes in Early Glaucoma
Moghimi S
American Journal of Ophthalmology 2021; 229: 8-17 (IGR: 22-1)


91933 Rate of visual field decay in glaucomatous eyes with acquired pits of the optic nerve
Lin M
British Journal of Ophthalmology 2021; 105: 381-386 (IGR: 22-1)


92038 Recent developments in the use of optical coherence tomography for glaucoma
Bye A
Current Opinions in Ophthalmology 2021; 32: 98-104 (IGR: 22-1)


92561 Commentary review on peripapillary morphological characteristics in high myopia eyes with glaucoma: diagnostic challenges and strategies
Wei RH
International Journal of Ophthalmology 2021; 14: 600-605 (IGR: 22-1)


92617 Characterizing and quantifying the temporal relationship between structural and functional change in glaucoma
Racette L
PLoS ONE 2021; 16: e0249212 (IGR: 22-1)


92075 Clinical Evaluation of Unilateral Open-Angle Glaucoma: A Two-Year Follow-Up Study
Kang YS
Chonnam medical journal 2021; 57: 144-151 (IGR: 22-1)


92602 The influence of axial myopia on optic disc characteristics of glaucoma eyes
Bowd C
Scientific reports 2021; 11: 8854 (IGR: 22-1)


92464 Acute Onset Optic Disc Hemorrhage Following Pharmacologic Mydriasis
Liebmann JM
Journal of Glaucoma 2021; 30: e379-e381 (IGR: 22-1)


92198 Comparison of spectral domain optical coherence tomography parameters between disc suspects and "pre-perimetric" glaucomatous discs classified on disc photo
David RL
Indian Journal of Ophthalmology 2021; 69: 603-610 (IGR: 22-1)


92015 Determinants of lamina cribrosa depth in healthy Asian eyes: the Singapore Epidemiology Eye Study
Wang X
British Journal of Ophthalmology 2021; 105: 367-373 (IGR: 22-1)


92750 Differences in clinical presentation of primary open-angle glaucoma between African and European populations
Lo Faro V
Acta Ophthalmologica 2021; 99: e1118-e1126 (IGR: 22-1)


92801 Time-Course Changes in Optic Nerve Head Blood Flow and Retinal Nerve Fiber Layer Thickness in Eyes with Open-angle Glaucoma
Shiga Y
Ophthalmology 2021; 128: 663-671 (IGR: 22-1)


92266 Transpupillary collagen photocrosslinking for targeted modulation of ocular biomechanics
Hannon BG
Biomaterials 2021; 271: 120735 (IGR: 22-1)


92735 Microvascular and structural alterations in the optic nerve head of advanced primary open-angle glaucoma compared with atrophic non-arteritic anterior ischemic optic neuropathy
Sen E
Graefe's Archive for Clinical and Experimental Ophthalmology 2021; 259: 1945-1953 (IGR: 22-1)


92536 Nasal displacement of retinal vessels on the optic disc in glaucoma associated with a nasally angled passage through lamina cribrosa
Araie M
Scientific reports 2021; 11: 4176 (IGR: 22-1)


92264 Diagnostic capability of different morphological parameters for primary open-angle glaucoma in the Chinese population
Wang X
BMC Ophthalmology 2021; 21: 151 (IGR: 22-1)


92267 Evaluation of ganglion cell-inner plexiform layer thickness in the diagnosis of preperimetric glaucoma and comparison to retinal nerve fiber layer
Gupta R
Indian Journal of Ophthalmology 2021; 69: 1113-1119 (IGR: 22-1)


92286 ELUCIDATION OF THE ROLE OF THE LAMINA CRIBROSA IN GLAUCOMA USING OPTICAL COHERENCE TOMOGRAPHY
Kanadani FN
Survey of Ophthalmology 2022; 67: 197-216 (IGR: 22-1)


92768 Effect of trabeculectomy on optic nerve head and macular vessel density: an optical coherence tomography angiography study
Jafari S
International Ophthalmology 2021; 41: 2677-2688 (IGR: 22-1)


92622 Evaluation of the optic nerve head vessel density in patients with limited scleroderma
Şekeroğlu AM
Therapeutic advances in ophthalmology 2021; 13: 2515841421995387 (IGR: 22-1)


92496 Comparative Study of Lamina Cribrosa Thickness Between Primary Angle-Closure and Primary Open-Angle Glaucoma
Kongthaworn A
Clinical Ophthalmology 2021; 15: 697-705 (IGR: 22-1)


92801 Time-Course Changes in Optic Nerve Head Blood Flow and Retinal Nerve Fiber Layer Thickness in Eyes with Open-angle Glaucoma
Omodaka K
Ophthalmology 2021; 128: 663-671 (IGR: 22-1)


92015 Determinants of lamina cribrosa depth in healthy Asian eyes: the Singapore Epidemiology Eye Study
Baskaran M
British Journal of Ophthalmology 2021; 105: 367-373 (IGR: 22-1)


92223 A Wide-Field Optical Coherence Tomography Normative Database Considering the Fovea-Disc Relationship for Glaucoma Detection
Park HM
Translational vision science & technology 2021; 10: 7 (IGR: 22-1)


92711 Smartphone-based Ophthalmic Imaging Compared With Spectral-domain Optical Coherence Tomography Assessment of Vertical Cup-to-disc Ratio Among Adults in Southwestern Uganda
Atwine D
Journal of Glaucoma 2021; 30: e90-e98 (IGR: 22-1)


92735 Microvascular and structural alterations in the optic nerve head of advanced primary open-angle glaucoma compared with atrophic non-arteritic anterior ischemic optic neuropathy
Budakoglu O
Graefe's Archive for Clinical and Experimental Ophthalmology 2021; 259: 1945-1953 (IGR: 22-1)


92536 Nasal displacement of retinal vessels on the optic disc in glaucoma associated with a nasally angled passage through lamina cribrosa
Shibata H
Scientific reports 2021; 11: 4176 (IGR: 22-1)


92198 Comparison of spectral domain optical coherence tomography parameters between disc suspects and "pre-perimetric" glaucomatous discs classified on disc photo
Parivadhini A
Indian Journal of Ophthalmology 2021; 69: 603-610 (IGR: 22-1)


92764 Ten-year-and-beyond longitudinal change of ß-zone parapapillary atrophy in glaucoma: association with retinal nerve fibre layer defect
Kim YK
British Journal of Ophthalmology 2022; 106: 1393-1398 (IGR: 22-1)


92563 Rates of Retinal Nerve Fiber Layer Thinning in Distinct Glaucomatous Optic Disc Phenotypes in Early Glaucoma
Ekici E
American Journal of Ophthalmology 2021; 229: 8-17 (IGR: 22-1)


92286 ELUCIDATION OF THE ROLE OF THE LAMINA CRIBROSA IN GLAUCOMA USING OPTICAL COHERENCE TOMOGRAPHY
Furlanetto RL
Survey of Ophthalmology 2022; 67: 197-216 (IGR: 22-1)


92496 Comparative Study of Lamina Cribrosa Thickness Between Primary Angle-Closure and Primary Open-Angle Glaucoma
Wagner D
Clinical Ophthalmology 2021; 15: 697-705 (IGR: 22-1)


92266 Transpupillary collagen photocrosslinking for targeted modulation of ocular biomechanics
Hejri A
Biomaterials 2021; 271: 120735 (IGR: 22-1)


92750 Differences in clinical presentation of primary open-angle glaucoma between African and European populations
Sanyiwa AJ
Acta Ophthalmologica 2021; 99: e1118-e1126 (IGR: 22-1)


92267 Evaluation of ganglion cell-inner plexiform layer thickness in the diagnosis of preperimetric glaucoma and comparison to retinal nerve fiber layer
Bawankule P
Indian Journal of Ophthalmology 2021; 69: 1113-1119 (IGR: 22-1)


92014 The role of clinical examination of the optic nerve head in glaucoma today
Dada T
Current Opinions in Ophthalmology 2021; 32: 83-91 (IGR: 22-1)


91933 Rate of visual field decay in glaucomatous eyes with acquired pits of the optic nerve
Rabiolo A
British Journal of Ophthalmology 2021; 105: 381-386 (IGR: 22-1)


92494 A multi-scale convolutional neural network with context for joint segmentation of optic disc and cup
Yu S
Artificial Intelligence in Medicine 2021; 113: 102035 (IGR: 22-1)


92038 Recent developments in the use of optical coherence tomography for glaucoma
Aref AA
Current Opinions in Ophthalmology 2021; 32: 98-104 (IGR: 22-1)


92561 Commentary review on peripapillary morphological characteristics in high myopia eyes with glaucoma: diagnostic challenges and strategies
Hui YN
International Journal of Ophthalmology 2021; 14: 600-605 (IGR: 22-1)


92267 Evaluation of ganglion cell-inner plexiform layer thickness in the diagnosis of preperimetric glaucoma and comparison to retinal nerve fiber layer
Bawankule P
Indian Journal of Ophthalmology 2021; 69: 1113-1119 (IGR: 22-1)


92768 Effect of trabeculectomy on optic nerve head and macular vessel density: an optical coherence tomography angiography study
Nilforushan N
International Ophthalmology 2021; 41: 2677-2688 (IGR: 22-1)


92466 Racial Differences in the Rate of Change in Anterior Lamina Cribrosa Surface Depth in the African Descent and Glaucoma Evaluation Study
Bowd C
Investigative Ophthalmology and Visual Science 2021; 62: 12 (IGR: 22-1)


92602 The influence of axial myopia on optic disc characteristics of glaucoma eyes
Dohleman J
Scientific reports 2021; 11: 8854 (IGR: 22-1)


92622 Evaluation of the optic nerve head vessel density in patients with limited scleroderma
Koçer AM
Therapeutic advances in ophthalmology 2021; 13: 2515841421995387 (IGR: 22-1)


92028 Associating the biomarkers of ocular blood flow with lamina cribrosa parameters in normotensive glaucoma suspects. Comparison to glaucoma patients and healthy controls
Iskander DR
PLoS ONE 2021; 16: e0248851 (IGR: 22-1)


92075 Clinical Evaluation of Unilateral Open-Angle Glaucoma: A Two-Year Follow-Up Study
Sung MS
Chonnam medical journal 2021; 57: 144-151 (IGR: 22-1)


92264 Diagnostic capability of different morphological parameters for primary open-angle glaucoma in the Chinese population
Wei Y
BMC Ophthalmology 2021; 21: 151 (IGR: 22-1)


92536 Nasal displacement of retinal vessels on the optic disc in glaucoma associated with a nasally angled passage through lamina cribrosa
Iwase T
Scientific reports 2021; 11: 4176 (IGR: 22-1)


92075 Clinical Evaluation of Unilateral Open-Angle Glaucoma: A Two-Year Follow-Up Study
Park SW
Chonnam medical journal 2021; 57: 144-151 (IGR: 22-1)


92286 ELUCIDATION OF THE ROLE OF THE LAMINA CRIBROSA IN GLAUCOMA USING OPTICAL COHERENCE TOMOGRAPHY
Lopes FS
Survey of Ophthalmology 2022; 67: 197-216 (IGR: 22-1)


92750 Differences in clinical presentation of primary open-angle glaucoma between African and European populations
Hassan HG
Acta Ophthalmologica 2021; 99: e1118-e1126 (IGR: 22-1)


92768 Effect of trabeculectomy on optic nerve head and macular vessel density: an optical coherence tomography angiography study
Abdolalizadeh P
International Ophthalmology 2021; 41: 2677-2688 (IGR: 22-1)


92602 The influence of axial myopia on optic disc characteristics of glaucoma eyes
Belghith A
Scientific reports 2021; 11: 8854 (IGR: 22-1)


92466 Racial Differences in the Rate of Change in Anterior Lamina Cribrosa Surface Depth in the African Descent and Glaucoma Evaluation Study
Medeiros FA
Investigative Ophthalmology and Visual Science 2021; 62: 12 (IGR: 22-1)


92264 Diagnostic capability of different morphological parameters for primary open-angle glaucoma in the Chinese population
Fang Y
BMC Ophthalmology 2021; 21: 151 (IGR: 22-1)


92801 Time-Course Changes in Optic Nerve Head Blood Flow and Retinal Nerve Fiber Layer Thickness in Eyes with Open-angle Glaucoma
Pak K
Ophthalmology 2021; 128: 663-671 (IGR: 22-1)


92496 Comparative Study of Lamina Cribrosa Thickness Between Primary Angle-Closure and Primary Open-Angle Glaucoma
Ruamviboonsuk P
Clinical Ophthalmology 2021; 15: 697-705 (IGR: 22-1)


92266 Transpupillary collagen photocrosslinking for targeted modulation of ocular biomechanics
Winger EJ
Biomaterials 2021; 271: 120735 (IGR: 22-1)


92267 Evaluation of ganglion cell-inner plexiform layer thickness in the diagnosis of preperimetric glaucoma and comparison to retinal nerve fiber layer
Raje D
Indian Journal of Ophthalmology 2021; 69: 1113-1119 (IGR: 22-1)


92622 Evaluation of the optic nerve head vessel density in patients with limited scleroderma
Hekimsoy V
Therapeutic advances in ophthalmology 2021; 13: 2515841421995387 (IGR: 22-1)


92198 Comparison of spectral domain optical coherence tomography parameters between disc suspects and "pre-perimetric" glaucomatous discs classified on disc photo
Lingam V
Indian Journal of Ophthalmology 2021; 69: 603-610 (IGR: 22-1)


92015 Determinants of lamina cribrosa depth in healthy Asian eyes: the Singapore Epidemiology Eye Study
Nongpiur ME
British Journal of Ophthalmology 2021; 105: 367-373 (IGR: 22-1)


92711 Smartphone-based Ophthalmic Imaging Compared With Spectral-domain Optical Coherence Tomography Assessment of Vertical Cup-to-disc Ratio Among Adults in Southwestern Uganda
Chang RT
Journal of Glaucoma 2021; 30: e90-e98 (IGR: 22-1)


92563 Rates of Retinal Nerve Fiber Layer Thinning in Distinct Glaucomatous Optic Disc Phenotypes in Early Glaucoma
Do JL
American Journal of Ophthalmology 2021; 229: 8-17 (IGR: 22-1)


91933 Rate of visual field decay in glaucomatous eyes with acquired pits of the optic nerve
Morales E
British Journal of Ophthalmology 2021; 105: 381-386 (IGR: 22-1)


92764 Ten-year-and-beyond longitudinal change of ß-zone parapapillary atrophy in glaucoma: association with retinal nerve fibre layer defect
Jeoung JW
British Journal of Ophthalmology 2022; 106: 1393-1398 (IGR: 22-1)


92223 A Wide-Field Optical Coherence Tomography Normative Database Considering the Fovea-Disc Relationship for Glaucoma Detection
Cho H
Translational vision science & technology 2021; 10: 7 (IGR: 22-1)


92494 A multi-scale convolutional neural network with context for joint segmentation of optic disc and cup
Li M
Artificial Intelligence in Medicine 2021; 113: 102035 (IGR: 22-1)


92602 The influence of axial myopia on optic disc characteristics of glaucoma eyes
Proudfoot JA
Scientific reports 2021; 11: 8854 (IGR: 22-1)


92563 Rates of Retinal Nerve Fiber Layer Thinning in Distinct Glaucomatous Optic Disc Phenotypes in Early Glaucoma
Hou H
American Journal of Ophthalmology 2021; 229: 8-17 (IGR: 22-1)


92286 ELUCIDATION OF THE ROLE OF THE LAMINA CRIBROSA IN GLAUCOMA USING OPTICAL COHERENCE TOMOGRAPHY
Ritch R
Survey of Ophthalmology 2022; 67: 197-216 (IGR: 22-1)


92494 A multi-scale convolutional neural network with context for joint segmentation of optic disc and cup
Wang X
Artificial Intelligence in Medicine 2021; 113: 102035 (IGR: 22-1)


91933 Rate of visual field decay in glaucomatous eyes with acquired pits of the optic nerve
Hirunpatravong P
British Journal of Ophthalmology 2021; 105: 381-386 (IGR: 22-1)


92801 Time-Course Changes in Optic Nerve Head Blood Flow and Retinal Nerve Fiber Layer Thickness in Eyes with Open-angle Glaucoma
Nakazawa T
Ophthalmology 2021; 128: 663-671 (IGR: 22-1)


92015 Determinants of lamina cribrosa depth in healthy Asian eyes: the Singapore Epidemiology Eye Study
Tham YC
British Journal of Ophthalmology 2021; 105: 367-373 (IGR: 22-1)


92750 Differences in clinical presentation of primary open-angle glaucoma between African and European populations
Cook C
Acta Ophthalmologica 2021; 99: e1118-e1126 (IGR: 22-1)


92563 Rates of Retinal Nerve Fiber Layer Thinning in Distinct Glaucomatous Optic Disc Phenotypes in Early Glaucoma
Hou H
American Journal of Ophthalmology 2021; 229: 8-17 (IGR: 22-1)


92764 Ten-year-and-beyond longitudinal change of ß-zone parapapillary atrophy in glaucoma: association with retinal nerve fibre layer defect
Park KH
British Journal of Ophthalmology 2022; 106: 1393-1398 (IGR: 22-1)


92223 A Wide-Field Optical Coherence Tomography Normative Database Considering the Fovea-Disc Relationship for Glaucoma Detection
Lim HW
Translational vision science & technology 2021; 10: 7 (IGR: 22-1)


92768 Effect of trabeculectomy on optic nerve head and macular vessel density: an optical coherence tomography angiography study
Rakhshan R
International Ophthalmology 2021; 41: 2677-2688 (IGR: 22-1)


92466 Racial Differences in the Rate of Change in Anterior Lamina Cribrosa Surface Depth in the African Descent and Glaucoma Evaluation Study
Weinreb RN
Investigative Ophthalmology and Visual Science 2021; 62: 12 (IGR: 22-1)


92622 Evaluation of the optic nerve head vessel density in patients with limited scleroderma
Akdoğan A
Therapeutic advances in ophthalmology 2021; 13: 2515841421995387 (IGR: 22-1)


92711 Smartphone-based Ophthalmic Imaging Compared With Spectral-domain Optical Coherence Tomography Assessment of Vertical Cup-to-disc Ratio Among Adults in Southwestern Uganda
Myung D
Journal of Glaucoma 2021; 30: e90-e98 (IGR: 22-1)


92496 Comparative Study of Lamina Cribrosa Thickness Between Primary Angle-Closure and Primary Open-Angle Glaucoma
Seresirikachorn K
Clinical Ophthalmology 2021; 15: 697-705 (IGR: 22-1)


92198 Comparison of spectral domain optical coherence tomography parameters between disc suspects and "pre-perimetric" glaucomatous discs classified on disc photo
Balekudaru S
Indian Journal of Ophthalmology 2021; 69: 603-610 (IGR: 22-1)


92563 Rates of Retinal Nerve Fiber Layer Thinning in Distinct Glaucomatous Optic Disc Phenotypes in Early Glaucoma
Hou H
American Journal of Ophthalmology 2021; 229: 8-17 (IGR: 22-1)


92264 Diagnostic capability of different morphological parameters for primary open-angle glaucoma in the Chinese population
Tian T
BMC Ophthalmology 2021; 21: 151 (IGR: 22-1)


92266 Transpupillary collagen photocrosslinking for targeted modulation of ocular biomechanics
Schrader Echeverri E
Biomaterials 2021; 271: 120735 (IGR: 22-1)


92267 Evaluation of ganglion cell-inner plexiform layer thickness in the diagnosis of preperimetric glaucoma and comparison to retinal nerve fiber layer
Chakraborty M
Indian Journal of Ophthalmology 2021; 69: 1113-1119 (IGR: 22-1)


91933 Rate of visual field decay in glaucomatous eyes with acquired pits of the optic nerve
Sharifipour F
British Journal of Ophthalmology 2021; 105: 381-386 (IGR: 22-1)


92466 Racial Differences in the Rate of Change in Anterior Lamina Cribrosa Surface Depth in the African Descent and Glaucoma Evaluation Study
Liebmann JM
Investigative Ophthalmology and Visual Science 2021; 62: 12 (IGR: 22-1)


92494 A multi-scale convolutional neural network with context for joint segmentation of optic disc and cup
Zheng X
Artificial Intelligence in Medicine 2021; 113: 102035 (IGR: 22-1)


92711 Smartphone-based Ophthalmic Imaging Compared With Spectral-domain Optical Coherence Tomography Assessment of Vertical Cup-to-disc Ratio Among Adults in Southwestern Uganda
Onyango J
Journal of Glaucoma 2021; 30: e90-e98 (IGR: 22-1)


92750 Differences in clinical presentation of primary open-angle glaucoma between African and European populations

Acta Ophthalmologica 2021; 99: e1118-e1126 (IGR: 22-1)


92563 Rates of Retinal Nerve Fiber Layer Thinning in Distinct Glaucomatous Optic Disc Phenotypes in Early Glaucoma
Proudfoot JA
American Journal of Ophthalmology 2021; 229: 8-17 (IGR: 22-1)


92286 ELUCIDATION OF THE ROLE OF THE LAMINA CRIBROSA IN GLAUCOMA USING OPTICAL COHERENCE TOMOGRAPHY
Prata TS
Survey of Ophthalmology 2022; 67: 197-216 (IGR: 22-1)


92602 The influence of axial myopia on optic disc characteristics of glaucoma eyes
Christopher M
Scientific reports 2021; 11: 8854 (IGR: 22-1)


92264 Diagnostic capability of different morphological parameters for primary open-angle glaucoma in the Chinese population
Kang L
BMC Ophthalmology 2021; 21: 151 (IGR: 22-1)


92198 Comparison of spectral domain optical coherence tomography parameters between disc suspects and "pre-perimetric" glaucomatous discs classified on disc photo
George RJ
Indian Journal of Ophthalmology 2021; 69: 603-610 (IGR: 22-1)


92223 A Wide-Field Optical Coherence Tomography Normative Database Considering the Fovea-Disc Relationship for Glaucoma Detection
Seong M
Translational vision science & technology 2021; 10: 7 (IGR: 22-1)


92266 Transpupillary collagen photocrosslinking for targeted modulation of ocular biomechanics
Nichols LM
Biomaterials 2021; 271: 120735 (IGR: 22-1)


92015 Determinants of lamina cribrosa depth in healthy Asian eyes: the Singapore Epidemiology Eye Study
Nguyen DQ
British Journal of Ophthalmology 2021; 105: 367-373 (IGR: 22-1)


92563 Rates of Retinal Nerve Fiber Layer Thinning in Distinct Glaucomatous Optic Disc Phenotypes in Early Glaucoma
Kamalipour A
American Journal of Ophthalmology 2021; 229: 8-17 (IGR: 22-1)


92750 Differences in clinical presentation of primary open-angle glaucoma between African and European populations
Van de Laar S
Acta Ophthalmologica 2021; 99: e1118-e1126 (IGR: 22-1)


92264 Diagnostic capability of different morphological parameters for primary open-angle glaucoma in the Chinese population
Li M
BMC Ophthalmology 2021; 21: 151 (IGR: 22-1)


92015 Determinants of lamina cribrosa depth in healthy Asian eyes: the Singapore Epidemiology Eye Study
Strouthidis NG
British Journal of Ophthalmology 2021; 105: 367-373 (IGR: 22-1)


92602 The influence of axial myopia on optic disc characteristics of glaucoma eyes
Hyman L
Scientific reports 2021; 11: 8854 (IGR: 22-1)


92466 Racial Differences in the Rate of Change in Anterior Lamina Cribrosa Surface Depth in the African Descent and Glaucoma Evaluation Study
Proudfoot JA
Investigative Ophthalmology and Visual Science 2021; 62: 12 (IGR: 22-1)


91933 Rate of visual field decay in glaucomatous eyes with acquired pits of the optic nerve
Caprioli J
British Journal of Ophthalmology 2021; 105: 381-386 (IGR: 22-1)


92266 Transpupillary collagen photocrosslinking for targeted modulation of ocular biomechanics
Gersch HG
Biomaterials 2021; 271: 120735 (IGR: 22-1)


92223 A Wide-Field Optical Coherence Tomography Normative Database Considering the Fovea-Disc Relationship for Glaucoma Detection
Park J
Translational vision science & technology 2021; 10: 7 (IGR: 22-1)


92266 Transpupillary collagen photocrosslinking for targeted modulation of ocular biomechanics
MacLeod NA
Biomaterials 2021; 271: 120735 (IGR: 22-1)


92602 The influence of axial myopia on optic disc characteristics of glaucoma eyes
Jonas JB
Scientific reports 2021; 11: 8854 (IGR: 22-1)


92223 A Wide-Field Optical Coherence Tomography Normative Database Considering the Fovea-Disc Relationship for Glaucoma Detection
Lee WJ
Translational vision science & technology 2021; 10: 7 (IGR: 22-1)


92264 Diagnostic capability of different morphological parameters for primary open-angle glaucoma in the Chinese population
Cai Y
BMC Ophthalmology 2021; 21: 151 (IGR: 22-1)


92750 Differences in clinical presentation of primary open-angle glaucoma between African and European populations
Lemij HG
Acta Ophthalmologica 2021; 99: e1118-e1126 (IGR: 22-1)


92466 Racial Differences in the Rate of Change in Anterior Lamina Cribrosa Surface Depth in the African Descent and Glaucoma Evaluation Study
Zangwill LM
Investigative Ophthalmology and Visual Science 2021; 62: 12 (IGR: 22-1)


92015 Determinants of lamina cribrosa depth in healthy Asian eyes: the Singapore Epidemiology Eye Study
Aung T
British Journal of Ophthalmology 2021; 105: 367-373 (IGR: 22-1)


92563 Rates of Retinal Nerve Fiber Layer Thinning in Distinct Glaucomatous Optic Disc Phenotypes in Early Glaucoma
Nishida T; Girkin CA
American Journal of Ophthalmology 2021; 229: 8-17 (IGR: 22-1)


92264 Diagnostic capability of different morphological parameters for primary open-angle glaucoma in the Chinese population
Pan Y
BMC Ophthalmology 2021; 21: 151 (IGR: 22-1)


92466 Racial Differences in the Rate of Change in Anterior Lamina Cribrosa Surface Depth in the African Descent and Glaucoma Evaluation Study
Fazio MA
Investigative Ophthalmology and Visual Science 2021; 62: 12 (IGR: 22-1)


92015 Determinants of lamina cribrosa depth in healthy Asian eyes: the Singapore Epidemiology Eye Study
Cheng CY
British Journal of Ophthalmology 2021; 105: 367-373 (IGR: 22-1)


92750 Differences in clinical presentation of primary open-angle glaucoma between African and European populations
Klaver CCW
Acta Ophthalmologica 2021; 99: e1118-e1126 (IGR: 22-1)


92602 The influence of axial myopia on optic disc characteristics of glaucoma eyes
Fazio MA
Scientific reports 2021; 11: 8854 (IGR: 22-1)


92266 Transpupillary collagen photocrosslinking for targeted modulation of ocular biomechanics
Gupta S
Biomaterials 2021; 271: 120735 (IGR: 22-1)


92563 Rates of Retinal Nerve Fiber Layer Thinning in Distinct Glaucomatous Optic Disc Phenotypes in Early Glaucoma
Liebmann JM
American Journal of Ophthalmology 2021; 229: 8-17 (IGR: 22-1)


92015 Determinants of lamina cribrosa depth in healthy Asian eyes: the Singapore Epidemiology Eye Study
Boote C
British Journal of Ophthalmology 2021; 105: 367-373 (IGR: 22-1)


92602 The influence of axial myopia on optic disc characteristics of glaucoma eyes
Weinreb RN
Scientific reports 2021; 11: 8854 (IGR: 22-1)


92266 Transpupillary collagen photocrosslinking for targeted modulation of ocular biomechanics
Read AT
Biomaterials 2021; 271: 120735 (IGR: 22-1)


92750 Differences in clinical presentation of primary open-angle glaucoma between African and European populations
Jansonius NM
Acta Ophthalmologica 2021; 99: e1118-e1126 (IGR: 22-1)


92015 Determinants of lamina cribrosa depth in healthy Asian eyes: the Singapore Epidemiology Eye Study
Girard MJA
British Journal of Ophthalmology 2021; 105: 367-373 (IGR: 22-1)


92266 Transpupillary collagen photocrosslinking for targeted modulation of ocular biomechanics
Ritch MD
Biomaterials 2021; 271: 120735 (IGR: 22-1)


92563 Rates of Retinal Nerve Fiber Layer Thinning in Distinct Glaucomatous Optic Disc Phenotypes in Early Glaucoma
Weinreb RN
American Journal of Ophthalmology 2021; 229: 8-17 (IGR: 22-1)


92602 The influence of axial myopia on optic disc characteristics of glaucoma eyes
Zangwill LM
Scientific reports 2021; 11: 8854 (IGR: 22-1)


92750 Differences in clinical presentation of primary open-angle glaucoma between African and European populations
Thiadens AAHJ
Acta Ophthalmologica 2021; 99: e1118-e1126 (IGR: 22-1)


92266 Transpupillary collagen photocrosslinking for targeted modulation of ocular biomechanics
Sridhar S; Toothman MG; Gershon GS; Schwaner SA; Sánchez-Rodríguez G; Goyal V; Toporek AM; Feola AJ; Grossniklaus HE; Pardue MT; Ethier CR; Prausnitz MR
Biomaterials 2021; 271: 120735 (IGR: 22-1)


91730 Relationship between corneal stiffness parameters and lamina cribrosa curvature in normal tension glaucoma
Sun Y
European Journal of Ophthalmology 2020; 0: 1120672120982521 (IGR: 21-4)


91213 Ultrasonic elastography to assess biomechanical properties of the optic nerve head and peripapillary sclera of the eye
Qian X
Ultrasonics 2021; 110: 106263 (IGR: 21-4)


91021 Intra-Cellular Calcium Signaling Pathways (PKC, RAS/RAF/MAPK, PI3K) in Lamina Cribrosa Cells in Glaucoma
Irnaten M
Journal of clinical medicine 2020; 10: (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Liu WW
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91708 Effects of glaucoma and central corneal thickness on optic nerve head biomechanics
Özkan Aksoy N
International Ophthalmology 2021; 41: 1283-1289 (IGR: 21-4)


91372 Progression of Parapapillary Choroidal Microvascular Dropout After Disc Hemorrhage in Glaucoma Patients: 2 Case Reports
Lee JS
Journal of Glaucoma 2021; 30: e8-e12 (IGR: 21-4)


91629 Peripapillary sclera exhibits a v-shaped configuration that is more pronounced in glaucoma eyes
Wang X
British Journal of Ophthalmology 2022; 106: 491-496 (IGR: 21-4)


91836 Quantification of Translaminar Pressure Gradient (TLPG) With Continuous Wireless Telemetry in Nonhuman Primates (NHPs)
Jasien JV
Translational vision science & technology 2020; 9: 18 (IGR: 21-4)


91402 Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma
Schwaner SA
Journal of Biomechanical Engineering 2021; 143: (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Liu X
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91816 Optic Disc Cupping Due to Dolichoectatic Internal Carotid Artery Optic Nerve Compression
Micieli JA
Journal of Neuro-Ophthalmology 2021; 41: e560-e565 (IGR: 21-4)


91492 Biomechanics of the optic nerve head and peripapillary sclera in a mouse model of glaucoma
Korneva A
Journal of the Royal Society, Interface / the Royal Society 2020; 17: 20200708 (IGR: 21-4)


91228 Effect of intraocular pressure lowering on the capillary density of optic nerve head and retinal nerve fiber layer in patients with glaucoma
de Paula A
European Journal of Ophthalmology 2020; 0: 1120672120967233 (IGR: 21-4)


91190 IOP-induced regional displacements in the optic nerve head and correlation with peripapillary sclera thickness
Ma Y
Experimental Eye Research 2020; 200: 108202 (IGR: 21-4)


91717 Association of Optic Nerve Head Prelaminar Schisis With Glaucoma
Lowry EA
American Journal of Ophthalmology 2021; 223: 246-258 (IGR: 21-4)


91038 Comparison of lamina cribrosa properties and the peripapillary vessel density between branch retinal vein occlusion and normal-tension glaucoma
Woo JM
PLoS ONE 2020; 15: e0240109 (IGR: 21-4)


91641 Evaluation of Lamina Cribrosa by Using Enhanced Depth Imaging Optical Coherence Tomography in Ocular Sarcoidosis during Quiescent Phase
Balci S
Optometry and Vision Science 2021; 98: 137-142 (IGR: 21-4)


91498 Comparison of vertical cup-to-disc ratio estimates using stereoscopic and monoscopic cameras
Shrestha R
Eye 2021; 35: 3318-3324 (IGR: 21-4)


91436 Combined Treatment for Optic Disc Pit Maculopathy Secondary to Glaucoma
Torres Ledesma B
Archivos de la Sociedad Española de Oftalmologia 2021; 0: (IGR: 21-4)


90910 Reduced Oxidative Phosphorylation and Increased Glycolysis in Human Glaucoma Lamina Cribrosa Cells
Kamel K
Investigative Ophthalmology and Visual Science 2020; 61: 4 (IGR: 21-4)


91486 Comparison of Retinal Nerve Fibre Layer versus Bruch Membrane Opening-Minimum Rim Width as an Optical Coherence Tomography-based Marker for Glaucoma in Myopia
Uzair N
Journal of the College of Physicians and Surgeons Pakistan 2021; 31: 162-165 (IGR: 21-4)


91740 Optic nerve head anatomy in myopia and glaucoma, including parapapillary zones alpha, beta, gamma and delta: Histology and clinical features
Wang YX
Progress in Retinal and Eye Research 2020; 0: 100933 (IGR: 21-4)


91750 A comparison of optic disc area measured by confocal scanning laser tomography versus Bruch's membrane opening area measured using optical coherence tomography
Cazana IM
BMC Ophthalmology 2021; 21: 31 (IGR: 21-4)


90984 Evaluation of the relationship between glaucomatous disc subtypes and occurrence of disc hemorrhage and glaucoma progression in open angle glaucoma
Yamagami A
Scientific reports 2020; 10: 21059 (IGR: 21-4)


91093 Joint optic disc and cup segmentation based on residual multi-scale fully convolutional neural network
Yuan X
Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi 2020; 37: 875-884 (IGR: 21-4)


91436 Combined Treatment for Optic Disc Pit Maculopathy Secondary to Glaucoma
Bueno García P
Archivos de la Sociedad Española de Oftalmologia 2021; 0: (IGR: 21-4)


91486 Comparison of Retinal Nerve Fibre Layer versus Bruch Membrane Opening-Minimum Rim Width as an Optical Coherence Tomography-based Marker for Glaucoma in Myopia
Shamim M
Journal of the College of Physicians and Surgeons Pakistan 2021; 31: 162-165 (IGR: 21-4)


91740 Optic nerve head anatomy in myopia and glaucoma, including parapapillary zones alpha, beta, gamma and delta: Histology and clinical features
Panda-Jonas S
Progress in Retinal and Eye Research 2020; 0: 100933 (IGR: 21-4)


91498 Comparison of vertical cup-to-disc ratio estimates using stereoscopic and monoscopic cameras
Budenz DL
Eye 2021; 35: 3318-3324 (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
McClurkin M
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91717 Association of Optic Nerve Head Prelaminar Schisis With Glaucoma
Mansberger SL
American Journal of Ophthalmology 2021; 223: 246-258 (IGR: 21-4)


91093 Joint optic disc and cup segmentation based on residual multi-scale fully convolutional neural network
Zheng X
Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi 2020; 37: 875-884 (IGR: 21-4)


90910 Reduced Oxidative Phosphorylation and Increased Glycolysis in Human Glaucoma Lamina Cribrosa Cells
O'brien CJ
Investigative Ophthalmology and Visual Science 2020; 61: 4 (IGR: 21-4)


91708 Effects of glaucoma and central corneal thickness on optic nerve head biomechanics
Çakır B
International Ophthalmology 2021; 41: 1283-1289 (IGR: 21-4)


91836 Quantification of Translaminar Pressure Gradient (TLPG) With Continuous Wireless Telemetry in Nonhuman Primates (NHPs)
Fazio MA
Translational vision science & technology 2020; 9: 18 (IGR: 21-4)


91629 Peripapillary sclera exhibits a v-shaped configuration that is more pronounced in glaucoma eyes
Tun TA
British Journal of Ophthalmology 2022; 106: 491-496 (IGR: 21-4)


91816 Optic Disc Cupping Due to Dolichoectatic Internal Carotid Artery Optic Nerve Compression
Margolin EA
Journal of Neuro-Ophthalmology 2021; 41: e560-e565 (IGR: 21-4)


91372 Progression of Parapapillary Choroidal Microvascular Dropout After Disc Hemorrhage in Glaucoma Patients: 2 Case Reports
Lee WJ
Journal of Glaucoma 2021; 30: e8-e12 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Lau A
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91402 Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma
Perry RN
Journal of Biomechanical Engineering 2021; 143: (IGR: 21-4)


91213 Ultrasonic elastography to assess biomechanical properties of the optic nerve head and peripapillary sclera of the eye
Li R
Ultrasonics 2021; 110: 106263 (IGR: 21-4)


90984 Evaluation of the relationship between glaucomatous disc subtypes and occurrence of disc hemorrhage and glaucoma progression in open angle glaucoma
Tomidokoro A
Scientific reports 2020; 10: 21059 (IGR: 21-4)


91492 Biomechanics of the optic nerve head and peripapillary sclera in a mouse model of glaucoma
Kimball EC
Journal of the Royal Society, Interface / the Royal Society 2020; 17: 20200708 (IGR: 21-4)


91228 Effect of intraocular pressure lowering on the capillary density of optic nerve head and retinal nerve fiber layer in patients with glaucoma
Perdicchi A
European Journal of Ophthalmology 2020; 0: 1120672120967233 (IGR: 21-4)


91190 IOP-induced regional displacements in the optic nerve head and correlation with peripapillary sclera thickness
Kwok S
Experimental Eye Research 2020; 200: 108202 (IGR: 21-4)


91021 Intra-Cellular Calcium Signaling Pathways (PKC, RAS/RAF/MAPK, PI3K) in Lamina Cribrosa Cells in Glaucoma
Duff A
Journal of clinical medicine 2020; 10: (IGR: 21-4)


91641 Evaluation of Lamina Cribrosa by Using Enhanced Depth Imaging Optical Coherence Tomography in Ocular Sarcoidosis during Quiescent Phase
Turan-Vural E
Optometry and Vision Science 2021; 98: 137-142 (IGR: 21-4)


91730 Relationship between corneal stiffness parameters and lamina cribrosa curvature in normal tension glaucoma
Guo Y
European Journal of Ophthalmology 2020; 0: 1120672120982521 (IGR: 21-4)


91750 A comparison of optic disc area measured by confocal scanning laser tomography versus Bruch's membrane opening area measured using optical coherence tomography
Böhringer D
BMC Ophthalmology 2021; 21: 31 (IGR: 21-4)


91038 Comparison of lamina cribrosa properties and the peripapillary vessel density between branch retinal vein occlusion and normal-tension glaucoma
Cha JB
PLoS ONE 2020; 15: e0240109 (IGR: 21-4)


90910 Reduced Oxidative Phosphorylation and Increased Glycolysis in Human Glaucoma Lamina Cribrosa Cells
Zhdanov AV
Investigative Ophthalmology and Visual Science 2020; 61: 4 (IGR: 21-4)


91750 A comparison of optic disc area measured by confocal scanning laser tomography versus Bruch's membrane opening area measured using optical coherence tomography
Reinhard T
BMC Ophthalmology 2021; 21: 31 (IGR: 21-4)


91038 Comparison of lamina cribrosa properties and the peripapillary vessel density between branch retinal vein occlusion and normal-tension glaucoma
Lee CK
PLoS ONE 2020; 15: e0240109 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Hou H
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91486 Comparison of Retinal Nerve Fibre Layer versus Bruch Membrane Opening-Minimum Rim Width as an Optical Coherence Tomography-based Marker for Glaucoma in Myopia
Mamoon SA
Journal of the College of Physicians and Surgeons Pakistan 2021; 31: 162-165 (IGR: 21-4)


91740 Optic nerve head anatomy in myopia and glaucoma, including parapapillary zones alpha, beta, gamma and delta: Histology and clinical features
Jonas JB
Progress in Retinal and Eye Research 2020; 0: 100933 (IGR: 21-4)


91021 Intra-Cellular Calcium Signaling Pathways (PKC, RAS/RAF/MAPK, PI3K) in Lamina Cribrosa Cells in Glaucoma
Clark A
Journal of clinical medicine 2020; 10: (IGR: 21-4)


91436 Combined Treatment for Optic Disc Pit Maculopathy Secondary to Glaucoma
Torres Pereda JP
Archivos de la Sociedad Española de Oftalmologia 2021; 0: (IGR: 21-4)


90984 Evaluation of the relationship between glaucomatous disc subtypes and occurrence of disc hemorrhage and glaucoma progression in open angle glaucoma
Matsumoto S
Scientific reports 2020; 10: 21059 (IGR: 21-4)


91717 Association of Optic Nerve Head Prelaminar Schisis With Glaucoma
Gardiner SK
American Journal of Ophthalmology 2021; 223: 246-258 (IGR: 21-4)


91190 IOP-induced regional displacements in the optic nerve head and correlation with peripapillary sclera thickness
Sun J
Experimental Eye Research 2020; 200: 108202 (IGR: 21-4)


91836 Quantification of Translaminar Pressure Gradient (TLPG) With Continuous Wireless Telemetry in Nonhuman Primates (NHPs)
Samuels BC
Translational vision science & technology 2020; 9: 18 (IGR: 21-4)


91629 Peripapillary sclera exhibits a v-shaped configuration that is more pronounced in glaucoma eyes
Nongpiur ME
British Journal of Ophthalmology 2022; 106: 491-496 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Hou H
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Tsikata E
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91093 Joint optic disc and cup segmentation based on residual multi-scale fully convolutional neural network
Ji B
Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi 2020; 37: 875-884 (IGR: 21-4)


91213 Ultrasonic elastography to assess biomechanical properties of the optic nerve head and peripapillary sclera of the eye
Lu G
Ultrasonics 2021; 110: 106263 (IGR: 21-4)


91498 Comparison of vertical cup-to-disc ratio estimates using stereoscopic and monoscopic cameras
Mwanza JC
Eye 2021; 35: 3318-3324 (IGR: 21-4)


91228 Effect of intraocular pressure lowering on the capillary density of optic nerve head and retinal nerve fiber layer in patients with glaucoma
Di Tizio F
European Journal of Ophthalmology 2020; 0: 1120672120967233 (IGR: 21-4)


91372 Progression of Parapapillary Choroidal Microvascular Dropout After Disc Hemorrhage in Glaucoma Patients: 2 Case Reports
Lim HW
Journal of Glaucoma 2021; 30: e8-e12 (IGR: 21-4)


91402 Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma
Kight AM
Journal of Biomechanical Engineering 2021; 143: (IGR: 21-4)


91730 Relationship between corneal stiffness parameters and lamina cribrosa curvature in normal tension glaucoma
Cao K
European Journal of Ophthalmology 2020; 0: 1120672120982521 (IGR: 21-4)


91492 Biomechanics of the optic nerve head and peripapillary sclera in a mouse model of glaucoma
Jefferys JL
Journal of the Royal Society, Interface / the Royal Society 2020; 17: 20200708 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Hou H
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91708 Effects of glaucoma and central corneal thickness on optic nerve head biomechanics
Aksoy YE
International Ophthalmology 2021; 41: 1283-1289 (IGR: 21-4)


90984 Evaluation of the relationship between glaucomatous disc subtypes and occurrence of disc hemorrhage and glaucoma progression in open angle glaucoma
Yamazaki Y
Scientific reports 2020; 10: 21059 (IGR: 21-4)


91228 Effect of intraocular pressure lowering on the capillary density of optic nerve head and retinal nerve fiber layer in patients with glaucoma
Fragiotta S
European Journal of Ophthalmology 2020; 0: 1120672120967233 (IGR: 21-4)


91750 A comparison of optic disc area measured by confocal scanning laser tomography versus Bruch's membrane opening area measured using optical coherence tomography
Evers C
BMC Ophthalmology 2021; 21: 31 (IGR: 21-4)


91486 Comparison of Retinal Nerve Fibre Layer versus Bruch Membrane Opening-Minimum Rim Width as an Optical Coherence Tomography-based Marker for Glaucoma in Myopia
Naz S
Journal of the College of Physicians and Surgeons Pakistan 2021; 31: 162-165 (IGR: 21-4)


91629 Peripapillary sclera exhibits a v-shaped configuration that is more pronounced in glaucoma eyes
Htoon HM
British Journal of Ophthalmology 2022; 106: 491-496 (IGR: 21-4)


91372 Progression of Parapapillary Choroidal Microvascular Dropout After Disc Hemorrhage in Glaucoma Patients: 2 Case Reports
Seong M
Journal of Glaucoma 2021; 30: e8-e12 (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Hui PC
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91402 Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma
Winder E
Journal of Biomechanical Engineering 2021; 143: (IGR: 21-4)


91213 Ultrasonic elastography to assess biomechanical properties of the optic nerve head and peripapillary sclera of the eye
Jiang L
Ultrasonics 2021; 110: 106263 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Moghimi S
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


90910 Reduced Oxidative Phosphorylation and Increased Glycolysis in Human Glaucoma Lamina Cribrosa Cells
Papkovsky DB
Investigative Ophthalmology and Visual Science 2020; 61: 4 (IGR: 21-4)


91492 Biomechanics of the optic nerve head and peripapillary sclera in a mouse model of glaucoma
Quigley HA
Journal of the Royal Society, Interface / the Royal Society 2020; 17: 20200708 (IGR: 21-4)


91021 Intra-Cellular Calcium Signaling Pathways (PKC, RAS/RAF/MAPK, PI3K) in Lamina Cribrosa Cells in Glaucoma
O'Brien C
Journal of clinical medicine 2020; 10: (IGR: 21-4)


91708 Effects of glaucoma and central corneal thickness on optic nerve head biomechanics
Demir Boncukçu K
International Ophthalmology 2021; 41: 1283-1289 (IGR: 21-4)


91730 Relationship between corneal stiffness parameters and lamina cribrosa curvature in normal tension glaucoma
Zhang Y
European Journal of Ophthalmology 2020; 0: 1120672120982521 (IGR: 21-4)


91093 Joint optic disc and cup segmentation based on residual multi-scale fully convolutional neural network
Li M
Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi 2020; 37: 875-884 (IGR: 21-4)


91836 Quantification of Translaminar Pressure Gradient (TLPG) With Continuous Wireless Telemetry in Nonhuman Primates (NHPs)
Johnston JM
Translational vision science & technology 2020; 9: 18 (IGR: 21-4)


91717 Association of Optic Nerve Head Prelaminar Schisis With Glaucoma
Yang H
American Journal of Ophthalmology 2021; 223: 246-258 (IGR: 21-4)


91190 IOP-induced regional displacements in the optic nerve head and correlation with peripapillary sclera thickness
Pan X
Experimental Eye Research 2020; 200: 108202 (IGR: 21-4)


91498 Comparison of vertical cup-to-disc ratio estimates using stereoscopic and monoscopic cameras
Tulenko SE
Eye 2021; 35: 3318-3324 (IGR: 21-4)


91629 Peripapillary sclera exhibits a v-shaped configuration that is more pronounced in glaucoma eyes
Tham YC
British Journal of Ophthalmology 2022; 106: 491-496 (IGR: 21-4)


91717 Association of Optic Nerve Head Prelaminar Schisis With Glaucoma
Sanchez F
American Journal of Ophthalmology 2021; 223: 246-258 (IGR: 21-4)


91730 Relationship between corneal stiffness parameters and lamina cribrosa curvature in normal tension glaucoma
Xie Y
European Journal of Ophthalmology 2020; 0: 1120672120982521 (IGR: 21-4)


91492 Biomechanics of the optic nerve head and peripapillary sclera in a mouse model of glaucoma
Nguyen TD
Journal of the Royal Society, Interface / the Royal Society 2020; 17: 20200708 (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Elze T
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91708 Effects of glaucoma and central corneal thickness on optic nerve head biomechanics
Özmen S
International Ophthalmology 2021; 41: 1283-1289 (IGR: 21-4)


91190 IOP-induced regional displacements in the optic nerve head and correlation with peripapillary sclera thickness
Pavlatos E
Experimental Eye Research 2020; 200: 108202 (IGR: 21-4)


91750 A comparison of optic disc area measured by confocal scanning laser tomography versus Bruch's membrane opening area measured using optical coherence tomography
Engesser D
BMC Ophthalmology 2021; 21: 31 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Proudfoot JA
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91402 Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma
Yang H
Journal of Biomechanical Engineering 2021; 143: (IGR: 21-4)


91213 Ultrasonic elastography to assess biomechanical properties of the optic nerve head and peripapillary sclera of the eye
Kang H
Ultrasonics 2021; 110: 106263 (IGR: 21-4)


91498 Comparison of vertical cup-to-disc ratio estimates using stereoscopic and monoscopic cameras
Fleischman D
Eye 2021; 35: 3318-3324 (IGR: 21-4)


91093 Joint optic disc and cup segmentation based on residual multi-scale fully convolutional neural network
Li B
Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi 2020; 37: 875-884 (IGR: 21-4)


90910 Reduced Oxidative Phosphorylation and Increased Glycolysis in Human Glaucoma Lamina Cribrosa Cells
Clark AF
Investigative Ophthalmology and Visual Science 2020; 61: 4 (IGR: 21-4)


91486 Comparison of Retinal Nerve Fibre Layer versus Bruch Membrane Opening-Minimum Rim Width as an Optical Coherence Tomography-based Marker for Glaucoma in Myopia
Feroz L
Journal of the College of Physicians and Surgeons Pakistan 2021; 31: 162-165 (IGR: 21-4)


90984 Evaluation of the relationship between glaucomatous disc subtypes and occurrence of disc hemorrhage and glaucoma progression in open angle glaucoma
Yoshikawa K
Scientific reports 2020; 10: 21059 (IGR: 21-4)


91228 Effect of intraocular pressure lowering on the capillary density of optic nerve head and retinal nerve fiber layer in patients with glaucoma
Scuderi G
European Journal of Ophthalmology 2020; 0: 1120672120967233 (IGR: 21-4)


91836 Quantification of Translaminar Pressure Gradient (TLPG) With Continuous Wireless Telemetry in Nonhuman Primates (NHPs)
Downs JC
Translational vision science & technology 2020; 9: 18 (IGR: 21-4)


91190 IOP-induced regional displacements in the optic nerve head and correlation with peripapillary sclera thickness
Clayson K
Experimental Eye Research 2020; 200: 108202 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Chan E
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91213 Ultrasonic elastography to assess biomechanical properties of the optic nerve head and peripapillary sclera of the eye
Kirk Shung K
Ultrasonics 2021; 110: 106263 (IGR: 21-4)


90984 Evaluation of the relationship between glaucomatous disc subtypes and occurrence of disc hemorrhage and glaucoma progression in open angle glaucoma
Yamagami J
Scientific reports 2020; 10: 21059 (IGR: 21-4)


91498 Comparison of vertical cup-to-disc ratio estimates using stereoscopic and monoscopic cameras
Gower EW
Eye 2021; 35: 3318-3324 (IGR: 21-4)


91750 A comparison of optic disc area measured by confocal scanning laser tomography versus Bruch's membrane opening area measured using optical coherence tomography
Anton A
BMC Ophthalmology 2021; 21: 31 (IGR: 21-4)


91708 Effects of glaucoma and central corneal thickness on optic nerve head biomechanics
Çelik E
International Ophthalmology 2021; 41: 1283-1289 (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Celebi ARC
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


90910 Reduced Oxidative Phosphorylation and Increased Glycolysis in Human Glaucoma Lamina Cribrosa Cells
Stamer WD
Investigative Ophthalmology and Visual Science 2020; 61: 4 (IGR: 21-4)


91486 Comparison of Retinal Nerve Fibre Layer versus Bruch Membrane Opening-Minimum Rim Width as an Optical Coherence Tomography-based Marker for Glaucoma in Myopia
Kumari K
Journal of the College of Physicians and Surgeons Pakistan 2021; 31: 162-165 (IGR: 21-4)


91730 Relationship between corneal stiffness parameters and lamina cribrosa curvature in normal tension glaucoma
Pang R
European Journal of Ophthalmology 2020; 0: 1120672120982521 (IGR: 21-4)


91402 Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma
Morrison JC
Journal of Biomechanical Engineering 2021; 143: (IGR: 21-4)


91717 Association of Optic Nerve Head Prelaminar Schisis With Glaucoma
Reynaud J
American Journal of Ophthalmology 2021; 223: 246-258 (IGR: 21-4)


91629 Peripapillary sclera exhibits a v-shaped configuration that is more pronounced in glaucoma eyes
Strouthidis NG
British Journal of Ophthalmology 2022; 106: 491-496 (IGR: 21-4)


90910 Reduced Oxidative Phosphorylation and Increased Glycolysis in Human Glaucoma Lamina Cribrosa Cells
Irnaten M
Investigative Ophthalmology and Visual Science 2020; 61: 4 (IGR: 21-4)


91717 Association of Optic Nerve Head Prelaminar Schisis With Glaucoma
Demirel S
American Journal of Ophthalmology 2021; 223: 246-258 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Do J
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91402 Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma
Burgoyne CF
Journal of Biomechanical Engineering 2021; 143: (IGR: 21-4)


90984 Evaluation of the relationship between glaucomatous disc subtypes and occurrence of disc hemorrhage and glaucoma progression in open angle glaucoma
Tomita G
Scientific reports 2020; 10: 21059 (IGR: 21-4)


91629 Peripapillary sclera exhibits a v-shaped configuration that is more pronounced in glaucoma eyes
Aung T
British Journal of Ophthalmology 2022; 106: 491-496 (IGR: 21-4)


91190 IOP-induced regional displacements in the optic nerve head and correlation with peripapillary sclera thickness
Hazen N
Experimental Eye Research 2020; 200: 108202 (IGR: 21-4)


91730 Relationship between corneal stiffness parameters and lamina cribrosa curvature in normal tension glaucoma
Shi Y
European Journal of Ophthalmology 2020; 0: 1120672120982521 (IGR: 21-4)


91750 A comparison of optic disc area measured by confocal scanning laser tomography versus Bruch's membrane opening area measured using optical coherence tomography
Lübke J
BMC Ophthalmology 2021; 21: 31 (IGR: 21-4)


91708 Effects of glaucoma and central corneal thickness on optic nerve head biomechanics
Alagöz G
International Ophthalmology 2021; 41: 1283-1289 (IGR: 21-4)


91213 Ultrasonic elastography to assess biomechanical properties of the optic nerve head and peripapillary sclera of the eye
Humayun MS
Ultrasonics 2021; 110: 106263 (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Khoueir Z
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91190 IOP-induced regional displacements in the optic nerve head and correlation with peripapillary sclera thickness
Liu J
Experimental Eye Research 2020; 200: 108202 (IGR: 21-4)


91213 Ultrasonic elastography to assess biomechanical properties of the optic nerve head and peripapillary sclera of the eye
Zhou Q
Ultrasonics 2021; 110: 106263 (IGR: 21-4)


91730 Relationship between corneal stiffness parameters and lamina cribrosa curvature in normal tension glaucoma
Wang H
European Journal of Ophthalmology 2020; 0: 1120672120982521 (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Lee R
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91717 Association of Optic Nerve Head Prelaminar Schisis With Glaucoma
Burgoyne CF
American Journal of Ophthalmology 2021; 223: 246-258 (IGR: 21-4)


91629 Peripapillary sclera exhibits a v-shaped configuration that is more pronounced in glaucoma eyes
Cheng CY
British Journal of Ophthalmology 2022; 106: 491-496 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Camp A
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


90984 Evaluation of the relationship between glaucomatous disc subtypes and occurrence of disc hemorrhage and glaucoma progression in open angle glaucoma
Araie M
Scientific reports 2020; 10: 21059 (IGR: 21-4)


91402 Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma
Ethier CR
Journal of Biomechanical Engineering 2021; 143: (IGR: 21-4)


91717 Association of Optic Nerve Head Prelaminar Schisis With Glaucoma
Fortune B
American Journal of Ophthalmology 2021; 223: 246-258 (IGR: 21-4)


91730 Relationship between corneal stiffness parameters and lamina cribrosa curvature in normal tension glaucoma
Wang N
European Journal of Ophthalmology 2020; 0: 1120672120982521 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Welsbie D
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Shieh E
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91629 Peripapillary sclera exhibits a v-shaped configuration that is more pronounced in glaucoma eyes
Girard MJ
British Journal of Ophthalmology 2022; 106: 491-496 (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Simavli H
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Gustavo de Moraes C; Girkin CA
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Que C; Guo R
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Liebmann JM
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
de Boer J
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Weinreb RN
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Chen TC
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


90265 Joint disc and cup segmentation based on recurrent fully convolutional network
Gao J
PLoS ONE 2020; 15: e0238983 (IGR: 21-3)


90399 CNS axonal degeneration and transport deficits at the optic nerve head precede structural and functional loss of retinal ganglion cells in a mouse model of glaucoma
Maddineni P
Molecular Neurodegeneration 2020; 15: 48 (IGR: 21-3)


90689 The occurrence of optic disc haemorrhage in primary open-angle glaucoma eyes with lower normal pressure and its relating factors
Sakata R
Acta Ophthalmologica 2021; 99: e28-e35 (IGR: 21-3)


90284 Longitudinal assessment of optic nerve head changes using optical coherence tomography in a primate microbead model of ocular hypertension
Chan ASY
Scientific reports 2020; 10: 14709 (IGR: 21-3)


90187 Optic disc and optic cup segmentation based on anatomy guided cascade network
Bian X
Computer Methods and Programs in Biomedicine 2020; 197: 105717 (IGR: 21-3)


90744 Evaluation of retina nerve fiber layer, ganglion cell-inner plexiform layer and lamina cribrosa in clinically unilateral exfoliative glaucoma
Demirtaş AA
International Ophthalmology 2020; 40: 2691-2697 (IGR: 21-3)


90436 Automated glaucoma screening method based on image segmentation and feature extraction
Guo F
Medical and Biological Engineering and Computing 2020; 58: 2567-2586 (IGR: 21-3)


90692 A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs
Fu H
Translational vision science & technology 2020; 9: 33 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Siesky B
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90784 Progressive retinal nerve fibre layer thinning and choroidal microvasculature dropout at the location of disc haemorrhage in glaucoma
Kim CY
British Journal of Ophthalmology 2021; 105: 674-680 (IGR: 21-3)


90786 Decellularizing the Porcine Optic Nerve Head: Toward a Model to Study the Mechanobiology of Glaucoma
Liou JJ
Translational vision science & technology 2020; 9: 17 (IGR: 21-3)


90222 Disc-fovea Angle Is Associated With Visual Field Defect Location in Patients With Glaucoma
Abe RY
Journal of Glaucoma 2020; 29: 964-969 (IGR: 21-3)


90437 Asian-specific vertical cup-to-disc ratio cut-off for glaucoma screening: An evidence-based recommendation from a multi-ethnic Asian population
Soh ZD
Clinical and Experimental Ophthalmology 2020; 48: 1210-1218 (IGR: 21-3)


90188 The role of lamina cribrosa tissue stiffness and fibrosis as fundamental biomechanical drivers of pathological glaucoma cupping
Hopkins AA
American Journal of Physiology and Cell Physiology 2020; 319: C611-C623 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Higashide T
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90745 Postural Changes and the Trans-Lamina Cribrosa Pressure Difference: A Pilot Study in Neurosurgical Patients without Glaucoma
Belkin A
Ophthalmology. Glaucoma 2020; 3: 269-273 (IGR: 21-3)


90193 Probability distribution guided optic disc and cup segmentation from fundus images
Cheng P
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2020; 2020: 1976-1979 (IGR: 21-3)


89918 Deep Learning for Accurate Diagnosis of Glaucomatous Optic Neuropathy Using Digital Fundus Image: A Meta-Analysis
Islam M
Studies in health technology and informatics 2020; 270: 153-157 (IGR: 21-3)


90292 A Topographic Comparison of OCT Minimum Rim Width (BMO-MRW) and Circumpapillary Retinal Nerve Fiber Layer (cRNFL) Thickness Measures in Eyes With or Suspected Glaucoma
La Bruna S
Journal of Glaucoma 2020; 29: 671-680 (IGR: 21-3)


90173 Laminar and Prelaminar Tissue Characteristics of Glaucomatous Eyes Using Enhanced Depth Imaging OCT
Yazdani S
Ophthalmology. Glaucoma 2021; 4: 95-101 (IGR: 21-3)


90810 Diagnostic validity of optic nerve head colorimetric assessment and optical coherence tomography angiography in patients with glaucoma
Mendez-Hernandez C
British Journal of Ophthalmology 2021; 105: 957-963 (IGR: 21-3)


90833 Comparison of Lamina Cribrosa Curvature in Pseudoexfoliation and Primary Open-Angle Glaucoma
Won HJ
American Journal of Ophthalmology 2020; 223: 1-8 (IGR: 21-3)


90441 Imaging video plethysmography shows reduced signal amplitude in glaucoma patients in the area of the microvascular tissue of the optic nerve head
Tornow RP
Graefe's Archive for Clinical and Experimental Ophthalmology 2021; 259: 483-494 (IGR: 21-3)


90456 Correlation between ocular perfusion pressure and translaminar pressure difference in glaucoma: Evidence for a three-pressure disease?
Matuoka ML
European Journal of Ophthalmology 2020; 0: 1120672120960584 (IGR: 21-3)


90199 The optic nerve lamina region is a neural progenitor cell niche
Bernstein SL
Proceedings of the National Academy of Sciences of the United States of America 2020; 117: 19287-19298 (IGR: 21-3)


90612 The role of the disc damage likelihood scale in glaucoma detection by community optometrists
Formichella P
Ophthalmic and Physiological Optics 2020; 40: 752-759 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
An D
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90852 Comparison of the lamina cribrosa parameters in eyes with exfoliation syndrome, exfoliation glaucoma and healthy subjects
Topcu H
Photodiagnosis and photodynamic therapy 2020; 31: 101832 (IGR: 21-3)


90491 SD-OCT peripapillary nerve fibre layer and ganglion cell complex parameters in glaucoma: principal component analysis
Pazos M
British Journal of Ophthalmology 2021; 105: 496-501 (IGR: 21-3)


90862 Effect of peripapillary tilt direction and magnitude on central visual field defects in primary open-angle glaucoma with high myopia
Usui S
Japanese Journal of Ophthalmology 2020; 64: 414-422 (IGR: 21-3)


90116 Astrocyte responses to experimental glaucoma in mouse optic nerve head
Quillen S
PLoS ONE 2020; 15: e0238104 (IGR: 21-3)


90174 Association of Scleral Deformation Around the Optic Nerve Head With Central Visual Function in Normal-Tension Glaucoma and Myopia
Jeon SJ
American Journal of Ophthalmology 2020; 217: 287-296 (IGR: 21-3)


90744 Evaluation of retina nerve fiber layer, ganglion cell-inner plexiform layer and lamina cribrosa in clinically unilateral exfoliative glaucoma
Demirtaş AA
International Ophthalmology 2020; 40: 2691-2697 (IGR: 21-3)


90189 Evidence-based understanding of disc hemorrhage in glaucoma
Lee EJ
Survey of Ophthalmology 2021; 66: 412-422 (IGR: 21-3)


90039 Deep-learning-based enhanced optic-disc photography
Ha A
PLoS ONE 2020; 15: e0239913 (IGR: 21-3)


90637 Artifact Rates for 2D Retinal Nerve Fiber Layer Thickness Versus 3D Neuroretinal Rim Thickness Using Spectral-Domain Optical Coherence Tomography
Park EA
Translational vision science & technology 2020; 9: 10 (IGR: 21-3)


90281 Long-term morphologic fundus and optic nerve head pattern of progressive myopia in congenital glaucoma distinguished by age at first surgery
Lee EJ
Scientific reports 2020; 10: 10041 (IGR: 21-3)


90692 A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs
Li F
Translational vision science & technology 2020; 9: 33 (IGR: 21-3)


90437 Asian-specific vertical cup-to-disc ratio cut-off for glaucoma screening: An evidence-based recommendation from a multi-ethnic Asian population
Chee ML
Clinical and Experimental Ophthalmology 2020; 48: 1210-1218 (IGR: 21-3)


90292 A Topographic Comparison of OCT Minimum Rim Width (BMO-MRW) and Circumpapillary Retinal Nerve Fiber Layer (cRNFL) Thickness Measures in Eyes With or Suspected Glaucoma
Tsamis E
Journal of Glaucoma 2020; 29: 671-680 (IGR: 21-3)


90039 Deep-learning-based enhanced optic-disc photography
Sun S
PLoS ONE 2020; 15: e0239913 (IGR: 21-3)


90436 Automated glaucoma screening method based on image segmentation and feature extraction
Li W
Medical and Biological Engineering and Computing 2020; 58: 2567-2586 (IGR: 21-3)


90222 Disc-fovea Angle Is Associated With Visual Field Defect Location in Patients With Glaucoma
Matos AG
Journal of Glaucoma 2020; 29: 964-969 (IGR: 21-3)


90116 Astrocyte responses to experimental glaucoma in mouse optic nerve head
Schaub J
PLoS ONE 2020; 15: e0238104 (IGR: 21-3)


90833 Comparison of Lamina Cribrosa Curvature in Pseudoexfoliation and Primary Open-Angle Glaucoma
Sung KR
American Journal of Ophthalmology 2020; 223: 1-8 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Wentz SM
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90193 Probability distribution guided optic disc and cup segmentation from fundus images
Lyu J
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2020; 2020: 1976-1979 (IGR: 21-3)


89918 Deep Learning for Accurate Diagnosis of Glaucomatous Optic Neuropathy Using Digital Fundus Image: A Meta-Analysis
Poly TN
Studies in health technology and informatics 2020; 270: 153-157 (IGR: 21-3)


90745 Postural Changes and the Trans-Lamina Cribrosa Pressure Difference: A Pilot Study in Neurosurgical Patients without Glaucoma
Greene RA
Ophthalmology. Glaucoma 2020; 3: 269-273 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
House P
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90284 Longitudinal assessment of optic nerve head changes using optical coherence tomography in a primate microbead model of ocular hypertension
Tun TA
Scientific reports 2020; 10: 14709 (IGR: 21-3)


90810 Diagnostic validity of optic nerve head colorimetric assessment and optical coherence tomography angiography in patients with glaucoma
Wang S
British Journal of Ophthalmology 2021; 105: 957-963 (IGR: 21-3)


90441 Imaging video plethysmography shows reduced signal amplitude in glaucoma patients in the area of the microvascular tissue of the optic nerve head
Kolar R
Graefe's Archive for Clinical and Experimental Ophthalmology 2021; 259: 483-494 (IGR: 21-3)


90189 Evidence-based understanding of disc hemorrhage in glaucoma
Kee HJ
Survey of Ophthalmology 2021; 66: 412-422 (IGR: 21-3)


90292 A Topographic Comparison of OCT Minimum Rim Width (BMO-MRW) and Circumpapillary Retinal Nerve Fiber Layer (cRNFL) Thickness Measures in Eyes With or Suspected Glaucoma
Tsamis E
Journal of Glaucoma 2020; 29: 671-680 (IGR: 21-3)


90399 CNS axonal degeneration and transport deficits at the optic nerve head precede structural and functional loss of retinal ganglion cells in a mouse model of glaucoma
Kasetti RB
Molecular Neurodegeneration 2020; 15: 48 (IGR: 21-3)


90116 Astrocyte responses to experimental glaucoma in mouse optic nerve head
Schaub J
PLoS ONE 2020; 15: e0238104 (IGR: 21-3)


90281 Long-term morphologic fundus and optic nerve head pattern of progressive myopia in congenital glaucoma distinguished by age at first surgery
Han JC
Scientific reports 2020; 10: 10041 (IGR: 21-3)


90187 Optic disc and optic cup segmentation based on anatomy guided cascade network
Luo X
Computer Methods and Programs in Biomedicine 2020; 197: 105717 (IGR: 21-3)


90744 Evaluation of retina nerve fiber layer, ganglion cell-inner plexiform layer and lamina cribrosa in clinically unilateral exfoliative glaucoma
Duru Z
International Ophthalmology 2020; 40: 2691-2697 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Ohkubo S
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90862 Effect of peripapillary tilt direction and magnitude on central visual field defects in primary open-angle glaucoma with high myopia
Ikuno Y
Japanese Journal of Ophthalmology 2020; 64: 414-422 (IGR: 21-3)


90265 Joint disc and cup segmentation based on recurrent fully convolutional network
Jiang Y
PLoS ONE 2020; 15: e0238983 (IGR: 21-3)


90174 Association of Scleral Deformation Around the Optic Nerve Head With Central Visual Function in Normal-Tension Glaucoma and Myopia
Park HL
American Journal of Ophthalmology 2020; 217: 287-296 (IGR: 21-3)


90491 SD-OCT peripapillary nerve fibre layer and ganglion cell complex parameters in glaucoma: principal component analysis
Biarnés M
British Journal of Ophthalmology 2021; 105: 496-501 (IGR: 21-3)


90292 A Topographic Comparison of OCT Minimum Rim Width (BMO-MRW) and Circumpapillary Retinal Nerve Fiber Layer (cRNFL) Thickness Measures in Eyes With or Suspected Glaucoma
Tsamis E
Journal of Glaucoma 2020; 29: 671-680 (IGR: 21-3)


90689 The occurrence of optic disc haemorrhage in primary open-angle glaucoma eyes with lower normal pressure and its relating factors
Yoshitomi T
Acta Ophthalmologica 2021; 99: e28-e35 (IGR: 21-3)


90437 Asian-specific vertical cup-to-disc ratio cut-off for glaucoma screening: An evidence-based recommendation from a multi-ethnic Asian population
Chee ML
Clinical and Experimental Ophthalmology 2020; 48: 1210-1218 (IGR: 21-3)


90852 Comparison of the lamina cribrosa parameters in eyes with exfoliation syndrome, exfoliation glaucoma and healthy subjects
Altan C
Photodiagnosis and photodynamic therapy 2020; 31: 101832 (IGR: 21-3)


90188 The role of lamina cribrosa tissue stiffness and fibrosis as fundamental biomechanical drivers of pathological glaucoma cupping
Murphy R
American Journal of Physiology and Cell Physiology 2020; 319: C611-C623 (IGR: 21-3)


90784 Progressive retinal nerve fibre layer thinning and choroidal microvasculature dropout at the location of disc haemorrhage in glaucoma
Lee EJ
British Journal of Ophthalmology 2021; 105: 674-680 (IGR: 21-3)


90637 Artifact Rates for 2D Retinal Nerve Fiber Layer Thickness Versus 3D Neuroretinal Rim Thickness Using Spectral-Domain Optical Coherence Tomography
Tsikata E
Translational vision science & technology 2020; 9: 10 (IGR: 21-3)


90456 Correlation between ocular perfusion pressure and translaminar pressure difference in glaucoma: Evidence for a three-pressure disease?
Santos KS
European Journal of Ophthalmology 2020; 0: 1120672120960584 (IGR: 21-3)


90199 The optic nerve lamina region is a neural progenitor cell niche
Guo Y
Proceedings of the National Academy of Sciences of the United States of America 2020; 117: 19287-19298 (IGR: 21-3)


90786 Decellularizing the Porcine Optic Nerve Head: Toward a Model to Study the Mechanobiology of Glaucoma
Drewry MD
Translational vision science & technology 2020; 9: 17 (IGR: 21-3)


90612 The role of the disc damage likelihood scale in glaucoma detection by community optometrists
Annoh R
Ophthalmic and Physiological Optics 2020; 40: 752-759 (IGR: 21-3)


90173 Laminar and Prelaminar Tissue Characteristics of Glaucomatous Eyes Using Enhanced Depth Imaging OCT
Naderi Beni A
Ophthalmology. Glaucoma 2021; 4: 95-101 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
Barry C
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90284 Longitudinal assessment of optic nerve head changes using optical coherence tomography in a primate microbead model of ocular hypertension
Allen JC
Scientific reports 2020; 10: 14709 (IGR: 21-3)


90187 Optic disc and optic cup segmentation based on anatomy guided cascade network
Wang C
Computer Methods and Programs in Biomedicine 2020; 197: 105717 (IGR: 21-3)


90441 Imaging video plethysmography shows reduced signal amplitude in glaucoma patients in the area of the microvascular tissue of the optic nerve head
Odstrcilik J
Graefe's Archive for Clinical and Experimental Ophthalmology 2021; 259: 483-494 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Januleviciene I
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90852 Comparison of the lamina cribrosa parameters in eyes with exfoliation syndrome, exfoliation glaucoma and healthy subjects
Cakmak S
Photodiagnosis and photodynamic therapy 2020; 31: 101832 (IGR: 21-3)


90193 Probability distribution guided optic disc and cup segmentation from fundus images
Huang Y
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2020; 2020: 1976-1979 (IGR: 21-3)


90491 SD-OCT peripapillary nerve fibre layer and ganglion cell complex parameters in glaucoma: principal component analysis
Blasco-Alberto A
British Journal of Ophthalmology 2021; 105: 496-501 (IGR: 21-3)


90174 Association of Scleral Deformation Around the Optic Nerve Head With Central Visual Function in Normal-Tension Glaucoma and Myopia
Kim YC
American Journal of Ophthalmology 2020; 217: 287-296 (IGR: 21-3)


90786 Decellularizing the Porcine Optic Nerve Head: Toward a Model to Study the Mechanobiology of Glaucoma
Sweeney A
Translational vision science & technology 2020; 9: 17 (IGR: 21-3)


90862 Effect of peripapillary tilt direction and magnitude on central visual field defects in primary open-angle glaucoma with high myopia
Asai T
Japanese Journal of Ophthalmology 2020; 64: 414-422 (IGR: 21-3)


90456 Correlation between ocular perfusion pressure and translaminar pressure difference in glaucoma: Evidence for a three-pressure disease?
Cruz NF
European Journal of Ophthalmology 2020; 0: 1120672120960584 (IGR: 21-3)


90199 The optic nerve lamina region is a neural progenitor cell niche
Kerr C
Proceedings of the National Academy of Sciences of the United States of America 2020; 117: 19287-19298 (IGR: 21-3)


90039 Deep-learning-based enhanced optic-disc photography
Kim YK
PLoS ONE 2020; 15: e0239913 (IGR: 21-3)


90173 Laminar and Prelaminar Tissue Characteristics of Glaucomatous Eyes Using Enhanced Depth Imaging OCT
Pakravan M
Ophthalmology. Glaucoma 2021; 4: 95-101 (IGR: 21-3)


90437 Asian-specific vertical cup-to-disc ratio cut-off for glaucoma screening: An evidence-based recommendation from a multi-ethnic Asian population
Thakur S
Clinical and Experimental Ophthalmology 2020; 48: 1210-1218 (IGR: 21-3)


90265 Joint disc and cup segmentation based on recurrent fully convolutional network
Zhang H
PLoS ONE 2020; 15: e0238983 (IGR: 21-3)


90188 The role of lamina cribrosa tissue stiffness and fibrosis as fundamental biomechanical drivers of pathological glaucoma cupping
Irnaten M
American Journal of Physiology and Cell Physiology 2020; 319: C611-C623 (IGR: 21-3)


90612 The role of the disc damage likelihood scale in glaucoma detection by community optometrists
Zeri F
Ophthalmic and Physiological Optics 2020; 40: 752-759 (IGR: 21-3)


90689 The occurrence of optic disc haemorrhage in primary open-angle glaucoma eyes with lower normal pressure and its relating factors
Araie M
Acta Ophthalmologica 2021; 99: e28-e35 (IGR: 21-3)


90692 A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs
Xu Y
Translational vision science & technology 2020; 9: 33 (IGR: 21-3)


90784 Progressive retinal nerve fibre layer thinning and choroidal microvasculature dropout at the location of disc haemorrhage in glaucoma
Kim JA
British Journal of Ophthalmology 2021; 105: 674-680 (IGR: 21-3)


90189 Evidence-based understanding of disc hemorrhage in glaucoma
Han JC
Survey of Ophthalmology 2021; 66: 412-422 (IGR: 21-3)


90116 Astrocyte responses to experimental glaucoma in mouse optic nerve head
Quigley H
PLoS ONE 2020; 15: e0238104 (IGR: 21-3)


90281 Long-term morphologic fundus and optic nerve head pattern of progressive myopia in congenital glaucoma distinguished by age at first surgery
Park DY
Scientific reports 2020; 10: 10041 (IGR: 21-3)


90744 Evaluation of retina nerve fiber layer, ganglion cell-inner plexiform layer and lamina cribrosa in clinically unilateral exfoliative glaucoma
Duru N
International Ophthalmology 2020; 40: 2691-2697 (IGR: 21-3)


90292 A Topographic Comparison of OCT Minimum Rim Width (BMO-MRW) and Circumpapillary Retinal Nerve Fiber Layer (cRNFL) Thickness Measures in Eyes With or Suspected Glaucoma
Zemborain ZZ
Journal of Glaucoma 2020; 29: 671-680 (IGR: 21-3)


90810 Diagnostic validity of optic nerve head colorimetric assessment and optical coherence tomography angiography in patients with glaucoma
Arribas-Pardo P
British Journal of Ophthalmology 2021; 105: 957-963 (IGR: 21-3)


90436 Automated glaucoma screening method based on image segmentation and feature extraction
Tang J
Medical and Biological Engineering and Computing 2020; 58: 2567-2586 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Udagawa S
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90637 Artifact Rates for 2D Retinal Nerve Fiber Layer Thickness Versus 3D Neuroretinal Rim Thickness Using Spectral-Domain Optical Coherence Tomography
Lee JJ
Translational vision science & technology 2020; 9: 10 (IGR: 21-3)


90399 CNS axonal degeneration and transport deficits at the optic nerve head precede structural and functional loss of retinal ganglion cells in a mouse model of glaucoma
Patel PD
Molecular Neurodegeneration 2020; 15: 48 (IGR: 21-3)


90222 Disc-fovea Angle Is Associated With Visual Field Defect Location in Patients With Glaucoma
Gracitelli CPB
Journal of Glaucoma 2020; 29: 964-969 (IGR: 21-3)


90833 Comparison of Lamina Cribrosa Curvature in Pseudoexfoliation and Primary Open-Angle Glaucoma
Shin JW
American Journal of Ophthalmology 2020; 223: 1-8 (IGR: 21-3)


89918 Deep Learning for Accurate Diagnosis of Glaucomatous Optic Neuropathy Using Digital Fundus Image: A Meta-Analysis
Yang HC
Studies in health technology and informatics 2020; 270: 153-157 (IGR: 21-3)


90745 Postural Changes and the Trans-Lamina Cribrosa Pressure Difference: A Pilot Study in Neurosurgical Patients without Glaucoma
Mathew DJ
Ophthalmology. Glaucoma 2020; 3: 269-273 (IGR: 21-3)


90833 Comparison of Lamina Cribrosa Curvature in Pseudoexfoliation and Primary Open-Angle Glaucoma
Jo YH
American Journal of Ophthalmology 2020; 223: 1-8 (IGR: 21-3)


90744 Evaluation of retina nerve fiber layer, ganglion cell-inner plexiform layer and lamina cribrosa in clinically unilateral exfoliative glaucoma
Erdoğan H
International Ophthalmology 2020; 40: 2691-2697 (IGR: 21-3)


90784 Progressive retinal nerve fibre layer thinning and choroidal microvasculature dropout at the location of disc haemorrhage in glaucoma
Kim H
British Journal of Ophthalmology 2021; 105: 674-680 (IGR: 21-3)


90199 The optic nerve lamina region is a neural progenitor cell niche
Fawcett RJ
Proceedings of the National Academy of Sciences of the United States of America 2020; 117: 19287-19298 (IGR: 21-3)


90692 A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs
Liao J
Translational vision science & technology 2020; 9: 33 (IGR: 21-3)


90189 Evidence-based understanding of disc hemorrhage in glaucoma
Kee C
Survey of Ophthalmology 2021; 66: 412-422 (IGR: 21-3)


90292 A Topographic Comparison of OCT Minimum Rim Width (BMO-MRW) and Circumpapillary Retinal Nerve Fiber Layer (cRNFL) Thickness Measures in Eyes With or Suspected Glaucoma
Wu Z
Journal of Glaucoma 2020; 29: 671-680 (IGR: 21-3)


90612 The role of the disc damage likelihood scale in glaucoma detection by community optometrists
Tatham AJ
Ophthalmic and Physiological Optics 2020; 40: 752-759 (IGR: 21-3)


90810 Diagnostic validity of optic nerve head colorimetric assessment and optical coherence tomography angiography in patients with glaucoma
Salazar-Quiñones L
British Journal of Ophthalmology 2021; 105: 957-963 (IGR: 21-3)


90281 Long-term morphologic fundus and optic nerve head pattern of progressive myopia in congenital glaucoma distinguished by age at first surgery
Kee C
Scientific reports 2020; 10: 10041 (IGR: 21-3)


90116 Astrocyte responses to experimental glaucoma in mouse optic nerve head
Pease M
PLoS ONE 2020; 15: e0238104 (IGR: 21-3)


90862 Effect of peripapillary tilt direction and magnitude on central visual field defects in primary open-angle glaucoma with high myopia
Kikawa T
Japanese Journal of Ophthalmology 2020; 64: 414-422 (IGR: 21-3)


90174 Association of Scleral Deformation Around the Optic Nerve Head With Central Visual Function in Normal-Tension Glaucoma and Myopia
Kim EK
American Journal of Ophthalmology 2020; 217: 287-296 (IGR: 21-3)


90852 Comparison of the lamina cribrosa parameters in eyes with exfoliation syndrome, exfoliation glaucoma and healthy subjects
Alagoz N
Photodiagnosis and photodynamic therapy 2020; 31: 101832 (IGR: 21-3)


90456 Correlation between ocular perfusion pressure and translaminar pressure difference in glaucoma: Evidence for a three-pressure disease?
Kasahara N
European Journal of Ophthalmology 2020; 0: 1120672120960584 (IGR: 21-3)


90637 Artifact Rates for 2D Retinal Nerve Fiber Layer Thickness Versus 3D Neuroretinal Rim Thickness Using Spectral-Domain Optical Coherence Tomography
Shieh E
Translational vision science & technology 2020; 9: 10 (IGR: 21-3)


90436 Automated glaucoma screening method based on image segmentation and feature extraction
Zou B
Medical and Biological Engineering and Computing 2020; 58: 2567-2586 (IGR: 21-3)


90437 Asian-specific vertical cup-to-disc ratio cut-off for glaucoma screening: An evidence-based recommendation from a multi-ethnic Asian population
Tham YC
Clinical and Experimental Ophthalmology 2020; 48: 1210-1218 (IGR: 21-3)


90188 The role of lamina cribrosa tissue stiffness and fibrosis as fundamental biomechanical drivers of pathological glaucoma cupping
Wallace DM
American Journal of Physiology and Cell Physiology 2020; 319: C611-C623 (IGR: 21-3)


90745 Postural Changes and the Trans-Lamina Cribrosa Pressure Difference: A Pilot Study in Neurosurgical Patients without Glaucoma
Trope GE
Ophthalmology. Glaucoma 2020; 3: 269-273 (IGR: 21-3)


90786 Decellularizing the Porcine Optic Nerve Head: Toward a Model to Study the Mechanobiology of Glaucoma
Brown BN
Translational vision science & technology 2020; 9: 17 (IGR: 21-3)


90222 Disc-fovea Angle Is Associated With Visual Field Defect Location in Patients With Glaucoma
Prata TS
Journal of Glaucoma 2020; 29: 964-969 (IGR: 21-3)


90187 Optic disc and optic cup segmentation based on anatomy guided cascade network
Liu W
Computer Methods and Programs in Biomedicine 2020; 197: 105717 (IGR: 21-3)


90441 Imaging video plethysmography shows reduced signal amplitude in glaucoma patients in the area of the microvascular tissue of the optic nerve head
Labounkova I
Graefe's Archive for Clinical and Experimental Ophthalmology 2021; 259: 483-494 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Kim DH
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90193 Probability distribution guided optic disc and cup segmentation from fundus images
Tang X
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2020; 2020: 1976-1979 (IGR: 21-3)


89918 Deep Learning for Accurate Diagnosis of Glaucomatous Optic Neuropathy Using Digital Fundus Image: A Meta-Analysis
Atique S
Studies in health technology and informatics 2020; 270: 153-157 (IGR: 21-3)


90491 SD-OCT peripapillary nerve fibre layer and ganglion cell complex parameters in glaucoma: principal component analysis
Dyrda A
British Journal of Ophthalmology 2021; 105: 496-501 (IGR: 21-3)


90039 Deep-learning-based enhanced optic-disc photography
Lee J
PLoS ONE 2020; 15: e0239913 (IGR: 21-3)


90265 Joint disc and cup segmentation based on recurrent fully convolutional network
Wang F
PLoS ONE 2020; 15: e0238983 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
Turpin A
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90689 The occurrence of optic disc haemorrhage in primary open-angle glaucoma eyes with lower normal pressure and its relating factors

Acta Ophthalmologica 2021; 99: e28-e35 (IGR: 21-3)


90284 Longitudinal assessment of optic nerve head changes using optical coherence tomography in a primate microbead model of ocular hypertension
Lynn MN
Scientific reports 2020; 10: 14709 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Sugiyama K
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90399 CNS axonal degeneration and transport deficits at the optic nerve head precede structural and functional loss of retinal ganglion cells in a mouse model of glaucoma
Millar JC
Molecular Neurodegeneration 2020; 15: 48 (IGR: 21-3)


90188 The role of lamina cribrosa tissue stiffness and fibrosis as fundamental biomechanical drivers of pathological glaucoma cupping
Quill B
American Journal of Physiology and Cell Physiology 2020; 319: C611-C623 (IGR: 21-3)


89918 Deep Learning for Accurate Diagnosis of Glaucomatous Optic Neuropathy Using Digital Fundus Image: A Meta-Analysis
Li YJ
Studies in health technology and informatics 2020; 270: 153-157 (IGR: 21-3)


90637 Artifact Rates for 2D Retinal Nerve Fiber Layer Thickness Versus 3D Neuroretinal Rim Thickness Using Spectral-Domain Optical Coherence Tomography
Braaf B
Translational vision science & technology 2020; 9: 10 (IGR: 21-3)


90116 Astrocyte responses to experimental glaucoma in mouse optic nerve head
Korneva A
PLoS ONE 2020; 15: e0238104 (IGR: 21-3)


90852 Comparison of the lamina cribrosa parameters in eyes with exfoliation syndrome, exfoliation glaucoma and healthy subjects
Pasaoglu IB
Photodiagnosis and photodynamic therapy 2020; 31: 101832 (IGR: 21-3)


90786 Decellularizing the Porcine Optic Nerve Head: Toward a Model to Study the Mechanobiology of Glaucoma
Vande Geest JP
Translational vision science & technology 2020; 9: 17 (IGR: 21-3)


90187 Optic disc and optic cup segmentation based on anatomy guided cascade network
Lin X
Computer Methods and Programs in Biomedicine 2020; 197: 105717 (IGR: 21-3)


90436 Automated glaucoma screening method based on image segmentation and feature extraction
Fan Z
Medical and Biological Engineering and Computing 2020; 58: 2567-2586 (IGR: 21-3)


90833 Comparison of Lamina Cribrosa Curvature in Pseudoexfoliation and Primary Open-Angle Glaucoma
Song MK
American Journal of Ophthalmology 2020; 223: 1-8 (IGR: 21-3)


90491 SD-OCT peripapillary nerve fibre layer and ganglion cell complex parameters in glaucoma: principal component analysis
Luque-Fernández MÁ
British Journal of Ophthalmology 2021; 105: 496-501 (IGR: 21-3)


90810 Diagnostic validity of optic nerve head colorimetric assessment and optical coherence tomography angiography in patients with glaucoma
Güemes-Villahoz N
British Journal of Ophthalmology 2021; 105: 957-963 (IGR: 21-3)


90399 CNS axonal degeneration and transport deficits at the optic nerve head precede structural and functional loss of retinal ganglion cells in a mouse model of glaucoma
Kiehlbauch C
Molecular Neurodegeneration 2020; 15: 48 (IGR: 21-3)


90222 Disc-fovea Angle Is Associated With Visual Field Defect Location in Patients With Glaucoma
Ribeiro GB
Journal of Glaucoma 2020; 29: 964-969 (IGR: 21-3)


90692 A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs
Xiong J
Translational vision science & technology 2020; 9: 33 (IGR: 21-3)


90784 Progressive retinal nerve fibre layer thinning and choroidal microvasculature dropout at the location of disc haemorrhage in glaucoma
Kim TW
British Journal of Ophthalmology 2021; 105: 674-680 (IGR: 21-3)


90039 Deep-learning-based enhanced optic-disc photography
Jeoung JW
PLoS ONE 2020; 15: e0239913 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Tanihara H
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90862 Effect of peripapillary tilt direction and magnitude on central visual field defects in primary open-angle glaucoma with high myopia
Akiba M
Japanese Journal of Ophthalmology 2020; 64: 414-422 (IGR: 21-3)


90174 Association of Scleral Deformation Around the Optic Nerve Head With Central Visual Function in Normal-Tension Glaucoma and Myopia
Park CK
American Journal of Ophthalmology 2020; 217: 287-296 (IGR: 21-3)


90284 Longitudinal assessment of optic nerve head changes using optical coherence tomography in a primate microbead model of ocular hypertension
Tun SBB
Scientific reports 2020; 10: 14709 (IGR: 21-3)


90745 Postural Changes and the Trans-Lamina Cribrosa Pressure Difference: A Pilot Study in Neurosurgical Patients without Glaucoma
Jin YP
Ophthalmology. Glaucoma 2020; 3: 269-273 (IGR: 21-3)


90199 The optic nerve lamina region is a neural progenitor cell niche
Stern JH
Proceedings of the National Academy of Sciences of the United States of America 2020; 117: 19287-19298 (IGR: 21-3)


90437 Asian-specific vertical cup-to-disc ratio cut-off for glaucoma screening: An evidence-based recommendation from a multi-ethnic Asian population
Tao Y
Clinical and Experimental Ophthalmology 2020; 48: 1210-1218 (IGR: 21-3)


90441 Imaging video plethysmography shows reduced signal amplitude in glaucoma patients in the area of the microvascular tissue of the optic nerve head
Horn F
Graefe's Archive for Clinical and Experimental Ophthalmology 2021; 259: 483-494 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Burgett KM
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90292 A Topographic Comparison of OCT Minimum Rim Width (BMO-MRW) and Circumpapillary Retinal Nerve Fiber Layer (cRNFL) Thickness Measures in Eyes With or Suspected Glaucoma
De Moraes CG
Journal of Glaucoma 2020; 29: 671-680 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
McKendrick AM
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90745 Postural Changes and the Trans-Lamina Cribrosa Pressure Difference: A Pilot Study in Neurosurgical Patients without Glaucoma
Gentili F
Ophthalmology. Glaucoma 2020; 3: 269-273 (IGR: 21-3)


90810 Diagnostic validity of optic nerve head colorimetric assessment and optical coherence tomography angiography in patients with glaucoma
Fernandez-Perez C
British Journal of Ophthalmology 2021; 105: 957-963 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
Chauhan BC
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90437 Asian-specific vertical cup-to-disc ratio cut-off for glaucoma screening: An evidence-based recommendation from a multi-ethnic Asian population
Lim ZW
Clinical and Experimental Ophthalmology 2020; 48: 1210-1218 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Araie M
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90399 CNS axonal degeneration and transport deficits at the optic nerve head precede structural and functional loss of retinal ganglion cells in a mouse model of glaucoma
Clark AF
Molecular Neurodegeneration 2020; 15: 48 (IGR: 21-3)


90637 Artifact Rates for 2D Retinal Nerve Fiber Layer Thickness Versus 3D Neuroretinal Rim Thickness Using Spectral-Domain Optical Coherence Tomography
Vakoc BJ
Translational vision science & technology 2020; 9: 10 (IGR: 21-3)


90692 A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs
Shen J
Translational vision science & technology 2020; 9: 33 (IGR: 21-3)


90862 Effect of peripapillary tilt direction and magnitude on central visual field defects in primary open-angle glaucoma with high myopia
Miki A
Japanese Journal of Ophthalmology 2020; 64: 414-422 (IGR: 21-3)


90852 Comparison of the lamina cribrosa parameters in eyes with exfoliation syndrome, exfoliation glaucoma and healthy subjects
Solmaz B
Photodiagnosis and photodynamic therapy 2020; 31: 101832 (IGR: 21-3)


90491 SD-OCT peripapillary nerve fibre layer and ganglion cell complex parameters in glaucoma: principal component analysis
Gómez A
British Journal of Ophthalmology 2021; 105: 496-501 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Verticchio Vercellin AC
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90292 A Topographic Comparison of OCT Minimum Rim Width (BMO-MRW) and Circumpapillary Retinal Nerve Fiber Layer (cRNFL) Thickness Measures in Eyes With or Suspected Glaucoma
Ritch R
Journal of Glaucoma 2020; 29: 671-680 (IGR: 21-3)


90199 The optic nerve lamina region is a neural progenitor cell niche
Temple S
Proceedings of the National Academy of Sciences of the United States of America 2020; 117: 19287-19298 (IGR: 21-3)


90039 Deep-learning-based enhanced optic-disc photography
Kim HC
PLoS ONE 2020; 15: e0239913 (IGR: 21-3)


90284 Longitudinal assessment of optic nerve head changes using optical coherence tomography in a primate microbead model of ocular hypertension
Barathi VA
Scientific reports 2020; 10: 14709 (IGR: 21-3)


90116 Astrocyte responses to experimental glaucoma in mouse optic nerve head
Kimball E; Kimball E
PLoS ONE 2020; 15: e0238104 (IGR: 21-3)


90188 The role of lamina cribrosa tissue stiffness and fibrosis as fundamental biomechanical drivers of pathological glaucoma cupping
O'Brien C
American Journal of Physiology and Cell Physiology 2020; 319: C611-C623 (IGR: 21-3)


90222 Disc-fovea Angle Is Associated With Visual Field Defect Location in Patients With Glaucoma
Paula JS
Journal of Glaucoma 2020; 29: 964-969 (IGR: 21-3)


90862 Effect of peripapillary tilt direction and magnitude on central visual field defects in primary open-angle glaucoma with high myopia
Matsushita K
Japanese Journal of Ophthalmology 2020; 64: 414-422 (IGR: 21-3)


90437 Asian-specific vertical cup-to-disc ratio cut-off for glaucoma screening: An evidence-based recommendation from a multi-ethnic Asian population
Mani B
Clinical and Experimental Ophthalmology 2020; 48: 1210-1218 (IGR: 21-3)


90745 Postural Changes and the Trans-Lamina Cribrosa Pressure Difference: A Pilot Study in Neurosurgical Patients without Glaucoma
Buys YM
Ophthalmology. Glaucoma 2020; 3: 269-273 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Rowe LW
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Tomita G
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90199 The optic nerve lamina region is a neural progenitor cell niche
Mehrabian Z
Proceedings of the National Academy of Sciences of the United States of America 2020; 117: 19287-19298 (IGR: 21-3)


90039 Deep-learning-based enhanced optic-disc photography
Park KH
PLoS ONE 2020; 15: e0239913 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
Manners S
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90284 Longitudinal assessment of optic nerve head changes using optical coherence tomography in a primate microbead model of ocular hypertension
Girard MJA
Scientific reports 2020; 10: 14709 (IGR: 21-3)


90637 Artifact Rates for 2D Retinal Nerve Fiber Layer Thickness Versus 3D Neuroretinal Rim Thickness Using Spectral-Domain Optical Coherence Tomography
Bouma BE
Translational vision science & technology 2020; 9: 10 (IGR: 21-3)


90852 Comparison of the lamina cribrosa parameters in eyes with exfoliation syndrome, exfoliation glaucoma and healthy subjects
Basarir B
Photodiagnosis and photodynamic therapy 2020; 31: 101832 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Rowe LW
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90399 CNS axonal degeneration and transport deficits at the optic nerve head precede structural and functional loss of retinal ganglion cells in a mouse model of glaucoma
Zode GS
Molecular Neurodegeneration 2020; 15: 48 (IGR: 21-3)


90692 A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs
Liu J
Translational vision science & technology 2020; 9: 33 (IGR: 21-3)


90292 A Topographic Comparison of OCT Minimum Rim Width (BMO-MRW) and Circumpapillary Retinal Nerve Fiber Layer (cRNFL) Thickness Measures in Eyes With or Suspected Glaucoma
Hood DC
Journal of Glaucoma 2020; 29: 671-680 (IGR: 21-3)


90810 Diagnostic validity of optic nerve head colorimetric assessment and optical coherence tomography angiography in patients with glaucoma
Garcia-Feijoo J
British Journal of Ophthalmology 2021; 105: 957-963 (IGR: 21-3)


90491 SD-OCT peripapillary nerve fibre layer and ganglion cell complex parameters in glaucoma: principal component analysis
Mora C
British Journal of Ophthalmology 2021; 105: 496-501 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Eckert GJ
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Matsumoto C
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90637 Artifact Rates for 2D Retinal Nerve Fiber Layer Thickness Versus 3D Neuroretinal Rim Thickness Using Spectral-Domain Optical Coherence Tomography
de Boer JF
Translational vision science & technology 2020; 9: 10 (IGR: 21-3)


90491 SD-OCT peripapillary nerve fibre layer and ganglion cell complex parameters in glaucoma: principal component analysis
Milla E
British Journal of Ophthalmology 2021; 105: 496-501 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
Graham S
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90692 A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs
Zhang X
Translational vision science & technology 2020; 9: 33 (IGR: 21-3)


90437 Asian-specific vertical cup-to-disc ratio cut-off for glaucoma screening: An evidence-based recommendation from a multi-ethnic Asian population
Wong TT
Clinical and Experimental Ophthalmology 2020; 48: 1210-1218 (IGR: 21-3)


90284 Longitudinal assessment of optic nerve head changes using optical coherence tomography in a primate microbead model of ocular hypertension
Aung T
Scientific reports 2020; 10: 14709 (IGR: 21-3)


90852 Comparison of the lamina cribrosa parameters in eyes with exfoliation syndrome, exfoliation glaucoma and healthy subjects
Yasar T
Photodiagnosis and photodynamic therapy 2020; 31: 101832 (IGR: 21-3)


90862 Effect of peripapillary tilt direction and magnitude on central visual field defects in primary open-angle glaucoma with high myopia
Kawasaki R
Japanese Journal of Ophthalmology 2020; 64: 414-422 (IGR: 21-3)


90284 Longitudinal assessment of optic nerve head changes using optical coherence tomography in a primate microbead model of ocular hypertension
Aihara M
Scientific reports 2020; 10: 14709 (IGR: 21-3)


90637 Artifact Rates for 2D Retinal Nerve Fiber Layer Thickness Versus 3D Neuroretinal Rim Thickness Using Spectral-Domain Optical Coherence Tomography
Chen TC
Translational vision science & technology 2020; 9: 10 (IGR: 21-3)


90862 Effect of peripapillary tilt direction and magnitude on central visual field defects in primary open-angle glaucoma with high myopia
Nishida K
Japanese Journal of Ophthalmology 2020; 64: 414-422 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
Yu DY
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90491 SD-OCT peripapillary nerve fibre layer and ganglion cell complex parameters in glaucoma: principal component analysis
Muniesa M
British Journal of Ophthalmology 2021; 105: 496-501 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Harris A
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90692 A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs

Translational vision science & technology 2020; 9: 33 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Fukuchi T
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90437 Asian-specific vertical cup-to-disc ratio cut-off for glaucoma screening: An evidence-based recommendation from a multi-ethnic Asian population
Aung T
Clinical and Experimental Ophthalmology 2020; 48: 1210-1218 (IGR: 21-3)


90491 SD-OCT peripapillary nerve fibre layer and ganglion cell complex parameters in glaucoma: principal component analysis
Antón A
British Journal of Ophthalmology 2021; 105: 496-501 (IGR: 21-3)


90437 Asian-specific vertical cup-to-disc ratio cut-off for glaucoma screening: An evidence-based recommendation from a multi-ethnic Asian population
Cheng CY
Clinical and Experimental Ophthalmology 2020; 48: 1210-1218 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Tomidokoro A
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
Morgan WH
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90491 SD-OCT peripapillary nerve fibre layer and ganglion cell complex parameters in glaucoma: principal component analysis
Díaz-Alemán VT
British Journal of Ophthalmology 2021; 105: 496-501 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Hangai M; Kawata H; Inai M; Tanaka Y;
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


86833 Optical Coherence Tomography Angiography of Perilimbal Vasculature in Port-Wine Stain and Sturge-Weber Syndrome Patients
Zhao Z
Investigative Ophthalmology and Visual Science 2020; 61: 43 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Shukla AG
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86418 Parapapillary atrophy and changes in the optic nerve head and posterior pole in high myopia
Sung MS
Scientific reports 2020; 10: 4607 (IGR: 21-2)


86495 Optic Disc and Cup Image Segmentation Utilizing Contour-Based Transformation and Sequence Labeling Networks
Xie Z
Journal of Medical Systems 2020; 44: 96 (IGR: 21-2)


86370 Visual Field Cluster Map Corresponding to Bruch Membrane Opening-minimum Rim Area Sectors in Open-angle Glaucoma
Choi HS
Journal of Glaucoma 2020; 29: 485-491 (IGR: 21-2)


86661 Comparison of Lamina Cribrosa Morphology in Eyes with Ocular Hypertension and Normal-Tension Glaucoma
Kim JA
Investigative Ophthalmology and Visual Science 2020; 61: 4 (IGR: 21-2)


86674 Clinical Assessment of Scleral Canal Area in Glaucoma Using Spectral-Domain Optical Coherence Tomography
Sawada Y
American Journal of Ophthalmology 2020; 216: 28-36 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Shukla AG
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86689 Newly Onset Optic Disc Pit Maculopathy (ODP-M) in a Patient With Primary Angle-closure Glaucoma (PACG) After Surgical Iridectomy: A Case Report
Li C
Journal of Glaucoma 2020; 29: e44-e49 (IGR: 21-2)


86587 Factors affecting optic nerve head biomechanics in a rat model of glaucoma
Schwaner SA
Journal of the Royal Society, Interface / the Royal Society 2020; 17: 20190695 (IGR: 21-2)


86280 Diurnal Cycle of Translaminar Pressure in Nonhuman Primates Quantified With Continuous Wireless Telemetry
Jasien JV
Investigative Ophthalmology and Visual Science 2020; 61: 37 (IGR: 21-2)


86732 Evaluation of the optic nerve head vessel density in the patients with asymmetric pseudoexfoliative glaucoma: an OCT angiography study
Simsek M
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1493-1501 (IGR: 21-2)


86142 The inflation response of the human lamina cribrosa and sclera: Analysis of deformation and interaction
Midgett DE
Acta biomaterialia 2020; 106: 225-241 (IGR: 21-2)


86776 Focal lamina cribrosa defects are not associated with steep lamina cribrosa curvature but with choroidal microvascular dropout
Lee SH
Scientific reports 2020; 10: 6761 (IGR: 21-2)


86354 Dynamics of structural reversal in Bruch's membrane opening-based morphometrics after glaucoma drainage device surgery
Gietzelt C
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1227-1236 (IGR: 21-2)


86329 Nasalization of Central Retinal Vessel Trunk Predicts Rapid Progression of Central Visual Field in Open-Angle Glaucoma
Shon K
Scientific reports 2020; 10: 3789 (IGR: 21-2)


86861 A method to quantify regional axonal transport blockade at the optic nerve head after short term intraocular pressure elevation in mice
Korneva A
Experimental Eye Research 2020; 196: 108035 (IGR: 21-2)


86653 Sub-region-Specific Optic Nerve Head Glial Activation in Glaucoma
Oikawa K
Molecular Neurobiology 2020; 57: 2620-2638 (IGR: 21-2)


86478 In Vivo Measurements of Prelamina and Lamina Cribrosa Biomechanical Properties in Humans
Zhang L
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86832 The Effects of Glaucoma on the Pressure-Induced Strain Response of the Human Lamina Cribrosa
Midgett D
Investigative Ophthalmology and Visual Science 2020; 61: 41 (IGR: 21-2)


86562 Optic nerve head diurnal vessel density variations in glaucoma and ocular hypertension measured by optical coherence tomography angiography
Verticchio Vercellin AC
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1237-1251 (IGR: 21-2)


86203 Optic disc haemorrhage and primary open-angle glaucoma: a clinical review
Jasty U
British Journal of Ophthalmology 2020; 104: 1488-1491 (IGR: 21-2)


86761 Effect of Changing Heart Rate on the Ocular Pulse and Dynamic Biomechanical Behavior of the Optic Nerve Head
Jin Y
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86788 Gender-related Influences on Superficial Papillary Microcirculation Measured with Optical Coherence Tomography Angiography in Patients with Glaucoma
Wang S
Current Eye Research 2020; 0: 1-9 (IGR: 21-2)


86706 Association of lamina cribrosa morphometry with retinal nerve fiber layer loss and visual field defects in primary open angle glaucoma
Naz AS
Pakistan journal of medical sciences 2020; 36: 521-525 (IGR: 21-2)


86141 The optic nerve head vasoreactive response to systemic hyperoxia and visual field defect progression in open-angle glaucoma, a pilot study
Kiyota N
Acta Ophthalmologica 2020; 98: e747-e753 (IGR: 21-2)


86517 The Relationship Between Optic Nerve Cup-to-Disc Ratio and Retinal Nerve Fiber Layer Thickness in Suspected Pediatric Glaucoma
Mocan MC
Journal of Pediatric Ophthalmology & Strabismus 2020; 57: 90-96 (IGR: 21-2)


86283 Discriminating glaucomatous and compressive optic neuropathy on spectral-domain optical coherence tomography with deep learning classifier
Lee J
British Journal of Ophthalmology 2020; 104: 1717-1723 (IGR: 21-2)


86560 Optic Disc and Macular Vessel Density Measured by Optical Coherence Tomography Angiography in Open-Angle and Angle-Closure Glaucoma
Hou TY
Scientific reports 2020; 10: 5608 (IGR: 21-2)


86354 Dynamics of structural reversal in Bruch's membrane opening-based morphometrics after glaucoma drainage device surgery
von Goscinski C
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1227-1236 (IGR: 21-2)


86587 Factors affecting optic nerve head biomechanics in a rat model of glaucoma
Feola AJ
Journal of the Royal Society, Interface / the Royal Society 2020; 17: 20190695 (IGR: 21-2)


86761 Effect of Changing Heart Rate on the Ocular Pulse and Dynamic Biomechanical Behavior of the Optic Nerve Head
Wang X
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86689 Newly Onset Optic Disc Pit Maculopathy (ODP-M) in a Patient With Primary Angle-closure Glaucoma (PACG) After Surgical Iridectomy: A Case Report
Guo C
Journal of Glaucoma 2020; 29: e44-e49 (IGR: 21-2)


86833 Optical Coherence Tomography Angiography of Perilimbal Vasculature in Port-Wine Stain and Sturge-Weber Syndrome Patients
Xu L
Investigative Ophthalmology and Visual Science 2020; 61: 43 (IGR: 21-2)


86788 Gender-related Influences on Superficial Papillary Microcirculation Measured with Optical Coherence Tomography Angiography in Patients with Glaucoma
Mendez-Hernandez C
Current Eye Research 2020; 0: 1-9 (IGR: 21-2)


86141 The optic nerve head vasoreactive response to systemic hyperoxia and visual field defect progression in open-angle glaucoma, a pilot study
Shiga Y
Acta Ophthalmologica 2020; 98: e747-e753 (IGR: 21-2)


86203 Optic disc haemorrhage and primary open-angle glaucoma: a clinical review
Harris A
British Journal of Ophthalmology 2020; 104: 1488-1491 (IGR: 21-2)


86861 A method to quantify regional axonal transport blockade at the optic nerve head after short term intraocular pressure elevation in mice
Schaub J
Experimental Eye Research 2020; 196: 108035 (IGR: 21-2)


86653 Sub-region-Specific Optic Nerve Head Glial Activation in Glaucoma
Ver Hoeve JN
Molecular Neurobiology 2020; 57: 2620-2638 (IGR: 21-2)


86495 Optic Disc and Cup Image Segmentation Utilizing Contour-Based Transformation and Sequence Labeling Networks
Ling T
Journal of Medical Systems 2020; 44: 96 (IGR: 21-2)


86283 Discriminating glaucomatous and compressive optic neuropathy on spectral-domain optical coherence tomography with deep learning classifier
Kim JS
British Journal of Ophthalmology 2020; 104: 1717-1723 (IGR: 21-2)


86832 The Effects of Glaucoma on the Pressure-Induced Strain Response of the Human Lamina Cribrosa
Liu B
Investigative Ophthalmology and Visual Science 2020; 61: 41 (IGR: 21-2)


86517 The Relationship Between Optic Nerve Cup-to-Disc Ratio and Retinal Nerve Fiber Layer Thickness in Suspected Pediatric Glaucoma
Machen L
Journal of Pediatric Ophthalmology & Strabismus 2020; 57: 90-96 (IGR: 21-2)


86706 Association of lamina cribrosa morphometry with retinal nerve fiber layer loss and visual field defects in primary open angle glaucoma
Qamar A
Pakistan journal of medical sciences 2020; 36: 521-525 (IGR: 21-2)


86418 Parapapillary atrophy and changes in the optic nerve head and posterior pole in high myopia
Heo H
Scientific reports 2020; 10: 4607 (IGR: 21-2)


86280 Diurnal Cycle of Translaminar Pressure in Nonhuman Primates Quantified With Continuous Wireless Telemetry
Samuels BC
Investigative Ophthalmology and Visual Science 2020; 61: 37 (IGR: 21-2)


86562 Optic nerve head diurnal vessel density variations in glaucoma and ocular hypertension measured by optical coherence tomography angiography
Harris A
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1237-1251 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Sirinek PE
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86370 Visual Field Cluster Map Corresponding to Bruch Membrane Opening-minimum Rim Area Sectors in Open-angle Glaucoma
Park SP
Journal of Glaucoma 2020; 29: 485-491 (IGR: 21-2)


86861 A method to quantify regional axonal transport blockade at the optic nerve head after short term intraocular pressure elevation in mice
Schaub J
Experimental Eye Research 2020; 196: 108035 (IGR: 21-2)


86142 The inflation response of the human lamina cribrosa and sclera: Analysis of deformation and interaction
Jefferys JL
Acta biomaterialia 2020; 106: 225-241 (IGR: 21-2)


86661 Comparison of Lamina Cribrosa Morphology in Eyes with Ocular Hypertension and Normal-Tension Glaucoma
Kim TW
Investigative Ophthalmology and Visual Science 2020; 61: 4 (IGR: 21-2)


86776 Focal lamina cribrosa defects are not associated with steep lamina cribrosa curvature but with choroidal microvascular dropout
Kim TW
Scientific reports 2020; 10: 6761 (IGR: 21-2)


86674 Clinical Assessment of Scleral Canal Area in Glaucoma Using Spectral-Domain Optical Coherence Tomography
Araie M
American Journal of Ophthalmology 2020; 216: 28-36 (IGR: 21-2)


86560 Optic Disc and Macular Vessel Density Measured by Optical Coherence Tomography Angiography in Open-Angle and Angle-Closure Glaucoma
Kuang TM
Scientific reports 2020; 10: 5608 (IGR: 21-2)


86329 Nasalization of Central Retinal Vessel Trunk Predicts Rapid Progression of Central Visual Field in Open-Angle Glaucoma
Hye Jo Y
Scientific reports 2020; 10: 3789 (IGR: 21-2)


86517 The Relationship Between Optic Nerve Cup-to-Disc Ratio and Retinal Nerve Fiber Layer Thickness in Suspected Pediatric Glaucoma
Machen L
Journal of Pediatric Ophthalmology & Strabismus 2020; 57: 90-96 (IGR: 21-2)


86732 Evaluation of the optic nerve head vessel density in the patients with asymmetric pseudoexfoliative glaucoma: an OCT angiography study
Kocer AM
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1493-1501 (IGR: 21-2)


86478 In Vivo Measurements of Prelamina and Lamina Cribrosa Biomechanical Properties in Humans
Beotra MR
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86653 Sub-region-Specific Optic Nerve Head Glial Activation in Glaucoma
Teixeira LBC
Molecular Neurobiology 2020; 57: 2620-2638 (IGR: 21-2)


86478 In Vivo Measurements of Prelamina and Lamina Cribrosa Biomechanical Properties in Humans
Baskaran M
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86280 Diurnal Cycle of Translaminar Pressure in Nonhuman Primates Quantified With Continuous Wireless Telemetry
Johnston JM
Investigative Ophthalmology and Visual Science 2020; 61: 37 (IGR: 21-2)


86689 Newly Onset Optic Disc Pit Maculopathy (ODP-M) in a Patient With Primary Angle-closure Glaucoma (PACG) After Surgical Iridectomy: A Case Report
Yang Y
Journal of Glaucoma 2020; 29: e44-e49 (IGR: 21-2)


86517 The Relationship Between Optic Nerve Cup-to-Disc Ratio and Retinal Nerve Fiber Layer Thickness in Suspected Pediatric Glaucoma
Jang I
Journal of Pediatric Ophthalmology & Strabismus 2020; 57: 90-96 (IGR: 21-2)


86706 Association of lamina cribrosa morphometry with retinal nerve fiber layer loss and visual field defects in primary open angle glaucoma
Haque SU
Pakistan journal of medical sciences 2020; 36: 521-525 (IGR: 21-2)


86732 Evaluation of the optic nerve head vessel density in the patients with asymmetric pseudoexfoliative glaucoma: an OCT angiography study
Cevik S
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1493-1501 (IGR: 21-2)


86776 Focal lamina cribrosa defects are not associated with steep lamina cribrosa curvature but with choroidal microvascular dropout
Lee EJ
Scientific reports 2020; 10: 6761 (IGR: 21-2)


86354 Dynamics of structural reversal in Bruch's membrane opening-based morphometrics after glaucoma drainage device surgery
Lemke J
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1227-1236 (IGR: 21-2)


86788 Gender-related Influences on Superficial Papillary Microcirculation Measured with Optical Coherence Tomography Angiography in Patients with Glaucoma
Arribas-Pardo P
Current Eye Research 2020; 0: 1-9 (IGR: 21-2)


86861 A method to quantify regional axonal transport blockade at the optic nerve head after short term intraocular pressure elevation in mice
Jefferys J
Experimental Eye Research 2020; 196: 108035 (IGR: 21-2)


86142 The inflation response of the human lamina cribrosa and sclera: Analysis of deformation and interaction
Quigley HA
Acta biomaterialia 2020; 106: 225-241 (IGR: 21-2)


86761 Effect of Changing Heart Rate on the Ocular Pulse and Dynamic Biomechanical Behavior of the Optic Nerve Head
Irnadiastputri SFR
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86495 Optic Disc and Cup Image Segmentation Utilizing Contour-Based Transformation and Sequence Labeling Networks
Yang Y
Journal of Medical Systems 2020; 44: 96 (IGR: 21-2)


86832 The Effects of Glaucoma on the Pressure-Induced Strain Response of the Human Lamina Cribrosa
Ling YTT
Investigative Ophthalmology and Visual Science 2020; 61: 41 (IGR: 21-2)


86517 The Relationship Between Optic Nerve Cup-to-Disc Ratio and Retinal Nerve Fiber Layer Thickness in Suspected Pediatric Glaucoma
Jang I
Journal of Pediatric Ophthalmology & Strabismus 2020; 57: 90-96 (IGR: 21-2)


86283 Discriminating glaucomatous and compressive optic neuropathy on spectral-domain optical coherence tomography with deep learning classifier
Lee HJ
British Journal of Ophthalmology 2020; 104: 1717-1723 (IGR: 21-2)


86370 Visual Field Cluster Map Corresponding to Bruch Membrane Opening-minimum Rim Area Sectors in Open-angle Glaucoma
Na KI
Journal of Glaucoma 2020; 29: 485-491 (IGR: 21-2)


86418 Parapapillary atrophy and changes in the optic nerve head and posterior pole in high myopia
Piao H
Scientific reports 2020; 10: 4607 (IGR: 21-2)


86661 Comparison of Lamina Cribrosa Morphology in Eyes with Ocular Hypertension and Normal-Tension Glaucoma
Lee EJ
Investigative Ophthalmology and Visual Science 2020; 61: 4 (IGR: 21-2)


86560 Optic Disc and Macular Vessel Density Measured by Optical Coherence Tomography Angiography in Open-Angle and Angle-Closure Glaucoma
Ko YC
Scientific reports 2020; 10: 5608 (IGR: 21-2)


86329 Nasalization of Central Retinal Vessel Trunk Predicts Rapid Progression of Central Visual Field in Open-Angle Glaucoma
Won Shin J
Scientific reports 2020; 10: 3789 (IGR: 21-2)


86562 Optic nerve head diurnal vessel density variations in glaucoma and ocular hypertension measured by optical coherence tomography angiography
Tanga L
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1237-1251 (IGR: 21-2)


86141 The optic nerve head vasoreactive response to systemic hyperoxia and visual field defect progression in open-angle glaucoma, a pilot study
Yasuda M
Acta Ophthalmologica 2020; 98: e747-e753 (IGR: 21-2)


86587 Factors affecting optic nerve head biomechanics in a rat model of glaucoma
Ethier CR
Journal of the Royal Society, Interface / the Royal Society 2020; 17: 20190695 (IGR: 21-2)


86203 Optic disc haemorrhage and primary open-angle glaucoma: a clinical review
Siesky B
British Journal of Ophthalmology 2020; 104: 1488-1491 (IGR: 21-2)


86674 Clinical Assessment of Scleral Canal Area in Glaucoma Using Spectral-Domain Optical Coherence Tomography
Shibata H
American Journal of Ophthalmology 2020; 216: 28-36 (IGR: 21-2)


86418 Parapapillary atrophy and changes in the optic nerve head and posterior pole in high myopia
Piao H
Scientific reports 2020; 10: 4607 (IGR: 21-2)


86833 Optical Coherence Tomography Angiography of Perilimbal Vasculature in Port-Wine Stain and Sturge-Weber Syndrome Patients
Ding X
Investigative Ophthalmology and Visual Science 2020; 61: 43 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
De Moraes CG
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86142 The inflation response of the human lamina cribrosa and sclera: Analysis of deformation and interaction
Nguyen TD
Acta biomaterialia 2020; 106: 225-241 (IGR: 21-2)


86761 Effect of Changing Heart Rate on the Ocular Pulse and Dynamic Biomechanical Behavior of the Optic Nerve Head
Mohan RE
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86788 Gender-related Influences on Superficial Papillary Microcirculation Measured with Optical Coherence Tomography Angiography in Patients with Glaucoma
Salazar Quiñones L
Current Eye Research 2020; 0: 1-9 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Blumberg DM
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86861 A method to quantify regional axonal transport blockade at the optic nerve head after short term intraocular pressure elevation in mice
Kimball E
Experimental Eye Research 2020; 196: 108035 (IGR: 21-2)


86203 Optic disc haemorrhage and primary open-angle glaucoma: a clinical review
Rowe LW
British Journal of Ophthalmology 2020; 104: 1488-1491 (IGR: 21-2)


86495 Optic Disc and Cup Image Segmentation Utilizing Contour-Based Transformation and Sequence Labeling Networks
Shu R
Journal of Medical Systems 2020; 44: 96 (IGR: 21-2)


86560 Optic Disc and Macular Vessel Density Measured by Optical Coherence Tomography Angiography in Open-Angle and Angle-Closure Glaucoma
Chang YF
Scientific reports 2020; 10: 5608 (IGR: 21-2)


86833 Optical Coherence Tomography Angiography of Perilimbal Vasculature in Port-Wine Stain and Sturge-Weber Syndrome Patients
Wu Y
Investigative Ophthalmology and Visual Science 2020; 61: 43 (IGR: 21-2)


86141 The optic nerve head vasoreactive response to systemic hyperoxia and visual field defect progression in open-angle glaucoma, a pilot study
Aizawa N
Acta Ophthalmologica 2020; 98: e747-e753 (IGR: 21-2)


86329 Nasalization of Central Retinal Vessel Trunk Predicts Rapid Progression of Central Visual Field in Open-Angle Glaucoma
Kwon J
Scientific reports 2020; 10: 3789 (IGR: 21-2)


86706 Association of lamina cribrosa morphometry with retinal nerve fiber layer loss and visual field defects in primary open angle glaucoma
Zaman Y
Pakistan journal of medical sciences 2020; 36: 521-525 (IGR: 21-2)


86653 Sub-region-Specific Optic Nerve Head Glial Activation in Glaucoma
Snyder KC
Molecular Neurobiology 2020; 57: 2620-2638 (IGR: 21-2)


86478 In Vivo Measurements of Prelamina and Lamina Cribrosa Biomechanical Properties in Humans
Tun TA
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86203 Optic disc haemorrhage and primary open-angle glaucoma: a clinical review
Rowe LW
British Journal of Ophthalmology 2020; 104: 1488-1491 (IGR: 21-2)


86661 Comparison of Lamina Cribrosa Morphology in Eyes with Ocular Hypertension and Normal-Tension Glaucoma
Girard MJA
Investigative Ophthalmology and Visual Science 2020; 61: 4 (IGR: 21-2)


86776 Focal lamina cribrosa defects are not associated with steep lamina cribrosa curvature but with choroidal microvascular dropout
Girard MJA
Scientific reports 2020; 10: 6761 (IGR: 21-2)


86517 The Relationship Between Optic Nerve Cup-to-Disc Ratio and Retinal Nerve Fiber Layer Thickness in Suspected Pediatric Glaucoma
Cao D
Journal of Pediatric Ophthalmology & Strabismus 2020; 57: 90-96 (IGR: 21-2)


86283 Discriminating glaucomatous and compressive optic neuropathy on spectral-domain optical coherence tomography with deep learning classifier
Kim SJ
British Journal of Ophthalmology 2020; 104: 1717-1723 (IGR: 21-2)


86732 Evaluation of the optic nerve head vessel density in the patients with asymmetric pseudoexfoliative glaucoma: an OCT angiography study
Sen E
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1493-1501 (IGR: 21-2)


86562 Optic nerve head diurnal vessel density variations in glaucoma and ocular hypertension measured by optical coherence tomography angiography
Siesky B
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1237-1251 (IGR: 21-2)


86354 Dynamics of structural reversal in Bruch's membrane opening-based morphometrics after glaucoma drainage device surgery
Schaub F
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1227-1236 (IGR: 21-2)


86689 Newly Onset Optic Disc Pit Maculopathy (ODP-M) in a Patient With Primary Angle-closure Glaucoma (PACG) After Surgical Iridectomy: A Case Report
Yu M
Journal of Glaucoma 2020; 29: e44-e49 (IGR: 21-2)


86418 Parapapillary atrophy and changes in the optic nerve head and posterior pole in high myopia
Guo Y
Scientific reports 2020; 10: 4607 (IGR: 21-2)


86861 A method to quantify regional axonal transport blockade at the optic nerve head after short term intraocular pressure elevation in mice
Kimball E
Experimental Eye Research 2020; 196: 108035 (IGR: 21-2)


86280 Diurnal Cycle of Translaminar Pressure in Nonhuman Primates Quantified With Continuous Wireless Telemetry
Downs JC
Investigative Ophthalmology and Visual Science 2020; 61: 37 (IGR: 21-2)


86674 Clinical Assessment of Scleral Canal Area in Glaucoma Using Spectral-Domain Optical Coherence Tomography
Murata K
American Journal of Ophthalmology 2020; 216: 28-36 (IGR: 21-2)


86832 The Effects of Glaucoma on the Pressure-Induced Strain Response of the Human Lamina Cribrosa
Jefferys JL
Investigative Ophthalmology and Visual Science 2020; 61: 41 (IGR: 21-2)


86141 The optic nerve head vasoreactive response to systemic hyperoxia and visual field defect progression in open-angle glaucoma, a pilot study
Omodaka K
Acta Ophthalmologica 2020; 98: e747-e753 (IGR: 21-2)


86732 Evaluation of the optic nerve head vessel density in the patients with asymmetric pseudoexfoliative glaucoma: an OCT angiography study
Elgin U
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1493-1501 (IGR: 21-2)


86329 Nasalization of Central Retinal Vessel Trunk Predicts Rapid Progression of Central Visual Field in Open-Angle Glaucoma
Jeong D
Scientific reports 2020; 10: 3789 (IGR: 21-2)


86283 Discriminating glaucomatous and compressive optic neuropathy on spectral-domain optical coherence tomography with deep learning classifier
Kim YK
British Journal of Ophthalmology 2020; 104: 1717-1723 (IGR: 21-2)


86861 A method to quantify regional axonal transport blockade at the optic nerve head after short term intraocular pressure elevation in mice
Pease ME
Experimental Eye Research 2020; 196: 108035 (IGR: 21-2)


86560 Optic Disc and Macular Vessel Density Measured by Optical Coherence Tomography Angiography in Open-Angle and Angle-Closure Glaucoma
Liu CJ
Scientific reports 2020; 10: 5608 (IGR: 21-2)


86418 Parapapillary atrophy and changes in the optic nerve head and posterior pole in high myopia
Park SW
Scientific reports 2020; 10: 4607 (IGR: 21-2)


86203 Optic disc haemorrhage and primary open-angle glaucoma: a clinical review
Verticchio Vercellin AC
British Journal of Ophthalmology 2020; 104: 1488-1491 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Cioffi GA
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86562 Optic nerve head diurnal vessel density variations in glaucoma and ocular hypertension measured by optical coherence tomography angiography
Quaranta L
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1237-1251 (IGR: 21-2)


86689 Newly Onset Optic Disc Pit Maculopathy (ODP-M) in a Patient With Primary Angle-closure Glaucoma (PACG) After Surgical Iridectomy: A Case Report
Ge J
Journal of Glaucoma 2020; 29: e44-e49 (IGR: 21-2)


86706 Association of lamina cribrosa morphometry with retinal nerve fiber layer loss and visual field defects in primary open angle glaucoma
Faheem F
Pakistan journal of medical sciences 2020; 36: 521-525 (IGR: 21-2)


86674 Clinical Assessment of Scleral Canal Area in Glaucoma Using Spectral-Domain Optical Coherence Tomography
Ishikawa M
American Journal of Ophthalmology 2020; 216: 28-36 (IGR: 21-2)


86833 Optical Coherence Tomography Angiography of Perilimbal Vasculature in Port-Wine Stain and Sturge-Weber Syndrome Patients
Zhu X
Investigative Ophthalmology and Visual Science 2020; 61: 43 (IGR: 21-2)


86788 Gender-related Influences on Superficial Papillary Microcirculation Measured with Optical Coherence Tomography Angiography in Patients with Glaucoma
Fernandez-Perez C
Current Eye Research 2020; 0: 1-9 (IGR: 21-2)


86761 Effect of Changing Heart Rate on the Ocular Pulse and Dynamic Biomechanical Behavior of the Optic Nerve Head
Aung T
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86653 Sub-region-Specific Optic Nerve Head Glial Activation in Glaucoma
Kiland JA
Molecular Neurobiology 2020; 57: 2620-2638 (IGR: 21-2)


86495 Optic Disc and Cup Image Segmentation Utilizing Contour-Based Transformation and Sequence Labeling Networks
Liu BJ
Journal of Medical Systems 2020; 44: 96 (IGR: 21-2)


86832 The Effects of Glaucoma on the Pressure-Induced Strain Response of the Human Lamina Cribrosa
Quigley HA
Investigative Ophthalmology and Visual Science 2020; 61: 41 (IGR: 21-2)


86478 In Vivo Measurements of Prelamina and Lamina Cribrosa Biomechanical Properties in Humans
Wang X
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86661 Comparison of Lamina Cribrosa Morphology in Eyes with Ocular Hypertension and Normal-Tension Glaucoma
Mari JM
Investigative Ophthalmology and Visual Science 2020; 61: 4 (IGR: 21-2)


86354 Dynamics of structural reversal in Bruch's membrane opening-based morphometrics after glaucoma drainage device surgery
Hermann MM
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1227-1236 (IGR: 21-2)


86776 Focal lamina cribrosa defects are not associated with steep lamina cribrosa curvature but with choroidal microvascular dropout
Mari JM
Scientific reports 2020; 10: 6761 (IGR: 21-2)


86203 Optic disc haemorrhage and primary open-angle glaucoma: a clinical review
Mathew S
British Journal of Ophthalmology 2020; 104: 1488-1491 (IGR: 21-2)


86674 Clinical Assessment of Scleral Canal Area in Glaucoma Using Spectral-Domain Optical Coherence Tomography
Yoshitomi T
American Journal of Ophthalmology 2020; 216: 28-36 (IGR: 21-2)


86560 Optic Disc and Macular Vessel Density Measured by Optical Coherence Tomography Angiography in Open-Angle and Angle-Closure Glaucoma
Chen MJ
Scientific reports 2020; 10: 5608 (IGR: 21-2)


86562 Optic nerve head diurnal vessel density variations in glaucoma and ocular hypertension measured by optical coherence tomography angiography
Rowe LW
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1237-1251 (IGR: 21-2)


86761 Effect of Changing Heart Rate on the Ocular Pulse and Dynamic Biomechanical Behavior of the Optic Nerve Head
Perera SA
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86283 Discriminating glaucomatous and compressive optic neuropathy on spectral-domain optical coherence tomography with deep learning classifier
Park KH
British Journal of Ophthalmology 2020; 104: 1717-1723 (IGR: 21-2)


86832 The Effects of Glaucoma on the Pressure-Induced Strain Response of the Human Lamina Cribrosa
Nguyen TD
Investigative Ophthalmology and Visual Science 2020; 61: 41 (IGR: 21-2)


86354 Dynamics of structural reversal in Bruch's membrane opening-based morphometrics after glaucoma drainage device surgery
Dietlein TS
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1227-1236 (IGR: 21-2)


86861 A method to quantify regional axonal transport blockade at the optic nerve head after short term intraocular pressure elevation in mice
Nawathe M
Experimental Eye Research 2020; 196: 108035 (IGR: 21-2)


86788 Gender-related Influences on Superficial Papillary Microcirculation Measured with Optical Coherence Tomography Angiography in Patients with Glaucoma
Garcia-Feijoo J
Current Eye Research 2020; 0: 1-9 (IGR: 21-2)


86833 Optical Coherence Tomography Angiography of Perilimbal Vasculature in Port-Wine Stain and Sturge-Weber Syndrome Patients
Fu Y
Investigative Ophthalmology and Visual Science 2020; 61: 43 (IGR: 21-2)


86562 Optic nerve head diurnal vessel density variations in glaucoma and ocular hypertension measured by optical coherence tomography angiography
Rowe LW
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1237-1251 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Skaat A
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86689 Newly Onset Optic Disc Pit Maculopathy (ODP-M) in a Patient With Primary Angle-closure Glaucoma (PACG) After Surgical Iridectomy: A Case Report
Fan Z
Journal of Glaucoma 2020; 29: e44-e49 (IGR: 21-2)


86141 The optic nerve head vasoreactive response to systemic hyperoxia and visual field defect progression in open-angle glaucoma, a pilot study
Tsuda S
Acta Ophthalmologica 2020; 98: e747-e753 (IGR: 21-2)


86478 In Vivo Measurements of Prelamina and Lamina Cribrosa Biomechanical Properties in Humans
Perera SA
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86329 Nasalization of Central Retinal Vessel Trunk Predicts Rapid Progression of Central Visual Field in Open-Angle Glaucoma
Kook MS
Scientific reports 2020; 10: 3789 (IGR: 21-2)


86653 Sub-region-Specific Optic Nerve Head Glial Activation in Glaucoma
Ellinwood NM; McLellan GJ
Molecular Neurobiology 2020; 57: 2620-2638 (IGR: 21-2)


86478 In Vivo Measurements of Prelamina and Lamina Cribrosa Biomechanical Properties in Humans
Strouthidis NG
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86674 Clinical Assessment of Scleral Canal Area in Glaucoma Using Spectral-Domain Optical Coherence Tomography
Iwase T
American Journal of Ophthalmology 2020; 216: 28-36 (IGR: 21-2)


86861 A method to quantify regional axonal transport blockade at the optic nerve head after short term intraocular pressure elevation in mice
Johnson TV
Experimental Eye Research 2020; 196: 108035 (IGR: 21-2)


86141 The optic nerve head vasoreactive response to systemic hyperoxia and visual field defect progression in open-angle glaucoma, a pilot study
Pak K
Acta Ophthalmologica 2020; 98: e747-e753 (IGR: 21-2)


86354 Dynamics of structural reversal in Bruch's membrane opening-based morphometrics after glaucoma drainage device surgery
Cursiefen C
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1227-1236 (IGR: 21-2)


86833 Optical Coherence Tomography Angiography of Perilimbal Vasculature in Port-Wine Stain and Sturge-Weber Syndrome Patients
Guo W
Investigative Ophthalmology and Visual Science 2020; 61: 43 (IGR: 21-2)


86283 Discriminating glaucomatous and compressive optic neuropathy on spectral-domain optical coherence tomography with deep learning classifier
Jeoung JW
British Journal of Ophthalmology 2020; 104: 1717-1723 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Girkin CA
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86562 Optic nerve head diurnal vessel density variations in glaucoma and ocular hypertension measured by optical coherence tomography angiography
Torabi R
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1237-1251 (IGR: 21-2)


86203 Optic disc haemorrhage and primary open-angle glaucoma: a clinical review
Pasquale LR
British Journal of Ophthalmology 2020; 104: 1488-1491 (IGR: 21-2)


86761 Effect of Changing Heart Rate on the Ocular Pulse and Dynamic Biomechanical Behavior of the Optic Nerve Head
Boote C
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86562 Optic nerve head diurnal vessel density variations in glaucoma and ocular hypertension measured by optical coherence tomography angiography
Agnifili L
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1237-1251 (IGR: 21-2)


86861 A method to quantify regional axonal transport blockade at the optic nerve head after short term intraocular pressure elevation in mice
Pitha I
Experimental Eye Research 2020; 196: 108035 (IGR: 21-2)


86478 In Vivo Measurements of Prelamina and Lamina Cribrosa Biomechanical Properties in Humans
Aung T
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Weinreb RN
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86761 Effect of Changing Heart Rate on the Ocular Pulse and Dynamic Biomechanical Behavior of the Optic Nerve Head
Jonas JB
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86354 Dynamics of structural reversal in Bruch's membrane opening-based morphometrics after glaucoma drainage device surgery
Heindl LM
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1227-1236 (IGR: 21-2)


86141 The optic nerve head vasoreactive response to systemic hyperoxia and visual field defect progression in open-angle glaucoma, a pilot study
Kunikata H
Acta Ophthalmologica 2020; 98: e747-e753 (IGR: 21-2)


86354 Dynamics of structural reversal in Bruch's membrane opening-based morphometrics after glaucoma drainage device surgery
Enders P
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1227-1236 (IGR: 21-2)


86478 In Vivo Measurements of Prelamina and Lamina Cribrosa Biomechanical Properties in Humans
Boote C
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86562 Optic nerve head diurnal vessel density variations in glaucoma and ocular hypertension measured by optical coherence tomography angiography
Riva I
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1237-1251 (IGR: 21-2)


86761 Effect of Changing Heart Rate on the Ocular Pulse and Dynamic Biomechanical Behavior of the Optic Nerve Head
Schmetterer L
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Zangwill LM
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86141 The optic nerve head vasoreactive response to systemic hyperoxia and visual field defect progression in open-angle glaucoma, a pilot study
Nakazawa T
Acta Ophthalmologica 2020; 98: e747-e753 (IGR: 21-2)


86861 A method to quantify regional axonal transport blockade at the optic nerve head after short term intraocular pressure elevation in mice
Quigley H
Experimental Eye Research 2020; 196: 108035 (IGR: 21-2)


86562 Optic nerve head diurnal vessel density variations in glaucoma and ocular hypertension measured by optical coherence tomography angiography
Oddone F
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1237-1251 (IGR: 21-2)


86761 Effect of Changing Heart Rate on the Ocular Pulse and Dynamic Biomechanical Behavior of the Optic Nerve Head
Girard MJA
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86478 In Vivo Measurements of Prelamina and Lamina Cribrosa Biomechanical Properties in Humans
Girard MJA
Investigative Ophthalmology and Visual Science 2020; 61: 27 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Hood DC; Liebmann JM
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


84606 Intracranial pressure modulates aqueous humour dynamics of the eye
Ficarrotta KR
Journal of Physiology 2020; 598: 403-413 (IGR: 21-1)


84734 Optic Disc and Cup Segmentation in Retinal Images for Glaucoma Diagnosis by Locally Statistical Active Contour Model with Structure Prior
Zhou W
Computational and mathematical methods in medicine 2019; 2019: 8973287 (IGR: 21-1)


85222 Assessment of primary open-angle glaucoma peripapillary and macular choroidal area using enhanced depth imaging optical coherence tomography
Kojima H
PLoS ONE 2020; 15: e0231214 (IGR: 21-1)


84819 Relationship between optic disc hemorrhage and corneal hysteresis
Radcliffe NM
Canadian Journal of Ophthalmology 2019; 0: (IGR: 21-1)


84492 Relationship between pattern electroretinogram and optic disc morphology in glaucoma
Jeon SJ
PLoS ONE 2019; 14: e0220992 (IGR: 21-1)


84557 Agreement between Fourier-domain and swept-source optical coherence tomography used for optic nerve head measurements
Kudsieh B
Journal Français d'Ophtalmologie 2020; 43: 25-30 (IGR: 21-1)


84706 Evaluation of Cerebrospinal Fluid Pressure by a Formula and Its Role in the Pathogenesis of Glaucoma
Landi L
Journal of Ophthalmology 2019; 2019: 1840481 (IGR: 21-1)


84725 Structure-function relationship between Bruch's membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes
Li R
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 595-605 (IGR: 21-1)


84612 Relationship of Corneal Hysteresis and Anterior Lamina Cribrosa Displacement in Glaucoma
Wong BJ
American Journal of Ophthalmology 2020; 212: 134-143 (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Ocansey S
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84861 OCT Structural Abnormality Detection in Glaucoma using Topographically Correspondent Rim and Retinal Nerve Fiber Layer Criteria
Yang H
American Journal of Ophthalmology 2019; 0: (IGR: 21-1)


84606 Intracranial pressure modulates aqueous humour dynamics of the eye
Ficarrotta KR
Journal of Physiology 2020; 598: 403-413 (IGR: 21-1)


85222 Assessment of primary open-angle glaucoma peripapillary and macular choroidal area using enhanced depth imaging optical coherence tomography
Kojima H
PLoS ONE 2020; 15: e0231214 (IGR: 21-1)


84989 Correlation between blood flow on optic nerve head and structural and functional changes in eyes with glaucoma
Kuroda F
Scientific reports 2020; 10: 729 (IGR: 21-1)


84691 The Influence of Translaminar Pressure Gradient and Intracranial Pressure in Glaucoma: A Review
Price DA
Journal of Glaucoma 2020; 29: 141-146 (IGR: 21-1)


84801 Association between optic nerve head morphology in open-angle glaucoma and corneal biomechanical parameters measured with Corvis ST
Aoki S
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 629-637 (IGR: 21-1)


84623 The role of intracranial pressure in glaucoma and therapeutic implications
Baneke AJ
Eye 2020; 34: 178-191 (IGR: 21-1)


84554 Relationship between ocular risk factors for glaucoma and optic disc rim in normal eyes
Iwase A
British Journal of Ophthalmology 2020; 104: 1120-1124 (IGR: 21-1)


85211 Connective Tissue Remodeling in Myopia and its Potential Role in Increasing Risk of Glaucoma
Grytz R
Current opinion in biomedical engineering 2020; 15: 40-50 (IGR: 21-1)


84860 Measuring Glaucomatous Focal Perfusion Loss in the Peripapillary Retina Using OCT Angiography
Chen A
Ophthalmology 2020; 127: 484-491 (IGR: 21-1)


85182 The Effect of Brimonidine 0.1% on Disc Hemorrhage in Primary Open-Angle Glaucoma Patients
Nitta K
Clinical Ophthalmology 2020; 14: 213-219 (IGR: 21-1)


84628 Inhibition of cAMP/PKA Pathway Protects Optic Nerve Head Astrocytes against Oxidative Stress by Akt/Bax Phosphorylation-Mediated Mfn1/2 Oligomerization
Ju WK
Oxidative medicine and cellular longevity 2019; 2019: 8060962 (IGR: 21-1)


84935 Lamina cribrosa defect and progress of glaucoma
Liu XY
Chinese Journal of Ophthalmology 2020; 56: 17-20 (IGR: 21-1)


84619 Positive predictive value of optic disc haemorrhages for open angle glaucoma
Hogan B
Eye 2020; 34: 2029-2035 (IGR: 21-1)


84988 Accuracy of the ISNT rule and its variants for differentiating glaucomatous from normal eyes in a population-based study
Maupin E
British Journal of Ophthalmology 2020; 104: 1412-1417 (IGR: 21-1)


85025 A neuroglia-based interpretation of glaucomatous neuroretinal rim thinning in the optic nerve head
Lee EJ
Progress in Retinal and Eye Research 2020; 0: 100840 (IGR: 21-1)


85077 Case Report: Glaucoma-associated Peripapillary Retinoschisis with Corresponding Lamina Cribrosa Defect
Roberts JD
Optometry and Vision Science 2020; 97: 104-109 (IGR: 21-1)


84590 Under pressure: Cerebrospinal fluid contribution to the physiological homeostasis of the eye
Mirra S
Seminars in Cell and Developmental Biology 2019; 0: (IGR: 21-1)


84293 Correlating Structural and Functional Damage in Glaucoma
Torres LA
Journal of Glaucoma 2019; 28: 1079-1085 (IGR: 21-1)


84745 Progressive Optic Disc Tilt in Young Myopic Glaucomatous Eyes
Yoon JY
Korean Journal of Ophthalmology 2019; 33: 520-527 (IGR: 21-1)


85077 Case Report: Glaucoma-associated Peripapillary Retinoschisis with Corresponding Lamina Cribrosa Defect
Hunter A
Optometry and Vision Science 2020; 97: 104-109 (IGR: 21-1)


84691 The Influence of Translaminar Pressure Gradient and Intracranial Pressure in Glaucoma: A Review
Harris A
Journal of Glaucoma 2020; 29: 141-146 (IGR: 21-1)


84554 Relationship between ocular risk factors for glaucoma and optic disc rim in normal eyes
Sawaguchi S
British Journal of Ophthalmology 2020; 104: 1120-1124 (IGR: 21-1)


84557 Agreement between Fourier-domain and swept-source optical coherence tomography used for optic nerve head measurements
Fernandez-Vigo JI
Journal Français d'Ophtalmologie 2020; 43: 25-30 (IGR: 21-1)


84988 Accuracy of the ISNT rule and its variants for differentiating glaucomatous from normal eyes in a population-based study
Baudin F
British Journal of Ophthalmology 2020; 104: 1412-1417 (IGR: 21-1)


84628 Inhibition of cAMP/PKA Pathway Protects Optic Nerve Head Astrocytes against Oxidative Stress by Akt/Bax Phosphorylation-Mediated Mfn1/2 Oligomerization
Shim MS
Oxidative medicine and cellular longevity 2019; 2019: 8060962 (IGR: 21-1)


85211 Connective Tissue Remodeling in Myopia and its Potential Role in Increasing Risk of Glaucoma
Yang H
Current opinion in biomedical engineering 2020; 15: 40-50 (IGR: 21-1)


84801 Association between optic nerve head morphology in open-angle glaucoma and corneal biomechanical parameters measured with Corvis ST
Kiuchi Y
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 629-637 (IGR: 21-1)


84860 Measuring Glaucomatous Focal Perfusion Loss in the Peripapillary Retina Using OCT Angiography
Liu L
Ophthalmology 2020; 127: 484-491 (IGR: 21-1)


84989 Correlation between blood flow on optic nerve head and structural and functional changes in eyes with glaucoma
Iwase T
Scientific reports 2020; 10: 729 (IGR: 21-1)


84623 The role of intracranial pressure in glaucoma and therapeutic implications
Aubry J
Eye 2020; 34: 178-191 (IGR: 21-1)


84293 Correlating Structural and Functional Damage in Glaucoma
Hatanaka M
Journal of Glaucoma 2019; 28: 1079-1085 (IGR: 21-1)


84745 Progressive Optic Disc Tilt in Young Myopic Glaucomatous Eyes
Sung KR
Korean Journal of Ophthalmology 2019; 33: 520-527 (IGR: 21-1)


85025 A neuroglia-based interpretation of glaucomatous neuroretinal rim thinning in the optic nerve head
Han JC
Progress in Retinal and Eye Research 2020; 0: 100840 (IGR: 21-1)


84861 OCT Structural Abnormality Detection in Glaucoma using Topographically Correspondent Rim and Retinal Nerve Fiber Layer Criteria
Luo H
American Journal of Ophthalmology 2019; 0: (IGR: 21-1)


85182 The Effect of Brimonidine 0.1% on Disc Hemorrhage in Primary Open-Angle Glaucoma Patients
Shimamoto S
Clinical Ophthalmology 2020; 14: 213-219 (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Abu EK
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84706 Evaluation of Cerebrospinal Fluid Pressure by a Formula and Its Role in the Pathogenesis of Glaucoma
Casciaro F
Journal of Ophthalmology 2019; 2019: 1840481 (IGR: 21-1)


84590 Under pressure: Cerebrospinal fluid contribution to the physiological homeostasis of the eye
Marfany G
Seminars in Cell and Developmental Biology 2019; 0: (IGR: 21-1)


84734 Optic Disc and Cup Segmentation in Retinal Images for Glaucoma Diagnosis by Locally Statistical Active Contour Model with Structure Prior
Yi Y
Computational and mathematical methods in medicine 2019; 2019: 8973287 (IGR: 21-1)


85222 Assessment of primary open-angle glaucoma peripapillary and macular choroidal area using enhanced depth imaging optical coherence tomography
Hirooka K
PLoS ONE 2020; 15: e0231214 (IGR: 21-1)


84819 Relationship between optic disc hemorrhage and corneal hysteresis
Tracer N
Canadian Journal of Ophthalmology 2019; 0: (IGR: 21-1)


84619 Positive predictive value of optic disc haemorrhages for open angle glaucoma
Trew C
Eye 2020; 34: 2029-2035 (IGR: 21-1)


84725 Structure-function relationship between Bruch's membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes
Wang X
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 595-605 (IGR: 21-1)


84606 Intracranial pressure modulates aqueous humour dynamics of the eye
Passaglia CL
Journal of Physiology 2020; 598: 403-413 (IGR: 21-1)


84612 Relationship of Corneal Hysteresis and Anterior Lamina Cribrosa Displacement in Glaucoma
Moghimi S
American Journal of Ophthalmology 2020; 212: 134-143 (IGR: 21-1)


84492 Relationship between pattern electroretinogram and optic disc morphology in glaucoma
Park HL
PLoS ONE 2019; 14: e0220992 (IGR: 21-1)


84935 Lamina cribrosa defect and progress of glaucoma
Fan N
Chinese Journal of Ophthalmology 2020; 56: 17-20 (IGR: 21-1)


84860 Measuring Glaucomatous Focal Perfusion Loss in the Peripapillary Retina Using OCT Angiography
Wang J
Ophthalmology 2020; 127: 484-491 (IGR: 21-1)


84706 Evaluation of Cerebrospinal Fluid Pressure by a Formula and Its Role in the Pathogenesis of Glaucoma
Telani S
Journal of Ophthalmology 2019; 2019: 1840481 (IGR: 21-1)


85211 Connective Tissue Remodeling in Myopia and its Potential Role in Increasing Risk of Glaucoma
Hua Y
Current opinion in biomedical engineering 2020; 15: 40-50 (IGR: 21-1)


84623 The role of intracranial pressure in glaucoma and therapeutic implications
Viswanathan AC
Eye 2020; 34: 178-191 (IGR: 21-1)


85077 Case Report: Glaucoma-associated Peripapillary Retinoschisis with Corresponding Lamina Cribrosa Defect
Mega J
Optometry and Vision Science 2020; 97: 104-109 (IGR: 21-1)


84590 Under pressure: Cerebrospinal fluid contribution to the physiological homeostasis of the eye
Garcia-Fernàndez J
Seminars in Cell and Developmental Biology 2019; 0: (IGR: 21-1)


84612 Relationship of Corneal Hysteresis and Anterior Lamina Cribrosa Displacement in Glaucoma
Zangwill LM
American Journal of Ophthalmology 2020; 212: 134-143 (IGR: 21-1)


84801 Association between optic nerve head morphology in open-angle glaucoma and corneal biomechanical parameters measured with Corvis ST
Tokumo K
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 629-637 (IGR: 21-1)


84557 Agreement between Fourier-domain and swept-source optical coherence tomography used for optic nerve head measurements
De-Pablo-Gómez-de-Liaño L
Journal Français d'Ophtalmologie 2020; 43: 25-30 (IGR: 21-1)


84734 Optic Disc and Cup Segmentation in Retinal Images for Glaucoma Diagnosis by Locally Statistical Active Contour Model with Structure Prior
Gao Y
Computational and mathematical methods in medicine 2019; 2019: 8973287 (IGR: 21-1)


84628 Inhibition of cAMP/PKA Pathway Protects Optic Nerve Head Astrocytes against Oxidative Stress by Akt/Bax Phosphorylation-Mediated Mfn1/2 Oligomerization
Kim KY
Oxidative medicine and cellular longevity 2019; 2019: 8060962 (IGR: 21-1)


84492 Relationship between pattern electroretinogram and optic disc morphology in glaucoma
Jung KI
PLoS ONE 2019; 14: e0220992 (IGR: 21-1)


84619 Positive predictive value of optic disc haemorrhages for open angle glaucoma
Annoh R
Eye 2020; 34: 2029-2035 (IGR: 21-1)


84989 Correlation between blood flow on optic nerve head and structural and functional changes in eyes with glaucoma
Yamamoto K
Scientific reports 2020; 10: 729 (IGR: 21-1)


85025 A neuroglia-based interpretation of glaucomatous neuroretinal rim thinning in the optic nerve head
Park DY
Progress in Retinal and Eye Research 2020; 0: 100840 (IGR: 21-1)


85222 Assessment of primary open-angle glaucoma peripapillary and macular choroidal area using enhanced depth imaging optical coherence tomography
Nitta E
PLoS ONE 2020; 15: e0231214 (IGR: 21-1)


84745 Progressive Optic Disc Tilt in Young Myopic Glaucomatous Eyes
Yun SC
Korean Journal of Ophthalmology 2019; 33: 520-527 (IGR: 21-1)


84691 The Influence of Translaminar Pressure Gradient and Intracranial Pressure in Glaucoma: A Review
Siesky B
Journal of Glaucoma 2020; 29: 141-146 (IGR: 21-1)


84554 Relationship between ocular risk factors for glaucoma and optic disc rim in normal eyes
Tanaka K
British Journal of Ophthalmology 2020; 104: 1120-1124 (IGR: 21-1)


84725 Structure-function relationship between Bruch's membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes
Wei Y
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 595-605 (IGR: 21-1)


84861 OCT Structural Abnormality Detection in Glaucoma using Topographically Correspondent Rim and Retinal Nerve Fiber Layer Criteria
Hardin C
American Journal of Ophthalmology 2019; 0: (IGR: 21-1)


84819 Relationship between optic disc hemorrhage and corneal hysteresis
De Moraes CGV
Canadian Journal of Ophthalmology 2019; 0: (IGR: 21-1)


84988 Accuracy of the ISNT rule and its variants for differentiating glaucomatous from normal eyes in a population-based study
Arnould L
British Journal of Ophthalmology 2020; 104: 1412-1417 (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Owusu-Ansah A
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


85182 The Effect of Brimonidine 0.1% on Disc Hemorrhage in Primary Open-Angle Glaucoma Patients
Wajima R
Clinical Ophthalmology 2020; 14: 213-219 (IGR: 21-1)


84801 Association between optic nerve head morphology in open-angle glaucoma and corneal biomechanical parameters measured with Corvis ST
Fujino Y
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 629-637 (IGR: 21-1)


85025 A neuroglia-based interpretation of glaucomatous neuroretinal rim thinning in the optic nerve head
Kee C
Progress in Retinal and Eye Research 2020; 0: 100840 (IGR: 21-1)


84691 The Influence of Translaminar Pressure Gradient and Intracranial Pressure in Glaucoma: A Review
Mathew S
Journal of Glaucoma 2020; 29: 141-146 (IGR: 21-1)


85182 The Effect of Brimonidine 0.1% on Disc Hemorrhage in Primary Open-Angle Glaucoma Patients
Tachibana G
Clinical Ophthalmology 2020; 14: 213-219 (IGR: 21-1)


85211 Connective Tissue Remodeling in Myopia and its Potential Role in Increasing Risk of Glaucoma
Samuels BC
Current opinion in biomedical engineering 2020; 15: 40-50 (IGR: 21-1)


84988 Accuracy of the ISNT rule and its variants for differentiating glaucomatous from normal eyes in a population-based study
Seydou A
British Journal of Ophthalmology 2020; 104: 1412-1417 (IGR: 21-1)


84619 Positive predictive value of optic disc haemorrhages for open angle glaucoma
Yi Loo C
Eye 2020; 34: 2029-2035 (IGR: 21-1)


84819 Relationship between optic disc hemorrhage and corneal hysteresis
Tello C
Canadian Journal of Ophthalmology 2019; 0: (IGR: 21-1)


84745 Progressive Optic Disc Tilt in Young Myopic Glaucomatous Eyes
Shin JW
Korean Journal of Ophthalmology 2019; 33: 520-527 (IGR: 21-1)


85077 Case Report: Glaucoma-associated Peripapillary Retinoschisis with Corresponding Lamina Cribrosa Defect
Cesaro T
Optometry and Vision Science 2020; 97: 104-109 (IGR: 21-1)


84554 Relationship between ocular risk factors for glaucoma and optic disc rim in normal eyes
Tsutsumi T
British Journal of Ophthalmology 2020; 104: 1120-1124 (IGR: 21-1)


84628 Inhibition of cAMP/PKA Pathway Protects Optic Nerve Head Astrocytes against Oxidative Stress by Akt/Bax Phosphorylation-Mediated Mfn1/2 Oligomerization
Park TL
Oxidative medicine and cellular longevity 2019; 2019: 8060962 (IGR: 21-1)


84706 Evaluation of Cerebrospinal Fluid Pressure by a Formula and Its Role in the Pathogenesis of Glaucoma
Traverso CE
Journal of Ophthalmology 2019; 2019: 1840481 (IGR: 21-1)


84989 Correlation between blood flow on optic nerve head and structural and functional changes in eyes with glaucoma
Ra E
Scientific reports 2020; 10: 729 (IGR: 21-1)


84492 Relationship between pattern electroretinogram and optic disc morphology in glaucoma
Park CK
PLoS ONE 2019; 14: e0220992 (IGR: 21-1)


84860 Measuring Glaucomatous Focal Perfusion Loss in the Peripapillary Retina Using OCT Angiography
Zang P
Ophthalmology 2020; 127: 484-491 (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Mensah S
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84623 The role of intracranial pressure in glaucoma and therapeutic implications
Plant GT
Eye 2020; 34: 178-191 (IGR: 21-1)


84734 Optic Disc and Cup Segmentation in Retinal Images for Glaucoma Diagnosis by Locally Statistical Active Contour Model with Structure Prior
Dai J
Computational and mathematical methods in medicine 2019; 2019: 8973287 (IGR: 21-1)


84612 Relationship of Corneal Hysteresis and Anterior Lamina Cribrosa Displacement in Glaucoma
Christopher M
American Journal of Ophthalmology 2020; 212: 134-143 (IGR: 21-1)


84557 Agreement between Fourier-domain and swept-source optical coherence tomography used for optic nerve head measurements
Fernández-Vigo C
Journal Français d'Ophtalmologie 2020; 43: 25-30 (IGR: 21-1)


84861 OCT Structural Abnormality Detection in Glaucoma using Topographically Correspondent Rim and Retinal Nerve Fiber Layer Criteria
Wang YX
American Journal of Ophthalmology 2019; 0: (IGR: 21-1)


84725 Structure-function relationship between Bruch's membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes
Fang Y
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 595-605 (IGR: 21-1)


85222 Assessment of primary open-angle glaucoma peripapillary and macular choroidal area using enhanced depth imaging optical coherence tomography
Sonoda S
PLoS ONE 2020; 15: e0231214 (IGR: 21-1)


85182 The Effect of Brimonidine 0.1% on Disc Hemorrhage in Primary Open-Angle Glaucoma Patients
Yamada Y
Clinical Ophthalmology 2020; 14: 213-219 (IGR: 21-1)


84619 Positive predictive value of optic disc haemorrhages for open angle glaucoma
Ling Tan H
Eye 2020; 34: 2029-2035 (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Oduro-Boateng J
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


85222 Assessment of primary open-angle glaucoma peripapillary and macular choroidal area using enhanced depth imaging optical coherence tomography
Sakamoto T
PLoS ONE 2020; 15: e0231214 (IGR: 21-1)


84628 Inhibition of cAMP/PKA Pathway Protects Optic Nerve Head Astrocytes against Oxidative Stress by Akt/Bax Phosphorylation-Mediated Mfn1/2 Oligomerization
Ahn S
Oxidative medicine and cellular longevity 2019; 2019: 8060962 (IGR: 21-1)


84554 Relationship between ocular risk factors for glaucoma and optic disc rim in normal eyes
Araie M
British Journal of Ophthalmology 2020; 104: 1120-1124 (IGR: 21-1)


84706 Evaluation of Cerebrospinal Fluid Pressure by a Formula and Its Role in the Pathogenesis of Glaucoma
Harris A
Journal of Ophthalmology 2019; 2019: 1840481 (IGR: 21-1)


84612 Relationship of Corneal Hysteresis and Anterior Lamina Cribrosa Displacement in Glaucoma
Belghith A
American Journal of Ophthalmology 2020; 212: 134-143 (IGR: 21-1)


84988 Accuracy of the ISNT rule and its variants for differentiating glaucomatous from normal eyes in a population-based study
Binquet C
British Journal of Ophthalmology 2020; 104: 1412-1417 (IGR: 21-1)


84725 Structure-function relationship between Bruch's membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes
Tian T
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 595-605 (IGR: 21-1)


84819 Relationship between optic disc hemorrhage and corneal hysteresis
Liebmann JM
Canadian Journal of Ophthalmology 2019; 0: (IGR: 21-1)


85077 Case Report: Glaucoma-associated Peripapillary Retinoschisis with Corresponding Lamina Cribrosa Defect
Greenberg PB
Optometry and Vision Science 2020; 97: 104-109 (IGR: 21-1)


84860 Measuring Glaucomatous Focal Perfusion Loss in the Peripapillary Retina Using OCT Angiography
Edmunds B
Ophthalmology 2020; 127: 484-491 (IGR: 21-1)


84557 Agreement between Fourier-domain and swept-source optical coherence tomography used for optic nerve head measurements
Ruiz Moreno JM
Journal Français d'Ophtalmologie 2020; 43: 25-30 (IGR: 21-1)


84801 Association between optic nerve head morphology in open-angle glaucoma and corneal biomechanical parameters measured with Corvis ST
Matsuura M
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 629-637 (IGR: 21-1)


85211 Connective Tissue Remodeling in Myopia and its Potential Role in Increasing Risk of Glaucoma
Sigal IA
Current opinion in biomedical engineering 2020; 15: 40-50 (IGR: 21-1)


84861 OCT Structural Abnormality Detection in Glaucoma using Topographically Correspondent Rim and Retinal Nerve Fiber Layer Criteria
Jeoung JW
American Journal of Ophthalmology 2019; 0: (IGR: 21-1)


84989 Correlation between blood flow on optic nerve head and structural and functional changes in eyes with glaucoma
Terasaki H
Scientific reports 2020; 10: 729 (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Kojo RA
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84725 Structure-function relationship between Bruch's membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes
Li M
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 595-605 (IGR: 21-1)


84861 OCT Structural Abnormality Detection in Glaucoma using Topographically Correspondent Rim and Retinal Nerve Fiber Layer Criteria
Albert C
American Journal of Ophthalmology 2019; 0: (IGR: 21-1)


84988 Accuracy of the ISNT rule and its variants for differentiating glaucomatous from normal eyes in a population-based study
Bron AM
British Journal of Ophthalmology 2020; 104: 1412-1417 (IGR: 21-1)


84612 Relationship of Corneal Hysteresis and Anterior Lamina Cribrosa Displacement in Glaucoma
Ekici E
American Journal of Ophthalmology 2020; 212: 134-143 (IGR: 21-1)


84801 Association between optic nerve head morphology in open-angle glaucoma and corneal biomechanical parameters measured with Corvis ST
Murata H
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 629-637 (IGR: 21-1)


84557 Agreement between Fourier-domain and swept-source optical coherence tomography used for optic nerve head measurements
Fernández-Vigo JÁ
Journal Français d'Ophtalmologie 2020; 43: 25-30 (IGR: 21-1)


85182 The Effect of Brimonidine 0.1% on Disc Hemorrhage in Primary Open-Angle Glaucoma Patients
Domoto M
Clinical Ophthalmology 2020; 14: 213-219 (IGR: 21-1)


84706 Evaluation of Cerebrospinal Fluid Pressure by a Formula and Its Role in the Pathogenesis of Glaucoma
Verticchio Vercellin AC
Journal of Ophthalmology 2019; 2019: 1840481 (IGR: 21-1)


85222 Assessment of primary open-angle glaucoma peripapillary and macular choroidal area using enhanced depth imaging optical coherence tomography
Kiuchi Y
PLoS ONE 2020; 15: e0231214 (IGR: 21-1)


84628 Inhibition of cAMP/PKA Pathway Protects Optic Nerve Head Astrocytes against Oxidative Stress by Akt/Bax Phosphorylation-Mediated Mfn1/2 Oligomerization
Edwards G
Oxidative medicine and cellular longevity 2019; 2019: 8060962 (IGR: 21-1)


84619 Positive predictive value of optic disc haemorrhages for open angle glaucoma
Shan Tang L
Eye 2020; 34: 2029-2035 (IGR: 21-1)


84860 Measuring Glaucomatous Focal Perfusion Loss in the Peripapillary Retina Using OCT Angiography
Lombardi L
Ophthalmology 2020; 127: 484-491 (IGR: 21-1)


84819 Relationship between optic disc hemorrhage and corneal hysteresis
Ritch R
Canadian Journal of Ophthalmology 2019; 0: (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Kyei S
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84860 Measuring Glaucomatous Focal Perfusion Loss in the Peripapillary Retina Using OCT Angiography
Davis E
Ophthalmology 2020; 127: 484-491 (IGR: 21-1)


84988 Accuracy of the ISNT rule and its variants for differentiating glaucomatous from normal eyes in a population-based study
Creuzot-Garcher CP
British Journal of Ophthalmology 2020; 104: 1412-1417 (IGR: 21-1)


84801 Association between optic nerve head morphology in open-angle glaucoma and corneal biomechanical parameters measured with Corvis ST
Nakakura S
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 629-637 (IGR: 21-1)


84725 Structure-function relationship between Bruch's membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes
Cai Y
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 595-605 (IGR: 21-1)


85182 The Effect of Brimonidine 0.1% on Disc Hemorrhage in Primary Open-Angle Glaucoma Patients
Takeda R
Clinical Ophthalmology 2020; 14: 213-219 (IGR: 21-1)


84861 OCT Structural Abnormality Detection in Glaucoma using Topographically Correspondent Rim and Retinal Nerve Fiber Layer Criteria
Vianna JR
American Journal of Ophthalmology 2019; 0: (IGR: 21-1)


84612 Relationship of Corneal Hysteresis and Anterior Lamina Cribrosa Displacement in Glaucoma
Bowd C
American Journal of Ophthalmology 2020; 212: 134-143 (IGR: 21-1)


84706 Evaluation of Cerebrospinal Fluid Pressure by a Formula and Its Role in the Pathogenesis of Glaucoma
Saint L
Journal of Ophthalmology 2019; 2019: 1840481 (IGR: 21-1)


84628 Inhibition of cAMP/PKA Pathway Protects Optic Nerve Head Astrocytes against Oxidative Stress by Akt/Bax Phosphorylation-Mediated Mfn1/2 Oligomerization
Weinreb RN
Oxidative medicine and cellular longevity 2019; 2019: 8060962 (IGR: 21-1)


84619 Positive predictive value of optic disc haemorrhages for open angle glaucoma
Tatham AJ
Eye 2020; 34: 2029-2035 (IGR: 21-1)


84861 OCT Structural Abnormality Detection in Glaucoma using Topographically Correspondent Rim and Retinal Nerve Fiber Layer Criteria
Sharpe GP
American Journal of Ophthalmology 2019; 0: (IGR: 21-1)


84612 Relationship of Corneal Hysteresis and Anterior Lamina Cribrosa Displacement in Glaucoma
Fazio MA
American Journal of Ophthalmology 2020; 212: 134-143 (IGR: 21-1)


84860 Measuring Glaucomatous Focal Perfusion Loss in the Peripapillary Retina Using OCT Angiography
Morrison JC
Ophthalmology 2020; 127: 484-491 (IGR: 21-1)


84725 Structure-function relationship between Bruch's membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes
Pan Y
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 595-605 (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Boadi-Kusi SB
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


85182 The Effect of Brimonidine 0.1% on Disc Hemorrhage in Primary Open-Angle Glaucoma Patients
Takahashi Y
Clinical Ophthalmology 2020; 14: 213-219 (IGR: 21-1)


84801 Association between optic nerve head morphology in open-angle glaucoma and corneal biomechanical parameters measured with Corvis ST
Asaoka R
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 629-637 (IGR: 21-1)


84706 Evaluation of Cerebrospinal Fluid Pressure by a Formula and Its Role in the Pathogenesis of Glaucoma
Iester M
Journal of Ophthalmology 2019; 2019: 1840481 (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Amoah-Smith O
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84860 Measuring Glaucomatous Focal Perfusion Loss in the Peripapillary Retina Using OCT Angiography
Jia Y
Ophthalmology 2020; 127: 484-491 (IGR: 21-1)


85182 The Effect of Brimonidine 0.1% on Disc Hemorrhage in Primary Open-Angle Glaucoma Patients
Sugiyama K
Clinical Ophthalmology 2020; 14: 213-219 (IGR: 21-1)


84612 Relationship of Corneal Hysteresis and Anterior Lamina Cribrosa Displacement in Glaucoma
Girkin CA
American Journal of Ophthalmology 2020; 212: 134-143 (IGR: 21-1)


84861 OCT Structural Abnormality Detection in Glaucoma using Topographically Correspondent Rim and Retinal Nerve Fiber Layer Criteria
Reynaud J
American Journal of Ophthalmology 2019; 0: (IGR: 21-1)


84860 Measuring Glaucomatous Focal Perfusion Loss in the Peripapillary Retina Using OCT Angiography
Huang D
Ophthalmology 2020; 127: 484-491 (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Morny EKA
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84861 OCT Structural Abnormality Detection in Glaucoma using Topographically Correspondent Rim and Retinal Nerve Fiber Layer Criteria
Demirel S
American Journal of Ophthalmology 2019; 0: (IGR: 21-1)


84612 Relationship of Corneal Hysteresis and Anterior Lamina Cribrosa Displacement in Glaucoma
Weinreb RN
American Journal of Ophthalmology 2020; 212: 134-143 (IGR: 21-1)


84861 OCT Structural Abnormality Detection in Glaucoma using Topographically Correspondent Rim and Retinal Nerve Fiber Layer Criteria
Mansberger SL
American Journal of Ophthalmology 2019; 0: (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Darko-Takyi C; Abraham CH
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84861 OCT Structural Abnormality Detection in Glaucoma using Topographically Correspondent Rim and Retinal Nerve Fiber Layer Criteria
Fortune B; Nicolela M
American Journal of Ophthalmology 2019; 0: (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Appiah Nyamekye B
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84861 OCT Structural Abnormality Detection in Glaucoma using Topographically Correspondent Rim and Retinal Nerve Fiber Layer Criteria
Gardiner SK
American Journal of Ophthalmology 2019; 0: (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Ilechie AA
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84861 OCT Structural Abnormality Detection in Glaucoma using Topographically Correspondent Rim and Retinal Nerve Fiber Layer Criteria
Chauhan BC; Burgoyne CF
American Journal of Ophthalmology 2019; 0: (IGR: 21-1)


82592 Association of Corneal Hysteresis With Lamina Cribrosa Curvature in Primary Open Angle Glaucoma
Lee KM
Investigative Ophthalmology and Visual Science 2019; 60: 4171-4177 (IGR: 20-4)


82807 3d Biomechanical Response of the Optic Nerve Head: Initial Results From Porcine Globe Inflation Using High-frequency Ultrasound Elastography
Ma Y
Journal of Biomechanical Engineering 2019; 0: (IGR: 20-4)


82796 Multi-indices quantification of optic nerve head in fundus image via multitask collaborative learning
Zhao R
Medical Image Analysis 2020; 60: 101593 (IGR: 20-4)


82453 Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images
Mvoulana A
Computerized Medical Imaging and Graphics 2019; 77: 101643 (IGR: 20-4)


82870 3D Reconstruction of the Optic Nerve Head of a Phantom Eye from Images Obtained using a Slit Lamp Fitted with Low Cost Add-Ons
Coghill I
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 4717-4720 (IGR: 20-4)


82817 New Circumpapillary Retinal Nerve Fiber Layer Thickness and Bruch's Membrane Opening-Minimum Rim Width Assessment in Nonglaucomatous Eyes with Large Discs
Bayraktar S
Journal of Ophthalmology 2019; 2019: 3431217 (IGR: 20-4)


82200 Rate of three-dimensional neuroretinal rim thinning in glaucomatous eyes with optic disc haemorrhage
Kim YW
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82215 Morphological features of parapapillary beta zone and gamma zone in chronic primary angle-closure glaucoma
Shang K
Eye 2019; 33: 1378-1386 (IGR: 20-4)


82340 Characteristics of Patients Showing Discrepancy Between Bruch's Membrane Opening-Minimum Rim Width and Peripapillary Retinal Nerve Fiber Layer Thickness
Cho HK
Journal of clinical medicine 2019; 8: (IGR: 20-4)


82107 Anterior Optic Nerve Head Perfusion is Dependent on Adjacent Parapapillary Choroidal perfusion
Lee KM
Scientific reports 2019; 9: 10999 (IGR: 20-4)


81967 In vivo characterization of the deformation of the human optic nerve head using optical coherence tomography and digital volume correlation
Midgett DE
Acta biomaterialia 2019; 96: 385-399 (IGR: 20-4)


82524 Relationship between corneal deformation amplitude and optic nerve head structure in primary open-angle glaucoma
Jung Y
Medicine 2019; 98: e17223 (IGR: 20-4)


82064 Longitudinal Analysis of Bruch Membrane Opening Morphometry in Myopic Glaucoma
Bhalla M
Journal of Glaucoma 2019; 28: 889-895 (IGR: 20-4)


82371 Clinical Course and Risk Factors for Visual Field Progression in Normal-Tension Glaucoma With Myopia Without Glaucoma Medications
Han JC
American Journal of Ophthalmology 2020; 209: 77-87 (IGR: 20-4)


82193 Accuracy of computer-assisted vertical cup-to-disk ratio grading for glaucoma screening
Snyder BM
PLoS ONE 2019; 14: e0220362 (IGR: 20-4)


81946 Evaluation of an AI system for the automated detection of glaucoma from stereoscopic optic disc photographs: the European Optic Disc Assessment Study
Rogers TW
Eye 2019; 33: 1791-1797 (IGR: 20-4)


82812 Quantitative confocal optical coherence elastography for evaluating biomechanics of optic nerve head using Lamb wave model
Du Z
Neurophotonics 2019; 6: 041112 (IGR: 20-4)


82723 Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage
Wu Z
British Journal of Ophthalmology 2020; 104: 980-984 (IGR: 20-4)


82874 Investigation of the Optic Nerve Head Morphology Influence to the Optic Nerve Head Biomechanics - Population Specific Model
Ko MWL
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 5374-5377 (IGR: 20-4)


82838 Genome-wide association analysis of 95 549 individuals identifies novel loci and genes influencing optic disc morphology
Han X
Human Molecular Genetics 2019; 28: 3680-3690 (IGR: 20-4)


82648 Joint optic disc and cup segmentation using semi-supervised conditional GANs
Liu S
Computers in Biology and Medicine 2019; 115: 103485 (IGR: 20-4)


82258 Evaluation of the lamina cribrosa thickness and depth in patients with migraine
Sirakaya E
International Ophthalmology 2020; 40: 89-98 (IGR: 20-4)


82098 Influence of Bruch's Membrane Opening Area in Diagnosing Glaucoma With Neuroretinal Parameters From Optical Coherence Tomography
Torres LA
American Journal of Ophthalmology 2019; 208: 94-102 (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Girkin CA
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


82499 Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs
Phene S
Ophthalmology 2019; 126: 1627-1639 (IGR: 20-4)


82023 Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning
Bajwa MN
BMC Medical Informatics and Decision Making 2019; 19: 136 (IGR: 20-4)


82802 Reliability of Graders and Comparison with an Automated Algorithm for Vertical Cup-Disc Ratio Grading in Fundus Photographs
Tong W
Annals of the Academy of Medicine, Singapore 2019; 48: 282-289 (IGR: 20-4)


82474 Clinical, ultrasonographic and optical coherence tomography correlation of optic nerve head cupping in glaucoma patients
Pujari A
Indian Journal of Ophthalmology 2019; 67: 1663-1666 (IGR: 20-4)


82242 Peripapillary border tissue of the choroid and peripapillary scleral flange in human eyes
Jonas RA
Acta Ophthalmologica 2020; 98: e43-e49 (IGR: 20-4)


82099 Adaptive weighted locality-constrained sparse coding for glaucoma diagnosis
Zhou W
Medical and Biological Engineering and Computing 2019; 57: 2055-2067 (IGR: 20-4)


82364 Analysis of the Optic Disc and Peripapillary Structures in Monozygotic Twins
Park DY
Journal of Glaucoma 2019; 28: 969-973 (IGR: 20-4)


82005 Comparison of Diagnostic Power of Optic Nerve Head and Posterior Sclera Configuration Parameters on Myopic Normal Tension Glaucoma
Kim YC
Journal of Glaucoma 2019; 28: 834-842 (IGR: 20-4)


82834 Deep learning based noise reduction method for automatic 3D segmentation of the anterior of lamina cribrosa in optical coherence tomography volumetric scans
Mao Z
Biomedical optics express 2019; 10: 5832-5851 (IGR: 20-4)


82874 Investigation of the Optic Nerve Head Morphology Influence to the Optic Nerve Head Biomechanics - Population Specific Model
Ko MWL
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 5374-5377 (IGR: 20-4)


82821 Unfolding the enigma of lamina cribrosa morphometry and its association with glaucoma
Saba A
Pakistan journal of medical sciences 2019; 35: 1730-1735 (IGR: 20-4)


82402 Longitudinal reproducibility of spectral domain optical coherence tomography in children with physiologic cupping and stable glaucoma
Xu L
Journal of AAPOS 2019; 23: 262.e1-262.e6 (IGR: 20-4)


82293 Current concepts of cerebrospinal fluid dynamics and the translaminar cribrosa pressure gradient: a paradigm of optic disk disease
Liu KC
Survey of Ophthalmology 2020; 65: 48-66 (IGR: 20-4)


82357 Lamina cribrosa pore movement during acute intraocular pressure rise
Wang YX
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82514 Making a Correct Diagnosis of Glaucoma: Data From the EMGT
Öhnell H
Journal of Glaucoma 2019; 28: 859-864 (IGR: 20-4)


82425 Ocular and systemic risk factors associated with recurrent disc hemorrhage in primary open-angle glaucoma
Seol BR
PLoS ONE 2019; 14: e0222166 (IGR: 20-4)


82209 Direct Cup-to-Disc Ratio Estimation for Glaucoma Screening via Semi-supervised Learning
Zhao R
IEEE journal of biomedical and health informatics 2019; 0: (IGR: 20-4)


82873 Investigation of the Optic Nerve Head Morphology Influence to the Optic Nerve Head Biomechanics - Patient Specific Model
Satekenova E
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 5370-5373 (IGR: 20-4)


82500 Determinants of maximum cup depth in non-glaucoma and primary open-angle glaucoma subjects: a population-based study
Zhang Q
Eye 2019; 0: (IGR: 20-4)


82242 Peripapillary border tissue of the choroid and peripapillary scleral flange in human eyes
Holbach L
Acta Ophthalmologica 2020; 98: e43-e49 (IGR: 20-4)


82838 Genome-wide association analysis of 95 549 individuals identifies novel loci and genes influencing optic disc morphology
Qassim A
Human Molecular Genetics 2019; 28: 3680-3690 (IGR: 20-4)


82499 Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs
Dunn RC
Ophthalmology 2019; 126: 1627-1639 (IGR: 20-4)


82193 Accuracy of computer-assisted vertical cup-to-disk ratio grading for glaucoma screening
Nam SM
PLoS ONE 2019; 14: e0220362 (IGR: 20-4)


82821 Unfolding the enigma of lamina cribrosa morphometry and its association with glaucoma
Usmani A
Pakistan journal of medical sciences 2019; 35: 1730-1735 (IGR: 20-4)


82023 Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning
Malik MI
BMC Medical Informatics and Decision Making 2019; 19: 136 (IGR: 20-4)


82524 Relationship between corneal deformation amplitude and optic nerve head structure in primary open-angle glaucoma
Park HL
Medicine 2019; 98: e17223 (IGR: 20-4)


82817 New Circumpapillary Retinal Nerve Fiber Layer Thickness and Bruch's Membrane Opening-Minimum Rim Width Assessment in Nonglaucomatous Eyes with Large Discs
Sultanova G
Journal of Ophthalmology 2019; 2019: 3431217 (IGR: 20-4)


82500 Determinants of maximum cup depth in non-glaucoma and primary open-angle glaucoma subjects: a population-based study
Zhang Y
Eye 2019; 0: (IGR: 20-4)


82371 Clinical Course and Risk Factors for Visual Field Progression in Normal-Tension Glaucoma With Myopia Without Glaucoma Medications
Han SH
American Journal of Ophthalmology 2020; 209: 77-87 (IGR: 20-4)


82802 Reliability of Graders and Comparison with an Automated Algorithm for Vertical Cup-Disc Ratio Grading in Fundus Photographs
Romero M
Annals of the Academy of Medicine, Singapore 2019; 48: 282-289 (IGR: 20-4)


82807 3d Biomechanical Response of the Optic Nerve Head: Initial Results From Porcine Globe Inflation Using High-frequency Ultrasound Elastography
Pavlatos E
Journal of Biomechanical Engineering 2019; 0: (IGR: 20-4)


82648 Joint optic disc and cup segmentation using semi-supervised conditional GANs
Hong J
Computers in Biology and Medicine 2019; 115: 103485 (IGR: 20-4)


82107 Anterior Optic Nerve Head Perfusion is Dependent on Adjacent Parapapillary Choroidal perfusion
Kim JM
Scientific reports 2019; 9: 10999 (IGR: 20-4)


81946 Evaluation of an AI system for the automated detection of glaucoma from stereoscopic optic disc photographs: the European Optic Disc Assessment Study
Jaccard N
Eye 2019; 33: 1791-1797 (IGR: 20-4)


82873 Investigation of the Optic Nerve Head Morphology Influence to the Optic Nerve Head Biomechanics - Patient Specific Model
Ko MWL
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 5370-5373 (IGR: 20-4)


82874 Investigation of the Optic Nerve Head Morphology Influence to the Optic Nerve Head Biomechanics - Population Specific Model
Lai CCC
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 5374-5377 (IGR: 20-4)


82796 Multi-indices quantification of optic nerve head in fundus image via multitask collaborative learning
Li S
Medical Image Analysis 2020; 60: 101593 (IGR: 20-4)


82453 Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images
Kachouri R
Computerized Medical Imaging and Graphics 2019; 77: 101643 (IGR: 20-4)


82723 Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage
Vianna JR
British Journal of Ophthalmology 2020; 104: 980-984 (IGR: 20-4)


82474 Clinical, ultrasonographic and optical coherence tomography correlation of optic nerve head cupping in glaucoma patients
Swamy DR
Indian Journal of Ophthalmology 2019; 67: 1663-1666 (IGR: 20-4)


82293 Current concepts of cerebrospinal fluid dynamics and the translaminar cribrosa pressure gradient: a paradigm of optic disk disease
Fleischman D
Survey of Ophthalmology 2020; 65: 48-66 (IGR: 20-4)


82099 Adaptive weighted locality-constrained sparse coding for glaucoma diagnosis
Yi Y
Medical and Biological Engineering and Computing 2019; 57: 2055-2067 (IGR: 20-4)


82514 Making a Correct Diagnosis of Glaucoma: Data From the EMGT
Bengtsson B
Journal of Glaucoma 2019; 28: 859-864 (IGR: 20-4)


82425 Ocular and systemic risk factors associated with recurrent disc hemorrhage in primary open-angle glaucoma
Jeoung JW
PLoS ONE 2019; 14: e0222166 (IGR: 20-4)


82209 Direct Cup-to-Disc Ratio Estimation for Glaucoma Screening via Semi-supervised Learning
Chen X
IEEE journal of biomedical and health informatics 2019; 0: (IGR: 20-4)


82873 Investigation of the Optic Nerve Head Morphology Influence to the Optic Nerve Head Biomechanics - Patient Specific Model
Ko MWL
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 5370-5373 (IGR: 20-4)


82364 Analysis of the Optic Disc and Peripapillary Structures in Monozygotic Twins
Han JC
Journal of Glaucoma 2019; 28: 969-973 (IGR: 20-4)


82005 Comparison of Diagnostic Power of Optic Nerve Head and Posterior Sclera Configuration Parameters on Myopic Normal Tension Glaucoma
Cho BJ
Journal of Glaucoma 2019; 28: 834-842 (IGR: 20-4)


82402 Longitudinal reproducibility of spectral domain optical coherence tomography in children with physiologic cupping and stable glaucoma
Freedman SF
Journal of AAPOS 2019; 23: 262.e1-262.e6 (IGR: 20-4)


82592 Association of Corneal Hysteresis With Lamina Cribrosa Curvature in Primary Open Angle Glaucoma
Kim TW
Investigative Ophthalmology and Visual Science 2019; 60: 4171-4177 (IGR: 20-4)


82215 Morphological features of parapapillary beta zone and gamma zone in chronic primary angle-closure glaucoma
Hu X
Eye 2019; 33: 1378-1386 (IGR: 20-4)


82340 Characteristics of Patients Showing Discrepancy Between Bruch's Membrane Opening-Minimum Rim Width and Peripapillary Retinal Nerve Fiber Layer Thickness
Kee C
Journal of clinical medicine 2019; 8: (IGR: 20-4)


82870 3D Reconstruction of the Optic Nerve Head of a Phantom Eye from Images Obtained using a Slit Lamp Fitted with Low Cost Add-Ons
Jordan KC
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 4717-4720 (IGR: 20-4)


82098 Influence of Bruch's Membrane Opening Area in Diagnosing Glaucoma With Neuroretinal Parameters From Optical Coherence Tomography
Sharpe GP
American Journal of Ophthalmology 2019; 208: 94-102 (IGR: 20-4)


82357 Lamina cribrosa pore movement during acute intraocular pressure rise
Zhang Q
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82834 Deep learning based noise reduction method for automatic 3D segmentation of the anterior of lamina cribrosa in optical coherence tomography volumetric scans
Miki A
Biomedical optics express 2019; 10: 5832-5851 (IGR: 20-4)


82200 Rate of three-dimensional neuroretinal rim thinning in glaucomatous eyes with optic disc haemorrhage
Lee WJ
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82258 Evaluation of the lamina cribrosa thickness and depth in patients with migraine
Kucuk B
International Ophthalmology 2020; 40: 89-98 (IGR: 20-4)


82812 Quantitative confocal optical coherence elastography for evaluating biomechanics of optic nerve head using Lamb wave model
Li R
Neurophotonics 2019; 6: 041112 (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Fazio MA
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


81967 In vivo characterization of the deformation of the human optic nerve head using optical coherence tomography and digital volume correlation
Quigley HA
Acta biomaterialia 2019; 96: 385-399 (IGR: 20-4)


82064 Longitudinal Analysis of Bruch Membrane Opening Morphometry in Myopic Glaucoma
Heisler M
Journal of Glaucoma 2019; 28: 889-895 (IGR: 20-4)


82499 Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs
Hammel N
Ophthalmology 2019; 126: 1627-1639 (IGR: 20-4)


81946 Evaluation of an AI system for the automated detection of glaucoma from stereoscopic optic disc photographs: the European Optic Disc Assessment Study
Carbonaro F
Eye 2019; 33: 1791-1797 (IGR: 20-4)


82874 Investigation of the Optic Nerve Head Morphology Influence to the Optic Nerve Head Biomechanics - Population Specific Model
Ng PCK
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 5374-5377 (IGR: 20-4)


82200 Rate of three-dimensional neuroretinal rim thinning in glaucomatous eyes with optic disc haemorrhage
Seol BR
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82873 Investigation of the Optic Nerve Head Morphology Influence to the Optic Nerve Head Biomechanics - Patient Specific Model
Kim JR
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 5370-5373 (IGR: 20-4)


82812 Quantitative confocal optical coherence elastography for evaluating biomechanics of optic nerve head using Lamb wave model
Qian X
Neurophotonics 2019; 6: 041112 (IGR: 20-4)


82364 Analysis of the Optic Disc and Peripapillary Structures in Monozygotic Twins
Lee EJ
Journal of Glaucoma 2019; 28: 969-973 (IGR: 20-4)


82474 Clinical, ultrasonographic and optical coherence tomography correlation of optic nerve head cupping in glaucoma patients
Selvan H
Indian Journal of Ophthalmology 2019; 67: 1663-1666 (IGR: 20-4)


82258 Evaluation of the lamina cribrosa thickness and depth in patients with migraine
Agadayi A
International Ophthalmology 2020; 40: 89-98 (IGR: 20-4)


82514 Making a Correct Diagnosis of Glaucoma: Data From the EMGT
Heijl A
Journal of Glaucoma 2019; 28: 859-864 (IGR: 20-4)


82425 Ocular and systemic risk factors associated with recurrent disc hemorrhage in primary open-angle glaucoma
Park KH
PLoS ONE 2019; 14: e0222166 (IGR: 20-4)


82005 Comparison of Diagnostic Power of Optic Nerve Head and Posterior Sclera Configuration Parameters on Myopic Normal Tension Glaucoma
Jung KI
Journal of Glaucoma 2019; 28: 834-842 (IGR: 20-4)


82023 Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning
Siddiqui SA
BMC Medical Informatics and Decision Making 2019; 19: 136 (IGR: 20-4)


82834 Deep learning based noise reduction method for automatic 3D segmentation of the anterior of lamina cribrosa in optical coherence tomography volumetric scans
Mei S
Biomedical optics express 2019; 10: 5832-5851 (IGR: 20-4)


82592 Association of Corneal Hysteresis With Lamina Cribrosa Curvature in Primary Open Angle Glaucoma
Lee EJ
Investigative Ophthalmology and Visual Science 2019; 60: 4171-4177 (IGR: 20-4)


82098 Influence of Bruch's Membrane Opening Area in Diagnosing Glaucoma With Neuroretinal Parameters From Optical Coherence Tomography
Hutchison DM
American Journal of Ophthalmology 2019; 208: 94-102 (IGR: 20-4)


82821 Unfolding the enigma of lamina cribrosa morphometry and its association with glaucoma
Islam QU
Pakistan journal of medical sciences 2019; 35: 1730-1735 (IGR: 20-4)


82838 Genome-wide association analysis of 95 549 individuals identifies novel loci and genes influencing optic disc morphology
An J
Human Molecular Genetics 2019; 28: 3680-3690 (IGR: 20-4)


82293 Current concepts of cerebrospinal fluid dynamics and the translaminar cribrosa pressure gradient: a paradigm of optic disk disease
Lee AG
Survey of Ophthalmology 2020; 65: 48-66 (IGR: 20-4)


82099 Adaptive weighted locality-constrained sparse coding for glaucoma diagnosis
Bao J
Medical and Biological Engineering and Computing 2019; 57: 2055-2067 (IGR: 20-4)


82193 Accuracy of computer-assisted vertical cup-to-disk ratio grading for glaucoma screening
Khunsongkiet P
PLoS ONE 2019; 14: e0220362 (IGR: 20-4)


82209 Direct Cup-to-Disc Ratio Estimation for Glaucoma Screening via Semi-supervised Learning
Xiyao L
IEEE journal of biomedical and health informatics 2019; 0: (IGR: 20-4)


82817 New Circumpapillary Retinal Nerve Fiber Layer Thickness and Bruch's Membrane Opening-Minimum Rim Width Assessment in Nonglaucomatous Eyes with Large Discs
Cebeci Z
Journal of Ophthalmology 2019; 2019: 3431217 (IGR: 20-4)


82802 Reliability of Graders and Comparison with an Automated Algorithm for Vertical Cup-Disc Ratio Grading in Fundus Photographs
Lim V
Annals of the Academy of Medicine, Singapore 2019; 48: 282-289 (IGR: 20-4)


82870 3D Reconstruction of the Optic Nerve Head of a Phantom Eye from Images Obtained using a Slit Lamp Fitted with Low Cost Add-Ons
Black RA
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 4717-4720 (IGR: 20-4)


82357 Lamina cribrosa pore movement during acute intraocular pressure rise
Yang H
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82500 Determinants of maximum cup depth in non-glaucoma and primary open-angle glaucoma subjects: a population-based study
Xin C
Eye 2019; 0: (IGR: 20-4)


82107 Anterior Optic Nerve Head Perfusion is Dependent on Adjacent Parapapillary Choroidal perfusion
Lee EJ
Scientific reports 2019; 9: 10999 (IGR: 20-4)


81967 In vivo characterization of the deformation of the human optic nerve head using optical coherence tomography and digital volume correlation
Nguyen TD
Acta biomaterialia 2019; 96: 385-399 (IGR: 20-4)


82524 Relationship between corneal deformation amplitude and optic nerve head structure in primary open-angle glaucoma
Park CK
Medicine 2019; 98: e17223 (IGR: 20-4)


82453 Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images
Akil M
Computerized Medical Imaging and Graphics 2019; 77: 101643 (IGR: 20-4)


82064 Longitudinal Analysis of Bruch Membrane Opening Morphometry in Myopic Glaucoma
Han SX
Journal of Glaucoma 2019; 28: 889-895 (IGR: 20-4)


82723 Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage
Reis ASC
British Journal of Ophthalmology 2020; 104: 980-984 (IGR: 20-4)


82371 Clinical Course and Risk Factors for Visual Field Progression in Normal-Tension Glaucoma With Myopia Without Glaucoma Medications
Park DY
American Journal of Ophthalmology 2020; 209: 77-87 (IGR: 20-4)


82402 Longitudinal reproducibility of spectral domain optical coherence tomography in children with physiologic cupping and stable glaucoma
Silverstein E
Journal of AAPOS 2019; 23: 262.e1-262.e6 (IGR: 20-4)


82873 Investigation of the Optic Nerve Head Morphology Influence to the Optic Nerve Head Biomechanics - Patient Specific Model
Kim JR
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 5370-5373 (IGR: 20-4)


82215 Morphological features of parapapillary beta zone and gamma zone in chronic primary angle-closure glaucoma
Dai Y
Eye 2019; 33: 1378-1386 (IGR: 20-4)


82648 Joint optic disc and cup segmentation using semi-supervised conditional GANs
Lu X
Computers in Biology and Medicine 2019; 115: 103485 (IGR: 20-4)


82807 3d Biomechanical Response of the Optic Nerve Head: Initial Results From Porcine Globe Inflation Using High-frequency Ultrasound Elastography
Clayson K
Journal of Biomechanical Engineering 2019; 0: (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Bowd C
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


82099 Adaptive weighted locality-constrained sparse coding for glaucoma diagnosis
Wang W
Medical and Biological Engineering and Computing 2019; 57: 2055-2067 (IGR: 20-4)


82293 Current concepts of cerebrospinal fluid dynamics and the translaminar cribrosa pressure gradient: a paradigm of optic disk disease
Killer HE
Survey of Ophthalmology 2020; 65: 48-66 (IGR: 20-4)


82005 Comparison of Diagnostic Power of Optic Nerve Head and Posterior Sclera Configuration Parameters on Myopic Normal Tension Glaucoma
Park CK
Journal of Glaucoma 2019; 28: 834-842 (IGR: 20-4)


82209 Direct Cup-to-Disc Ratio Estimation for Glaucoma Screening via Semi-supervised Learning
Zailiang C
IEEE journal of biomedical and health informatics 2019; 0: (IGR: 20-4)


82098 Influence of Bruch's Membrane Opening Area in Diagnosing Glaucoma With Neuroretinal Parameters From Optical Coherence Tomography
Zangalli CS
American Journal of Ophthalmology 2019; 208: 94-102 (IGR: 20-4)


82193 Accuracy of computer-assisted vertical cup-to-disk ratio grading for glaucoma screening
Ausayakhun S
PLoS ONE 2019; 14: e0220362 (IGR: 20-4)


82402 Longitudinal reproducibility of spectral domain optical coherence tomography in children with physiologic cupping and stable glaucoma
Muir K
Journal of AAPOS 2019; 23: 262.e1-262.e6 (IGR: 20-4)


82499 Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs
Liu Y
Ophthalmology 2019; 126: 1627-1639 (IGR: 20-4)


82838 Genome-wide association analysis of 95 549 individuals identifies novel loci and genes influencing optic disc morphology
Marshall H
Human Molecular Genetics 2019; 28: 3680-3690 (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Medeiros FA
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


81946 Evaluation of an AI system for the automated detection of glaucoma from stereoscopic optic disc photographs: the European Optic Disc Assessment Study
Lemij HG
Eye 2019; 33: 1791-1797 (IGR: 20-4)


82870 3D Reconstruction of the Optic Nerve Head of a Phantom Eye from Images Obtained using a Slit Lamp Fitted with Low Cost Add-Ons
Livingstone IAT
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 4717-4720 (IGR: 20-4)


82364 Analysis of the Optic Disc and Peripapillary Structures in Monozygotic Twins
Kee C
Journal of Glaucoma 2019; 28: 969-973 (IGR: 20-4)


82834 Deep learning based noise reduction method for automatic 3D segmentation of the anterior of lamina cribrosa in optical coherence tomography volumetric scans
Dong Y
Biomedical optics express 2019; 10: 5832-5851 (IGR: 20-4)


82023 Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning
Dengel A
BMC Medical Informatics and Decision Making 2019; 19: 136 (IGR: 20-4)


82592 Association of Corneal Hysteresis With Lamina Cribrosa Curvature in Primary Open Angle Glaucoma
Girard MJA
Investigative Ophthalmology and Visual Science 2019; 60: 4171-4177 (IGR: 20-4)


82258 Evaluation of the lamina cribrosa thickness and depth in patients with migraine
Yilmaz N
International Ophthalmology 2020; 40: 89-98 (IGR: 20-4)


82064 Longitudinal Analysis of Bruch Membrane Opening Morphometry in Myopic Glaucoma
Sarunic MV
Journal of Glaucoma 2019; 28: 889-895 (IGR: 20-4)


82200 Rate of three-dimensional neuroretinal rim thinning in glaucomatous eyes with optic disc haemorrhage
Kim YK
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82821 Unfolding the enigma of lamina cribrosa morphometry and its association with glaucoma
Assad T
Pakistan journal of medical sciences 2019; 35: 1730-1735 (IGR: 20-4)


82807 3d Biomechanical Response of the Optic Nerve Head: Initial Results From Porcine Globe Inflation Using High-frequency Ultrasound Elastography
Kwok S
Journal of Biomechanical Engineering 2019; 0: (IGR: 20-4)


82357 Lamina cribrosa pore movement during acute intraocular pressure rise
Chen JD
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82723 Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage
Zemborain ZZ
British Journal of Ophthalmology 2020; 104: 980-984 (IGR: 20-4)


82874 Investigation of the Optic Nerve Head Morphology Influence to the Optic Nerve Head Biomechanics - Population Specific Model
Chow BHY
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 5374-5377 (IGR: 20-4)


82817 New Circumpapillary Retinal Nerve Fiber Layer Thickness and Bruch's Membrane Opening-Minimum Rim Width Assessment in Nonglaucomatous Eyes with Large Discs
Altinkurt E
Journal of Ophthalmology 2019; 2019: 3431217 (IGR: 20-4)


82648 Joint optic disc and cup segmentation using semi-supervised conditional GANs
Jia X
Computers in Biology and Medicine 2019; 115: 103485 (IGR: 20-4)


82812 Quantitative confocal optical coherence elastography for evaluating biomechanics of optic nerve head using Lamb wave model
Lu G
Neurophotonics 2019; 6: 041112 (IGR: 20-4)


82802 Reliability of Graders and Comparison with an Automated Algorithm for Vertical Cup-Disc Ratio Grading in Fundus Photographs
Loon SC
Annals of the Academy of Medicine, Singapore 2019; 48: 282-289 (IGR: 20-4)


82500 Determinants of maximum cup depth in non-glaucoma and primary open-angle glaucoma subjects: a population-based study
Mao Y
Eye 2019; 0: (IGR: 20-4)


82474 Clinical, ultrasonographic and optical coherence tomography correlation of optic nerve head cupping in glaucoma patients
Agarwal D
Indian Journal of Ophthalmology 2019; 67: 1663-1666 (IGR: 20-4)


82107 Anterior Optic Nerve Head Perfusion is Dependent on Adjacent Parapapillary Choroidal perfusion
Kim TW
Scientific reports 2019; 9: 10999 (IGR: 20-4)


82371 Clinical Course and Risk Factors for Visual Field Progression in Normal-Tension Glaucoma With Myopia Without Glaucoma Medications
Lee EJ
American Journal of Ophthalmology 2020; 209: 77-87 (IGR: 20-4)


82098 Influence of Bruch's Membrane Opening Area in Diagnosing Glaucoma With Neuroretinal Parameters From Optical Coherence Tomography
Burk RO
American Journal of Ophthalmology 2019; 208: 94-102 (IGR: 20-4)


82500 Determinants of maximum cup depth in non-glaucoma and primary open-angle glaucoma subjects: a population-based study
Cao K
Eye 2019; 0: (IGR: 20-4)


82402 Longitudinal reproducibility of spectral domain optical coherence tomography in children with physiologic cupping and stable glaucoma
El-Dairi M
Journal of AAPOS 2019; 23: 262.e1-262.e6 (IGR: 20-4)


82200 Rate of three-dimensional neuroretinal rim thinning in glaucomatous eyes with optic disc haemorrhage
Jeoung JW
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82293 Current concepts of cerebrospinal fluid dynamics and the translaminar cribrosa pressure gradient: a paradigm of optic disk disease
Chen JJ
Survey of Ophthalmology 2020; 65: 48-66 (IGR: 20-4)


82838 Genome-wide association analysis of 95 549 individuals identifies novel loci and genes influencing optic disc morphology
Zhou T
Human Molecular Genetics 2019; 28: 3680-3690 (IGR: 20-4)


82499 Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs
Krause J
Ophthalmology 2019; 126: 1627-1639 (IGR: 20-4)


82357 Lamina cribrosa pore movement during acute intraocular pressure rise
Wang N
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82064 Longitudinal Analysis of Bruch Membrane Opening Morphometry in Myopic Glaucoma
Beg MF
Journal of Glaucoma 2019; 28: 889-895 (IGR: 20-4)


82723 Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage
Lee SH
British Journal of Ophthalmology 2020; 104: 980-984 (IGR: 20-4)


82371 Clinical Course and Risk Factors for Visual Field Progression in Normal-Tension Glaucoma With Myopia Without Glaucoma Medications
Kee C
American Journal of Ophthalmology 2020; 209: 77-87 (IGR: 20-4)


82802 Reliability of Graders and Comparison with an Automated Algorithm for Vertical Cup-Disc Ratio Grading in Fundus Photographs
Suwandono ME
Annals of the Academy of Medicine, Singapore 2019; 48: 282-289 (IGR: 20-4)


82812 Quantitative confocal optical coherence elastography for evaluating biomechanics of optic nerve head using Lamb wave model
Li Y
Neurophotonics 2019; 6: 041112 (IGR: 20-4)


82648 Joint optic disc and cup segmentation using semi-supervised conditional GANs
Lin Z
Computers in Biology and Medicine 2019; 115: 103485 (IGR: 20-4)


82807 3d Biomechanical Response of the Optic Nerve Head: Initial Results From Porcine Globe Inflation Using High-frequency Ultrasound Elastography
Pan X
Journal of Biomechanical Engineering 2019; 0: (IGR: 20-4)


82834 Deep learning based noise reduction method for automatic 3D segmentation of the anterior of lamina cribrosa in optical coherence tomography volumetric scans
Maruyama K
Biomedical optics express 2019; 10: 5832-5851 (IGR: 20-4)


82023 Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning
Shafait F
BMC Medical Informatics and Decision Making 2019; 19: 136 (IGR: 20-4)


82802 Reliability of Graders and Comparison with an Automated Algorithm for Vertical Cup-Disc Ratio Grading in Fundus Photographs
Suwandono ME
Annals of the Academy of Medicine, Singapore 2019; 48: 282-289 (IGR: 20-4)


81946 Evaluation of an AI system for the automated detection of glaucoma from stereoscopic optic disc photographs: the European Optic Disc Assessment Study
Vermeer KA
Eye 2019; 33: 1791-1797 (IGR: 20-4)


82209 Direct Cup-to-Disc Ratio Estimation for Glaucoma Screening via Semi-supervised Learning
Guo F
IEEE journal of biomedical and health informatics 2019; 0: (IGR: 20-4)


82592 Association of Corneal Hysteresis With Lamina Cribrosa Curvature in Primary Open Angle Glaucoma
Mari JM
Investigative Ophthalmology and Visual Science 2019; 60: 4171-4177 (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Weinreb RN
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


82874 Investigation of the Optic Nerve Head Morphology Influence to the Optic Nerve Head Biomechanics - Population Specific Model
Woo MJS
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 5374-5377 (IGR: 20-4)


82474 Clinical, ultrasonographic and optical coherence tomography correlation of optic nerve head cupping in glaucoma patients
Sihota R
Indian Journal of Ophthalmology 2019; 67: 1663-1666 (IGR: 20-4)


82870 3D Reconstruction of the Optic Nerve Head of a Phantom Eye from Images Obtained using a Slit Lamp Fitted with Low Cost Add-Ons
Giardini ME
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 4717-4720 (IGR: 20-4)


82193 Accuracy of computer-assisted vertical cup-to-disk ratio grading for glaucoma screening
Leeungurasatien T
PLoS ONE 2019; 14: e0220362 (IGR: 20-4)


82817 New Circumpapillary Retinal Nerve Fiber Layer Thickness and Bruch's Membrane Opening-Minimum Rim Width Assessment in Nonglaucomatous Eyes with Large Discs
Izgi B
Journal of Ophthalmology 2019; 2019: 3431217 (IGR: 20-4)


82474 Clinical, ultrasonographic and optical coherence tomography correlation of optic nerve head cupping in glaucoma patients
Gupta S
Indian Journal of Ophthalmology 2019; 67: 1663-1666 (IGR: 20-4)


82357 Lamina cribrosa pore movement during acute intraocular pressure rise
Jonas JB
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82723 Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage
Thenappan A
British Journal of Ophthalmology 2020; 104: 980-984 (IGR: 20-4)


82648 Joint optic disc and cup segmentation using semi-supervised conditional GANs
Zhou Y
Computers in Biology and Medicine 2019; 115: 103485 (IGR: 20-4)


82209 Direct Cup-to-Disc Ratio Estimation for Glaucoma Screening via Semi-supervised Learning
Li S
IEEE journal of biomedical and health informatics 2019; 0: (IGR: 20-4)


82098 Influence of Bruch's Membrane Opening Area in Diagnosing Glaucoma With Neuroretinal Parameters From Optical Coherence Tomography
Reis ASC
American Journal of Ophthalmology 2019; 208: 94-102 (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Liebmann JM
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


82499 Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs
Kitade N
Ophthalmology 2019; 126: 1627-1639 (IGR: 20-4)


82874 Investigation of the Optic Nerve Head Morphology Influence to the Optic Nerve Head Biomechanics - Population Specific Model
Yim KHC
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 5374-5377 (IGR: 20-4)


82193 Accuracy of computer-assisted vertical cup-to-disk ratio grading for glaucoma screening
Leiter MR
PLoS ONE 2019; 14: e0220362 (IGR: 20-4)


82834 Deep learning based noise reduction method for automatic 3D segmentation of the anterior of lamina cribrosa in optical coherence tomography volumetric scans
Kawasaki R
Biomedical optics express 2019; 10: 5832-5851 (IGR: 20-4)


82838 Genome-wide association analysis of 95 549 individuals identifies novel loci and genes influencing optic disc morphology
Ong JS
Human Molecular Genetics 2019; 28: 3680-3690 (IGR: 20-4)


82293 Current concepts of cerebrospinal fluid dynamics and the translaminar cribrosa pressure gradient: a paradigm of optic disk disease
Bhatti MT
Survey of Ophthalmology 2020; 65: 48-66 (IGR: 20-4)


82807 3d Biomechanical Response of the Optic Nerve Head: Initial Results From Porcine Globe Inflation Using High-frequency Ultrasound Elastography
Liu J
Journal of Biomechanical Engineering 2019; 0: (IGR: 20-4)


82812 Quantitative confocal optical coherence elastography for evaluating biomechanics of optic nerve head using Lamb wave model
He Y
Neurophotonics 2019; 6: 041112 (IGR: 20-4)


82500 Determinants of maximum cup depth in non-glaucoma and primary open-angle glaucoma subjects: a population-based study
Jan C
Eye 2019; 0: (IGR: 20-4)


82064 Longitudinal Analysis of Bruch Membrane Opening Morphometry in Myopic Glaucoma
Mackenzie PJ
Journal of Glaucoma 2019; 28: 889-895 (IGR: 20-4)


82200 Rate of three-dimensional neuroretinal rim thinning in glaucomatous eyes with optic disc haemorrhage
Park KH
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82023 Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning
Neumeier W
BMC Medical Informatics and Decision Making 2019; 19: 136 (IGR: 20-4)


82592 Association of Corneal Hysteresis With Lamina Cribrosa Curvature in Primary Open Angle Glaucoma
Weinreb RN
Investigative Ophthalmology and Visual Science 2019; 60: 4171-4177 (IGR: 20-4)


82802 Reliability of Graders and Comparison with an Automated Algorithm for Vertical Cup-Disc Ratio Grading in Fundus Photographs
Shuang Y
Annals of the Academy of Medicine, Singapore 2019; 48: 282-289 (IGR: 20-4)


81946 Evaluation of an AI system for the automated detection of glaucoma from stereoscopic optic disc photographs: the European Optic Disc Assessment Study
Reus NJ
Eye 2019; 33: 1791-1797 (IGR: 20-4)


82802 Reliability of Graders and Comparison with an Automated Algorithm for Vertical Cup-Disc Ratio Grading in Fundus Photographs
Di X
Annals of the Academy of Medicine, Singapore 2019; 48: 282-289 (IGR: 20-4)


82064 Longitudinal Analysis of Bruch Membrane Opening Morphometry in Myopic Glaucoma
Lee S
Journal of Glaucoma 2019; 28: 889-895 (IGR: 20-4)


82499 Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs
Schaekermann M
Ophthalmology 2019; 126: 1627-1639 (IGR: 20-4)


82098 Influence of Bruch's Membrane Opening Area in Diagnosing Glaucoma With Neuroretinal Parameters From Optical Coherence Tomography
Costa VP
American Journal of Ophthalmology 2019; 208: 94-102 (IGR: 20-4)


82874 Investigation of the Optic Nerve Head Morphology Influence to the Optic Nerve Head Biomechanics - Population Specific Model
Kim JR
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 5374-5377 (IGR: 20-4)


82723 Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage
Weng DSD
British Journal of Ophthalmology 2020; 104: 980-984 (IGR: 20-4)


82500 Determinants of maximum cup depth in non-glaucoma and primary open-angle glaucoma subjects: a population-based study
Guo C
Eye 2019; 0: (IGR: 20-4)


82474 Clinical, ultrasonographic and optical coherence tomography correlation of optic nerve head cupping in glaucoma patients
Gupta N
Indian Journal of Ophthalmology 2019; 67: 1663-1666 (IGR: 20-4)


82648 Joint optic disc and cup segmentation using semi-supervised conditional GANs
Liu Y
Computers in Biology and Medicine 2019; 115: 103485 (IGR: 20-4)


82812 Quantitative confocal optical coherence elastography for evaluating biomechanics of optic nerve head using Lamb wave model
Qu Y
Neurophotonics 2019; 6: 041112 (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Proudfoot J
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


82874 Investigation of the Optic Nerve Head Morphology Influence to the Optic Nerve Head Biomechanics - Population Specific Model
Kim JR
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 5374-5377 (IGR: 20-4)


82723 Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage
Weng DSD
British Journal of Ophthalmology 2020; 104: 980-984 (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Proudfoot J
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


82193 Accuracy of computer-assisted vertical cup-to-disk ratio grading for glaucoma screening
Sevastopolsky A
PLoS ONE 2019; 14: e0220362 (IGR: 20-4)


82838 Genome-wide association analysis of 95 549 individuals identifies novel loci and genes influencing optic disc morphology
Hassall MM
Human Molecular Genetics 2019; 28: 3680-3690 (IGR: 20-4)


81946 Evaluation of an AI system for the automated detection of glaucoma from stereoscopic optic disc photographs: the European Optic Disc Assessment Study
Trikha S
Eye 2019; 33: 1791-1797 (IGR: 20-4)


82723 Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage
Weng DSD
British Journal of Ophthalmology 2020; 104: 980-984 (IGR: 20-4)


82834 Deep learning based noise reduction method for automatic 3D segmentation of the anterior of lamina cribrosa in optical coherence tomography volumetric scans
Usui S
Biomedical optics express 2019; 10: 5832-5851 (IGR: 20-4)


82023 Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning
Ahmed S
BMC Medical Informatics and Decision Making 2019; 19: 136 (IGR: 20-4)


82838 Genome-wide association analysis of 95 549 individuals identifies novel loci and genes influencing optic disc morphology
Hysi PG
Human Molecular Genetics 2019; 28: 3680-3690 (IGR: 20-4)


82648 Joint optic disc and cup segmentation using semi-supervised conditional GANs
Zhang H
Computers in Biology and Medicine 2019; 115: 103485 (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Zangwill LM
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


82834 Deep learning based noise reduction method for automatic 3D segmentation of the anterior of lamina cribrosa in optical coherence tomography volumetric scans
Matsushita K
Biomedical optics express 2019; 10: 5832-5851 (IGR: 20-4)


82723 Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage
Tsamis E
British Journal of Ophthalmology 2020; 104: 980-984 (IGR: 20-4)


82499 Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs
Sayres R
Ophthalmology 2019; 126: 1627-1639 (IGR: 20-4)


82500 Determinants of maximum cup depth in non-glaucoma and primary open-angle glaucoma subjects: a population-based study
Wang N
Eye 2019; 0: (IGR: 20-4)


82723 Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage
Tsamis E
British Journal of Ophthalmology 2020; 104: 980-984 (IGR: 20-4)


82802 Reliability of Graders and Comparison with an Automated Algorithm for Vertical Cup-Disc Ratio Grading in Fundus Photographs
Kanagasingam Y
Annals of the Academy of Medicine, Singapore 2019; 48: 282-289 (IGR: 20-4)


82474 Clinical, ultrasonographic and optical coherence tomography correlation of optic nerve head cupping in glaucoma patients
Dada T
Indian Journal of Ophthalmology 2019; 67: 1663-1666 (IGR: 20-4)


82098 Influence of Bruch's Membrane Opening Area in Diagnosing Glaucoma With Neuroretinal Parameters From Optical Coherence Tomography
Nicolela MT
American Journal of Ophthalmology 2019; 208: 94-102 (IGR: 20-4)


82812 Quantitative confocal optical coherence elastography for evaluating biomechanics of optic nerve head using Lamb wave model
Jiang L
Neurophotonics 2019; 6: 041112 (IGR: 20-4)


82193 Accuracy of computer-assisted vertical cup-to-disk ratio grading for glaucoma screening
Joye AS
PLoS ONE 2019; 14: e0220362 (IGR: 20-4)


82723 Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage
Tsamis E; Joiner DB
British Journal of Ophthalmology 2020; 104: 980-984 (IGR: 20-4)


82193 Accuracy of computer-assisted vertical cup-to-disk ratio grading for glaucoma screening
Berlinberg EJ
PLoS ONE 2019; 14: e0220362 (IGR: 20-4)


82834 Deep learning based noise reduction method for automatic 3D segmentation of the anterior of lamina cribrosa in optical coherence tomography volumetric scans
Nishida K
Biomedical optics express 2019; 10: 5832-5851 (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Belghith A
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


82802 Reliability of Graders and Comparison with an Automated Algorithm for Vertical Cup-Disc Ratio Grading in Fundus Photographs
Koh V
Annals of the Academy of Medicine, Singapore 2019; 48: 282-289 (IGR: 20-4)


82499 Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs
Wu DJ
Ophthalmology 2019; 126: 1627-1639 (IGR: 20-4)


82500 Determinants of maximum cup depth in non-glaucoma and primary open-angle glaucoma subjects: a population-based study
Thomas R
Eye 2019; 0: (IGR: 20-4)


82838 Genome-wide association analysis of 95 549 individuals identifies novel loci and genes influencing optic disc morphology
Foster PJ
Human Molecular Genetics 2019; 28: 3680-3690 (IGR: 20-4)


82723 Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage
Joiner DB
British Journal of Ophthalmology 2020; 104: 980-984 (IGR: 20-4)


82098 Influence of Bruch's Membrane Opening Area in Diagnosing Glaucoma With Neuroretinal Parameters From Optical Coherence Tomography
Chauhan BC
American Journal of Ophthalmology 2019; 208: 94-102 (IGR: 20-4)


82812 Quantitative confocal optical coherence elastography for evaluating biomechanics of optic nerve head using Lamb wave model
Humayun MS
Neurophotonics 2019; 6: 041112 (IGR: 20-4)


82499 Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs
Bora A
Ophthalmology 2019; 126: 1627-1639 (IGR: 20-4)


82834 Deep learning based noise reduction method for automatic 3D segmentation of the anterior of lamina cribrosa in optical coherence tomography volumetric scans
Chan K
Biomedical optics express 2019; 10: 5832-5851 (IGR: 20-4)


82193 Accuracy of computer-assisted vertical cup-to-disk ratio grading for glaucoma screening
Liu Y
PLoS ONE 2019; 14: e0220362 (IGR: 20-4)


82723 Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage
Ritch R
British Journal of Ophthalmology 2020; 104: 980-984 (IGR: 20-4)


82838 Genome-wide association analysis of 95 549 individuals identifies novel loci and genes influencing optic disc morphology
Khaw PT
Human Molecular Genetics 2019; 28: 3680-3690 (IGR: 20-4)


82098 Influence of Bruch's Membrane Opening Area in Diagnosing Glaucoma With Neuroretinal Parameters From Optical Coherence Tomography
Vianna JR
American Journal of Ophthalmology 2019; 208: 94-102 (IGR: 20-4)


82812 Quantitative confocal optical coherence elastography for evaluating biomechanics of optic nerve head using Lamb wave model
Chen Z
Neurophotonics 2019; 6: 041112 (IGR: 20-4)


82838 Genome-wide association analysis of 95 549 individuals identifies novel loci and genes influencing optic disc morphology
Mackey DA
Human Molecular Genetics 2019; 28: 3680-3690 (IGR: 20-4)


82499 Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs
Semturs C
Ophthalmology 2019; 126: 1627-1639 (IGR: 20-4)


82723 Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage
De Moraes CGV
British Journal of Ophthalmology 2020; 104: 980-984 (IGR: 20-4)


82193 Accuracy of computer-assisted vertical cup-to-disk ratio grading for glaucoma screening
Ramirez DA
PLoS ONE 2019; 14: e0220362 (IGR: 20-4)


82723 Qualitative evaluation of neuroretinal rim and retinal nerve fibre layer on optical coherence tomography to detect glaucomatous damage
Hood DC
British Journal of Ophthalmology 2020; 104: 980-984 (IGR: 20-4)


82193 Accuracy of computer-assisted vertical cup-to-disk ratio grading for glaucoma screening
Moe CA
PLoS ONE 2019; 14: e0220362 (IGR: 20-4)


82812 Quantitative confocal optical coherence elastography for evaluating biomechanics of optic nerve head using Lamb wave model
Zhou Q
Neurophotonics 2019; 6: 041112 (IGR: 20-4)


82838 Genome-wide association analysis of 95 549 individuals identifies novel loci and genes influencing optic disc morphology
Gharahkhani P
Human Molecular Genetics 2019; 28: 3680-3690 (IGR: 20-4)


82499 Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs
Misra A
Ophthalmology 2019; 126: 1627-1639 (IGR: 20-4)


82838 Genome-wide association analysis of 95 549 individuals identifies novel loci and genes influencing optic disc morphology
Khawaja AP
Human Molecular Genetics 2019; 28: 3680-3690 (IGR: 20-4)


82499 Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs
Huang AE
Ophthalmology 2019; 126: 1627-1639 (IGR: 20-4)


82838 Genome-wide association analysis of 95 549 individuals identifies novel loci and genes influencing optic disc morphology
Hewitt AW
Human Molecular Genetics 2019; 28: 3680-3690 (IGR: 20-4)


82193 Accuracy of computer-assisted vertical cup-to-disk ratio grading for glaucoma screening
Stamper RL
PLoS ONE 2019; 14: e0220362 (IGR: 20-4)


82499 Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs
Spitze A
Ophthalmology 2019; 126: 1627-1639 (IGR: 20-4)


82838 Genome-wide association analysis of 95 549 individuals identifies novel loci and genes influencing optic disc morphology
Craig JE
Human Molecular Genetics 2019; 28: 3680-3690 (IGR: 20-4)


82499 Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs
Medeiros FA
Ophthalmology 2019; 126: 1627-1639 (IGR: 20-4)


82193 Accuracy of computer-assisted vertical cup-to-disk ratio grading for glaucoma screening
Keenan JD
PLoS ONE 2019; 14: e0220362 (IGR: 20-4)


82838 Genome-wide association analysis of 95 549 individuals identifies novel loci and genes influencing optic disc morphology
Macgregor S
Human Molecular Genetics 2019; 28: 3680-3690 (IGR: 20-4)


82499 Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs
Maa AY; Gandhi M; Corrado GS; Peng L; Webster DR
Ophthalmology 2019; 126: 1627-1639 (IGR: 20-4)


80919 Effects of chronic elevated intraocular pressure on parameters of optical coherence tomography in rhesus monkeys
Yan ZC
International Journal of Ophthalmology 2019; 12: 542-548 (IGR: 20-3)


80552 Border Tissue Morphology Is Spatially Associated with Focal Lamina Cribrosa Defect and Deep-Layer Microvasculature Dropout in Open-Angle Glaucoma
Han JC
American Journal of Ophthalmology 2019; 203: 89-102 (IGR: 20-3)


81438 Identifying the Critical Factors Governing Translaminar Pressure Differential Through a Compartmental Model
Kaskar OG
Investigative Ophthalmology and Visual Science 2019; 60: 3204-3214 (IGR: 20-3)


81050 OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness and Minimum Cross-Sectional Area in Healthy Eyes
Hong S
American Journal of Ophthalmology 2019; 0: (IGR: 20-3)


80634 Posterior scleral deformations around optic disc are associated with visual field damage in open-angle glaucoma patients with myopia
Kim EK
PLoS ONE 2019; 14: e0213714 (IGR: 20-3)


81195 Intereye Comparison of Lamina Cribrosa Curvature in Normal Tension Glaucoma Patients With Unilateral Damage
Kim JA
Investigative Ophthalmology and Visual Science 2019; 60: 2423-2430 (IGR: 20-3)


80895 Relative Contributions of Intracranial Pressure and Intraocular Pressure on Lamina Cribrosa Behavior
Tong J
Journal of Ophthalmology 2019; 2019: 3064949 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Ghahari E
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


80501 Utility of multicolor optic disc photography in evaluation of glaucomatous optic disc in myopic eyes: A novel approach
Basu T
Indian Journal of Ophthalmology 2019; 67: 412-414 (IGR: 20-3)


81423 Compressive mechanical properties of rat and pig optic nerve head
Boazak EM
Journal of Biomechanics 2019; 93: 204-208 (IGR: 20-3)


80659 Frequencies of 4 Distinct Patterns of Glaucomatous Disc Appearance and Their Clinical Associations in Japanese Population-based Studies
Iwase A
Journal of Glaucoma 2019; 28: 487-492 (IGR: 20-3)


81431 Detection and characterisation of optic nerve and retinal changes in primary congenital glaucoma using hand-held optical coherence tomography
Pilat AV
BMJ open ophthalmology 2019; 4: e000194 (IGR: 20-3)


81297 Associations between changes in radial peripapillary capillaries and occurrence of disc hemorrhage in normal-tension glaucoma
Nitta K
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 1963-1970 (IGR: 20-3)


81146 Machine Learning in the Detection of the Glaucomatous Disc and Visual Field
Smits DJ
Seminars in Ophthalmology 2019; 34: 232-242 (IGR: 20-3)


81012 Rim-to-Disc Ratio Outperforms Cup-to-Disc Ratio for Glaucoma Prescreening
Kumar JRH
Scientific reports 2019; 9: 7099 (IGR: 20-3)


80823 Swept-Source OCT for Evaluating the Lamina Cribrosa: A Report by the American Academy of Ophthalmology
Takusagawa HL
Ophthalmology 2019; 126: 1315-1323 (IGR: 20-3)


80461 Association Between Lamina Cribrosa Defects and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Moghimi S
JAMA ophthalmology 2019; 137: 425-433 (IGR: 20-3)


81157 Spontaneous focal lamina cribrosa defect in glaucoma and its relationship with nonprogressive glaucomatous neuropathy
Sun YX
Chinese Journal of Ophthalmology 2019; 55: 338-346 (IGR: 20-3)


81176 Diagnostic criteria for detection of retinal nerve fibre layer thickness and neuroretinal rim width abnormalities in glaucoma
Zheng F
British Journal of Ophthalmology 2020; 104: 270-275 (IGR: 20-3)


80833 Comparison of the Lamina Cribrosa Measurements Obtained by Spectral-Domain and Swept-Source Optical Coherence Tomography
Cakmak S
Current Eye Research 2019; 44: 968-974 (IGR: 20-3)


81058 Relationship between lamina cribrosa curvature and the microvasculature in treatment-naïve eyes
Kim JA
British Journal of Ophthalmology 2019; 0: (IGR: 20-3)


80973 Determining Optic Nerve Cupping Using Optical Coherence Tomography (OCT) Versus a New Electronic Mobile Device
Sarmento AGL
Journal of Glaucoma 2019; 28: 398-403 (IGR: 20-3)


81204 An association between large optic nerve cupping and cognitive function
Vajaranant TS
American Journal of Ophthalmology 2019; 206: 40-47 (IGR: 20-3)


80914 Robust optic disc and cup segmentation with deep learning for glaucoma detection
Yu S
Computerized Medical Imaging and Graphics 2019; 74: 61-71 (IGR: 20-3)


80526 Relationship Between Optical Coherence Tomography Angiography Peripapillary Vessel Density and Lamina Cribrosa Depth
Eah KS
Journal of Glaucoma 2019; 28: 459-464 (IGR: 20-3)


81330 Evaluation of a Deep Learning System for Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs
Al-Aswad LA
Journal of Glaucoma 2019; 28: 1029-1034 (IGR: 20-3)


81084 Reproducibility of minimum rim width and retinal nerve fibre layer thickness using the Anatomic Positioning System in glaucoma patients
Gupta L
Canadian Journal of Ophthalmology 2019; 54: 335-341 (IGR: 20-3)


81431 Detection and characterisation of optic nerve and retinal changes in primary congenital glaucoma using hand-held optical coherence tomography
Pilat AV
BMJ open ophthalmology 2019; 4: e000194 (IGR: 20-3)


81284 Superior segmental optic hypoplasia as a differential diagnosis of glaucoma
Yamamoto T
Taiwan journal of ophthalmology 2019; 9: 63-66 (IGR: 20-3)


81422 Two-year analysis of changes in the optic nerve and retina following anti-VEGF treatments in diabetic macular edema patients
Filek R
Clinical Ophthalmology 2019; 13: 1087-1096 (IGR: 20-3)


81308 Size and Shape of Bruch's Membrane Opening in Relationship to Axial Length, Gamma Zone, and Macular Bruch's Membrane Defects
Zhang Q
Investigative Ophthalmology and Visual Science 2019; 60: 2591-2598 (IGR: 20-3)


80932 Optic nerve head damage relation to intracranial pressure and corneal properties of eye in glaucoma risk assessment
Kharmyssov C
Medical and Biological Engineering and Computing 2019; 57: 1591-1603 (IGR: 20-3)


81385 Optic disk hemorrhage and vitreous hemorrhage after phacoemulsification in a normal tension glaucoma patient: A case report
Hu R
Medicine 2019; 98: e16215 (IGR: 20-3)


80915 Optic Nerve Lipidomics Reveal Impaired Glucosylsphingosine Lipids Pathway in Glaucoma
Chauhan MZ
Investigative Ophthalmology and Visual Science 2019; 60: 1789-1798 (IGR: 20-3)


81038 Glaucoma as a dangerous interplay between ocular fluid and cerebrospinal fluid
Wostyn P
Medical Hypotheses 2019; 127: 97-99 (IGR: 20-3)


80781 Correlation of the Retinal Parapapillary Perfusion and the Retinal Vessel Oxygen Saturation in Glaucoma Patients
Hasan SM
Investigative Ophthalmology and Visual Science 2019; 60: 1309-1315 (IGR: 20-3)


80568 Vertical disc tilt and features of the optic nerve head anatomy are related to visual field defect in myopic eyes
Park HL
Scientific reports 2019; 9: 3485 (IGR: 20-3)


80946 Changes in the Anterior Lamina Cribrosa Morphology with Glaucoma Severity
Tan NYQ
Scientific reports 2019; 9: 6612 (IGR: 20-3)


81275 Clinical characteristics of glaucoma patients with disc hemorrhage in different locations
Hsia Y
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 1955-1962 (IGR: 20-3)


80917 Association between focal lamina cribrosa defects and optic disc haemorrhage in glaucoma
Mistry V
British Journal of Ophthalmology 2020; 104: 98-103 (IGR: 20-3)


81432 Increased Optic Nerve Head Capillary Blood Flow in Early Primary Open-Angle Glaucoma
Gardiner SK
Investigative Ophthalmology and Visual Science 2019; 60: 3110-3118 (IGR: 20-3)


81241 Determinants of Macular Layers and Optic Disc Characteristics on SD-OCT: The Rhineland Study
Mauschitz MM
Translational vision science & technology 2019; 8: 34 (IGR: 20-3)


81108 Lamina Cribrosa Depth and Shape in Glaucoma Suspects. Comparison to Glaucoma Patients and Healthy Controls
Krzyżanowska-Berkowska P
Current Eye Research 2019; 44: 1026-1033 (IGR: 20-3)


81064 Optic Disc Tilt and Glaucoma Progression in Myopic Glaucoma: A Longitudinal Match-Pair Case-Control Study
Seol BR
Investigative Ophthalmology and Visual Science 2019; 60: 2127-2133 (IGR: 20-3)


80962 Comparison of the clinical estimation of cup-to-disk ratio by direct ophthalmoscopy and optical coherence tomography
Amedo AO
Therapeutic advances in ophthalmology 2019; 11: 2515841419827268 (IGR: 20-3)


80516 Racioethnic differences in the biomechanical response of the lamina cribrosa
Behkam R
Acta biomaterialia 2019; 88: 131-140 (IGR: 20-3)


81203 Difference in Topographic Pattern of Prelaminar and Neuroretinal Rim Thinning Between Nonarteritic Anterior Ischemic Optic Neuropathy and Glaucoma
Lee EJ
Investigative Ophthalmology and Visual Science 2019; 60: 2461-2467 (IGR: 20-3)


80958 Optic Disc Microhemorrhage in Primary Open-Angle Glaucoma: Clinical Implications for Visual Field Progression
Ha A
Investigative Ophthalmology and Visual Science 2019; 60: 1824-1832 (IGR: 20-3)


80913 JointRCNN: A Region-based Convolutional Neural Network for Optic Disc and Cup Segmentation
Jiang Y
IEEE Transactions on Bio-Medical Engineering 2020; 67: 335-343 (IGR: 20-3)


80774 Comparison of Spectralis and Cirrus spectral domain optical coherence tomography for the objective morphometric assessment of the neuroretinal rim width
Mitsch C
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 1265-1275 (IGR: 20-3)


80537 Optic Nerve Head Perfusion Before and After Intravitreal Antivascular Growth Factor Injections Using Optical Coherence Tomography-based Microangiography
Wen JC
Journal of Glaucoma 2019; 28: 188-193 (IGR: 20-3)


80915 Optic Nerve Lipidomics Reveal Impaired Glucosylsphingosine Lipids Pathway in Glaucoma
Valencia AK
Investigative Ophthalmology and Visual Science 2019; 60: 1789-1798 (IGR: 20-3)


81064 Optic Disc Tilt and Glaucoma Progression in Myopic Glaucoma: A Longitudinal Match-Pair Case-Control Study
Park KH
Investigative Ophthalmology and Visual Science 2019; 60: 2127-2133 (IGR: 20-3)


81204 An association between large optic nerve cupping and cognitive function
Hallak J
American Journal of Ophthalmology 2019; 206: 40-47 (IGR: 20-3)


80919 Effects of chronic elevated intraocular pressure on parameters of optical coherence tomography in rhesus monkeys
Yang XJ
International Journal of Ophthalmology 2019; 12: 542-548 (IGR: 20-3)


81308 Size and Shape of Bruch's Membrane Opening in Relationship to Axial Length, Gamma Zone, and Macular Bruch's Membrane Defects
Xu L
Investigative Ophthalmology and Visual Science 2019; 60: 2591-2598 (IGR: 20-3)


80958 Optic Disc Microhemorrhage in Primary Open-Angle Glaucoma: Clinical Implications for Visual Field Progression
Kim YK
Investigative Ophthalmology and Visual Science 2019; 60: 1824-1832 (IGR: 20-3)


80501 Utility of multicolor optic disc photography in evaluation of glaucomatous optic disc in myopic eyes: A novel approach
Garg B
Indian Journal of Ophthalmology 2019; 67: 412-414 (IGR: 20-3)


80774 Comparison of Spectralis and Cirrus spectral domain optical coherence tomography for the objective morphometric assessment of the neuroretinal rim width
Holzer S
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 1265-1275 (IGR: 20-3)


81203 Difference in Topographic Pattern of Prelaminar and Neuroretinal Rim Thinning Between Nonarteritic Anterior Ischemic Optic Neuropathy and Glaucoma
Han JC
Investigative Ophthalmology and Visual Science 2019; 60: 2461-2467 (IGR: 20-3)


80962 Comparison of the clinical estimation of cup-to-disk ratio by direct ophthalmoscopy and optical coherence tomography
Koomson NY
Therapeutic advances in ophthalmology 2019; 11: 2515841419827268 (IGR: 20-3)


81146 Machine Learning in the Detection of the Glaucomatous Disc and Visual Field
Elze T
Seminars in Ophthalmology 2019; 34: 232-242 (IGR: 20-3)


81050 OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness and Minimum Cross-Sectional Area in Healthy Eyes
Yang H
American Journal of Ophthalmology 2019; 0: (IGR: 20-3)


81176 Diagnostic criteria for detection of retinal nerve fibre layer thickness and neuroretinal rim width abnormalities in glaucoma
Yu M
British Journal of Ophthalmology 2020; 104: 270-275 (IGR: 20-3)


80946 Changes in the Anterior Lamina Cribrosa Morphology with Glaucoma Severity
Tham YC
Scientific reports 2019; 9: 6612 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Bowd C
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


81330 Evaluation of a Deep Learning System for Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs
Kapoor R
Journal of Glaucoma 2019; 28: 1029-1034 (IGR: 20-3)


81431 Detection and characterisation of optic nerve and retinal changes in primary congenital glaucoma using hand-held optical coherence tomography
Shah S
BMJ open ophthalmology 2019; 4: e000194 (IGR: 20-3)


81108 Lamina Cribrosa Depth and Shape in Glaucoma Suspects. Comparison to Glaucoma Patients and Healthy Controls
Czajor K
Current Eye Research 2019; 44: 1026-1033 (IGR: 20-3)


80973 Determining Optic Nerve Cupping Using Optical Coherence Tomography (OCT) Versus a New Electronic Mobile Device
Sarmento A
Journal of Glaucoma 2019; 28: 398-403 (IGR: 20-3)


80537 Optic Nerve Head Perfusion Before and After Intravitreal Antivascular Growth Factor Injections Using Optical Coherence Tomography-based Microangiography
Chen CL
Journal of Glaucoma 2019; 28: 188-193 (IGR: 20-3)


80913 JointRCNN: A Region-based Convolutional Neural Network for Optic Disc and Cup Segmentation
Duan L
IEEE Transactions on Bio-Medical Engineering 2020; 67: 335-343 (IGR: 20-3)


81241 Determinants of Macular Layers and Optic Disc Characteristics on SD-OCT: The Rhineland Study
Holz FG
Translational vision science & technology 2019; 8: 34 (IGR: 20-3)


80526 Relationship Between Optical Coherence Tomography Angiography Peripapillary Vessel Density and Lamina Cribrosa Depth
Shin JW
Journal of Glaucoma 2019; 28: 459-464 (IGR: 20-3)


80833 Comparison of the Lamina Cribrosa Measurements Obtained by Spectral-Domain and Swept-Source Optical Coherence Tomography
Altan C
Current Eye Research 2019; 44: 968-974 (IGR: 20-3)


81438 Identifying the Critical Factors Governing Translaminar Pressure Differential Through a Compartmental Model
Fleischman D
Investigative Ophthalmology and Visual Science 2019; 60: 3204-3214 (IGR: 20-3)


81195 Intereye Comparison of Lamina Cribrosa Curvature in Normal Tension Glaucoma Patients With Unilateral Damage
Kim TW
Investigative Ophthalmology and Visual Science 2019; 60: 2423-2430 (IGR: 20-3)


80895 Relative Contributions of Intracranial Pressure and Intraocular Pressure on Lamina Cribrosa Behavior
Ghate D
Journal of Ophthalmology 2019; 2019: 3064949 (IGR: 20-3)


80914 Robust optic disc and cup segmentation with deep learning for glaucoma detection
Xiao D
Computerized Medical Imaging and Graphics 2019; 74: 61-71 (IGR: 20-3)


80516 Racioethnic differences in the biomechanical response of the lamina cribrosa
Kollech HG
Acta biomaterialia 2019; 88: 131-140 (IGR: 20-3)


81157 Spontaneous focal lamina cribrosa defect in glaucoma and its relationship with nonprogressive glaucomatous neuropathy
Xie Y
Chinese Journal of Ophthalmology 2019; 55: 338-346 (IGR: 20-3)


80932 Optic nerve head damage relation to intracranial pressure and corneal properties of eye in glaucoma risk assessment
Abdildin YG
Medical and Biological Engineering and Computing 2019; 57: 1591-1603 (IGR: 20-3)


80552 Border Tissue Morphology Is Spatially Associated with Focal Lamina Cribrosa Defect and Deep-Layer Microvasculature Dropout in Open-Angle Glaucoma
Choi JH
American Journal of Ophthalmology 2019; 203: 89-102 (IGR: 20-3)


80461 Association Between Lamina Cribrosa Defects and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Zangwill LM
JAMA ophthalmology 2019; 137: 425-433 (IGR: 20-3)


80634 Posterior scleral deformations around optic disc are associated with visual field damage in open-angle glaucoma patients with myopia
Park HL
PLoS ONE 2019; 14: e0213714 (IGR: 20-3)


81330 Evaluation of a Deep Learning System for Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs
Kapoor R
Journal of Glaucoma 2019; 28: 1029-1034 (IGR: 20-3)


81058 Relationship between lamina cribrosa curvature and the microvasculature in treatment-naïve eyes
Kim TW
British Journal of Ophthalmology 2019; 0: (IGR: 20-3)


81423 Compressive mechanical properties of rat and pig optic nerve head
d'Humières J
Journal of Biomechanics 2019; 93: 204-208 (IGR: 20-3)


81385 Optic disk hemorrhage and vitreous hemorrhage after phacoemulsification in a normal tension glaucoma patient: A case report
Shen L
Medicine 2019; 98: e16215 (IGR: 20-3)


81422 Two-year analysis of changes in the optic nerve and retina following anti-VEGF treatments in diabetic macular edema patients
Hooper P
Clinical Ophthalmology 2019; 13: 1087-1096 (IGR: 20-3)


81084 Reproducibility of minimum rim width and retinal nerve fibre layer thickness using the Anatomic Positioning System in glaucoma patients
Rahmatnejad K
Canadian Journal of Ophthalmology 2019; 54: 335-341 (IGR: 20-3)


80659 Frequencies of 4 Distinct Patterns of Glaucomatous Disc Appearance and Their Clinical Associations in Japanese Population-based Studies
Araie M
Journal of Glaucoma 2019; 28: 487-492 (IGR: 20-3)


81297 Associations between changes in radial peripapillary capillaries and occurrence of disc hemorrhage in normal-tension glaucoma
Sugiyama K
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 1963-1970 (IGR: 20-3)


81012 Rim-to-Disc Ratio Outperforms Cup-to-Disc Ratio for Glaucoma Prescreening
Seelamantula CS
Scientific reports 2019; 9: 7099 (IGR: 20-3)


80781 Correlation of the Retinal Parapapillary Perfusion and the Retinal Vessel Oxygen Saturation in Glaucoma Patients
Hammer M
Investigative Ophthalmology and Visual Science 2019; 60: 1309-1315 (IGR: 20-3)


80823 Swept-Source OCT for Evaluating the Lamina Cribrosa: A Report by the American Academy of Ophthalmology
Hoguet A
Ophthalmology 2019; 126: 1315-1323 (IGR: 20-3)


80568 Vertical disc tilt and features of the optic nerve head anatomy are related to visual field defect in myopic eyes
Kim YC
Scientific reports 2019; 9: 3485 (IGR: 20-3)


81432 Increased Optic Nerve Head Capillary Blood Flow in Early Primary Open-Angle Glaucoma
Cull G
Investigative Ophthalmology and Visual Science 2019; 60: 3110-3118 (IGR: 20-3)


81275 Clinical characteristics of glaucoma patients with disc hemorrhage in different locations
Su CC
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 1955-1962 (IGR: 20-3)


80917 Association between focal lamina cribrosa defects and optic disc haemorrhage in glaucoma
An D
British Journal of Ophthalmology 2020; 104: 98-103 (IGR: 20-3)


81431 Detection and characterisation of optic nerve and retinal changes in primary congenital glaucoma using hand-held optical coherence tomography
Sheth V
BMJ open ophthalmology 2019; 4: e000194 (IGR: 20-3)


81297 Associations between changes in radial peripapillary capillaries and occurrence of disc hemorrhage in normal-tension glaucoma
Wajima R
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 1963-1970 (IGR: 20-3)


81157 Spontaneous focal lamina cribrosa defect in glaucoma and its relationship with nonprogressive glaucomatous neuropathy
Liu XX
Chinese Journal of Ophthalmology 2019; 55: 338-346 (IGR: 20-3)


81241 Determinants of Macular Layers and Optic Disc Characteristics on SD-OCT: The Rhineland Study
Finger RP
Translational vision science & technology 2019; 8: 34 (IGR: 20-3)


81385 Optic disk hemorrhage and vitreous hemorrhage after phacoemulsification in a normal tension glaucoma patient: A case report
Wang X
Medicine 2019; 98: e16215 (IGR: 20-3)


81084 Reproducibility of minimum rim width and retinal nerve fibre layer thickness using the Anatomic Positioning System in glaucoma patients
Gogte P
Canadian Journal of Ophthalmology 2019; 54: 335-341 (IGR: 20-3)


80781 Correlation of the Retinal Parapapillary Perfusion and the Retinal Vessel Oxygen Saturation in Glaucoma Patients
Meller D
Investigative Ophthalmology and Visual Science 2019; 60: 1309-1315 (IGR: 20-3)


80568 Vertical disc tilt and features of the optic nerve head anatomy are related to visual field defect in myopic eyes
Jung Y
Scientific reports 2019; 9: 3485 (IGR: 20-3)


81432 Increased Optic Nerve Head Capillary Blood Flow in Early Primary Open-Angle Glaucoma
Fortune B
Investigative Ophthalmology and Visual Science 2019; 60: 3110-3118 (IGR: 20-3)


81050 OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness and Minimum Cross-Sectional Area in Healthy Eyes
Gardiner SK
American Journal of Ophthalmology 2019; 0: (IGR: 20-3)


80932 Optic nerve head damage relation to intracranial pressure and corneal properties of eye in glaucoma risk assessment
Kostas KV
Medical and Biological Engineering and Computing 2019; 57: 1591-1603 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Zangwill LM
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


81275 Clinical characteristics of glaucoma patients with disc hemorrhage in different locations
Wang TH
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 1955-1962 (IGR: 20-3)


81108 Lamina Cribrosa Depth and Shape in Glaucoma Suspects. Comparison to Glaucoma Patients and Healthy Controls
Syga P
Current Eye Research 2019; 44: 1026-1033 (IGR: 20-3)


80917 Association between focal lamina cribrosa defects and optic disc haemorrhage in glaucoma
Barry CJ
British Journal of Ophthalmology 2020; 104: 98-103 (IGR: 20-3)


81423 Compressive mechanical properties of rat and pig optic nerve head
Read AT
Journal of Biomechanics 2019; 93: 204-208 (IGR: 20-3)


80915 Optic Nerve Lipidomics Reveal Impaired Glucosylsphingosine Lipids Pathway in Glaucoma
Piqueras MC
Investigative Ophthalmology and Visual Science 2019; 60: 1789-1798 (IGR: 20-3)


81431 Detection and characterisation of optic nerve and retinal changes in primary congenital glaucoma using hand-held optical coherence tomography
Sheth V
BMJ open ophthalmology 2019; 4: e000194 (IGR: 20-3)


80552 Border Tissue Morphology Is Spatially Associated with Focal Lamina Cribrosa Defect and Deep-Layer Microvasculature Dropout in Open-Angle Glaucoma
Park DY
American Journal of Ophthalmology 2019; 203: 89-102 (IGR: 20-3)


80634 Posterior scleral deformations around optic disc are associated with visual field damage in open-angle glaucoma patients with myopia
Park CK
PLoS ONE 2019; 14: e0213714 (IGR: 20-3)


80461 Association Between Lamina Cribrosa Defects and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Manalastas PIC
JAMA ophthalmology 2019; 137: 425-433 (IGR: 20-3)


81195 Intereye Comparison of Lamina Cribrosa Curvature in Normal Tension Glaucoma Patients With Unilateral Damage
Lee EJ
Investigative Ophthalmology and Visual Science 2019; 60: 2423-2430 (IGR: 20-3)


80895 Relative Contributions of Intracranial Pressure and Intraocular Pressure on Lamina Cribrosa Behavior
Kedar S
Journal of Ophthalmology 2019; 2019: 3064949 (IGR: 20-3)


80501 Utility of multicolor optic disc photography in evaluation of glaucomatous optic disc in myopic eyes: A novel approach
Mishra S
Indian Journal of Ophthalmology 2019; 67: 412-414 (IGR: 20-3)


81064 Optic Disc Tilt and Glaucoma Progression in Myopic Glaucoma: A Longitudinal Match-Pair Case-Control Study
Jeoung JW
Investigative Ophthalmology and Visual Science 2019; 60: 2127-2133 (IGR: 20-3)


80958 Optic Disc Microhemorrhage in Primary Open-Angle Glaucoma: Clinical Implications for Visual Field Progression
Baek SU
Investigative Ophthalmology and Visual Science 2019; 60: 1824-1832 (IGR: 20-3)


80913 JointRCNN: A Region-based Convolutional Neural Network for Optic Disc and Cup Segmentation
Cheng J
IEEE Transactions on Bio-Medical Engineering 2020; 67: 335-343 (IGR: 20-3)


81204 An association between large optic nerve cupping and cognitive function
Espeland MA
American Journal of Ophthalmology 2019; 206: 40-47 (IGR: 20-3)


80914 Robust optic disc and cup segmentation with deep learning for glaucoma detection
Frost S
Computerized Medical Imaging and Graphics 2019; 74: 61-71 (IGR: 20-3)


81012 Rim-to-Disc Ratio Outperforms Cup-to-Disc Ratio for Glaucoma Prescreening
Kamath YS
Scientific reports 2019; 9: 7099 (IGR: 20-3)


80774 Comparison of Spectralis and Cirrus spectral domain optical coherence tomography for the objective morphometric assessment of the neuroretinal rim width
Wassermann L
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 1265-1275 (IGR: 20-3)


80823 Swept-Source OCT for Evaluating the Lamina Cribrosa: A Report by the American Academy of Ophthalmology
Junk AK
Ophthalmology 2019; 126: 1315-1323 (IGR: 20-3)


81438 Identifying the Critical Factors Governing Translaminar Pressure Differential Through a Compartmental Model
Lee YZ
Investigative Ophthalmology and Visual Science 2019; 60: 3204-3214 (IGR: 20-3)


81058 Relationship between lamina cribrosa curvature and the microvasculature in treatment-naïve eyes
Lee EJ
British Journal of Ophthalmology 2019; 0: (IGR: 20-3)


80919 Effects of chronic elevated intraocular pressure on parameters of optical coherence tomography in rhesus monkeys
Chen HR
International Journal of Ophthalmology 2019; 12: 542-548 (IGR: 20-3)


81308 Size and Shape of Bruch's Membrane Opening in Relationship to Axial Length, Gamma Zone, and Macular Bruch's Membrane Defects
Wei WB
Investigative Ophthalmology and Visual Science 2019; 60: 2591-2598 (IGR: 20-3)


81330 Evaluation of a Deep Learning System for Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs
Chu CK
Journal of Glaucoma 2019; 28: 1029-1034 (IGR: 20-3)


81203 Difference in Topographic Pattern of Prelaminar and Neuroretinal Rim Thinning Between Nonarteritic Anterior Ischemic Optic Neuropathy and Glaucoma
Park DY
Investigative Ophthalmology and Visual Science 2019; 60: 2461-2467 (IGR: 20-3)


80958 Optic Disc Microhemorrhage in Primary Open-Angle Glaucoma: Clinical Implications for Visual Field Progression
Baek SU
Investigative Ophthalmology and Visual Science 2019; 60: 1824-1832 (IGR: 20-3)


80962 Comparison of the clinical estimation of cup-to-disk ratio by direct ophthalmoscopy and optical coherence tomography
Kobia Acquah E
Therapeutic advances in ophthalmology 2019; 11: 2515841419827268 (IGR: 20-3)


80659 Frequencies of 4 Distinct Patterns of Glaucomatous Disc Appearance and Their Clinical Associations in Japanese Population-based Studies
Kuwayama Y
Journal of Glaucoma 2019; 28: 487-492 (IGR: 20-3)


81146 Machine Learning in the Detection of the Glaucomatous Disc and Visual Field
Wang H
Seminars in Ophthalmology 2019; 34: 232-242 (IGR: 20-3)


81422 Two-year analysis of changes in the optic nerve and retina following anti-VEGF treatments in diabetic macular edema patients
Sheidow TG
Clinical Ophthalmology 2019; 13: 1087-1096 (IGR: 20-3)


81176 Diagnostic criteria for detection of retinal nerve fibre layer thickness and neuroretinal rim width abnormalities in glaucoma
Leung CK
British Journal of Ophthalmology 2020; 104: 270-275 (IGR: 20-3)


80537 Optic Nerve Head Perfusion Before and After Intravitreal Antivascular Growth Factor Injections Using Optical Coherence Tomography-based Microangiography
Rezaei KA
Journal of Glaucoma 2019; 28: 188-193 (IGR: 20-3)


80526 Relationship Between Optical Coherence Tomography Angiography Peripapillary Vessel Density and Lamina Cribrosa Depth
Sung KR
Journal of Glaucoma 2019; 28: 459-464 (IGR: 20-3)


80946 Changes in the Anterior Lamina Cribrosa Morphology with Glaucoma Severity
Thakku SG
Scientific reports 2019; 9: 6612 (IGR: 20-3)


80833 Comparison of the Lamina Cribrosa Measurements Obtained by Spectral-Domain and Swept-Source Optical Coherence Tomography
Topcu H
Current Eye Research 2019; 44: 968-974 (IGR: 20-3)


80516 Racioethnic differences in the biomechanical response of the lamina cribrosa
Jana A
Acta biomaterialia 2019; 88: 131-140 (IGR: 20-3)


80973 Determining Optic Nerve Cupping Using Optical Coherence Tomography (OCT) Versus a New Electronic Mobile Device
Souza LL
Journal of Glaucoma 2019; 28: 398-403 (IGR: 20-3)


80833 Comparison of the Lamina Cribrosa Measurements Obtained by Spectral-Domain and Swept-Source Optical Coherence Tomography
Arici M
Current Eye Research 2019; 44: 968-974 (IGR: 20-3)


81108 Lamina Cribrosa Depth and Shape in Glaucoma Suspects. Comparison to Glaucoma Patients and Healthy Controls
Iskander DR
Current Eye Research 2019; 44: 1026-1033 (IGR: 20-3)


81422 Two-year analysis of changes in the optic nerve and retina following anti-VEGF treatments in diabetic macular edema patients
Gonder J
Clinical Ophthalmology 2019; 13: 1087-1096 (IGR: 20-3)


80962 Comparison of the clinical estimation of cup-to-disk ratio by direct ophthalmoscopy and optical coherence tomography
Pascal TM
Therapeutic advances in ophthalmology 2019; 11: 2515841419827268 (IGR: 20-3)


81438 Identifying the Critical Factors Governing Translaminar Pressure Differential Through a Compartmental Model
Thorp BD
Investigative Ophthalmology and Visual Science 2019; 60: 3204-3214 (IGR: 20-3)


81203 Difference in Topographic Pattern of Prelaminar and Neuroretinal Rim Thinning Between Nonarteritic Anterior Ischemic Optic Neuropathy and Glaucoma
Kee C
Investigative Ophthalmology and Visual Science 2019; 60: 2461-2467 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Proudfoot J
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


81241 Determinants of Macular Layers and Optic Disc Characteristics on SD-OCT: The Rhineland Study
Breteler MMB
Translational vision science & technology 2019; 8: 34 (IGR: 20-3)


81084 Reproducibility of minimum rim width and retinal nerve fibre layer thickness using the Anatomic Positioning System in glaucoma patients
Siraj S
Canadian Journal of Ophthalmology 2019; 54: 335-341 (IGR: 20-3)


81297 Associations between changes in radial peripapillary capillaries and occurrence of disc hemorrhage in normal-tension glaucoma
Tachibana G
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 1963-1970 (IGR: 20-3)


80919 Effects of chronic elevated intraocular pressure on parameters of optical coherence tomography in rhesus monkeys
Deng SF
International Journal of Ophthalmology 2019; 12: 542-548 (IGR: 20-3)


80823 Swept-Source OCT for Evaluating the Lamina Cribrosa: A Report by the American Academy of Ophthalmology
Nouri-Mahdavi K
Ophthalmology 2019; 126: 1315-1323 (IGR: 20-3)


81157 Spontaneous focal lamina cribrosa defect in glaucoma and its relationship with nonprogressive glaucomatous neuropathy
Guo YQ
Chinese Journal of Ophthalmology 2019; 55: 338-346 (IGR: 20-3)


80659 Frequencies of 4 Distinct Patterns of Glaucomatous Disc Appearance and Their Clinical Associations in Japanese Population-based Studies
Murata H
Journal of Glaucoma 2019; 28: 487-492 (IGR: 20-3)


80568 Vertical disc tilt and features of the optic nerve head anatomy are related to visual field defect in myopic eyes
Park CK
Scientific reports 2019; 9: 3485 (IGR: 20-3)


81432 Increased Optic Nerve Head Capillary Blood Flow in Early Primary Open-Angle Glaucoma
Wang L
Investigative Ophthalmology and Visual Science 2019; 60: 3110-3118 (IGR: 20-3)


80958 Optic Disc Microhemorrhage in Primary Open-Angle Glaucoma: Clinical Implications for Visual Field Progression
Park KH
Investigative Ophthalmology and Visual Science 2019; 60: 1824-1832 (IGR: 20-3)


81275 Clinical characteristics of glaucoma patients with disc hemorrhage in different locations
Huang JY
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 1955-1962 (IGR: 20-3)


80917 Association between focal lamina cribrosa defects and optic disc haemorrhage in glaucoma
House PH
British Journal of Ophthalmology 2020; 104: 98-103 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Proudfoot J
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


81423 Compressive mechanical properties of rat and pig optic nerve head
Ethier CR
Journal of Biomechanics 2019; 93: 204-208 (IGR: 20-3)


81084 Reproducibility of minimum rim width and retinal nerve fibre layer thickness using the Anatomic Positioning System in glaucoma patients
Siraj S
Canadian Journal of Ophthalmology 2019; 54: 335-341 (IGR: 20-3)


80973 Determining Optic Nerve Cupping Using Optical Coherence Tomography (OCT) Versus a New Electronic Mobile Device
Oliveira LA
Journal of Glaucoma 2019; 28: 398-403 (IGR: 20-3)


80774 Comparison of Spectralis and Cirrus spectral domain optical coherence tomography for the objective morphometric assessment of the neuroretinal rim width
Resch H
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 1265-1275 (IGR: 20-3)


81431 Detection and characterisation of optic nerve and retinal changes in primary congenital glaucoma using hand-held optical coherence tomography
Purohit R
BMJ open ophthalmology 2019; 4: e000194 (IGR: 20-3)


80552 Border Tissue Morphology Is Spatially Associated with Focal Lamina Cribrosa Defect and Deep-Layer Microvasculature Dropout in Open-Angle Glaucoma
Lee EJ
American Journal of Ophthalmology 2019; 203: 89-102 (IGR: 20-3)


80946 Changes in the Anterior Lamina Cribrosa Morphology with Glaucoma Severity
Wang X
Scientific reports 2019; 9: 6612 (IGR: 20-3)


81050 OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness and Minimum Cross-Sectional Area in Healthy Eyes
Luo H
American Journal of Ophthalmology 2019; 0: (IGR: 20-3)


80501 Utility of multicolor optic disc photography in evaluation of glaucomatous optic disc in myopic eyes: A novel approach
Goel S
Indian Journal of Ophthalmology 2019; 67: 412-414 (IGR: 20-3)


81058 Relationship between lamina cribrosa curvature and the microvasculature in treatment-naïve eyes
Girard MJA
British Journal of Ophthalmology 2019; 0: (IGR: 20-3)


80913 JointRCNN: A Region-based Convolutional Neural Network for Optic Disc and Cup Segmentation
Gu Z
IEEE Transactions on Bio-Medical Engineering 2020; 67: 335-343 (IGR: 20-3)


80516 Racioethnic differences in the biomechanical response of the lamina cribrosa
Hill A
Acta biomaterialia 2019; 88: 131-140 (IGR: 20-3)


81012 Rim-to-Disc Ratio Outperforms Cup-to-Disc Ratio for Glaucoma Prescreening
Jampala R
Scientific reports 2019; 9: 7099 (IGR: 20-3)


80537 Optic Nerve Head Perfusion Before and After Intravitreal Antivascular Growth Factor Injections Using Optical Coherence Tomography-based Microangiography
Chao JR
Journal of Glaucoma 2019; 28: 188-193 (IGR: 20-3)


80895 Relative Contributions of Intracranial Pressure and Intraocular Pressure on Lamina Cribrosa Behavior
Gu L
Journal of Ophthalmology 2019; 2019: 3064949 (IGR: 20-3)


81204 An association between large optic nerve cupping and cognitive function
Pasquale LR
American Journal of Ophthalmology 2019; 206: 40-47 (IGR: 20-3)


80915 Optic Nerve Lipidomics Reveal Impaired Glucosylsphingosine Lipids Pathway in Glaucoma
Enriquez-Algeciras M
Investigative Ophthalmology and Visual Science 2019; 60: 1789-1798 (IGR: 20-3)


81431 Detection and characterisation of optic nerve and retinal changes in primary congenital glaucoma using hand-held optical coherence tomography
Purohit R
BMJ open ophthalmology 2019; 4: e000194 (IGR: 20-3)


80461 Association Between Lamina Cribrosa Defects and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Suh MH
JAMA ophthalmology 2019; 137: 425-433 (IGR: 20-3)


81308 Size and Shape of Bruch's Membrane Opening in Relationship to Axial Length, Gamma Zone, and Macular Bruch's Membrane Defects
Wang YX
Investigative Ophthalmology and Visual Science 2019; 60: 2591-2598 (IGR: 20-3)


81330 Evaluation of a Deep Learning System for Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs
Walters S
Journal of Glaucoma 2019; 28: 1029-1034 (IGR: 20-3)


81195 Intereye Comparison of Lamina Cribrosa Curvature in Normal Tension Glaucoma Patients With Unilateral Damage
Kim JM
Investigative Ophthalmology and Visual Science 2019; 60: 2423-2430 (IGR: 20-3)


80914 Robust optic disc and cup segmentation with deep learning for glaucoma detection
Kanagasingam Y
Computerized Medical Imaging and Graphics 2019; 74: 61-71 (IGR: 20-3)


81146 Machine Learning in the Detection of the Glaucomatous Disc and Visual Field
Pasquale LR
Seminars in Ophthalmology 2019; 34: 232-242 (IGR: 20-3)


80823 Swept-Source OCT for Evaluating the Lamina Cribrosa: A Report by the American Academy of Ophthalmology
Radhakrishnan S
Ophthalmology 2019; 126: 1315-1323 (IGR: 20-3)


80946 Changes in the Anterior Lamina Cribrosa Morphology with Glaucoma Severity
Baskaran M
Scientific reports 2019; 9: 6612 (IGR: 20-3)


80461 Association Between Lamina Cribrosa Defects and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Penteado RC
JAMA ophthalmology 2019; 137: 425-433 (IGR: 20-3)


81050 OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness and Minimum Cross-Sectional Area in Healthy Eyes
Hardin C
American Journal of Ophthalmology 2019; 0: (IGR: 20-3)


81204 An association between large optic nerve cupping and cognitive function
Klein BE
American Journal of Ophthalmology 2019; 206: 40-47 (IGR: 20-3)


80913 JointRCNN: A Region-based Convolutional Neural Network for Optic Disc and Cup Segmentation
Xia H
IEEE Transactions on Bio-Medical Engineering 2020; 67: 335-343 (IGR: 20-3)


80915 Optic Nerve Lipidomics Reveal Impaired Glucosylsphingosine Lipids Pathway in Glaucoma
Bhattacharya SK
Investigative Ophthalmology and Visual Science 2019; 60: 1789-1798 (IGR: 20-3)


80537 Optic Nerve Head Perfusion Before and After Intravitreal Antivascular Growth Factor Injections Using Optical Coherence Tomography-based Microangiography
Vemulakonda A
Journal of Glaucoma 2019; 28: 188-193 (IGR: 20-3)


81330 Evaluation of a Deep Learning System for Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs
Gong D
Journal of Glaucoma 2019; 28: 1029-1034 (IGR: 20-3)


81422 Two-year analysis of changes in the optic nerve and retina following anti-VEGF treatments in diabetic macular edema patients
Chakrabarti S
Clinical Ophthalmology 2019; 13: 1087-1096 (IGR: 20-3)


81195 Intereye Comparison of Lamina Cribrosa Curvature in Normal Tension Glaucoma Patients With Unilateral Damage
Girard MJA
Investigative Ophthalmology and Visual Science 2019; 60: 2423-2430 (IGR: 20-3)


80962 Comparison of the clinical estimation of cup-to-disk ratio by direct ophthalmoscopy and optical coherence tomography
Atuahene J
Therapeutic advances in ophthalmology 2019; 11: 2515841419827268 (IGR: 20-3)


80516 Racioethnic differences in the biomechanical response of the lamina cribrosa
Danford F
Acta biomaterialia 2019; 88: 131-140 (IGR: 20-3)


81297 Associations between changes in radial peripapillary capillaries and occurrence of disc hemorrhage in normal-tension glaucoma
Yamada Y
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 1963-1970 (IGR: 20-3)


81157 Spontaneous focal lamina cribrosa defect in glaucoma and its relationship with nonprogressive glaucomatous neuropathy
Pang RQ
Chinese Journal of Ophthalmology 2019; 55: 338-346 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Hasenstab KA
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


80774 Comparison of Spectralis and Cirrus spectral domain optical coherence tomography for the objective morphometric assessment of the neuroretinal rim width
Urach S
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 1265-1275 (IGR: 20-3)


81308 Size and Shape of Bruch's Membrane Opening in Relationship to Axial Length, Gamma Zone, and Macular Bruch's Membrane Defects
Jonas JB
Investigative Ophthalmology and Visual Science 2019; 60: 2591-2598 (IGR: 20-3)


81438 Identifying the Critical Factors Governing Translaminar Pressure Differential Through a Compartmental Model
Kuznetsov AV
Investigative Ophthalmology and Visual Science 2019; 60: 3204-3214 (IGR: 20-3)


80833 Comparison of the Lamina Cribrosa Measurements Obtained by Spectral-Domain and Swept-Source Optical Coherence Tomography
Pasaoglu I
Current Eye Research 2019; 44: 968-974 (IGR: 20-3)


80958 Optic Disc Microhemorrhage in Primary Open-Angle Glaucoma: Clinical Implications for Visual Field Progression
Jeoung JW
Investigative Ophthalmology and Visual Science 2019; 60: 1824-1832 (IGR: 20-3)


80501 Utility of multicolor optic disc photography in evaluation of glaucomatous optic disc in myopic eyes: A novel approach
Roy R
Indian Journal of Ophthalmology 2019; 67: 412-414 (IGR: 20-3)


80973 Determining Optic Nerve Cupping Using Optical Coherence Tomography (OCT) Versus a New Electronic Mobile Device
Rios MFR
Journal of Glaucoma 2019; 28: 398-403 (IGR: 20-3)


80917 Association between focal lamina cribrosa defects and optic disc haemorrhage in glaucoma
Morgan WH
British Journal of Ophthalmology 2020; 104: 98-103 (IGR: 20-3)


80919 Effects of chronic elevated intraocular pressure on parameters of optical coherence tomography in rhesus monkeys
Zhu YT
International Journal of Ophthalmology 2019; 12: 542-548 (IGR: 20-3)


80552 Border Tissue Morphology Is Spatially Associated with Focal Lamina Cribrosa Defect and Deep-Layer Microvasculature Dropout in Open-Angle Glaucoma
Kee C
American Journal of Ophthalmology 2019; 203: 89-102 (IGR: 20-3)


81058 Relationship between lamina cribrosa curvature and the microvasculature in treatment-naïve eyes
Mari JM
British Journal of Ophthalmology 2019; 0: (IGR: 20-3)


80659 Frequencies of 4 Distinct Patterns of Glaucomatous Disc Appearance and Their Clinical Associations in Japanese Population-based Studies
Yamamoto T
Journal of Glaucoma 2019; 28: 487-492 (IGR: 20-3)


81431 Detection and characterisation of optic nerve and retinal changes in primary congenital glaucoma using hand-held optical coherence tomography
Proudlock FA
BMJ open ophthalmology 2019; 4: e000194 (IGR: 20-3)


81084 Reproducibility of minimum rim width and retinal nerve fibre layer thickness using the Anatomic Positioning System in glaucoma patients
Fudemberg SJ
Canadian Journal of Ophthalmology 2019; 54: 335-341 (IGR: 20-3)


81330 Evaluation of a Deep Learning System for Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs
Garg A
Journal of Glaucoma 2019; 28: 1029-1034 (IGR: 20-3)


80946 Changes in the Anterior Lamina Cribrosa Morphology with Glaucoma Severity
Tan MCL
Scientific reports 2019; 9: 6612 (IGR: 20-3)


80973 Determining Optic Nerve Cupping Using Optical Coherence Tomography (OCT) Versus a New Electronic Mobile Device
Domingues TAL
Journal of Glaucoma 2019; 28: 398-403 (IGR: 20-3)


80774 Comparison of Spectralis and Cirrus spectral domain optical coherence tomography for the objective morphometric assessment of the neuroretinal rim width
Kiss B
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 1265-1275 (IGR: 20-3)


80962 Comparison of the clinical estimation of cup-to-disk ratio by direct ophthalmoscopy and optical coherence tomography
Akowuah PK
Therapeutic advances in ophthalmology 2019; 11: 2515841419827268 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Hou H
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


80461 Association Between Lamina Cribrosa Defects and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Hou H
JAMA ophthalmology 2019; 137: 425-433 (IGR: 20-3)


80516 Racioethnic differences in the biomechanical response of the lamina cribrosa
Howerton S
Acta biomaterialia 2019; 88: 131-140 (IGR: 20-3)


81084 Reproducibility of minimum rim width and retinal nerve fibre layer thickness using the Anatomic Positioning System in glaucoma patients
Mantravadi AV
Canadian Journal of Ophthalmology 2019; 54: 335-341 (IGR: 20-3)


81438 Identifying the Critical Factors Governing Translaminar Pressure Differential Through a Compartmental Model
Grace L
Investigative Ophthalmology and Visual Science 2019; 60: 3204-3214 (IGR: 20-3)


80833 Comparison of the Lamina Cribrosa Measurements Obtained by Spectral-Domain and Swept-Source Optical Coherence Tomography
Basarir B
Current Eye Research 2019; 44: 968-974 (IGR: 20-3)


81050 OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness and Minimum Cross-Sectional Area in Healthy Eyes
Sharpe GP
American Journal of Ophthalmology 2019; 0: (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Hou H
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


80919 Effects of chronic elevated intraocular pressure on parameters of optical coherence tomography in rhesus monkeys
Zhuo YH
International Journal of Ophthalmology 2019; 12: 542-548 (IGR: 20-3)


80537 Optic Nerve Head Perfusion Before and After Intravitreal Antivascular Growth Factor Injections Using Optical Coherence Tomography-based Microangiography
Luttrell I
Journal of Glaucoma 2019; 28: 188-193 (IGR: 20-3)


80461 Association Between Lamina Cribrosa Defects and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Hou H
JAMA ophthalmology 2019; 137: 425-433 (IGR: 20-3)


80501 Utility of multicolor optic disc photography in evaluation of glaucomatous optic disc in myopic eyes: A novel approach
Saurabh K
Indian Journal of Ophthalmology 2019; 67: 412-414 (IGR: 20-3)


81204 An association between large optic nerve cupping and cognitive function
Meuer SM
American Journal of Ophthalmology 2019; 206: 40-47 (IGR: 20-3)


81431 Detection and characterisation of optic nerve and retinal changes in primary congenital glaucoma using hand-held optical coherence tomography
Abbott J
BMJ open ophthalmology 2019; 4: e000194 (IGR: 20-3)


80823 Swept-Source OCT for Evaluating the Lamina Cribrosa: A Report by the American Academy of Ophthalmology
Chen TC
Ophthalmology 2019; 126: 1315-1323 (IGR: 20-3)


81195 Intereye Comparison of Lamina Cribrosa Curvature in Normal Tension Glaucoma Patients With Unilateral Damage
Mari JM
Investigative Ophthalmology and Visual Science 2019; 60: 2423-2430 (IGR: 20-3)


80913 JointRCNN: A Region-based Convolutional Neural Network for Optic Disc and Cup Segmentation
Fu H
IEEE Transactions on Bio-Medical Engineering 2020; 67: 335-343 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Hou H
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


81157 Spontaneous focal lamina cribrosa defect in glaucoma and its relationship with nonprogressive glaucomatous neuropathy
Zhang X
Chinese Journal of Ophthalmology 2019; 55: 338-346 (IGR: 20-3)


80461 Association Between Lamina Cribrosa Defects and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Hou H
JAMA ophthalmology 2019; 137: 425-433 (IGR: 20-3)


81422 Two-year analysis of changes in the optic nerve and retina following anti-VEGF treatments in diabetic macular edema patients
Hutnik CM
Clinical Ophthalmology 2019; 13: 1087-1096 (IGR: 20-3)


81330 Evaluation of a Deep Learning System for Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs
Gopal K
Journal of Glaucoma 2019; 28: 1029-1034 (IGR: 20-3)


80946 Changes in the Anterior Lamina Cribrosa Morphology with Glaucoma Severity
Mari JM
Scientific reports 2019; 9: 6612 (IGR: 20-3)


81431 Detection and characterisation of optic nerve and retinal changes in primary congenital glaucoma using hand-held optical coherence tomography
Gottlob I
BMJ open ophthalmology 2019; 4: e000194 (IGR: 20-3)


80537 Optic Nerve Head Perfusion Before and After Intravitreal Antivascular Growth Factor Injections Using Optical Coherence Tomography-based Microangiography
Wang RK
Journal of Glaucoma 2019; 28: 188-193 (IGR: 20-3)


81330 Evaluation of a Deep Learning System for Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs
Gopal K
Journal of Glaucoma 2019; 28: 1029-1034 (IGR: 20-3)


80516 Racioethnic differences in the biomechanical response of the lamina cribrosa
Ram S
Acta biomaterialia 2019; 88: 131-140 (IGR: 20-3)


81050 OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness and Minimum Cross-Sectional Area in Healthy Eyes
Caprioli J
American Journal of Ophthalmology 2019; 0: (IGR: 20-3)


80833 Comparison of the Lamina Cribrosa Measurements Obtained by Spectral-Domain and Swept-Source Optical Coherence Tomography
Solmaz B
Current Eye Research 2019; 44: 968-974 (IGR: 20-3)


80913 JointRCNN: A Region-based Convolutional Neural Network for Optic Disc and Cup Segmentation
Li C
IEEE Transactions on Bio-Medical Engineering 2020; 67: 335-343 (IGR: 20-3)


81084 Reproducibility of minimum rim width and retinal nerve fibre layer thickness using the Anatomic Positioning System in glaucoma patients
Katz LJ
Canadian Journal of Ophthalmology 2019; 54: 335-341 (IGR: 20-3)


80461 Association Between Lamina Cribrosa Defects and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Hasenstab K
JAMA ophthalmology 2019; 137: 425-433 (IGR: 20-3)


80774 Comparison of Spectralis and Cirrus spectral domain optical coherence tomography for the objective morphometric assessment of the neuroretinal rim width
Hommer A
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 1265-1275 (IGR: 20-3)


81204 An association between large optic nerve cupping and cognitive function
Rapp SR
American Journal of Ophthalmology 2019; 206: 40-47 (IGR: 20-3)


80973 Determining Optic Nerve Cupping Using Optical Coherence Tomography (OCT) Versus a New Electronic Mobile Device
Paula JS
Journal of Glaucoma 2019; 28: 398-403 (IGR: 20-3)


81157 Spontaneous focal lamina cribrosa defect in glaucoma and its relationship with nonprogressive glaucomatous neuropathy
Cao K
Chinese Journal of Ophthalmology 2019; 55: 338-346 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Penteado RC
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


80962 Comparison of the clinical estimation of cup-to-disk ratio by direct ophthalmoscopy and optical coherence tomography
Djeagbo PT
Therapeutic advances in ophthalmology 2019; 11: 2515841419827268 (IGR: 20-3)


80537 Optic Nerve Head Perfusion Before and After Intravitreal Antivascular Growth Factor Injections Using Optical Coherence Tomography-based Microangiography
Chen PP
Journal of Glaucoma 2019; 28: 188-193 (IGR: 20-3)


80516 Racioethnic differences in the biomechanical response of the lamina cribrosa
Rodríguez JJ
Acta biomaterialia 2019; 88: 131-140 (IGR: 20-3)


81050 OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness and Minimum Cross-Sectional Area in Healthy Eyes
Demirel S
American Journal of Ophthalmology 2019; 0: (IGR: 20-3)


80913 JointRCNN: A Region-based Convolutional Neural Network for Optic Disc and Cup Segmentation
Liu J
IEEE Transactions on Bio-Medical Engineering 2020; 67: 335-343 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Manalastas PIC
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


80962 Comparison of the clinical estimation of cup-to-disk ratio by direct ophthalmoscopy and optical coherence tomography
Baafi R
Therapeutic advances in ophthalmology 2019; 11: 2515841419827268 (IGR: 20-3)


80973 Determining Optic Nerve Cupping Using Optical Coherence Tomography (OCT) Versus a New Electronic Mobile Device
Lira RPC
Journal of Glaucoma 2019; 28: 398-403 (IGR: 20-3)


80774 Comparison of Spectralis and Cirrus spectral domain optical coherence tomography for the objective morphometric assessment of the neuroretinal rim width
Vass C
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 1265-1275 (IGR: 20-3)


80946 Changes in the Anterior Lamina Cribrosa Morphology with Glaucoma Severity
Strouthidis NG
Scientific reports 2019; 9: 6612 (IGR: 20-3)


81157 Spontaneous focal lamina cribrosa defect in glaucoma and its relationship with nonprogressive glaucomatous neuropathy
Tian N
Chinese Journal of Ophthalmology 2019; 55: 338-346 (IGR: 20-3)


80461 Association Between Lamina Cribrosa Defects and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Ghahari E
JAMA ophthalmology 2019; 137: 425-433 (IGR: 20-3)


81084 Reproducibility of minimum rim width and retinal nerve fibre layer thickness using the Anatomic Positioning System in glaucoma patients
Waisbourd M
Canadian Journal of Ophthalmology 2019; 54: 335-341 (IGR: 20-3)


81204 An association between large optic nerve cupping and cognitive function
Haan MN
American Journal of Ophthalmology 2019; 206: 40-47 (IGR: 20-3)


81330 Evaluation of a Deep Learning System for Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs
Patel V
Journal of Glaucoma 2019; 28: 1029-1034 (IGR: 20-3)


81050 OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness and Minimum Cross-Sectional Area in Healthy Eyes
Girkin CA
American Journal of Ophthalmology 2019; 0: (IGR: 20-3)


80461 Association Between Lamina Cribrosa Defects and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Bowd C
JAMA ophthalmology 2019; 137: 425-433 (IGR: 20-3)


80516 Racioethnic differences in the biomechanical response of the lamina cribrosa
Utzinger U
Acta biomaterialia 2019; 88: 131-140 (IGR: 20-3)


81157 Spontaneous focal lamina cribrosa defect in glaucoma and its relationship with nonprogressive glaucomatous neuropathy
Wang HZ
Chinese Journal of Ophthalmology 2019; 55: 338-346 (IGR: 20-3)


81330 Evaluation of a Deep Learning System for Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs
Sameer T
Journal of Glaucoma 2019; 28: 1029-1034 (IGR: 20-3)


80774 Comparison of Spectralis and Cirrus spectral domain optical coherence tomography for the objective morphometric assessment of the neuroretinal rim width
Schmidt-Erfurth U
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 1265-1275 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Moghimi S
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


80946 Changes in the Anterior Lamina Cribrosa Morphology with Glaucoma Severity
Aung T
Scientific reports 2019; 9: 6612 (IGR: 20-3)


81204 An association between large optic nerve cupping and cognitive function
Maki PM
American Journal of Ophthalmology 2019; 206: 40-47 (IGR: 20-3)


81157 Spontaneous focal lamina cribrosa defect in glaucoma and its relationship with nonprogressive glaucomatous neuropathy
Zhang C
Chinese Journal of Ophthalmology 2019; 55: 338-346 (IGR: 20-3)


80946 Changes in the Anterior Lamina Cribrosa Morphology with Glaucoma Severity
Girard MJA
Scientific reports 2019; 9: 6612 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Shoji T
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


80461 Association Between Lamina Cribrosa Defects and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Weinreb RN
JAMA ophthalmology 2019; 137: 425-433 (IGR: 20-3)


81330 Evaluation of a Deep Learning System for Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs
Rogers TW
Journal of Glaucoma 2019; 28: 1029-1034 (IGR: 20-3)


81050 OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness and Minimum Cross-Sectional Area in Healthy Eyes
Liebmann JM
American Journal of Ophthalmology 2019; 0: (IGR: 20-3)


80516 Racioethnic differences in the biomechanical response of the lamina cribrosa
Girkin CA; Vande Geest JP
Acta biomaterialia 2019; 88: 131-140 (IGR: 20-3)


81157 Spontaneous focal lamina cribrosa defect in glaucoma and its relationship with nonprogressive glaucomatous neuropathy
Wang NL
Chinese Journal of Ophthalmology 2019; 55: 338-346 (IGR: 20-3)


81050 OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness and Minimum Cross-Sectional Area in Healthy Eyes
Mardin CY
American Journal of Ophthalmology 2019; 0: (IGR: 20-3)


80946 Changes in the Anterior Lamina Cribrosa Morphology with Glaucoma Severity
Cheng CY
Scientific reports 2019; 9: 6612 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Christopher M
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


81330 Evaluation of a Deep Learning System for Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs
Nicolas J; De Moraes CG
Journal of Glaucoma 2019; 28: 1029-1034 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Yarmohammadi A
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


81050 OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness and Minimum Cross-Sectional Area in Healthy Eyes
Quigley HA
American Journal of Ophthalmology 2019; 0: (IGR: 20-3)


81330 Evaluation of a Deep Learning System for Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs
Moazami G
Journal of Glaucoma 2019; 28: 1029-1034 (IGR: 20-3)


81050 OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness and Minimum Cross-Sectional Area in Healthy Eyes
Scheuerle AF
American Journal of Ophthalmology 2019; 0: (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Weinreb RN
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


81050 OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness and Minimum Cross-Sectional Area in Healthy Eyes
Fortune B; Chauhan BC; Burgoyne CF
American Journal of Ophthalmology 2019; 0: (IGR: 20-3)


79931 Changes in choroidal thickness and optic nerve head morphology after filtering surgery: nonpenetrating deep sclerectomy versus trabeculectomy
Bouillot A
BMC Ophthalmology 2019; 19: 24 (IGR: 20-2)


79932 Optic Nerve Head Astrocytes Display Axon-Dependent and -Independent Reactivity in Response to Acutely Elevated Intraocular Pressure
Tehrani S
Investigative Ophthalmology and Visual Science 2019; 60: 312-321 (IGR: 20-2)


79698 Influence of uveitis on Bruch's membrane opening minimum rim width and retinal nerve fibre layer thickness measurements
Kriegel MF
British Journal of Ophthalmology 2019; 103: 1413-1417 (IGR: 20-2)


79439 A Unified Optic Nerve Head and Optic Cup Segmentation Using Unsupervised Neural Networks for Glaucoma Screening
Ghassabi Z
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2018; 2018: 5942-5945 (IGR: 20-2)


80006 Non-physician grader reliability in measuring morphological features of the optic nerve head in stereo digital images
Addis V
Eye 2019; 33: 838-844 (IGR: 20-2)


79703 Myopic optic disc changes and its role in glaucoma
Tan NYQ
Current Opinions in Ophthalmology 2019; 30: 89-96 (IGR: 20-2)


79420 Age related changes of the central lamina cribrosa thickness, depth and prelaminar tissue in healthy Chinese subjects
Xiao H
International Journal of Ophthalmology 2018; 11: 1842-1847 (IGR: 20-2)


79399 Sonographic Assessment of Optic Disc Cupping and its Diagnostic Performance in Glaucoma
Chaurasia S
Journal of Glaucoma 2019; 28: 131-138 (IGR: 20-2)


79441 Optic Disc and Cup Segmentation with Blood Vessel Removal from Fundus Images for Glaucoma Detection
Jiang Y
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2018; 2018: 862-865 (IGR: 20-2)


79343 Impact of ab-interno trabeculectomy on Bruch's membrane opening-based morphometry of the optic nerve head for glaucoma progression analysis
Kiessling D
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 339-347 (IGR: 20-2)


79498 Relationship between the rate of change in lamina cribrosa depth and the rate of retinal nerve fiber layer thinning following glaucoma surgery
Krzyżanowska-Berkowska P
PLoS ONE 2018; 13: e0206040 (IGR: 20-2)


79736 Relationship between Progressive Changes in Lamina Cribrosa Depth and Deterioration of Visual Field Loss in Glaucomatous Eyes
Kim YN
Korean Journal of Ophthalmology 2018; 32: 470-477 (IGR: 20-2)


79560 Lamina Cribrosa Morphology in Glaucomatous Eyes with Hemifield Defect in a Korean Population
Kim JA
Ophthalmology 2019; 126: 692-701 (IGR: 20-2)


79898 Screening Glaucoma With Red-free Fundus Photography Using Deep Learning Classifier and Polar Transformation
Lee J
Journal of Glaucoma 2019; 28: 258-264 (IGR: 20-2)


79591 Automatic Assessment of Biometric Parameters in Optic Nerve Head Area by "Zhongshan ONH Calculator (ZOC)"
Li F
Current Eye Research 2019; 44: 551-557 (IGR: 20-2)


79447 The function-structure impairment pattern of optic nerves in primary open-angle glaucoma and normal-tension glaucoma
Wang XM
Chinese Journal of Ophthalmology 2018; 54: 811-819 (IGR: 20-2)


79546 The relationship between optic nerve head deformation and visual field defects in myopic eyes with primary open-angle glaucoma
Hung CH
PLoS ONE 2018; 13: e0209755 (IGR: 20-2)


79782 Short-term Optic Disc Cupping Reversal in a Patient With Mild Juvenile Open-angle Glaucoma Due to Early Idiopathic Intracranial Hypertension
Umfress AC
Journal of Glaucoma 2019; 28: e53-e57 (IGR: 20-2)


79577 Microvasculature of the Optic Nerve Head and Peripapillary Region in Patients With Primary Open-Angle Glaucoma
Nascimento E Silva R
Journal of Glaucoma 2019; 28: 281-288 (IGR: 20-2)


79598 From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs
Medeiros FA
Ophthalmology 2019; 126: 513-521 (IGR: 20-2)


79674 Linear discriminant score for differentiating early primary open angle glaucoma from glaucoma suspects
Deshpande GA
Indian Journal of Ophthalmology 2019; 67: 75-81 (IGR: 20-2)


79503 Anatomical Characterization of an Optic Disc Notch Using SD-OCT in Glaucoma
Rao A
Seminars in Ophthalmology 2018; 33: 878-885 (IGR: 20-2)


79380 Clinical relevance of protruded retinal layers in minimum rim width measurement of the optic nerve head
Torres LA
British Journal of Ophthalmology 2019; 103: 1401-1405 (IGR: 20-2)


79397 Pilot study for three-dimensional assessment of laminar pore structure in patients with glaucoma, as measured with swept source optical coherence tomography
Omodaka K
PLoS ONE 2018; 13: e0207600 (IGR: 20-2)


80032 The Relationship Between Interocular Asymmetry of Visual Field Defects and Optic Nerve Head Blood Flow in Patients With Glaucoma
Yamada Y
Journal of Glaucoma 2019; 28: 231-237 (IGR: 20-2)


79863 A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc Photographs
Thompson AC
American Journal of Ophthalmology 2019; 201: 9-18 (IGR: 20-2)


80031 The Effects of Optic Nerve Head Tilt on Visual Field Defects in Myopic Normal Tension Glaucoma: The Intereye Comparison Study
Choi JH
Journal of Glaucoma 2019; 28: 341-346 (IGR: 20-2)


80065 The association between prelaminar tissue thickness and peripapillary choroidal thickness in untreated normal-tension glaucoma patients
Park JH
Medicine 2019; 98: e14044 (IGR: 20-2)


79392 The impact of disc hemorrhage studies on our understanding of glaucoma: a systematic review 50 years after the rediscovery of disc hemorrhage
Yamamoto T
Japanese Journal of Ophthalmology 2019; 63: 7-25 (IGR: 20-2)


80029 Optical Coherence Tomography Angiography of Optic Disc in Eyes With Primary Open-angle Glaucoma and Normal-tension Glaucoma
Toshev AP
Journal of Glaucoma 2019; 28: 243-251 (IGR: 20-2)


79745 Reduced Cerebrospinal Fluid Inflow to the Optic Nerve in Glaucoma
Mathieu E
Investigative Ophthalmology and Visual Science 2018; 59: 5876-5884 (IGR: 20-2)


79598 From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs
Jammal AA
Ophthalmology 2019; 126: 513-521 (IGR: 20-2)


79498 Relationship between the rate of change in lamina cribrosa depth and the rate of retinal nerve fiber layer thinning following glaucoma surgery
Czajor K
PLoS ONE 2018; 13: e0206040 (IGR: 20-2)


80031 The Effects of Optic Nerve Head Tilt on Visual Field Defects in Myopic Normal Tension Glaucoma: The Intereye Comparison Study
Han JC
Journal of Glaucoma 2019; 28: 341-346 (IGR: 20-2)


80065 The association between prelaminar tissue thickness and peripapillary choroidal thickness in untreated normal-tension glaucoma patients
Yoo C
Medicine 2019; 98: e14044 (IGR: 20-2)


79577 Microvasculature of the Optic Nerve Head and Peripapillary Region in Patients With Primary Open-Angle Glaucoma
Chiou CA
Journal of Glaucoma 2019; 28: 281-288 (IGR: 20-2)


80029 Optical Coherence Tomography Angiography of Optic Disc in Eyes With Primary Open-angle Glaucoma and Normal-tension Glaucoma
Schuster AK
Journal of Glaucoma 2019; 28: 243-251 (IGR: 20-2)


79782 Short-term Optic Disc Cupping Reversal in a Patient With Mild Juvenile Open-angle Glaucoma Due to Early Idiopathic Intracranial Hypertension
Mawn LA
Journal of Glaucoma 2019; 28: e53-e57 (IGR: 20-2)


79698 Influence of uveitis on Bruch's membrane opening minimum rim width and retinal nerve fibre layer thickness measurements
Heiligenhaus A
British Journal of Ophthalmology 2019; 103: 1413-1417 (IGR: 20-2)


80006 Non-physician grader reliability in measuring morphological features of the optic nerve head in stereo digital images
Oyeniran E
Eye 2019; 33: 838-844 (IGR: 20-2)


79546 The relationship between optic nerve head deformation and visual field defects in myopic eyes with primary open-angle glaucoma
Lee SH
PLoS ONE 2018; 13: e0209755 (IGR: 20-2)


79441 Optic Disc and Cup Segmentation with Blood Vessel Removal from Fundus Images for Glaucoma Detection
Xia H
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2018; 2018: 862-865 (IGR: 20-2)


79674 Linear discriminant score for differentiating early primary open angle glaucoma from glaucoma suspects
Bawankule PK
Indian Journal of Ophthalmology 2019; 67: 75-81 (IGR: 20-2)


79703 Myopic optic disc changes and its role in glaucoma
Sng CCA
Current Opinions in Ophthalmology 2019; 30: 89-96 (IGR: 20-2)


79380 Clinical relevance of protruded retinal layers in minimum rim width measurement of the optic nerve head
Jarrar F
British Journal of Ophthalmology 2019; 103: 1401-1405 (IGR: 20-2)


79863 A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc Photographs
Jammal AA
American Journal of Ophthalmology 2019; 201: 9-18 (IGR: 20-2)


80032 The Relationship Between Interocular Asymmetry of Visual Field Defects and Optic Nerve Head Blood Flow in Patients With Glaucoma
Higashide T
Journal of Glaucoma 2019; 28: 231-237 (IGR: 20-2)


79399 Sonographic Assessment of Optic Disc Cupping and its Diagnostic Performance in Glaucoma
Garg R
Journal of Glaucoma 2019; 28: 131-138 (IGR: 20-2)


79932 Optic Nerve Head Astrocytes Display Axon-Dependent and -Independent Reactivity in Response to Acutely Elevated Intraocular Pressure
Davis L
Investigative Ophthalmology and Visual Science 2019; 60: 312-321 (IGR: 20-2)


79736 Relationship between Progressive Changes in Lamina Cribrosa Depth and Deterioration of Visual Field Loss in Glaucomatous Eyes
Shin JW
Korean Journal of Ophthalmology 2018; 32: 470-477 (IGR: 20-2)


79503 Anatomical Characterization of an Optic Disc Notch Using SD-OCT in Glaucoma
Kaza H
Seminars in Ophthalmology 2018; 33: 878-885 (IGR: 20-2)


79898 Screening Glaucoma With Red-free Fundus Photography Using Deep Learning Classifier and Polar Transformation
Kim Y
Journal of Glaucoma 2019; 28: 258-264 (IGR: 20-2)


79931 Changes in choroidal thickness and optic nerve head morphology after filtering surgery: nonpenetrating deep sclerectomy versus trabeculectomy
Pierru A
BMC Ophthalmology 2019; 19: 24 (IGR: 20-2)


79447 The function-structure impairment pattern of optic nerves in primary open-angle glaucoma and normal-tension glaucoma
Sun XH
Chinese Journal of Ophthalmology 2018; 54: 811-819 (IGR: 20-2)


79343 Impact of ab-interno trabeculectomy on Bruch's membrane opening-based morphometry of the optic nerve head for glaucoma progression analysis
Christ H
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 339-347 (IGR: 20-2)


79745 Reduced Cerebrospinal Fluid Inflow to the Optic Nerve in Glaucoma
Gupta N
Investigative Ophthalmology and Visual Science 2018; 59: 5876-5884 (IGR: 20-2)


79439 A Unified Optic Nerve Head and Optic Cup Segmentation Using Unsupervised Neural Networks for Glaucoma Screening
Shanbehzadeh J
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2018; 2018: 5942-5945 (IGR: 20-2)


79591 Automatic Assessment of Biometric Parameters in Optic Nerve Head Area by "Zhongshan ONH Calculator (ZOC)"
Yu K
Current Eye Research 2019; 44: 551-557 (IGR: 20-2)


79560 Lamina Cribrosa Morphology in Glaucomatous Eyes with Hemifield Defect in a Korean Population
Kim TW
Ophthalmology 2019; 126: 692-701 (IGR: 20-2)


79397 Pilot study for three-dimensional assessment of laminar pore structure in patients with glaucoma, as measured with swept source optical coherence tomography
Maekawa S
PLoS ONE 2018; 13: e0207600 (IGR: 20-2)


79420 Age related changes of the central lamina cribrosa thickness, depth and prelaminar tissue in healthy Chinese subjects
Xu XY
International Journal of Ophthalmology 2018; 11: 1842-1847 (IGR: 20-2)


79441 Optic Disc and Cup Segmentation with Blood Vessel Removal from Fundus Images for Glaucoma Detection
Xu Y
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2018; 2018: 862-865 (IGR: 20-2)


79343 Impact of ab-interno trabeculectomy on Bruch's membrane opening-based morphometry of the optic nerve head for glaucoma progression analysis
Gietzelt C
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 339-347 (IGR: 20-2)


79546 The relationship between optic nerve head deformation and visual field defects in myopic eyes with primary open-angle glaucoma
Lin SY
PLoS ONE 2018; 13: e0209755 (IGR: 20-2)


79863 A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc Photographs
Medeiros FA
American Journal of Ophthalmology 2019; 201: 9-18 (IGR: 20-2)


79577 Microvasculature of the Optic Nerve Head and Peripapillary Region in Patients With Primary Open-Angle Glaucoma
Wang M
Journal of Glaucoma 2019; 28: 281-288 (IGR: 20-2)


79399 Sonographic Assessment of Optic Disc Cupping and its Diagnostic Performance in Glaucoma
Beri S
Journal of Glaucoma 2019; 28: 131-138 (IGR: 20-2)


79745 Reduced Cerebrospinal Fluid Inflow to the Optic Nerve in Glaucoma
Paczka-Giorgi LA
Investigative Ophthalmology and Visual Science 2018; 59: 5876-5884 (IGR: 20-2)


79598 From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs
Thompson AC
Ophthalmology 2019; 126: 513-521 (IGR: 20-2)


79447 The function-structure impairment pattern of optic nerves in primary open-angle glaucoma and normal-tension glaucoma
Dai Y
Chinese Journal of Ophthalmology 2018; 54: 811-819 (IGR: 20-2)


79380 Clinical relevance of protruded retinal layers in minimum rim width measurement of the optic nerve head
Sharpe GP
British Journal of Ophthalmology 2019; 103: 1401-1405 (IGR: 20-2)


80031 The Effects of Optic Nerve Head Tilt on Visual Field Defects in Myopic Normal Tension Glaucoma: The Intereye Comparison Study
Kee C
Journal of Glaucoma 2019; 28: 341-346 (IGR: 20-2)


80065 The association between prelaminar tissue thickness and peripapillary choroidal thickness in untreated normal-tension glaucoma patients
Jung JH
Medicine 2019; 98: e14044 (IGR: 20-2)


79439 A Unified Optic Nerve Head and Optic Cup Segmentation Using Unsupervised Neural Networks for Glaucoma Screening
Nouri-Mahdavi K
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2018; 2018: 5942-5945 (IGR: 20-2)


79503 Anatomical Characterization of an Optic Disc Notch Using SD-OCT in Glaucoma
Padhy D
Seminars in Ophthalmology 2018; 33: 878-885 (IGR: 20-2)


80032 The Relationship Between Interocular Asymmetry of Visual Field Defects and Optic Nerve Head Blood Flow in Patients With Glaucoma
Udagawa S
Journal of Glaucoma 2019; 28: 231-237 (IGR: 20-2)


79698 Influence of uveitis on Bruch's membrane opening minimum rim width and retinal nerve fibre layer thickness measurements
Heinz C
British Journal of Ophthalmology 2019; 103: 1413-1417 (IGR: 20-2)


79498 Relationship between the rate of change in lamina cribrosa depth and the rate of retinal nerve fiber layer thinning following glaucoma surgery
Helemejko I
PLoS ONE 2018; 13: e0206040 (IGR: 20-2)


80006 Non-physician grader reliability in measuring morphological features of the optic nerve head in stereo digital images
Daniel E
Eye 2019; 33: 838-844 (IGR: 20-2)


80029 Optical Coherence Tomography Angiography of Optic Disc in Eyes With Primary Open-angle Glaucoma and Normal-tension Glaucoma
Ul Hassan SN
Journal of Glaucoma 2019; 28: 243-251 (IGR: 20-2)


79560 Lamina Cribrosa Morphology in Glaucomatous Eyes with Hemifield Defect in a Korean Population
Lee EJ
Ophthalmology 2019; 126: 692-701 (IGR: 20-2)


79420 Age related changes of the central lamina cribrosa thickness, depth and prelaminar tissue in healthy Chinese subjects
Zhong YM
International Journal of Ophthalmology 2018; 11: 1842-1847 (IGR: 20-2)


79591 Automatic Assessment of Biometric Parameters in Optic Nerve Head Area by "Zhongshan ONH Calculator (ZOC)"
Zhang L
Current Eye Research 2019; 44: 551-557 (IGR: 20-2)


79703 Myopic optic disc changes and its role in glaucoma
Ang M
Current Opinions in Ophthalmology 2019; 30: 89-96 (IGR: 20-2)


79782 Short-term Optic Disc Cupping Reversal in a Patient With Mild Juvenile Open-angle Glaucoma Due to Early Idiopathic Intracranial Hypertension
Joos KM
Journal of Glaucoma 2019; 28: e53-e57 (IGR: 20-2)


79397 Pilot study for three-dimensional assessment of laminar pore structure in patients with glaucoma, as measured with swept source optical coherence tomography
An G
PLoS ONE 2018; 13: e0207600 (IGR: 20-2)


79931 Changes in choroidal thickness and optic nerve head morphology after filtering surgery: nonpenetrating deep sclerectomy versus trabeculectomy
Blumen-Ohana E
BMC Ophthalmology 2019; 19: 24 (IGR: 20-2)


79932 Optic Nerve Head Astrocytes Display Axon-Dependent and -Independent Reactivity in Response to Acutely Elevated Intraocular Pressure
Cepurna WO
Investigative Ophthalmology and Visual Science 2019; 60: 312-321 (IGR: 20-2)


79674 Linear discriminant score for differentiating early primary open angle glaucoma from glaucoma suspects
Raje DV
Indian Journal of Ophthalmology 2019; 67: 75-81 (IGR: 20-2)


79736 Relationship between Progressive Changes in Lamina Cribrosa Depth and Deterioration of Visual Field Loss in Glaucomatous Eyes
Sung KR
Korean Journal of Ophthalmology 2018; 32: 470-477 (IGR: 20-2)


79898 Screening Glaucoma With Red-free Fundus Photography Using Deep Learning Classifier and Polar Transformation
Kim JH
Journal of Glaucoma 2019; 28: 258-264 (IGR: 20-2)


79745 Reduced Cerebrospinal Fluid Inflow to the Optic Nerve in Glaucoma
Zhou X
Investigative Ophthalmology and Visual Science 2018; 59: 5876-5884 (IGR: 20-2)


79591 Automatic Assessment of Biometric Parameters in Optic Nerve Head Area by "Zhongshan ONH Calculator (ZOC)"
Gao K
Current Eye Research 2019; 44: 551-557 (IGR: 20-2)


79674 Linear discriminant score for differentiating early primary open angle glaucoma from glaucoma suspects
Chakraborty M
Indian Journal of Ophthalmology 2019; 67: 75-81 (IGR: 20-2)


79447 The function-structure impairment pattern of optic nerves in primary open-angle glaucoma and normal-tension glaucoma
Kong XM
Chinese Journal of Ophthalmology 2018; 54: 811-819 (IGR: 20-2)


79503 Anatomical Characterization of an Optic Disc Notch Using SD-OCT in Glaucoma
Das G
Seminars in Ophthalmology 2018; 33: 878-885 (IGR: 20-2)


79546 The relationship between optic nerve head deformation and visual field defects in myopic eyes with primary open-angle glaucoma
Lin SL
PLoS ONE 2018; 13: e0209755 (IGR: 20-2)


79898 Screening Glaucoma With Red-free Fundus Photography Using Deep Learning Classifier and Polar Transformation
Park KH
Journal of Glaucoma 2019; 28: 258-264 (IGR: 20-2)


80065 The association between prelaminar tissue thickness and peripapillary choroidal thickness in untreated normal-tension glaucoma patients
Girard MJA
Medicine 2019; 98: e14044 (IGR: 20-2)


79932 Optic Nerve Head Astrocytes Display Axon-Dependent and -Independent Reactivity in Response to Acutely Elevated Intraocular Pressure
Delf RK
Investigative Ophthalmology and Visual Science 2019; 60: 312-321 (IGR: 20-2)


80029 Optical Coherence Tomography Angiography of Optic Disc in Eyes With Primary Open-angle Glaucoma and Normal-tension Glaucoma
Pfeiffer N
Journal of Glaucoma 2019; 28: 243-251 (IGR: 20-2)


79397 Pilot study for three-dimensional assessment of laminar pore structure in patients with glaucoma, as measured with swept source optical coherence tomography
Tsuda S
PLoS ONE 2018; 13: e0207600 (IGR: 20-2)


79420 Age related changes of the central lamina cribrosa thickness, depth and prelaminar tissue in healthy Chinese subjects
Liu X
International Journal of Ophthalmology 2018; 11: 1842-1847 (IGR: 20-2)


79931 Changes in choroidal thickness and optic nerve head morphology after filtering surgery: nonpenetrating deep sclerectomy versus trabeculectomy
Brasnu E
BMC Ophthalmology 2019; 19: 24 (IGR: 20-2)


79343 Impact of ab-interno trabeculectomy on Bruch's membrane opening-based morphometry of the optic nerve head for glaucoma progression analysis
Schaub F
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 339-347 (IGR: 20-2)


79441 Optic Disc and Cup Segmentation with Blood Vessel Removal from Fundus Images for Glaucoma Detection
Cheng J
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2018; 2018: 862-865 (IGR: 20-2)


79577 Microvasculature of the Optic Nerve Head and Peripapillary Region in Patients With Primary Open-Angle Glaucoma
Wang H
Journal of Glaucoma 2019; 28: 281-288 (IGR: 20-2)


79399 Sonographic Assessment of Optic Disc Cupping and its Diagnostic Performance in Glaucoma
Pakhare A
Journal of Glaucoma 2019; 28: 131-138 (IGR: 20-2)


79560 Lamina Cribrosa Morphology in Glaucomatous Eyes with Hemifield Defect in a Korean Population
Girard MJA
Ophthalmology 2019; 126: 692-701 (IGR: 20-2)


79498 Relationship between the rate of change in lamina cribrosa depth and the rate of retinal nerve fiber layer thinning following glaucoma surgery
Iskander DR
PLoS ONE 2018; 13: e0206040 (IGR: 20-2)


79380 Clinical relevance of protruded retinal layers in minimum rim width measurement of the optic nerve head
Hutchison DM
British Journal of Ophthalmology 2019; 103: 1401-1405 (IGR: 20-2)


80006 Non-physician grader reliability in measuring morphological features of the optic nerve head in stereo digital images
Salowe R
Eye 2019; 33: 838-844 (IGR: 20-2)


80032 The Relationship Between Interocular Asymmetry of Visual Field Defects and Optic Nerve Head Blood Flow in Patients With Glaucoma
Takeshima S
Journal of Glaucoma 2019; 28: 231-237 (IGR: 20-2)


79591 Automatic Assessment of Biometric Parameters in Optic Nerve Head Area by "Zhongshan ONH Calculator (ZOC)"
Chen X
Current Eye Research 2019; 44: 551-557 (IGR: 20-2)


79447 The function-structure impairment pattern of optic nerves in primary open-angle glaucoma and normal-tension glaucoma
Chen YH
Chinese Journal of Ophthalmology 2018; 54: 811-819 (IGR: 20-2)


80006 Non-physician grader reliability in measuring morphological features of the optic nerve head in stereo digital images
Zorger R
Eye 2019; 33: 838-844 (IGR: 20-2)


79560 Lamina Cribrosa Morphology in Glaucomatous Eyes with Hemifield Defect in a Korean Population
Mari JM
Ophthalmology 2019; 126: 692-701 (IGR: 20-2)


79931 Changes in choroidal thickness and optic nerve head morphology after filtering surgery: nonpenetrating deep sclerectomy versus trabeculectomy
Baudouin C
BMC Ophthalmology 2019; 19: 24 (IGR: 20-2)


79441 Optic Disc and Cup Segmentation with Blood Vessel Removal from Fundus Images for Glaucoma Detection
Fu H
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2018; 2018: 862-865 (IGR: 20-2)


79380 Clinical relevance of protruded retinal layers in minimum rim width measurement of the optic nerve head
Ferracioli-Oda E
British Journal of Ophthalmology 2019; 103: 1401-1405 (IGR: 20-2)


79397 Pilot study for three-dimensional assessment of laminar pore structure in patients with glaucoma, as measured with swept source optical coherence tomography
Shiga Y
PLoS ONE 2018; 13: e0207600 (IGR: 20-2)


80032 The Relationship Between Interocular Asymmetry of Visual Field Defects and Optic Nerve Head Blood Flow in Patients With Glaucoma
Sakaguchi K
Journal of Glaucoma 2019; 28: 231-237 (IGR: 20-2)


79745 Reduced Cerebrospinal Fluid Inflow to the Optic Nerve in Glaucoma
Ahari A
Investigative Ophthalmology and Visual Science 2018; 59: 5876-5884 (IGR: 20-2)


80065 The association between prelaminar tissue thickness and peripapillary choroidal thickness in untreated normal-tension glaucoma patients
Mari JM
Medicine 2019; 98: e14044 (IGR: 20-2)


79577 Microvasculature of the Optic Nerve Head and Peripapillary Region in Patients With Primary Open-Angle Glaucoma
Shoji MK
Journal of Glaucoma 2019; 28: 281-288 (IGR: 20-2)


79343 Impact of ab-interno trabeculectomy on Bruch's membrane opening-based morphometry of the optic nerve head for glaucoma progression analysis
Dietlein TS
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 339-347 (IGR: 20-2)


79932 Optic Nerve Head Astrocytes Display Axon-Dependent and -Independent Reactivity in Response to Acutely Elevated Intraocular Pressure
Lozano DC
Investigative Ophthalmology and Visual Science 2019; 60: 312-321 (IGR: 20-2)


79546 The relationship between optic nerve head deformation and visual field defects in myopic eyes with primary open-angle glaucoma
Chen YC
PLoS ONE 2018; 13: e0209755 (IGR: 20-2)


80029 Optical Coherence Tomography Angiography of Optic Disc in Eyes With Primary Open-angle Glaucoma and Normal-tension Glaucoma
Hoffmann EM
Journal of Glaucoma 2019; 28: 243-251 (IGR: 20-2)


79503 Anatomical Characterization of an Optic Disc Notch Using SD-OCT in Glaucoma
Sarangi S
Seminars in Ophthalmology 2018; 33: 878-885 (IGR: 20-2)


79397 Pilot study for three-dimensional assessment of laminar pore structure in patients with glaucoma, as measured with swept source optical coherence tomography
Takada N
PLoS ONE 2018; 13: e0207600 (IGR: 20-2)


80006 Non-physician grader reliability in measuring morphological features of the optic nerve head in stereo digital images
Lee R
Eye 2019; 33: 838-844 (IGR: 20-2)


80032 The Relationship Between Interocular Asymmetry of Visual Field Defects and Optic Nerve Head Blood Flow in Patients With Glaucoma
Nitta K
Journal of Glaucoma 2019; 28: 231-237 (IGR: 20-2)


79931 Changes in choroidal thickness and optic nerve head morphology after filtering surgery: nonpenetrating deep sclerectomy versus trabeculectomy
Labbé A
BMC Ophthalmology 2019; 19: 24 (IGR: 20-2)


79591 Automatic Assessment of Biometric Parameters in Optic Nerve Head Area by "Zhongshan ONH Calculator (ZOC)"
Zhang X
Current Eye Research 2019; 44: 551-557 (IGR: 20-2)


79932 Optic Nerve Head Astrocytes Display Axon-Dependent and -Independent Reactivity in Response to Acutely Elevated Intraocular Pressure
Choe TE
Investigative Ophthalmology and Visual Science 2019; 60: 312-321 (IGR: 20-2)


79745 Reduced Cerebrospinal Fluid Inflow to the Optic Nerve in Glaucoma
Lani R
Investigative Ophthalmology and Visual Science 2018; 59: 5876-5884 (IGR: 20-2)


79343 Impact of ab-interno trabeculectomy on Bruch's membrane opening-based morphometry of the optic nerve head for glaucoma progression analysis
Cursiefen C
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 339-347 (IGR: 20-2)


79577 Microvasculature of the Optic Nerve Head and Peripapillary Region in Patients With Primary Open-Angle Glaucoma
Chou JC
Journal of Glaucoma 2019; 28: 281-288 (IGR: 20-2)


79380 Clinical relevance of protruded retinal layers in minimum rim width measurement of the optic nerve head
Hatanaka M
British Journal of Ophthalmology 2019; 103: 1401-1405 (IGR: 20-2)


80065 The association between prelaminar tissue thickness and peripapillary choroidal thickness in untreated normal-tension glaucoma patients
Kim YY
Medicine 2019; 98: e14044 (IGR: 20-2)


79441 Optic Disc and Cup Segmentation with Blood Vessel Removal from Fundus Images for Glaucoma Detection
Duan L
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2018; 2018: 862-865 (IGR: 20-2)


80032 The Relationship Between Interocular Asymmetry of Visual Field Defects and Optic Nerve Head Blood Flow in Patients With Glaucoma
Sugiyama K
Journal of Glaucoma 2019; 28: 231-237 (IGR: 20-2)


79932 Optic Nerve Head Astrocytes Display Axon-Dependent and -Independent Reactivity in Response to Acutely Elevated Intraocular Pressure
Johnson EC
Investigative Ophthalmology and Visual Science 2019; 60: 312-321 (IGR: 20-2)


79343 Impact of ab-interno trabeculectomy on Bruch's membrane opening-based morphometry of the optic nerve head for glaucoma progression analysis
Heindl LM
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 339-347 (IGR: 20-2)


79380 Clinical relevance of protruded retinal layers in minimum rim width measurement of the optic nerve head
Nicolela MT
British Journal of Ophthalmology 2019; 103: 1401-1405 (IGR: 20-2)


79745 Reduced Cerebrospinal Fluid Inflow to the Optic Nerve in Glaucoma
Hanna J
Investigative Ophthalmology and Visual Science 2018; 59: 5876-5884 (IGR: 20-2)


79397 Pilot study for three-dimensional assessment of laminar pore structure in patients with glaucoma, as measured with swept source optical coherence tomography
Kikawa T
PLoS ONE 2018; 13: e0207600 (IGR: 20-2)


79441 Optic Disc and Cup Segmentation with Blood Vessel Removal from Fundus Images for Glaucoma Detection
Meng Z
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2018; 2018: 862-865 (IGR: 20-2)


80006 Non-physician grader reliability in measuring morphological features of the optic nerve head in stereo digital images
Pistilli M
Eye 2019; 33: 838-844 (IGR: 20-2)


79577 Microvasculature of the Optic Nerve Head and Peripapillary Region in Patients With Primary Open-Angle Glaucoma
D'Souza EE
Journal of Glaucoma 2019; 28: 281-288 (IGR: 20-2)


80006 Non-physician grader reliability in measuring morphological features of the optic nerve head in stereo digital images
Maguire M
Eye 2019; 33: 838-844 (IGR: 20-2)


79380 Clinical relevance of protruded retinal layers in minimum rim width measurement of the optic nerve head
Vianna JR
British Journal of Ophthalmology 2019; 103: 1401-1405 (IGR: 20-2)


79397 Pilot study for three-dimensional assessment of laminar pore structure in patients with glaucoma, as measured with swept source optical coherence tomography
Takahashi H
PLoS ONE 2018; 13: e0207600 (IGR: 20-2)


79932 Optic Nerve Head Astrocytes Display Axon-Dependent and -Independent Reactivity in Response to Acutely Elevated Intraocular Pressure
Morrison JC
Investigative Ophthalmology and Visual Science 2019; 60: 312-321 (IGR: 20-2)


79441 Optic Disc and Cup Segmentation with Blood Vessel Removal from Fundus Images for Glaucoma Detection
Liu J
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2018; 2018: 862-865 (IGR: 20-2)


79745 Reduced Cerebrospinal Fluid Inflow to the Optic Nerve in Glaucoma
Yücel YH
Investigative Ophthalmology and Visual Science 2018; 59: 5876-5884 (IGR: 20-2)


79343 Impact of ab-interno trabeculectomy on Bruch's membrane opening-based morphometry of the optic nerve head for glaucoma progression analysis
Enders P
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 339-347 (IGR: 20-2)


79577 Microvasculature of the Optic Nerve Head and Peripapillary Region in Patients With Primary Open-Angle Glaucoma
Greenstein SH
Journal of Glaucoma 2019; 28: 281-288 (IGR: 20-2)


79397 Pilot study for three-dimensional assessment of laminar pore structure in patients with glaucoma, as measured with swept source optical coherence tomography
Yokota H
PLoS ONE 2018; 13: e0207600 (IGR: 20-2)


79380 Clinical relevance of protruded retinal layers in minimum rim width measurement of the optic nerve head
Chauhan BC
British Journal of Ophthalmology 2019; 103: 1401-1405 (IGR: 20-2)


79577 Microvasculature of the Optic Nerve Head and Peripapillary Region in Patients With Primary Open-Angle Glaucoma
Brauner SC
Journal of Glaucoma 2019; 28: 281-288 (IGR: 20-2)


80006 Non-physician grader reliability in measuring morphological features of the optic nerve head in stereo digital images
Cui Q; Miller-Ellis E
Eye 2019; 33: 838-844 (IGR: 20-2)


79577 Microvasculature of the Optic Nerve Head and Peripapillary Region in Patients With Primary Open-Angle Glaucoma
Alves MR
Journal of Glaucoma 2019; 28: 281-288 (IGR: 20-2)


79397 Pilot study for three-dimensional assessment of laminar pore structure in patients with glaucoma, as measured with swept source optical coherence tomography
Akiba M
PLoS ONE 2018; 13: e0207600 (IGR: 20-2)


79577 Microvasculature of the Optic Nerve Head and Peripapillary Region in Patients With Primary Open-Angle Glaucoma
Pasquale LR
Journal of Glaucoma 2019; 28: 281-288 (IGR: 20-2)


80006 Non-physician grader reliability in measuring morphological features of the optic nerve head in stereo digital images
O'Brien JM
Eye 2019; 33: 838-844 (IGR: 20-2)


79397 Pilot study for three-dimensional assessment of laminar pore structure in patients with glaucoma, as measured with swept source optical coherence tomography
Nakazawa T
PLoS ONE 2018; 13: e0207600 (IGR: 20-2)


79577 Microvasculature of the Optic Nerve Head and Peripapillary Region in Patients With Primary Open-Angle Glaucoma
Shen LQ
Journal of Glaucoma 2019; 28: 281-288 (IGR: 20-2)


80006 Non-physician grader reliability in measuring morphological features of the optic nerve head in stereo digital images
Sankar PS
Eye 2019; 33: 838-844 (IGR: 20-2)


79287 Visualization of the Lamina Cribrosa Microvasculature in Normal and Glaucomatous Eyes: A Swept-source Optical Coherence Tomography Angiography Study
Numa S
Journal of Glaucoma 2018; 27: 1032-1035 (IGR: 20-1)


79179 Optic disc features on OCT in glaucomatous and normal black Africans
Vonor K
Journal Français d'Ophtalmologie 2018; 41: 847-851 (IGR: 20-1)


78974 Histological investigation of human glaucomatous eyes: Extracellular fibrotic changes and galectin 3 expression in the trabecular meshwork and optic nerve head
Belmares R
Clinical anatomy (New York, N.Y.) 2018; 31: 1031-1049 (IGR: 20-1)


78856 Three-dimensional surface presentation of optic nerve head from SPECTRALIS OCT images: observing glaucoma patients
Al-Hinnawi AM
International Ophthalmology 2019; 39: 1939-1947 (IGR: 20-1)


79196 Macular versus nerve fibre layer versus optic nerve head imaging for diagnosing glaucoma at different stages of the disease: Multicenter Italian Glaucoma Imaging Study
Michelessi M
Acta Ophthalmologica 2019; 97: e207-e215 (IGR: 20-1)


78429 Peripapillary sclera architecture revisited: A tangential fiber model and its biomechanical implications
Voorhees AP
Acta biomaterialia 2018; 79: 113-122 (IGR: 20-1)


79268 Disc haemorrhages in Polish Caucasian patients with normal tension glaucoma
Kosior-Jarecka E
Acta Ophthalmologica 2019; 97: 68-73 (IGR: 20-1)


79018 The Translaminar Pressure Gradient: Papilledema After Trabeculectomy Treated With Optic Nerve Sheath Fenestration
Radke PM
Journal of Glaucoma 2018; 27: e154-e157 (IGR: 20-1)


78857 Factors associated with lamina cribrosa displacement after trabeculectomy measured by optical coherence tomography in advanced primary open-angle glaucoma
Esfandiari H
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 2391-2398 (IGR: 20-1)


79113 Lamina Cribrosa and Choroid Features and Their Relationship to Stage of Pseudoexfoliation Glaucoma
Moghimi S
Investigative Ophthalmology and Visual Science 2018; 59: 5355-5365 (IGR: 20-1)


78513 Optic disc microvasculature dropout in primary open-angle glaucoma measured with optical coherence tomography angiography
Akagi T
PLoS ONE 2018; 13: e0201729 (IGR: 20-1)


79256 A Fully Automated 3D In-vivo Delineation and Shape Parameterization of the Human Lamina Cribrosa in Optical Coherence Tomography
Syga P
IEEE Transactions on Bio-Medical Engineering 2019; 66: 1422-1428 (IGR: 20-1)


79152 The assessment of structural changes on optic nerve head and macula in primary open angle glaucoma and ocular hypertension
Dagdelen K
International Journal of Ophthalmology 2018; 11: 1631-1637 (IGR: 20-1)


78871 Microvascular Changes in Peripapillary and Optic Nerve Head Tissues After Trabeculectomy in Primary Open-Angle Glaucoma
Kim JA
Investigative Ophthalmology and Visual Science 2018; 59: 4614-4621 (IGR: 20-1)


78907 Optic nerve head blood flow regulation during changes in arterial blood pressure in patients with primary open-angle glaucoma
Bata AM
Acta Ophthalmologica 2019; 97: e36-e41 (IGR: 20-1)


78422 Optic Disc Margin Anatomic Features in Myopic Eyes with Glaucoma with Spectral-Domain OCT
Sawada Y
Ophthalmology 2018; 125: 1886-1897 (IGR: 20-1)


78879 Optic nerve head morphology in primary open-angle glaucoma and nonarteritic anterior ischaemic optic neuropathy measured with spectral domain optical coherence tomography
Resch H
Acta Ophthalmologica 2018; 96: e1018-e1024 (IGR: 20-1)


78947 Optical coherence tomography evaluation of the optic nerve head neuro-retinal rim in glaucoma
Fortune B
Clinical and Experimental Optometry 2019; 102: 286-290 (IGR: 20-1)


79112 Spectral Domain Optical Coherence Tomography Assessment of Macular and Optic Nerve Alterations in Patients with Glaucoma and Correlation with Visual Field Index
Martucci A
Journal of Ophthalmology 2018; 2018: 6581846 (IGR: 20-1)


78898 Three dimensional neuro-retinal rim thickness and retinal nerve fiber layer thickness using high-definition optical coherence tomography for open-angle glaucoma
Subramaniam S
Japanese Journal of Ophthalmology 2018; 62: 634-642 (IGR: 20-1)


79201 Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography
Rabiolo A
PLoS ONE 2018; 13: e0205773 (IGR: 20-1)


78844 An efficient optic cup segmentation method decreasing the influences of blood vessels
Yang C
Biomedical engineering online 2018; 17: 130 (IGR: 20-1)


79122 Prevalence of optic disc haemorrhages in an elderly UK Caucasian population and possible association with reticular pseudodrusen-the Bridlington Eye Assessment Project (BEAP): a cross-sectional study (2002-2006)
Wilde C
Eye 2019; 33: 580-586 (IGR: 20-1)


78784 Age-Related Changes in Quantitative Strain of Mouse Astrocytic Lamina Cribrosa and Peripapillary Sclera Using Confocal Microscopy in an Explant Model
Nguyen C
Investigative Ophthalmology and Visual Science 2018; 59: 5157-5166 (IGR: 20-1)


78439 In vivo optic nerve head mechanical response to intraocular and cerebrospinal fluid pressure: imaging protocol and quantification method
Fazio MA
Scientific reports 2018; 8: 12639 (IGR: 20-1)


79158 Association between glaucomatous optic disc and depressive symptoms independent of light exposure profiles: a cross-sectional study of the HEIJO-KYO cohort
Yoshikawa T
British Journal of Ophthalmology 2019; 103: 1119-1122 (IGR: 20-1)


79152 The assessment of structural changes on optic nerve head and macula in primary open angle glaucoma and ocular hypertension
Dirican E
International Journal of Ophthalmology 2018; 11: 1631-1637 (IGR: 20-1)


79122 Prevalence of optic disc haemorrhages in an elderly UK Caucasian population and possible association with reticular pseudodrusen-the Bridlington Eye Assessment Project (BEAP): a cross-sectional study (2002-2006)
Poostchi A
Eye 2019; 33: 580-586 (IGR: 20-1)


78907 Optic nerve head blood flow regulation during changes in arterial blood pressure in patients with primary open-angle glaucoma
Fondi K
Acta Ophthalmologica 2019; 97: e36-e41 (IGR: 20-1)


78857 Factors associated with lamina cribrosa displacement after trabeculectomy measured by optical coherence tomography in advanced primary open-angle glaucoma
Efatizadeh A
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 2391-2398 (IGR: 20-1)


78898 Three dimensional neuro-retinal rim thickness and retinal nerve fiber layer thickness using high-definition optical coherence tomography for open-angle glaucoma
Jeoung JW
Japanese Journal of Ophthalmology 2018; 62: 634-642 (IGR: 20-1)


78844 An efficient optic cup segmentation method decreasing the influences of blood vessels
Lu M
Biomedical engineering online 2018; 17: 130 (IGR: 20-1)


79018 The Translaminar Pressure Gradient: Papilledema After Trabeculectomy Treated With Optic Nerve Sheath Fenestration
Rubinstein TJ
Journal of Glaucoma 2018; 27: e154-e157 (IGR: 20-1)


78422 Optic Disc Margin Anatomic Features in Myopic Eyes with Glaucoma with Spectral-Domain OCT
Araie M
Ophthalmology 2018; 125: 1886-1897 (IGR: 20-1)


78429 Peripapillary sclera architecture revisited: A tangential fiber model and its biomechanical implications
Jan NJ
Acta biomaterialia 2018; 79: 113-122 (IGR: 20-1)


78513 Optic disc microvasculature dropout in primary open-angle glaucoma measured with optical coherence tomography angiography
Zangwill LM
PLoS ONE 2018; 13: e0201729 (IGR: 20-1)


79201 Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography
Gelormini F
PLoS ONE 2018; 13: e0205773 (IGR: 20-1)


79158 Association between glaucomatous optic disc and depressive symptoms independent of light exposure profiles: a cross-sectional study of the HEIJO-KYO cohort
Obayashi K
British Journal of Ophthalmology 2019; 103: 1119-1122 (IGR: 20-1)


79179 Optic disc features on OCT in glaucomatous and normal black Africans
Ayéna KD
Journal Français d'Ophtalmologie 2018; 41: 847-851 (IGR: 20-1)


78856 Three-dimensional surface presentation of optic nerve head from SPECTRALIS OCT images: observing glaucoma patients
Alqasem AM
International Ophthalmology 2019; 39: 1939-1947 (IGR: 20-1)


79256 A Fully Automated 3D In-vivo Delineation and Shape Parameterization of the Human Lamina Cribrosa in Optical Coherence Tomography
Sieluzycki C
IEEE Transactions on Bio-Medical Engineering 2019; 66: 1422-1428 (IGR: 20-1)


79287 Visualization of the Lamina Cribrosa Microvasculature in Normal and Glaucomatous Eyes: A Swept-source Optical Coherence Tomography Angiography Study
Akagi T
Journal of Glaucoma 2018; 27: 1032-1035 (IGR: 20-1)


79196 Macular versus nerve fibre layer versus optic nerve head imaging for diagnosing glaucoma at different stages of the disease: Multicenter Italian Glaucoma Imaging Study
Riva I
Acta Ophthalmologica 2019; 97: e207-e215 (IGR: 20-1)


78439 In vivo optic nerve head mechanical response to intraocular and cerebrospinal fluid pressure: imaging protocol and quantification method
Clark ME
Scientific reports 2018; 8: 12639 (IGR: 20-1)


78974 Histological investigation of human glaucomatous eyes: Extracellular fibrotic changes and galectin 3 expression in the trabecular meshwork and optic nerve head
Raychaudhuri U
Clinical anatomy (New York, N.Y.) 2018; 31: 1031-1049 (IGR: 20-1)


79112 Spectral Domain Optical Coherence Tomography Assessment of Macular and Optic Nerve Alterations in Patients with Glaucoma and Correlation with Visual Field Index
Toschi N
Journal of Ophthalmology 2018; 2018: 6581846 (IGR: 20-1)


79113 Lamina Cribrosa and Choroid Features and Their Relationship to Stage of Pseudoexfoliation Glaucoma
Nekoozadeh S
Investigative Ophthalmology and Visual Science 2018; 59: 5355-5365 (IGR: 20-1)


78879 Optic nerve head morphology in primary open-angle glaucoma and nonarteritic anterior ischaemic optic neuropathy measured with spectral domain optical coherence tomography
Mitsch C
Acta Ophthalmologica 2018; 96: e1018-e1024 (IGR: 20-1)


79268 Disc haemorrhages in Polish Caucasian patients with normal tension glaucoma
Wróbel-Dudzińska D
Acta Ophthalmologica 2019; 97: 68-73 (IGR: 20-1)


78784 Age-Related Changes in Quantitative Strain of Mouse Astrocytic Lamina Cribrosa and Peripapillary Sclera Using Confocal Microscopy in an Explant Model
Midgett D
Investigative Ophthalmology and Visual Science 2018; 59: 5157-5166 (IGR: 20-1)


78871 Microvascular Changes in Peripapillary and Optic Nerve Head Tissues After Trabeculectomy in Primary Open-Angle Glaucoma
Kim TW
Investigative Ophthalmology and Visual Science 2018; 59: 4614-4621 (IGR: 20-1)


78857 Factors associated with lamina cribrosa displacement after trabeculectomy measured by optical coherence tomography in advanced primary open-angle glaucoma
Hassanpour K
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 2391-2398 (IGR: 20-1)


79113 Lamina Cribrosa and Choroid Features and Their Relationship to Stage of Pseudoexfoliation Glaucoma
Motamed-Gorji N
Investigative Ophthalmology and Visual Science 2018; 59: 5355-5365 (IGR: 20-1)


79256 A Fully Automated 3D In-vivo Delineation and Shape Parameterization of the Human Lamina Cribrosa in Optical Coherence Tomography
Krzyzanowska-Berkowska P
IEEE Transactions on Bio-Medical Engineering 2019; 66: 1422-1428 (IGR: 20-1)


78898 Three dimensional neuro-retinal rim thickness and retinal nerve fiber layer thickness using high-definition optical coherence tomography for open-angle glaucoma
Lee WJ
Japanese Journal of Ophthalmology 2018; 62: 634-642 (IGR: 20-1)


78422 Optic Disc Margin Anatomic Features in Myopic Eyes with Glaucoma with Spectral-Domain OCT
Shibata H
Ophthalmology 2018; 125: 1886-1897 (IGR: 20-1)


78439 In vivo optic nerve head mechanical response to intraocular and cerebrospinal fluid pressure: imaging protocol and quantification method
Bruno L
Scientific reports 2018; 8: 12639 (IGR: 20-1)


79201 Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography
Sacconi R
PLoS ONE 2018; 13: e0205773 (IGR: 20-1)


79158 Association between glaucomatous optic disc and depressive symptoms independent of light exposure profiles: a cross-sectional study of the HEIJO-KYO cohort
Miyata K
British Journal of Ophthalmology 2019; 103: 1119-1122 (IGR: 20-1)


79287 Visualization of the Lamina Cribrosa Microvasculature in Normal and Glaucomatous Eyes: A Swept-source Optical Coherence Tomography Angiography Study
Uji A
Journal of Glaucoma 2018; 27: 1032-1035 (IGR: 20-1)


78879 Optic nerve head morphology in primary open-angle glaucoma and nonarteritic anterior ischaemic optic neuropathy measured with spectral domain optical coherence tomography
Pereira I
Acta Ophthalmologica 2018; 96: e1018-e1024 (IGR: 20-1)


78974 Histological investigation of human glaucomatous eyes: Extracellular fibrotic changes and galectin 3 expression in the trabecular meshwork and optic nerve head
Maansson S
Clinical anatomy (New York, N.Y.) 2018; 31: 1031-1049 (IGR: 20-1)


79112 Spectral Domain Optical Coherence Tomography Assessment of Macular and Optic Nerve Alterations in Patients with Glaucoma and Correlation with Visual Field Index
Cesareo M
Journal of Ophthalmology 2018; 2018: 6581846 (IGR: 20-1)


78857 Factors associated with lamina cribrosa displacement after trabeculectomy measured by optical coherence tomography in advanced primary open-angle glaucoma
Hassanpour K
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 2391-2398 (IGR: 20-1)


79196 Macular versus nerve fibre layer versus optic nerve head imaging for diagnosing glaucoma at different stages of the disease: Multicenter Italian Glaucoma Imaging Study
Martini E
Acta Ophthalmologica 2019; 97: e207-e215 (IGR: 20-1)


79268 Disc haemorrhages in Polish Caucasian patients with normal tension glaucoma
Łukasik U
Acta Ophthalmologica 2019; 97: 68-73 (IGR: 20-1)


78844 An efficient optic cup segmentation method decreasing the influences of blood vessels
Duan Y
Biomedical engineering online 2018; 17: 130 (IGR: 20-1)


79122 Prevalence of optic disc haemorrhages in an elderly UK Caucasian population and possible association with reticular pseudodrusen-the Bridlington Eye Assessment Project (BEAP): a cross-sectional study (2002-2006)
Narendran R
Eye 2019; 33: 580-586 (IGR: 20-1)


79179 Optic disc features on OCT in glaucomatous and normal black Africans
Maneh N
Journal Français d'Ophtalmologie 2018; 41: 847-851 (IGR: 20-1)


78871 Microvascular Changes in Peripapillary and Optic Nerve Head Tissues After Trabeculectomy in Primary Open-Angle Glaucoma
Lee EJ
Investigative Ophthalmology and Visual Science 2018; 59: 4614-4621 (IGR: 20-1)


78784 Age-Related Changes in Quantitative Strain of Mouse Astrocytic Lamina Cribrosa and Peripapillary Sclera Using Confocal Microscopy in an Explant Model
Kimball E
Investigative Ophthalmology and Visual Science 2018; 59: 5157-5166 (IGR: 20-1)


78856 Three-dimensional surface presentation of optic nerve head from SPECTRALIS OCT images: observing glaucoma patients
Al-Naami BO
International Ophthalmology 2019; 39: 1939-1947 (IGR: 20-1)


78857 Factors associated with lamina cribrosa displacement after trabeculectomy measured by optical coherence tomography in advanced primary open-angle glaucoma
Hassanpour K
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 2391-2398 (IGR: 20-1)


78429 Peripapillary sclera architecture revisited: A tangential fiber model and its biomechanical implications
Hua Y
Acta biomaterialia 2018; 79: 113-122 (IGR: 20-1)


78513 Optic disc microvasculature dropout in primary open-angle glaucoma measured with optical coherence tomography angiography
Shoji T
PLoS ONE 2018; 13: e0201729 (IGR: 20-1)


78907 Optic nerve head blood flow regulation during changes in arterial blood pressure in patients with primary open-angle glaucoma
Witkowska KJ
Acta Ophthalmologica 2019; 97: e36-e41 (IGR: 20-1)


79018 The Translaminar Pressure Gradient: Papilledema After Trabeculectomy Treated With Optic Nerve Sheath Fenestration
Hamilton SR
Journal of Glaucoma 2018; 27: e154-e157 (IGR: 20-1)


78784 Age-Related Changes in Quantitative Strain of Mouse Astrocytic Lamina Cribrosa and Peripapillary Sclera Using Confocal Microscopy in an Explant Model
Kimball E
Investigative Ophthalmology and Visual Science 2018; 59: 5157-5166 (IGR: 20-1)


78422 Optic Disc Margin Anatomic Features in Myopic Eyes with Glaucoma with Spectral-Domain OCT
Ishikawa M
Ophthalmology 2018; 125: 1886-1897 (IGR: 20-1)


78879 Optic nerve head morphology in primary open-angle glaucoma and nonarteritic anterior ischaemic optic neuropathy measured with spectral domain optical coherence tomography
Schwarzhans F
Acta Ophthalmologica 2018; 96: e1018-e1024 (IGR: 20-1)


78784 Age-Related Changes in Quantitative Strain of Mouse Astrocytic Lamina Cribrosa and Peripapillary Sclera Using Confocal Microscopy in an Explant Model
Jefferys J
Investigative Ophthalmology and Visual Science 2018; 59: 5157-5166 (IGR: 20-1)


78844 An efficient optic cup segmentation method decreasing the influences of blood vessels
Liu B
Biomedical engineering online 2018; 17: 130 (IGR: 20-1)


79268 Disc haemorrhages in Polish Caucasian patients with normal tension glaucoma
Żarnowski T
Acta Ophthalmologica 2019; 97: 68-73 (IGR: 20-1)


78907 Optic nerve head blood flow regulation during changes in arterial blood pressure in patients with primary open-angle glaucoma
Werkmeister RM
Acta Ophthalmologica 2019; 97: e36-e41 (IGR: 20-1)


79179 Optic disc features on OCT in glaucomatous and normal black Africans
Nononsaa KB
Journal Français d'Ophtalmologie 2018; 41: 847-851 (IGR: 20-1)


78974 Histological investigation of human glaucomatous eyes: Extracellular fibrotic changes and galectin 3 expression in the trabecular meshwork and optic nerve head
Clark AF
Clinical anatomy (New York, N.Y.) 2018; 31: 1031-1049 (IGR: 20-1)


78857 Factors associated with lamina cribrosa displacement after trabeculectomy measured by optical coherence tomography in advanced primary open-angle glaucoma
Doozandeh A
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 2391-2398 (IGR: 20-1)


79112 Spectral Domain Optical Coherence Tomography Assessment of Macular and Optic Nerve Alterations in Patients with Glaucoma and Correlation with Visual Field Index
Giannini C
Journal of Ophthalmology 2018; 2018: 6581846 (IGR: 20-1)


78898 Three dimensional neuro-retinal rim thickness and retinal nerve fiber layer thickness using high-definition optical coherence tomography for open-angle glaucoma
Kim YK
Japanese Journal of Ophthalmology 2018; 62: 634-642 (IGR: 20-1)


78439 In vivo optic nerve head mechanical response to intraocular and cerebrospinal fluid pressure: imaging protocol and quantification method
Girkin CA
Scientific reports 2018; 8: 12639 (IGR: 20-1)


78513 Optic disc microvasculature dropout in primary open-angle glaucoma measured with optical coherence tomography angiography
Suh MH
PLoS ONE 2018; 13: e0201729 (IGR: 20-1)


79158 Association between glaucomatous optic disc and depressive symptoms independent of light exposure profiles: a cross-sectional study of the HEIJO-KYO cohort
Ueda T
British Journal of Ophthalmology 2019; 103: 1119-1122 (IGR: 20-1)


79018 The Translaminar Pressure Gradient: Papilledema After Trabeculectomy Treated With Optic Nerve Sheath Fenestration
Jamil AL
Journal of Glaucoma 2018; 27: e154-e157 (IGR: 20-1)


78429 Peripapillary sclera architecture revisited: A tangential fiber model and its biomechanical implications
Yang B
Acta biomaterialia 2018; 79: 113-122 (IGR: 20-1)


79122 Prevalence of optic disc haemorrhages in an elderly UK Caucasian population and possible association with reticular pseudodrusen-the Bridlington Eye Assessment Project (BEAP): a cross-sectional study (2002-2006)
Macnab HK
Eye 2019; 33: 580-586 (IGR: 20-1)


79287 Visualization of the Lamina Cribrosa Microvasculature in Normal and Glaucomatous Eyes: A Swept-source Optical Coherence Tomography Angiography Study
Suda K
Journal of Glaucoma 2018; 27: 1032-1035 (IGR: 20-1)


79196 Macular versus nerve fibre layer versus optic nerve head imaging for diagnosing glaucoma at different stages of the disease: Multicenter Italian Glaucoma Imaging Study
Figus M
Acta Ophthalmologica 2019; 97: e207-e215 (IGR: 20-1)


78871 Microvascular Changes in Peripapillary and Optic Nerve Head Tissues After Trabeculectomy in Primary Open-Angle Glaucoma
Girard MJA
Investigative Ophthalmology and Visual Science 2018; 59: 4614-4621 (IGR: 20-1)


79256 A Fully Automated 3D In-vivo Delineation and Shape Parameterization of the Human Lamina Cribrosa in Optical Coherence Tomography
Iskander DR
IEEE Transactions on Bio-Medical Engineering 2019; 66: 1422-1428 (IGR: 20-1)


79113 Lamina Cribrosa and Choroid Features and Their Relationship to Stage of Pseudoexfoliation Glaucoma
Chen R
Investigative Ophthalmology and Visual Science 2018; 59: 5355-5365 (IGR: 20-1)


79201 Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography
Cicinelli MV
PLoS ONE 2018; 13: e0205773 (IGR: 20-1)


79018 The Translaminar Pressure Gradient: Papilledema After Trabeculectomy Treated With Optic Nerve Sheath Fenestration
Sires BS
Journal of Glaucoma 2018; 27: e154-e157 (IGR: 20-1)


79112 Spectral Domain Optical Coherence Tomography Assessment of Macular and Optic Nerve Alterations in Patients with Glaucoma and Correlation with Visual Field Index
Pocobelli G
Journal of Ophthalmology 2018; 2018: 6581846 (IGR: 20-1)


78871 Microvascular Changes in Peripapillary and Optic Nerve Head Tissues After Trabeculectomy in Primary Open-Angle Glaucoma
Mari JM
Investigative Ophthalmology and Visual Science 2018; 59: 4614-4621 (IGR: 20-1)


79287 Visualization of the Lamina Cribrosa Microvasculature in Normal and Glaucomatous Eyes: A Swept-source Optical Coherence Tomography Angiography Study
Nakanishi H
Journal of Glaucoma 2018; 27: 1032-1035 (IGR: 20-1)


79196 Macular versus nerve fibre layer versus optic nerve head imaging for diagnosing glaucoma at different stages of the disease: Multicenter Italian Glaucoma Imaging Study
Frezzotti P
Acta Ophthalmologica 2019; 97: e207-e215 (IGR: 20-1)


78784 Age-Related Changes in Quantitative Strain of Mouse Astrocytic Lamina Cribrosa and Peripapillary Sclera Using Confocal Microscopy in an Explant Model
Nguyen TD
Investigative Ophthalmology and Visual Science 2018; 59: 5157-5166 (IGR: 20-1)


79113 Lamina Cribrosa and Choroid Features and Their Relationship to Stage of Pseudoexfoliation Glaucoma
Fard MA
Investigative Ophthalmology and Visual Science 2018; 59: 5355-5365 (IGR: 20-1)


79201 Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography
Triolo G
PLoS ONE 2018; 13: e0205773 (IGR: 20-1)


78879 Optic nerve head morphology in primary open-angle glaucoma and nonarteritic anterior ischaemic optic neuropathy measured with spectral domain optical coherence tomography
Wasserman L
Acta Ophthalmologica 2018; 96: e1018-e1024 (IGR: 20-1)


79158 Association between glaucomatous optic disc and depressive symptoms independent of light exposure profiles: a cross-sectional study of the HEIJO-KYO cohort
Kurumatani N
British Journal of Ophthalmology 2019; 103: 1119-1122 (IGR: 20-1)


79179 Optic disc features on OCT in glaucomatous and normal black Africans
Amédomé KM
Journal Français d'Ophtalmologie 2018; 41: 847-851 (IGR: 20-1)


78422 Optic Disc Margin Anatomic Features in Myopic Eyes with Glaucoma with Spectral-Domain OCT
Iwata T
Ophthalmology 2018; 125: 1886-1897 (IGR: 20-1)


78907 Optic nerve head blood flow regulation during changes in arterial blood pressure in patients with primary open-angle glaucoma
Hommer A
Acta Ophthalmologica 2019; 97: e36-e41 (IGR: 20-1)


78857 Factors associated with lamina cribrosa displacement after trabeculectomy measured by optical coherence tomography in advanced primary open-angle glaucoma
Yaseri M
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 2391-2398 (IGR: 20-1)


78429 Peripapillary sclera architecture revisited: A tangential fiber model and its biomechanical implications
Sigal IA
Acta biomaterialia 2018; 79: 113-122 (IGR: 20-1)


79122 Prevalence of optic disc haemorrhages in an elderly UK Caucasian population and possible association with reticular pseudodrusen-the Bridlington Eye Assessment Project (BEAP): a cross-sectional study (2002-2006)
Hillman JG
Eye 2019; 33: 580-586 (IGR: 20-1)


78898 Three dimensional neuro-retinal rim thickness and retinal nerve fiber layer thickness using high-definition optical coherence tomography for open-angle glaucoma
Park KH
Japanese Journal of Ophthalmology 2018; 62: 634-642 (IGR: 20-1)


78513 Optic disc microvasculature dropout in primary open-angle glaucoma measured with optical coherence tomography angiography
Saunders LJ
PLoS ONE 2018; 13: e0201729 (IGR: 20-1)


79201 Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography
Bettin P
PLoS ONE 2018; 13: e0205773 (IGR: 20-1)


79158 Association between glaucomatous optic disc and depressive symptoms independent of light exposure profiles: a cross-sectional study of the HEIJO-KYO cohort
Saeki K
British Journal of Ophthalmology 2019; 103: 1119-1122 (IGR: 20-1)


79179 Optic disc features on OCT in glaucomatous and normal black Africans
Dzidzinyo K
Journal Français d'Ophtalmologie 2018; 41: 847-851 (IGR: 20-1)


78784 Age-Related Changes in Quantitative Strain of Mouse Astrocytic Lamina Cribrosa and Peripapillary Sclera Using Confocal Microscopy in an Explant Model
Schaub J
Investigative Ophthalmology and Visual Science 2018; 59: 5157-5166 (IGR: 20-1)


79196 Macular versus nerve fibre layer versus optic nerve head imaging for diagnosing glaucoma at different stages of the disease: Multicenter Italian Glaucoma Imaging Study
Agnifili L
Acta Ophthalmologica 2019; 97: e207-e215 (IGR: 20-1)


79122 Prevalence of optic disc haemorrhages in an elderly UK Caucasian population and possible association with reticular pseudodrusen-the Bridlington Eye Assessment Project (BEAP): a cross-sectional study (2002-2006)
Alexander P
Eye 2019; 33: 580-586 (IGR: 20-1)


79287 Visualization of the Lamina Cribrosa Microvasculature in Normal and Glaucomatous Eyes: A Swept-source Optical Coherence Tomography Angiography Study
Kameda T
Journal of Glaucoma 2018; 27: 1032-1035 (IGR: 20-1)


78784 Age-Related Changes in Quantitative Strain of Mouse Astrocytic Lamina Cribrosa and Peripapillary Sclera Using Confocal Microscopy in an Explant Model
Schaub J
Investigative Ophthalmology and Visual Science 2018; 59: 5157-5166 (IGR: 20-1)


78907 Optic nerve head blood flow regulation during changes in arterial blood pressure in patients with primary open-angle glaucoma
Vass C
Acta Ophthalmologica 2019; 97: e36-e41 (IGR: 20-1)


78857 Factors associated with lamina cribrosa displacement after trabeculectomy measured by optical coherence tomography in advanced primary open-angle glaucoma
Loewen NA
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 2391-2398 (IGR: 20-1)


78422 Optic Disc Margin Anatomic Features in Myopic Eyes with Glaucoma with Spectral-Domain OCT
Yoshitomi T
Ophthalmology 2018; 125: 1886-1897 (IGR: 20-1)


79113 Lamina Cribrosa and Choroid Features and Their Relationship to Stage of Pseudoexfoliation Glaucoma
Mohammadi M
Investigative Ophthalmology and Visual Science 2018; 59: 5355-5365 (IGR: 20-1)


78513 Optic disc microvasculature dropout in primary open-angle glaucoma measured with optical coherence tomography angiography
Yarmohammadi A
PLoS ONE 2018; 13: e0201729 (IGR: 20-1)


79112 Spectral Domain Optical Coherence Tomography Assessment of Macular and Optic Nerve Alterations in Patients with Glaucoma and Correlation with Visual Field Index
Garaci F
Journal of Ophthalmology 2018; 2018: 6581846 (IGR: 20-1)


78879 Optic nerve head morphology in primary open-angle glaucoma and nonarteritic anterior ischaemic optic neuropathy measured with spectral domain optical coherence tomography
Hommer A
Acta Ophthalmologica 2018; 96: e1018-e1024 (IGR: 20-1)


79112 Spectral Domain Optical Coherence Tomography Assessment of Macular and Optic Nerve Alterations in Patients with Glaucoma and Correlation with Visual Field Index
Mancino R
Journal of Ophthalmology 2018; 2018: 6581846 (IGR: 20-1)


79122 Prevalence of optic disc haemorrhages in an elderly UK Caucasian population and possible association with reticular pseudodrusen-the Bridlington Eye Assessment Project (BEAP): a cross-sectional study (2002-2006)
Amoaku WM
Eye 2019; 33: 580-586 (IGR: 20-1)


79179 Optic disc features on OCT in glaucomatous and normal black Africans
Santos MAK
Journal Français d'Ophtalmologie 2018; 41: 847-851 (IGR: 20-1)


78513 Optic disc microvasculature dropout in primary open-angle glaucoma measured with optical coherence tomography angiography
Manalastas PIC
PLoS ONE 2018; 13: e0201729 (IGR: 20-1)


78784 Age-Related Changes in Quantitative Strain of Mouse Astrocytic Lamina Cribrosa and Peripapillary Sclera Using Confocal Microscopy in an Explant Model
Pease M
Investigative Ophthalmology and Visual Science 2018; 59: 5157-5166 (IGR: 20-1)


79113 Lamina Cribrosa and Choroid Features and Their Relationship to Stage of Pseudoexfoliation Glaucoma
Weinreb RN
Investigative Ophthalmology and Visual Science 2018; 59: 5355-5365 (IGR: 20-1)


78879 Optic nerve head morphology in primary open-angle glaucoma and nonarteritic anterior ischaemic optic neuropathy measured with spectral domain optical coherence tomography
Reitner A
Acta Ophthalmologica 2018; 96: e1018-e1024 (IGR: 20-1)


79201 Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography
Nouri-Mahdavi K
PLoS ONE 2018; 13: e0205773 (IGR: 20-1)


79158 Association between glaucomatous optic disc and depressive symptoms independent of light exposure profiles: a cross-sectional study of the HEIJO-KYO cohort
Ogata N
British Journal of Ophthalmology 2019; 103: 1119-1122 (IGR: 20-1)


78907 Optic nerve head blood flow regulation during changes in arterial blood pressure in patients with primary open-angle glaucoma
Resch H
Acta Ophthalmologica 2019; 97: e36-e41 (IGR: 20-1)


79287 Visualization of the Lamina Cribrosa Microvasculature in Normal and Glaucomatous Eyes: A Swept-source Optical Coherence Tomography Angiography Study
Ikeda HO
Journal of Glaucoma 2018; 27: 1032-1035 (IGR: 20-1)


79196 Macular versus nerve fibre layer versus optic nerve head imaging for diagnosing glaucoma at different stages of the disease: Multicenter Italian Glaucoma Imaging Study
Manni G
Acta Ophthalmologica 2019; 97: e207-e215 (IGR: 20-1)


78513 Optic disc microvasculature dropout in primary open-angle glaucoma measured with optical coherence tomography angiography
Penteado RC
PLoS ONE 2018; 13: e0201729 (IGR: 20-1)


78879 Optic nerve head morphology in primary open-angle glaucoma and nonarteritic anterior ischaemic optic neuropathy measured with spectral domain optical coherence tomography
Vass C
Acta Ophthalmologica 2018; 96: e1018-e1024 (IGR: 20-1)


79201 Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography
Bandello F
PLoS ONE 2018; 13: e0205773 (IGR: 20-1)


79122 Prevalence of optic disc haemorrhages in an elderly UK Caucasian population and possible association with reticular pseudodrusen-the Bridlington Eye Assessment Project (BEAP): a cross-sectional study (2002-2006)
Vernon SA
Eye 2019; 33: 580-586 (IGR: 20-1)


78907 Optic nerve head blood flow regulation during changes in arterial blood pressure in patients with primary open-angle glaucoma
Schmidl D
Acta Ophthalmologica 2019; 97: e36-e41 (IGR: 20-1)


78784 Age-Related Changes in Quantitative Strain of Mouse Astrocytic Lamina Cribrosa and Peripapillary Sclera Using Confocal Microscopy in an Explant Model
Quigley H
Investigative Ophthalmology and Visual Science 2018; 59: 5157-5166 (IGR: 20-1)


79196 Macular versus nerve fibre layer versus optic nerve head imaging for diagnosing glaucoma at different stages of the disease: Multicenter Italian Glaucoma Imaging Study
Quaranta L
Acta Ophthalmologica 2019; 97: e207-e215 (IGR: 20-1)


79112 Spectral Domain Optical Coherence Tomography Assessment of Macular and Optic Nerve Alterations in Patients with Glaucoma and Correlation with Visual Field Index
Nucci C
Journal of Ophthalmology 2018; 2018: 6581846 (IGR: 20-1)


79179 Optic disc features on OCT in glaucomatous and normal black Africans
Kuaovi Koko RA
Journal Français d'Ophtalmologie 2018; 41: 847-851 (IGR: 20-1)


79287 Visualization of the Lamina Cribrosa Microvasculature in Normal and Glaucomatous Eyes: A Swept-source Optical Coherence Tomography Angiography Study
Tsujikawa A
Journal of Glaucoma 2018; 27: 1032-1035 (IGR: 20-1)


79196 Macular versus nerve fibre layer versus optic nerve head imaging for diagnosing glaucoma at different stages of the disease: Multicenter Italian Glaucoma Imaging Study
Miglior S
Acta Ophthalmologica 2019; 97: e207-e215 (IGR: 20-1)


78513 Optic disc microvasculature dropout in primary open-angle glaucoma measured with optical coherence tomography angiography
Weinreb RN
PLoS ONE 2018; 13: e0201729 (IGR: 20-1)


79179 Optic disc features on OCT in glaucomatous and normal black Africans
Banla M
Journal Français d'Ophtalmologie 2018; 41: 847-851 (IGR: 20-1)


79201 Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography
Querques G
PLoS ONE 2018; 13: e0205773 (IGR: 20-1)


78907 Optic nerve head blood flow regulation during changes in arterial blood pressure in patients with primary open-angle glaucoma
Popa-Cherecheanu A; Chua J
Acta Ophthalmologica 2019; 97: e36-e41 (IGR: 20-1)


79196 Macular versus nerve fibre layer versus optic nerve head imaging for diagnosing glaucoma at different stages of the disease: Multicenter Italian Glaucoma Imaging Study
Posarelli C
Acta Ophthalmologica 2019; 97: e207-e215 (IGR: 20-1)


79179 Optic disc features on OCT in glaucomatous and normal black Africans
Balo KP
Journal Français d'Ophtalmologie 2018; 41: 847-851 (IGR: 20-1)


79196 Macular versus nerve fibre layer versus optic nerve head imaging for diagnosing glaucoma at different stages of the disease: Multicenter Italian Glaucoma Imaging Study
Fazio S
Acta Ophthalmologica 2019; 97: e207-e215 (IGR: 20-1)


78907 Optic nerve head blood flow regulation during changes in arterial blood pressure in patients with primary open-angle glaucoma
Garhöfer G; Schmetterer L
Acta Ophthalmologica 2019; 97: e36-e41 (IGR: 20-1)


79196 Macular versus nerve fibre layer versus optic nerve head imaging for diagnosing glaucoma at different stages of the disease: Multicenter Italian Glaucoma Imaging Study
Oddone F
Acta Ophthalmologica 2019; 97: e207-e215 (IGR: 20-1)


78164 Intracranial pressure and glaucoma: Is there a new therapeutic perspective on the horizon?
Wostyn P
Medical Hypotheses 2018; 118: 98-102 (IGR: 19-4)


77986 Can Macula and Optic Nerve Head Parameters Detect Glaucoma Progression in Eyes with Advanced Circumpapillary Retinal Nerve Fiber Layer Damage?
Lavinsky F
Ophthalmology 2018; 0: (IGR: 19-4)


77653 Associations between structure and function are different in healthy and glaucomatous eyes
Chu FI
PLoS ONE 2018; 13: e0196814 (IGR: 19-4)


77556 Parafoveal and optic disc vessel density in patients with obstructive sleep apnea syndrome: an optical coherence tomography angiography study
Moyal L
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1235-1243 (IGR: 19-4)


78080 DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images
Devalla SK
Biomedical optics express 2018; 9: 3244-3265 (IGR: 19-4)


78112 A Methodology for Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma
Schwaner SA
Journal of Biomechanical Engineering 2018; 140: (IGR: 19-4)


77885 Retinal Arteriolar Narrowing in Young Adults With Glaucomatous Optic Disc
Adiarti R
Journal of Glaucoma 2018; 27: 699-702 (IGR: 19-4)


77955 Four Questions for Every Clinician Diagnosing and Monitoring Glaucoma
Hood DC
Journal of Glaucoma 2018; 27: 657-664 (IGR: 19-4)


78205 Structural Reversal of Disc Cupping After Trabeculectomy Alters Bruch Membrane Opening-Based Parameters to Assess Neuroretinal Rim
Gietzelt C
American Journal of Ophthalmology 2018; 194: 143-152 (IGR: 19-4)


78262 Protruded retinal layers within the optic nerve head neuroretinal rim
Torres LA
Acta Ophthalmologica 2018; 96: e493-e502 (IGR: 19-4)


77939 Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Moghimi S
Ophthalmology 2018; 125: 1720-1728 (IGR: 19-4)


78133 Validation of formula-predicted glaucomatous optic disc appearances: the Glaucoma Stereo Analysis Study
Tanito M
Acta Ophthalmologica 2018; 0: (IGR: 19-4)


78008 Diagnostic accuracy of macular ganglion cell-inner plexiform layer thickness for glaucoma detection in a population-based study: Comparison with optic nerve head imaging parameters
Koh V
PLoS ONE 2018; 13: e0199134 (IGR: 19-4)


78192 Regional Deformation of the Optic Nerve Head and Peripapillary Sclera During IOP Elevation
Pavlatos E
Investigative Ophthalmology and Visual Science 2018; 59: 3779-3788 (IGR: 19-4)


78012 Baseline Lamina Cribrosa Curvature and Subsequent Visual Field Progression Rate in Primary Open-Angle Glaucoma
Ha A
Ophthalmology 2018; 0: (IGR: 19-4)


78075 Undilated versus dilated monoscopic smartphone-based fundus photography for optic nerve head evaluation
Wintergerst MWM
Scientific reports 2018; 8: 10228 (IGR: 19-4)


77686 Valsalva Maneuver and Peripapillary OCT Angiography Vessel Density
Holló G
Journal of Glaucoma 2018; 27: e133-e136 (IGR: 19-4)


77918 Association between the Frequency of Optic Disk Hemorrhage and Progression of NTG Related with the Initial Location of RNFL Defect
Cho HK
Ophthalmic Research 2018; 60: 152-160 (IGR: 19-4)


78039 Long-Term Shape, Curvature, and Depth Changes of the Lamina Cribrosa after Trabeculectomy
Kadziauskienė A
Ophthalmology 2018; 125: 1729-1740 (IGR: 19-4)


78056 Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation
Fu H
IEEE Transactions on Medical Imaging 2018; 37: 1597-1605 (IGR: 19-4)


78242 Deep Optic Nerve Head Morphology Is Associated With Pattern of Glaucomatous Visual Field Defect in Open-Angle Glaucoma
Han JC
Investigative Ophthalmology and Visual Science 2018; 59: 3842-3851 (IGR: 19-4)


77939 Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Zangwill LM
Ophthalmology 2018; 125: 1720-1728 (IGR: 19-4)


78075 Undilated versus dilated monoscopic smartphone-based fundus photography for optic nerve head evaluation
Brinkmann CK
Scientific reports 2018; 8: 10228 (IGR: 19-4)


77955 Four Questions for Every Clinician Diagnosing and Monitoring Glaucoma
De Moraes CG
Journal of Glaucoma 2018; 27: 657-664 (IGR: 19-4)


78205 Structural Reversal of Disc Cupping After Trabeculectomy Alters Bruch Membrane Opening-Based Parameters to Assess Neuroretinal Rim
Lemke J
American Journal of Ophthalmology 2018; 194: 143-152 (IGR: 19-4)


78133 Validation of formula-predicted glaucomatous optic disc appearances: the Glaucoma Stereo Analysis Study
Nitta K
Acta Ophthalmologica 2018; 0: (IGR: 19-4)


78039 Long-Term Shape, Curvature, and Depth Changes of the Lamina Cribrosa after Trabeculectomy
Jašinskienė E
Ophthalmology 2018; 125: 1729-1740 (IGR: 19-4)


78008 Diagnostic accuracy of macular ganglion cell-inner plexiform layer thickness for glaucoma detection in a population-based study: Comparison with optic nerve head imaging parameters
Tham YC
PLoS ONE 2018; 13: e0199134 (IGR: 19-4)


77986 Can Macula and Optic Nerve Head Parameters Detect Glaucoma Progression in Eyes with Advanced Circumpapillary Retinal Nerve Fiber Layer Damage?
Wu M
Ophthalmology 2018; 0: (IGR: 19-4)


78192 Regional Deformation of the Optic Nerve Head and Peripapillary Sclera During IOP Elevation
Ma Y
Investigative Ophthalmology and Visual Science 2018; 59: 3779-3788 (IGR: 19-4)


77918 Association between the Frequency of Optic Disk Hemorrhage and Progression of NTG Related with the Initial Location of RNFL Defect
Lee MG
Ophthalmic Research 2018; 60: 152-160 (IGR: 19-4)


77653 Associations between structure and function are different in healthy and glaucomatous eyes
Marín-Franch I
PLoS ONE 2018; 13: e0196814 (IGR: 19-4)


77885 Retinal Arteriolar Narrowing in Young Adults With Glaucomatous Optic Disc
Ekantini R
Journal of Glaucoma 2018; 27: 699-702 (IGR: 19-4)


78242 Deep Optic Nerve Head Morphology Is Associated With Pattern of Glaucomatous Visual Field Defect in Open-Angle Glaucoma
Choi JH
Investigative Ophthalmology and Visual Science 2018; 59: 3842-3851 (IGR: 19-4)


78262 Protruded retinal layers within the optic nerve head neuroretinal rim
Vianna JR
Acta Ophthalmologica 2018; 96: e493-e502 (IGR: 19-4)


78164 Intracranial pressure and glaucoma: Is there a new therapeutic perspective on the horizon?
Van Dam D
Medical Hypotheses 2018; 118: 98-102 (IGR: 19-4)


78056 Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation
Cheng J
IEEE Transactions on Medical Imaging 2018; 37: 1597-1605 (IGR: 19-4)


78012 Baseline Lamina Cribrosa Curvature and Subsequent Visual Field Progression Rate in Primary Open-Angle Glaucoma
Kim TJ
Ophthalmology 2018; 0: (IGR: 19-4)


78080 DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images
Renukanand PK
Biomedical optics express 2018; 9: 3244-3265 (IGR: 19-4)


77556 Parafoveal and optic disc vessel density in patients with obstructive sleep apnea syndrome: an optical coherence tomography angiography study
Blumen-Ohana E
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1235-1243 (IGR: 19-4)


78112 A Methodology for Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma
Kight AM
Journal of Biomechanical Engineering 2018; 140: (IGR: 19-4)


78056 Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation
Xu Y
IEEE Transactions on Medical Imaging 2018; 37: 1597-1605 (IGR: 19-4)


77918 Association between the Frequency of Optic Disk Hemorrhage and Progression of NTG Related with the Initial Location of RNFL Defect
Kee C
Ophthalmic Research 2018; 60: 152-160 (IGR: 19-4)


78262 Protruded retinal layers within the optic nerve head neuroretinal rim
Jarrar F
Acta Ophthalmologica 2018; 96: e493-e502 (IGR: 19-4)


78242 Deep Optic Nerve Head Morphology Is Associated With Pattern of Glaucomatous Visual Field Defect in Open-Angle Glaucoma
Park DY
Investigative Ophthalmology and Visual Science 2018; 59: 3842-3851 (IGR: 19-4)


77653 Associations between structure and function are different in healthy and glaucomatous eyes
Ramezani K
PLoS ONE 2018; 13: e0196814 (IGR: 19-4)


78164 Intracranial pressure and glaucoma: Is there a new therapeutic perspective on the horizon?
De Deyn PP
Medical Hypotheses 2018; 118: 98-102 (IGR: 19-4)


78192 Regional Deformation of the Optic Nerve Head and Peripapillary Sclera During IOP Elevation
Clayson K
Investigative Ophthalmology and Visual Science 2018; 59: 3779-3788 (IGR: 19-4)


78012 Baseline Lamina Cribrosa Curvature and Subsequent Visual Field Progression Rate in Primary Open-Angle Glaucoma
Girard MJA
Ophthalmology 2018; 0: (IGR: 19-4)


77556 Parafoveal and optic disc vessel density in patients with obstructive sleep apnea syndrome: an optical coherence tomography angiography study
Blumen M
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1235-1243 (IGR: 19-4)


78039 Long-Term Shape, Curvature, and Depth Changes of the Lamina Cribrosa after Trabeculectomy
Ašoklis R
Ophthalmology 2018; 125: 1729-1740 (IGR: 19-4)


77986 Can Macula and Optic Nerve Head Parameters Detect Glaucoma Progression in Eyes with Advanced Circumpapillary Retinal Nerve Fiber Layer Damage?
Schuman JS
Ophthalmology 2018; 0: (IGR: 19-4)


78075 Undilated versus dilated monoscopic smartphone-based fundus photography for optic nerve head evaluation
Holz FG
Scientific reports 2018; 8: 10228 (IGR: 19-4)


78205 Structural Reversal of Disc Cupping After Trabeculectomy Alters Bruch Membrane Opening-Based Parameters to Assess Neuroretinal Rim
Schaub F
American Journal of Ophthalmology 2018; 194: 143-152 (IGR: 19-4)


78080 DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images
Sreedhar BK
Biomedical optics express 2018; 9: 3244-3265 (IGR: 19-4)


78112 A Methodology for Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma
Perry RN
Journal of Biomechanical Engineering 2018; 140: (IGR: 19-4)


77939 Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Penteado RC
Ophthalmology 2018; 125: 1720-1728 (IGR: 19-4)


78008 Diagnostic accuracy of macular ganglion cell-inner plexiform layer thickness for glaucoma detection in a population-based study: Comparison with optic nerve head imaging parameters
Cheung CY
PLoS ONE 2018; 13: e0199134 (IGR: 19-4)


78133 Validation of formula-predicted glaucomatous optic disc appearances: the Glaucoma Stereo Analysis Study
Katai M
Acta Ophthalmologica 2018; 0: (IGR: 19-4)


77885 Retinal Arteriolar Narrowing in Young Adults With Glaucomatous Optic Disc
Agni AN
Journal of Glaucoma 2018; 27: 699-702 (IGR: 19-4)


78262 Protruded retinal layers within the optic nerve head neuroretinal rim
Sharpe GP
Acta Ophthalmologica 2018; 96: e493-e502 (IGR: 19-4)


78039 Long-Term Shape, Curvature, and Depth Changes of the Lamina Cribrosa after Trabeculectomy
Lesinskas E
Ophthalmology 2018; 125: 1729-1740 (IGR: 19-4)


78008 Diagnostic accuracy of macular ganglion cell-inner plexiform layer thickness for glaucoma detection in a population-based study: Comparison with optic nerve head imaging parameters
Mani B
PLoS ONE 2018; 13: e0199134 (IGR: 19-4)


77556 Parafoveal and optic disc vessel density in patients with obstructive sleep apnea syndrome: an optical coherence tomography angiography study
Blatrix C
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1235-1243 (IGR: 19-4)


78075 Undilated versus dilated monoscopic smartphone-based fundus photography for optic nerve head evaluation
Finger RP
Scientific reports 2018; 8: 10228 (IGR: 19-4)


78080 DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images
Subramanian G
Biomedical optics express 2018; 9: 3244-3265 (IGR: 19-4)


78133 Validation of formula-predicted glaucomatous optic disc appearances: the Glaucoma Stereo Analysis Study
Kitaoka Y
Acta Ophthalmologica 2018; 0: (IGR: 19-4)


78056 Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation
Wong DWK
IEEE Transactions on Medical Imaging 2018; 37: 1597-1605 (IGR: 19-4)


77939 Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Hasenstab K
Ophthalmology 2018; 125: 1720-1728 (IGR: 19-4)


78242 Deep Optic Nerve Head Morphology Is Associated With Pattern of Glaucomatous Visual Field Defect in Open-Angle Glaucoma
Lee EJ
Investigative Ophthalmology and Visual Science 2018; 59: 3842-3851 (IGR: 19-4)


78112 A Methodology for Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma
Pazos M
Journal of Biomechanical Engineering 2018; 140: (IGR: 19-4)


77885 Retinal Arteriolar Narrowing in Young Adults With Glaucomatous Optic Disc
Wong TY
Journal of Glaucoma 2018; 27: 699-702 (IGR: 19-4)


78205 Structural Reversal of Disc Cupping After Trabeculectomy Alters Bruch Membrane Opening-Based Parameters to Assess Neuroretinal Rim
Hermann MM
American Journal of Ophthalmology 2018; 194: 143-152 (IGR: 19-4)


77986 Can Macula and Optic Nerve Head Parameters Detect Glaucoma Progression in Eyes with Advanced Circumpapillary Retinal Nerve Fiber Layer Damage?
Lucy KA
Ophthalmology 2018; 0: (IGR: 19-4)


77653 Associations between structure and function are different in healthy and glaucomatous eyes
Racette L
PLoS ONE 2018; 13: e0196814 (IGR: 19-4)


78192 Regional Deformation of the Optic Nerve Head and Peripapillary Sclera During IOP Elevation
Pan X
Investigative Ophthalmology and Visual Science 2018; 59: 3779-3788 (IGR: 19-4)


78012 Baseline Lamina Cribrosa Curvature and Subsequent Visual Field Progression Rate in Primary Open-Angle Glaucoma
Mari JM
Ophthalmology 2018; 0: (IGR: 19-4)


78205 Structural Reversal of Disc Cupping After Trabeculectomy Alters Bruch Membrane Opening-Based Parameters to Assess Neuroretinal Rim
Dietlein TS
American Journal of Ophthalmology 2018; 194: 143-152 (IGR: 19-4)


78262 Protruded retinal layers within the optic nerve head neuroretinal rim
Araie M
Acta Ophthalmologica 2018; 96: e493-e502 (IGR: 19-4)


78192 Regional Deformation of the Optic Nerve Head and Peripapillary Sclera During IOP Elevation
Liu J
Investigative Ophthalmology and Visual Science 2018; 59: 3779-3788 (IGR: 19-4)


78080 DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images
Zhang L
Biomedical optics express 2018; 9: 3244-3265 (IGR: 19-4)


78012 Baseline Lamina Cribrosa Curvature and Subsequent Visual Field Progression Rate in Primary Open-Angle Glaucoma
Kim YK
Ophthalmology 2018; 0: (IGR: 19-4)


78112 A Methodology for Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma
Yang H
Journal of Biomechanical Engineering 2018; 140: (IGR: 19-4)


78056 Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation
Liu J
IEEE Transactions on Medical Imaging 2018; 37: 1597-1605 (IGR: 19-4)


77885 Retinal Arteriolar Narrowing in Young Adults With Glaucomatous Optic Disc
Sasongko MB
Journal of Glaucoma 2018; 27: 699-702 (IGR: 19-4)


78133 Validation of formula-predicted glaucomatous optic disc appearances: the Glaucoma Stereo Analysis Study
Yokoyama Y
Acta Ophthalmologica 2018; 0: (IGR: 19-4)


78039 Long-Term Shape, Curvature, and Depth Changes of the Lamina Cribrosa after Trabeculectomy
Rekašius T
Ophthalmology 2018; 125: 1729-1740 (IGR: 19-4)


78008 Diagnostic accuracy of macular ganglion cell-inner plexiform layer thickness for glaucoma detection in a population-based study: Comparison with optic nerve head imaging parameters
Wong TY
PLoS ONE 2018; 13: e0199134 (IGR: 19-4)


77556 Parafoveal and optic disc vessel density in patients with obstructive sleep apnea syndrome: an optical coherence tomography angiography study
Chabolle F
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1235-1243 (IGR: 19-4)


78242 Deep Optic Nerve Head Morphology Is Associated With Pattern of Glaucomatous Visual Field Defect in Open-Angle Glaucoma
Kee C
Investigative Ophthalmology and Visual Science 2018; 59: 3842-3851 (IGR: 19-4)


77939 Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Ghahari E
Ophthalmology 2018; 125: 1720-1728 (IGR: 19-4)


77986 Can Macula and Optic Nerve Head Parameters Detect Glaucoma Progression in Eyes with Advanced Circumpapillary Retinal Nerve Fiber Layer Damage?
Liu M
Ophthalmology 2018; 0: (IGR: 19-4)


78112 A Methodology for Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma
Johnson EC
Journal of Biomechanical Engineering 2018; 140: (IGR: 19-4)


78133 Validation of formula-predicted glaucomatous optic disc appearances: the Glaucoma Stereo Analysis Study
Omodaka K
Acta Ophthalmologica 2018; 0: (IGR: 19-4)


78056 Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation
Cao X
IEEE Transactions on Medical Imaging 2018; 37: 1597-1605 (IGR: 19-4)


77939 Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Hou H
Ophthalmology 2018; 125: 1720-1728 (IGR: 19-4)


78205 Structural Reversal of Disc Cupping After Trabeculectomy Alters Bruch Membrane Opening-Based Parameters to Assess Neuroretinal Rim
Cursiefen C
American Journal of Ophthalmology 2018; 194: 143-152 (IGR: 19-4)


77556 Parafoveal and optic disc vessel density in patients with obstructive sleep apnea syndrome: an optical coherence tomography angiography study
Nordmann JP
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1235-1243 (IGR: 19-4)


78262 Protruded retinal layers within the optic nerve head neuroretinal rim
Caprioli J
Acta Ophthalmologica 2018; 96: e493-e502 (IGR: 19-4)


78012 Baseline Lamina Cribrosa Curvature and Subsequent Visual Field Progression Rate in Primary Open-Angle Glaucoma
Park KH
Ophthalmology 2018; 0: (IGR: 19-4)


78039 Long-Term Shape, Curvature, and Depth Changes of the Lamina Cribrosa after Trabeculectomy
Chua J
Ophthalmology 2018; 125: 1729-1740 (IGR: 19-4)


77939 Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Hou H
Ophthalmology 2018; 125: 1720-1728 (IGR: 19-4)


78080 DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images
Perera S
Biomedical optics express 2018; 9: 3244-3265 (IGR: 19-4)


77986 Can Macula and Optic Nerve Head Parameters Detect Glaucoma Progression in Eyes with Advanced Circumpapillary Retinal Nerve Fiber Layer Damage?
Song Y
Ophthalmology 2018; 0: (IGR: 19-4)


77939 Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Hou H
Ophthalmology 2018; 125: 1720-1728 (IGR: 19-4)


78008 Diagnostic accuracy of macular ganglion cell-inner plexiform layer thickness for glaucoma detection in a population-based study: Comparison with optic nerve head imaging parameters
Aung T
PLoS ONE 2018; 13: e0199134 (IGR: 19-4)


78080 DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images
Mari JM
Biomedical optics express 2018; 9: 3244-3265 (IGR: 19-4)


78012 Baseline Lamina Cribrosa Curvature and Subsequent Visual Field Progression Rate in Primary Open-Angle Glaucoma
Jeoung JW
Ophthalmology 2018; 0: (IGR: 19-4)


78039 Long-Term Shape, Curvature, and Depth Changes of the Lamina Cribrosa after Trabeculectomy
Cheng CY
Ophthalmology 2018; 125: 1729-1740 (IGR: 19-4)


77986 Can Macula and Optic Nerve Head Parameters Detect Glaucoma Progression in Eyes with Advanced Circumpapillary Retinal Nerve Fiber Layer Damage?
Fallon J
Ophthalmology 2018; 0: (IGR: 19-4)


78008 Diagnostic accuracy of macular ganglion cell-inner plexiform layer thickness for glaucoma detection in a population-based study: Comparison with optic nerve head imaging parameters
Cheng CY
PLoS ONE 2018; 13: e0199134 (IGR: 19-4)


78112 A Methodology for Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma
Morrison JC
Journal of Biomechanical Engineering 2018; 140: (IGR: 19-4)


77939 Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Christopher M
Ophthalmology 2018; 125: 1720-1728 (IGR: 19-4)


78133 Validation of formula-predicted glaucomatous optic disc appearances: the Glaucoma Stereo Analysis Study
Naito T
Acta Ophthalmologica 2018; 0: (IGR: 19-4)


78205 Structural Reversal of Disc Cupping After Trabeculectomy Alters Bruch Membrane Opening-Based Parameters to Assess Neuroretinal Rim
Enders P
American Journal of Ophthalmology 2018; 194: 143-152 (IGR: 19-4)


78262 Protruded retinal layers within the optic nerve head neuroretinal rim
Demirel S
Acta Ophthalmologica 2018; 96: e493-e502 (IGR: 19-4)


78133 Validation of formula-predicted glaucomatous optic disc appearances: the Glaucoma Stereo Analysis Study
Yamashita T
Acta Ophthalmologica 2018; 0: (IGR: 19-4)


78262 Protruded retinal layers within the optic nerve head neuroretinal rim
Girkin CA
Acta Ophthalmologica 2018; 96: e493-e502 (IGR: 19-4)


78205 Structural Reversal of Disc Cupping After Trabeculectomy Alters Bruch Membrane Opening-Based Parameters to Assess Neuroretinal Rim
Heindl LM
American Journal of Ophthalmology 2018; 194: 143-152 (IGR: 19-4)


78039 Long-Term Shape, Curvature, and Depth Changes of the Lamina Cribrosa after Trabeculectomy
Mari JM
Ophthalmology 2018; 125: 1729-1740 (IGR: 19-4)


77939 Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Yarmohammadi A
Ophthalmology 2018; 125: 1720-1728 (IGR: 19-4)


77986 Can Macula and Optic Nerve Head Parameters Detect Glaucoma Progression in Eyes with Advanced Circumpapillary Retinal Nerve Fiber Layer Damage?
de Los Angeles Ramos Cadena M
Ophthalmology 2018; 0: (IGR: 19-4)


78080 DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images
Chin KS
Biomedical optics express 2018; 9: 3244-3265 (IGR: 19-4)


78112 A Methodology for Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma
Burgoyne CF
Journal of Biomechanical Engineering 2018; 140: (IGR: 19-4)


77939 Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Manalastas PIC
Ophthalmology 2018; 125: 1720-1728 (IGR: 19-4)


77986 Can Macula and Optic Nerve Head Parameters Detect Glaucoma Progression in Eyes with Advanced Circumpapillary Retinal Nerve Fiber Layer Damage?
Ishikawa H
Ophthalmology 2018; 0: (IGR: 19-4)


78080 DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images
Tun TA
Biomedical optics express 2018; 9: 3244-3265 (IGR: 19-4)


78262 Protruded retinal layers within the optic nerve head neuroretinal rim
Hangai M
Acta Ophthalmologica 2018; 96: e493-e502 (IGR: 19-4)


78133 Validation of formula-predicted glaucomatous optic disc appearances: the Glaucoma Stereo Analysis Study
Mizoue S
Acta Ophthalmologica 2018; 0: (IGR: 19-4)


78039 Long-Term Shape, Curvature, and Depth Changes of the Lamina Cribrosa after Trabeculectomy
Girard MJA
Ophthalmology 2018; 125: 1729-1740 (IGR: 19-4)


78112 A Methodology for Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma
Ross Ethier C
Journal of Biomechanical Engineering 2018; 140: (IGR: 19-4)


77939 Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Shoji T
Ophthalmology 2018; 125: 1720-1728 (IGR: 19-4)


78133 Validation of formula-predicted glaucomatous optic disc appearances: the Glaucoma Stereo Analysis Study
Iwase A
Acta Ophthalmologica 2018; 0: (IGR: 19-4)


78262 Protruded retinal layers within the optic nerve head neuroretinal rim
Iwase A
Acta Ophthalmologica 2018; 96: e493-e502 (IGR: 19-4)


77986 Can Macula and Optic Nerve Head Parameters Detect Glaucoma Progression in Eyes with Advanced Circumpapillary Retinal Nerve Fiber Layer Damage?
Wollstein G
Ophthalmology 2018; 0: (IGR: 19-4)


78039 Long-Term Shape, Curvature, and Depth Changes of the Lamina Cribrosa after Trabeculectomy
Schmetterer L
Ophthalmology 2018; 125: 1729-1740 (IGR: 19-4)


78080 DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images
Strouthidis NG
Biomedical optics express 2018; 9: 3244-3265 (IGR: 19-4)


77939 Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Bowd C
Ophthalmology 2018; 125: 1720-1728 (IGR: 19-4)


78080 DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images
Aung T
Biomedical optics express 2018; 9: 3244-3265 (IGR: 19-4)


78262 Protruded retinal layers within the optic nerve head neuroretinal rim
Liebmann JM
Acta Ophthalmologica 2018; 96: e493-e502 (IGR: 19-4)


78133 Validation of formula-predicted glaucomatous optic disc appearances: the Glaucoma Stereo Analysis Study
Nakazawa T
Acta Ophthalmologica 2018; 0: (IGR: 19-4)


78080 DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images
Thiéry AH
Biomedical optics express 2018; 9: 3244-3265 (IGR: 19-4)


78262 Protruded retinal layers within the optic nerve head neuroretinal rim
Mardin CY
Acta Ophthalmologica 2018; 96: e493-e502 (IGR: 19-4)


77939 Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma
Weinreb RN
Ophthalmology 2018; 125: 1720-1728 (IGR: 19-4)


78262 Protruded retinal layers within the optic nerve head neuroretinal rim
Nakazawa T
Acta Ophthalmologica 2018; 96: e493-e502 (IGR: 19-4)


78080 DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images
Girard MJA
Biomedical optics express 2018; 9: 3244-3265 (IGR: 19-4)


78262 Protruded retinal layers within the optic nerve head neuroretinal rim
Quigley HA; Scheuerle AF; Sugiyama K; Tanihara H; Tomita G; Yanagi Y; Burgoyne CF; Chauhan BC
Acta Ophthalmologica 2018; 96: e493-e502 (IGR: 19-4)


76425 Evaluation of the optic nerve and scleral-choroidal-retinal layer with ultrasound elastography in glaucoma and physiological optic nerve head cupping
Özen Ö
Medical ultrasonography 2018; 1: 76-79 (IGR: 19-3)


76463 Evaluating displacement of lamina cribrosa following glaucoma surgery
Krzyżanowska-Berkowska P
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 791-800 (IGR: 19-3)


76536 Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes
Shim MS
Cell Death and Disease 2018; 9: 285 (IGR: 19-3)


76813 Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study
Mursch-Edlmayr AS
Scientific reports 2018; 8: 5343 (IGR: 19-3)


76586 Choroidal Microvasculature Dropout Is Associated with Progressive Retinal Nerve Fiber Layer Thinning in Glaucoma with Disc Hemorrhage
Park HL
Ophthalmology 2018; 125: 1003-1013 (IGR: 19-3)


76757 Simultaneous evaluation of the lamina cribosa position and choroidal thickness changes following deep sclerectomy
Rebolleda G
European Journal of Ophthalmology 2018; 0: 1120672117753702 (IGR: 19-3)


76419 Differences in Optic Nerve Head, Retinal Nerve Fiber Layer, and Ganglion Cell Complex Parameters Between Caucasian and Chinese Subjects
Chansangpetch S
Journal of Glaucoma 2018; 27: 350-356 (IGR: 19-3)


76775 Beta-peripapillary atrophy of the optic disc and its determinants in Japanese eyes: a population-based study
Mataki N
Acta Ophthalmologica 2018; 0: (IGR: 19-3)


76727 Diagnostic capability of optic nerve head rim width and retinal nerve fiber thickness in open-angle glaucoma
Di Staso S
European Journal of Ophthalmology 2018; 28: 459-464 (IGR: 19-3)


77210 Influence of Disc Size on the Diagnostic Accuracy of Cirrus Spectral-Domain Optical Coherence Tomography in Glaucoma
Sato S
Journal of Ophthalmology 2018; 2018: 5692404 (IGR: 19-3)


77201 Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study
Luo H
Investigative Ophthalmology and Visual Science 2018; 59: 2357-2370 (IGR: 19-3)


77079 Glaucoma Specialist Optic Disc Margin, Rim Margin and Rim Width Discordance in Glaucoma and Glaucoma Suspect Eyes
Hong SW
American Journal of Ophthalmology 2018; 192: 65-76 (IGR: 19-3)


76799 Evaluation of macular ganglion cell analysis compared to retinal nerve fiber layer thickness for preperimetric glaucoma diagnosis
Kaushik S
Indian Journal of Ophthalmology 2018; 66: 511-516 (IGR: 19-3)


77313 Evaluation of Prelaminar Region and Lamina Cribrosa with Enhanced Depth Imaging Optical Coherence Tomography in Pseudoexfoliation Glaucoma
Ersöz MG
Turkish journal of ophthalmology 2018; 48: 109-114 (IGR: 19-3)


77233 Variability of vertical cup to disc ratio measurement and the effects of glaucoma 5-year risk estimation in untreated ocular hypertensive eyes
Chan PPM
British Journal of Ophthalmology 2019; 103: 361-368 (IGR: 19-3)


76917 Intracranial and Intraocular Pressure at the Lamina Cribrosa: Gradient Effects
Jóhannesson G
Current neurology and neuroscience reports 2018; 18: 25 (IGR: 19-3)


76779 Evaluation of two-dimensional Bruch's membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort
Enders P
Acta Ophthalmologica 2018; 0: (IGR: 19-3)


77269 Comparison of Widefield and Circumpapillary Circle Scans for Detecting Glaucomatous Neuroretinal Thinning on Optical Coherence Tomography
Wu Z
Translational vision science & technology 2018; 7: 11 (IGR: 19-3)


76439 Expression and activation of mitogen-activated protein kinases in the optic nerve head in a rat model of ocular hypertension
Mammone T
Molecular and Cellular Neurosciences 2018; 88: 270-291 (IGR: 19-3)


77283 Lamina cribrosa position and Bruch's membrane opening differences between anterior ischemic optic neuropathy and open-angle glaucoma
Rebolleda G
European Journal of Ophthalmology 2018; 0: 1120672118782101 (IGR: 19-3)


77252 Bruch's membrane opening-minimum rim width and visual field loss in glaucoma: a broken stick analysis
Park KH
International Journal of Ophthalmology 2018; 11: 828-834 (IGR: 19-3)


76311 Association Between Optic Disc Hemorrhage and Renal Function in South Korea
Lee JY
Journal of Glaucoma 2018; 27: 251-256 (IGR: 19-3)


76753 Optic Disc Features in Highly Myopic Eyes: The ZOC-BHVI High Myopia Cohort Study
Li Z
Optometry and Vision Science 2018; 95: 318-322 (IGR: 19-3)


76335 Precision of Optic Nerve Head and Retinal Nerve Fiber Layer Parameter Measurements by Spectral-domain Optical Coherence Tomography
Schrems-Hoesl LM
Journal of Glaucoma 2018; 27: 407-414 (IGR: 19-3)


76741 Location of Disc Hemorrhage and Direction of Progression in Glaucomatous Retinal Nerve Fiber Layer Defects
Lee EJ
Journal of Glaucoma 2018; 27: 504-510 (IGR: 19-3)


77080 Automated Beta Zone Parapapillary Area Measurement to Differentiate Between Healthy and Glaucoma Eyes
Manalastas PIC
American Journal of Ophthalmology 2018; 191: 140-148 (IGR: 19-3)


77057 Tortuous Pore Path Through the Glaucomatous Lamina Cribrosa
Wang B
Scientific reports 2018; 8: 7281 (IGR: 19-3)


76775 Beta-peripapillary atrophy of the optic disc and its determinants in Japanese eyes: a population-based study
Tomidokoro A
Acta Ophthalmologica 2018; 0: (IGR: 19-3)


77283 Lamina cribrosa position and Bruch's membrane opening differences between anterior ischemic optic neuropathy and open-angle glaucoma
Pérez-Sarriegui A
European Journal of Ophthalmology 2018; 0: 1120672118782101 (IGR: 19-3)


76753 Optic Disc Features in Highly Myopic Eyes: The ZOC-BHVI High Myopia Cohort Study
Guo X
Optometry and Vision Science 2018; 95: 318-322 (IGR: 19-3)


76335 Precision of Optic Nerve Head and Retinal Nerve Fiber Layer Parameter Measurements by Spectral-domain Optical Coherence Tomography
Schrems WA
Journal of Glaucoma 2018; 27: 407-414 (IGR: 19-3)


77233 Variability of vertical cup to disc ratio measurement and the effects of glaucoma 5-year risk estimation in untreated ocular hypertensive eyes
Chiu VSM
British Journal of Ophthalmology 2019; 103: 361-368 (IGR: 19-3)


76439 Expression and activation of mitogen-activated protein kinases in the optic nerve head in a rat model of ocular hypertension
Chidlow G
Molecular and Cellular Neurosciences 2018; 88: 270-291 (IGR: 19-3)


77269 Comparison of Widefield and Circumpapillary Circle Scans for Detecting Glaucomatous Neuroretinal Thinning on Optical Coherence Tomography
Weng DSD
Translational vision science & technology 2018; 7: 11 (IGR: 19-3)


76757 Simultaneous evaluation of the lamina cribosa position and choroidal thickness changes following deep sclerectomy
de Juan V
European Journal of Ophthalmology 2018; 0: 1120672117753702 (IGR: 19-3)


76779 Evaluation of two-dimensional Bruch's membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort
Adler W
Acta Ophthalmologica 2018; 0: (IGR: 19-3)


76813 Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study
Luft N
Scientific reports 2018; 8: 5343 (IGR: 19-3)


77252 Bruch's membrane opening-minimum rim width and visual field loss in glaucoma: a broken stick analysis
Lee JW
International Journal of Ophthalmology 2018; 11: 828-834 (IGR: 19-3)


77269 Comparison of Widefield and Circumpapillary Circle Scans for Detecting Glaucomatous Neuroretinal Thinning on Optical Coherence Tomography
Weng DSD
Translational vision science & technology 2018; 7: 11 (IGR: 19-3)


77080 Automated Beta Zone Parapapillary Area Measurement to Differentiate Between Healthy and Glaucoma Eyes
Belghith A
American Journal of Ophthalmology 2018; 191: 140-148 (IGR: 19-3)


76311 Association Between Optic Disc Hemorrhage and Renal Function in South Korea
Kim JM
Journal of Glaucoma 2018; 27: 251-256 (IGR: 19-3)


76425 Evaluation of the optic nerve and scleral-choroidal-retinal layer with ultrasound elastography in glaucoma and physiological optic nerve head cupping
Özer MA
Medical ultrasonography 2018; 1: 76-79 (IGR: 19-3)


76741 Location of Disc Hemorrhage and Direction of Progression in Glaucomatous Retinal Nerve Fiber Layer Defects
Han JC
Journal of Glaucoma 2018; 27: 504-510 (IGR: 19-3)


76536 Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes
Kim KY
Cell Death and Disease 2018; 9: 285 (IGR: 19-3)


76586 Choroidal Microvasculature Dropout Is Associated with Progressive Retinal Nerve Fiber Layer Thinning in Glaucoma with Disc Hemorrhage
Kim JW
Ophthalmology 2018; 125: 1003-1013 (IGR: 19-3)


77210 Influence of Disc Size on the Diagnostic Accuracy of Cirrus Spectral-Domain Optical Coherence Tomography in Glaucoma
Ukegawa K
Journal of Ophthalmology 2018; 2018: 5692404 (IGR: 19-3)


77079 Glaucoma Specialist Optic Disc Margin, Rim Margin and Rim Width Discordance in Glaucoma and Glaucoma Suspect Eyes
Koenigsman H
American Journal of Ophthalmology 2018; 192: 65-76 (IGR: 19-3)


76463 Evaluating displacement of lamina cribrosa following glaucoma surgery
Melińska A
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 791-800 (IGR: 19-3)


77313 Evaluation of Prelaminar Region and Lamina Cribrosa with Enhanced Depth Imaging Optical Coherence Tomography in Pseudoexfoliation Glaucoma
Kunak Mart D
Turkish journal of ophthalmology 2018; 48: 109-114 (IGR: 19-3)


77201 Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study
Yang H
Investigative Ophthalmology and Visual Science 2018; 59: 2357-2370 (IGR: 19-3)


77057 Tortuous Pore Path Through the Glaucomatous Lamina Cribrosa
Lucy KA
Scientific reports 2018; 8: 7281 (IGR: 19-3)


77269 Comparison of Widefield and Circumpapillary Circle Scans for Detecting Glaucomatous Neuroretinal Thinning on Optical Coherence Tomography
Weng DSD
Translational vision science & technology 2018; 7: 11 (IGR: 19-3)


76799 Evaluation of macular ganglion cell analysis compared to retinal nerve fiber layer thickness for preperimetric glaucoma diagnosis
Kataria P
Indian Journal of Ophthalmology 2018; 66: 511-516 (IGR: 19-3)


76419 Differences in Optic Nerve Head, Retinal Nerve Fiber Layer, and Ganglion Cell Complex Parameters Between Caucasian and Chinese Subjects
Huang G
Journal of Glaucoma 2018; 27: 350-356 (IGR: 19-3)


76917 Intracranial and Intraocular Pressure at the Lamina Cribrosa: Gradient Effects
Eklund A
Current neurology and neuroscience reports 2018; 18: 25 (IGR: 19-3)


76727 Diagnostic capability of optic nerve head rim width and retinal nerve fiber thickness in open-angle glaucoma
Agnifili L
European Journal of Ophthalmology 2018; 28: 459-464 (IGR: 19-3)


76741 Location of Disc Hemorrhage and Direction of Progression in Glaucomatous Retinal Nerve Fiber Layer Defects
Kee C
Journal of Glaucoma 2018; 27: 504-510 (IGR: 19-3)


77313 Evaluation of Prelaminar Region and Lamina Cribrosa with Enhanced Depth Imaging Optical Coherence Tomography in Pseudoexfoliation Glaucoma
Hazar L
Turkish journal of ophthalmology 2018; 48: 109-114 (IGR: 19-3)


76813 Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study
Podkowinski D
Scientific reports 2018; 8: 5343 (IGR: 19-3)


77252 Bruch's membrane opening-minimum rim width and visual field loss in glaucoma: a broken stick analysis
Kim JM
International Journal of Ophthalmology 2018; 11: 828-834 (IGR: 19-3)


77269 Comparison of Widefield and Circumpapillary Circle Scans for Detecting Glaucomatous Neuroretinal Thinning on Optical Coherence Tomography
Thenappan A
Translational vision science & technology 2018; 7: 11 (IGR: 19-3)


76463 Evaluating displacement of lamina cribrosa following glaucoma surgery
Helemejko I
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 791-800 (IGR: 19-3)


77080 Automated Beta Zone Parapapillary Area Measurement to Differentiate Between Healthy and Glaucoma Eyes
Weinreb RN
American Journal of Ophthalmology 2018; 191: 140-148 (IGR: 19-3)


76586 Choroidal Microvasculature Dropout Is Associated with Progressive Retinal Nerve Fiber Layer Thinning in Glaucoma with Disc Hemorrhage
Park CK
Ophthalmology 2018; 125: 1003-1013 (IGR: 19-3)


76753 Optic Disc Features in Highly Myopic Eyes: The ZOC-BHVI High Myopia Cohort Study
Xiao O
Optometry and Vision Science 2018; 95: 318-322 (IGR: 19-3)


76419 Differences in Optic Nerve Head, Retinal Nerve Fiber Layer, and Ganglion Cell Complex Parameters Between Caucasian and Chinese Subjects
Coh P
Journal of Glaucoma 2018; 27: 350-356 (IGR: 19-3)


76727 Diagnostic capability of optic nerve head rim width and retinal nerve fiber thickness in open-angle glaucoma
Di Staso F
European Journal of Ophthalmology 2018; 28: 459-464 (IGR: 19-3)


76775 Beta-peripapillary atrophy of the optic disc and its determinants in Japanese eyes: a population-based study
Araie M
Acta Ophthalmologica 2018; 0: (IGR: 19-3)


76439 Expression and activation of mitogen-activated protein kinases in the optic nerve head in a rat model of ocular hypertension
Casson RJ
Molecular and Cellular Neurosciences 2018; 88: 270-291 (IGR: 19-3)


77201 Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study
Gardiner SK
Investigative Ophthalmology and Visual Science 2018; 59: 2357-2370 (IGR: 19-3)


76335 Precision of Optic Nerve Head and Retinal Nerve Fiber Layer Parameter Measurements by Spectral-domain Optical Coherence Tomography
Laemmer R
Journal of Glaucoma 2018; 27: 407-414 (IGR: 19-3)


77079 Glaucoma Specialist Optic Disc Margin, Rim Margin and Rim Width Discordance in Glaucoma and Glaucoma Suspect Eyes
Ren R
American Journal of Ophthalmology 2018; 192: 65-76 (IGR: 19-3)


76917 Intracranial and Intraocular Pressure at the Lamina Cribrosa: Gradient Effects
Lindén C
Current neurology and neuroscience reports 2018; 18: 25 (IGR: 19-3)


76311 Association Between Optic Disc Hemorrhage and Renal Function in South Korea
Shim SH
Journal of Glaucoma 2018; 27: 251-256 (IGR: 19-3)


76425 Evaluation of the optic nerve and scleral-choroidal-retinal layer with ultrasound elastography in glaucoma and physiological optic nerve head cupping
Tosun A
Medical ultrasonography 2018; 1: 76-79 (IGR: 19-3)


77283 Lamina cribrosa position and Bruch's membrane opening differences between anterior ischemic optic neuropathy and open-angle glaucoma
Díez-Álvarez L
European Journal of Ophthalmology 2018; 0: 1120672118782101 (IGR: 19-3)


76799 Evaluation of macular ganglion cell analysis compared to retinal nerve fiber layer thickness for preperimetric glaucoma diagnosis
Jain V
Indian Journal of Ophthalmology 2018; 66: 511-516 (IGR: 19-3)


76536 Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes
Bu JH
Cell Death and Disease 2018; 9: 285 (IGR: 19-3)


77233 Variability of vertical cup to disc ratio measurement and the effects of glaucoma 5-year risk estimation in untreated ocular hypertensive eyes
Wong MOI
British Journal of Ophthalmology 2019; 103: 361-368 (IGR: 19-3)


76757 Simultaneous evaluation of the lamina cribosa position and choroidal thickness changes following deep sclerectomy
Muñoz-Negrete FJ
European Journal of Ophthalmology 2018; 0: 1120672117753702 (IGR: 19-3)


77057 Tortuous Pore Path Through the Glaucomatous Lamina Cribrosa
Schuman JS
Scientific reports 2018; 8: 7281 (IGR: 19-3)


76779 Evaluation of two-dimensional Bruch's membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort
Kiessling D
Acta Ophthalmologica 2018; 0: (IGR: 19-3)


77210 Influence of Disc Size on the Diagnostic Accuracy of Cirrus Spectral-Domain Optical Coherence Tomography in Glaucoma
Nitta E
Journal of Ophthalmology 2018; 2018: 5692404 (IGR: 19-3)


77079 Glaucoma Specialist Optic Disc Margin, Rim Margin and Rim Width Discordance in Glaucoma and Glaucoma Suspect Eyes
Yang H
American Journal of Ophthalmology 2018; 192: 65-76 (IGR: 19-3)


77269 Comparison of Widefield and Circumpapillary Circle Scans for Detecting Glaucomatous Neuroretinal Thinning on Optical Coherence Tomography
Rajshekhar R
Translational vision science & technology 2018; 7: 11 (IGR: 19-3)


77080 Automated Beta Zone Parapapillary Area Measurement to Differentiate Between Healthy and Glaucoma Eyes
Jonas JB
American Journal of Ophthalmology 2018; 191: 140-148 (IGR: 19-3)


76536 Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes
Nam HS
Cell Death and Disease 2018; 9: 285 (IGR: 19-3)


76425 Evaluation of the optic nerve and scleral-choroidal-retinal layer with ultrasound elastography in glaucoma and physiological optic nerve head cupping
Özen S
Medical ultrasonography 2018; 1: 76-79 (IGR: 19-3)


77057 Tortuous Pore Path Through the Glaucomatous Lamina Cribrosa
Sigal IA
Scientific reports 2018; 8: 7281 (IGR: 19-3)


76335 Precision of Optic Nerve Head and Retinal Nerve Fiber Layer Parameter Measurements by Spectral-domain Optical Coherence Tomography
Kruse FE
Journal of Glaucoma 2018; 27: 407-414 (IGR: 19-3)


76463 Evaluating displacement of lamina cribrosa following glaucoma surgery
Robert Iskander D
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 791-800 (IGR: 19-3)


77283 Lamina cribrosa position and Bruch's membrane opening differences between anterior ischemic optic neuropathy and open-angle glaucoma
de Juan V
European Journal of Ophthalmology 2018; 0: 1120672118782101 (IGR: 19-3)


76799 Evaluation of macular ganglion cell analysis compared to retinal nerve fiber layer thickness for preperimetric glaucoma diagnosis
Joshi G
Indian Journal of Ophthalmology 2018; 66: 511-516 (IGR: 19-3)


77210 Influence of Disc Size on the Diagnostic Accuracy of Cirrus Spectral-Domain Optical Coherence Tomography in Glaucoma
Hirooka K
Journal of Ophthalmology 2018; 2018: 5692404 (IGR: 19-3)


77252 Bruch's membrane opening-minimum rim width and visual field loss in glaucoma: a broken stick analysis
Nouri-Mahdavi K
International Journal of Ophthalmology 2018; 11: 828-834 (IGR: 19-3)


76757 Simultaneous evaluation of the lamina cribosa position and choroidal thickness changes following deep sclerectomy
Díez-Álvarez L
European Journal of Ophthalmology 2018; 0: 1120672117753702 (IGR: 19-3)


76779 Evaluation of two-dimensional Bruch's membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort
Weber V
Acta Ophthalmologica 2018; 0: (IGR: 19-3)


76727 Diagnostic capability of optic nerve head rim width and retinal nerve fiber thickness in open-angle glaucoma
Climastone H
European Journal of Ophthalmology 2018; 28: 459-464 (IGR: 19-3)


76775 Beta-peripapillary atrophy of the optic disc and its determinants in Japanese eyes: a population-based study
Iwase A
Acta Ophthalmologica 2018; 0: (IGR: 19-3)


77269 Comparison of Widefield and Circumpapillary Circle Scans for Detecting Glaucomatous Neuroretinal Thinning on Optical Coherence Tomography
Rajshekhar R
Translational vision science & technology 2018; 7: 11 (IGR: 19-3)


76813 Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study
Ring M
Scientific reports 2018; 8: 5343 (IGR: 19-3)


77201 Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study
Hardin C
Investigative Ophthalmology and Visual Science 2018; 59: 2357-2370 (IGR: 19-3)


76419 Differences in Optic Nerve Head, Retinal Nerve Fiber Layer, and Ganglion Cell Complex Parameters Between Caucasian and Chinese Subjects
Oldenburg C
Journal of Glaucoma 2018; 27: 350-356 (IGR: 19-3)


76439 Expression and activation of mitogen-activated protein kinases in the optic nerve head in a rat model of ocular hypertension
Wood JPM
Molecular and Cellular Neurosciences 2018; 88: 270-291 (IGR: 19-3)


77313 Evaluation of Prelaminar Region and Lamina Cribrosa with Enhanced Depth Imaging Optical Coherence Tomography in Pseudoexfoliation Glaucoma
Ayıntap E
Turkish journal of ophthalmology 2018; 48: 109-114 (IGR: 19-3)


76753 Optic Disc Features in Highly Myopic Eyes: The ZOC-BHVI High Myopia Cohort Study
Lee PY
Optometry and Vision Science 2018; 95: 318-322 (IGR: 19-3)


77252 Bruch's membrane opening-minimum rim width and visual field loss in glaucoma: a broken stick analysis
Caprioli J
International Journal of Ophthalmology 2018; 11: 828-834 (IGR: 19-3)


77201 Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study
Sharpe GP
Investigative Ophthalmology and Visual Science 2018; 59: 2357-2370 (IGR: 19-3)


76779 Evaluation of two-dimensional Bruch's membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort
Schaub F
Acta Ophthalmologica 2018; 0: (IGR: 19-3)


76799 Evaluation of macular ganglion cell analysis compared to retinal nerve fiber layer thickness for preperimetric glaucoma diagnosis
Raj S
Indian Journal of Ophthalmology 2018; 66: 511-516 (IGR: 19-3)


76753 Optic Disc Features in Highly Myopic Eyes: The ZOC-BHVI High Myopia Cohort Study
Liu R
Optometry and Vision Science 2018; 95: 318-322 (IGR: 19-3)


77283 Lamina cribrosa position and Bruch's membrane opening differences between anterior ischemic optic neuropathy and open-angle glaucoma
Muñoz-Negrete FJ
European Journal of Ophthalmology 2018; 0: 1120672118782101 (IGR: 19-3)


76536 Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes
Jeong SW
Cell Death and Disease 2018; 9: 285 (IGR: 19-3)


77057 Tortuous Pore Path Through the Glaucomatous Lamina Cribrosa
Bilonick RA
Scientific reports 2018; 8: 7281 (IGR: 19-3)


77313 Evaluation of Prelaminar Region and Lamina Cribrosa with Enhanced Depth Imaging Optical Coherence Tomography in Pseudoexfoliation Glaucoma
Botan Güneş İ
Turkish journal of ophthalmology 2018; 48: 109-114 (IGR: 19-3)


76813 Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study
Schmetterer L
Scientific reports 2018; 8: 5343 (IGR: 19-3)


76419 Differences in Optic Nerve Head, Retinal Nerve Fiber Layer, and Ganglion Cell Complex Parameters Between Caucasian and Chinese Subjects
Amoozgar B
Journal of Glaucoma 2018; 27: 350-356 (IGR: 19-3)


77079 Glaucoma Specialist Optic Disc Margin, Rim Margin and Rim Width Discordance in Glaucoma and Glaucoma Suspect Eyes
Gardiner SK
American Journal of Ophthalmology 2018; 192: 65-76 (IGR: 19-3)


77080 Automated Beta Zone Parapapillary Area Measurement to Differentiate Between Healthy and Glaucoma Eyes
Suh MH
American Journal of Ophthalmology 2018; 191: 140-148 (IGR: 19-3)


76727 Diagnostic capability of optic nerve head rim width and retinal nerve fiber thickness in open-angle glaucoma
Ciancaglini M
European Journal of Ophthalmology 2018; 28: 459-464 (IGR: 19-3)


76335 Precision of Optic Nerve Head and Retinal Nerve Fiber Layer Parameter Measurements by Spectral-domain Optical Coherence Tomography
Mardin CY
Journal of Glaucoma 2018; 27: 407-414 (IGR: 19-3)


77269 Comparison of Widefield and Circumpapillary Circle Scans for Detecting Glaucomatous Neuroretinal Thinning on Optical Coherence Tomography
Ritch R
Translational vision science & technology 2018; 7: 11 (IGR: 19-3)


76311 Association Between Optic Disc Hemorrhage and Renal Function in South Korea
Yoo C
Journal of Glaucoma 2018; 27: 251-256 (IGR: 19-3)


76799 Evaluation of macular ganglion cell analysis compared to retinal nerve fiber layer thickness for preperimetric glaucoma diagnosis
Pandav SS
Indian Journal of Ophthalmology 2018; 66: 511-516 (IGR: 19-3)


77313 Evaluation of Prelaminar Region and Lamina Cribrosa with Enhanced Depth Imaging Optical Coherence Tomography in Pseudoexfoliation Glaucoma
Konya HÖ
Turkish journal of ophthalmology 2018; 48: 109-114 (IGR: 19-3)


77057 Tortuous Pore Path Through the Glaucomatous Lamina Cribrosa
Lu C
Scientific reports 2018; 8: 7281 (IGR: 19-3)


77201 Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study
Caprioli J
Investigative Ophthalmology and Visual Science 2018; 59: 2357-2370 (IGR: 19-3)


77269 Comparison of Widefield and Circumpapillary Circle Scans for Detecting Glaucomatous Neuroretinal Thinning on Optical Coherence Tomography
Hood DC
Translational vision science & technology 2018; 7: 11 (IGR: 19-3)


77080 Automated Beta Zone Parapapillary Area Measurement to Differentiate Between Healthy and Glaucoma Eyes
Yarmohammadi A
American Journal of Ophthalmology 2018; 191: 140-148 (IGR: 19-3)


76311 Association Between Optic Disc Hemorrhage and Renal Function in South Korea
Won YS
Journal of Glaucoma 2018; 27: 251-256 (IGR: 19-3)


76419 Differences in Optic Nerve Head, Retinal Nerve Fiber Layer, and Ganglion Cell Complex Parameters Between Caucasian and Chinese Subjects
He M
Journal of Glaucoma 2018; 27: 350-356 (IGR: 19-3)


76813 Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study
Bolz M
Scientific reports 2018; 8: 5343 (IGR: 19-3)


76727 Diagnostic capability of optic nerve head rim width and retinal nerve fiber thickness in open-angle glaucoma
Scuderi GL
European Journal of Ophthalmology 2018; 28: 459-464 (IGR: 19-3)


76753 Optic Disc Features in Highly Myopic Eyes: The ZOC-BHVI High Myopia Cohort Study
Wang D
Optometry and Vision Science 2018; 95: 318-322 (IGR: 19-3)


77079 Glaucoma Specialist Optic Disc Margin, Rim Margin and Rim Width Discordance in Glaucoma and Glaucoma Suspect Eyes
Reynaud J
American Journal of Ophthalmology 2018; 192: 65-76 (IGR: 19-3)


76779 Evaluation of two-dimensional Bruch's membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort
Hermann MM
Acta Ophthalmologica 2018; 0: (IGR: 19-3)


76536 Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes
Park TL
Cell Death and Disease 2018; 9: 285 (IGR: 19-3)


77079 Glaucoma Specialist Optic Disc Margin, Rim Margin and Rim Width Discordance in Glaucoma and Glaucoma Suspect Eyes
Kinast RM
American Journal of Ophthalmology 2018; 192: 65-76 (IGR: 19-3)


76779 Evaluation of two-dimensional Bruch's membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort
Dietlein T
Acta Ophthalmologica 2018; 0: (IGR: 19-3)


77057 Tortuous Pore Path Through the Glaucomatous Lamina Cribrosa
Liu J
Scientific reports 2018; 8: 7281 (IGR: 19-3)


76311 Association Between Optic Disc Hemorrhage and Renal Function in South Korea
Hyun YY
Journal of Glaucoma 2018; 27: 251-256 (IGR: 19-3)


76419 Differences in Optic Nerve Head, Retinal Nerve Fiber Layer, and Ganglion Cell Complex Parameters Between Caucasian and Chinese Subjects
Lin SC
Journal of Glaucoma 2018; 27: 350-356 (IGR: 19-3)


76536 Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes
Ellisman MH
Cell Death and Disease 2018; 9: 285 (IGR: 19-3)


76753 Optic Disc Features in Highly Myopic Eyes: The ZOC-BHVI High Myopia Cohort Study
Sankaridurg P
Optometry and Vision Science 2018; 95: 318-322 (IGR: 19-3)


77201 Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study
Demirel S
Investigative Ophthalmology and Visual Science 2018; 59: 2357-2370 (IGR: 19-3)


77080 Automated Beta Zone Parapapillary Area Measurement to Differentiate Between Healthy and Glaucoma Eyes
Medeiros FA
American Journal of Ophthalmology 2018; 191: 140-148 (IGR: 19-3)


76536 Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes
Weinreb RN
Cell Death and Disease 2018; 9: 285 (IGR: 19-3)


76311 Association Between Optic Disc Hemorrhage and Renal Function in South Korea
Park KH
Journal of Glaucoma 2018; 27: 251-256 (IGR: 19-3)


77079 Glaucoma Specialist Optic Disc Margin, Rim Margin and Rim Width Discordance in Glaucoma and Glaucoma Suspect Eyes
Mansberger SL
American Journal of Ophthalmology 2018; 192: 65-76 (IGR: 19-3)


76753 Optic Disc Features in Highly Myopic Eyes: The ZOC-BHVI High Myopia Cohort Study
He M
Optometry and Vision Science 2018; 95: 318-322 (IGR: 19-3)


77201 Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study
Girkin CA
Investigative Ophthalmology and Visual Science 2018; 59: 2357-2370 (IGR: 19-3)


77057 Tortuous Pore Path Through the Glaucomatous Lamina Cribrosa
Grulkowski I
Scientific reports 2018; 8: 7281 (IGR: 19-3)


77080 Automated Beta Zone Parapapillary Area Measurement to Differentiate Between Healthy and Glaucoma Eyes
Girkin CA
American Journal of Ophthalmology 2018; 191: 140-148 (IGR: 19-3)


76779 Evaluation of two-dimensional Bruch's membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort
Cursiefen C
Acta Ophthalmologica 2018; 0: (IGR: 19-3)


77080 Automated Beta Zone Parapapillary Area Measurement to Differentiate Between Healthy and Glaucoma Eyes
Liebmann JM
American Journal of Ophthalmology 2018; 191: 140-148 (IGR: 19-3)


77201 Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study
Liebmann JM
Investigative Ophthalmology and Visual Science 2018; 59: 2357-2370 (IGR: 19-3)


77079 Glaucoma Specialist Optic Disc Margin, Rim Margin and Rim Width Discordance in Glaucoma and Glaucoma Suspect Eyes
Fortune B
American Journal of Ophthalmology 2018; 192: 65-76 (IGR: 19-3)


77057 Tortuous Pore Path Through the Glaucomatous Lamina Cribrosa
Nadler Z
Scientific reports 2018; 8: 7281 (IGR: 19-3)


76779 Evaluation of two-dimensional Bruch's membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort
Heindl LM
Acta Ophthalmologica 2018; 0: (IGR: 19-3)


76536 Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes
Ju WK
Cell Death and Disease 2018; 9: 285 (IGR: 19-3)


77079 Glaucoma Specialist Optic Disc Margin, Rim Margin and Rim Width Discordance in Glaucoma and Glaucoma Suspect Eyes
Demirel S
American Journal of Ophthalmology 2018; 192: 65-76 (IGR: 19-3)


77057 Tortuous Pore Path Through the Glaucomatous Lamina Cribrosa
Ishikawa H
Scientific reports 2018; 8: 7281 (IGR: 19-3)


77080 Automated Beta Zone Parapapillary Area Measurement to Differentiate Between Healthy and Glaucoma Eyes
Zangwill LM
American Journal of Ophthalmology 2018; 191: 140-148 (IGR: 19-3)


77201 Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study
Mardin CY; Quigley HA
Investigative Ophthalmology and Visual Science 2018; 59: 2357-2370 (IGR: 19-3)


77057 Tortuous Pore Path Through the Glaucomatous Lamina Cribrosa
Kagemann L
Scientific reports 2018; 8: 7281 (IGR: 19-3)


77079 Glaucoma Specialist Optic Disc Margin, Rim Margin and Rim Width Discordance in Glaucoma and Glaucoma Suspect Eyes
Burgoyne CF
American Journal of Ophthalmology 2018; 192: 65-76 (IGR: 19-3)


77201 Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study
Scheuerle AF
Investigative Ophthalmology and Visual Science 2018; 59: 2357-2370 (IGR: 19-3)


77057 Tortuous Pore Path Through the Glaucomatous Lamina Cribrosa
Fujimoto JG; Wollstein G
Scientific reports 2018; 8: 7281 (IGR: 19-3)


77201 Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study
Fortune B; Chauhan BC; Burgoyne CF
Investigative Ophthalmology and Visual Science 2018; 59: 2357-2370 (IGR: 19-3)


75342 In-vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure
Wang B
PLoS ONE 2017; 12: e0188302 (IGR: 19-2)


75507 Relationship of corneal hysteresis and optic nerve parameters in healthy myopic subjects
Qiu K
Scientific reports 2017; 7: 17538 (IGR: 19-2)


75129 Measurement of Optic Disc Cup Surface Depth Using Cirrus HD-OCT
Kim YK
Journal of Glaucoma 2017; 26: 1072-1080 (IGR: 19-2)


75602 Age, ocular magnification, and circumpapillary retinal nerve fiber layer thickness
Wang M
Journal of biomedical Optics 2017; 22: 1-19 (IGR: 19-2)


75470 Imaging of the lamina cribrosa and its role in glaucoma: a review
Tan NY
Clinical and Experimental Ophthalmology 2018; 46: 177-188 (IGR: 19-2)


75480 A Novel Adaptive Deformable Model for Automated Optic Disc and Cup Segmentation to Aid Glaucoma Diagnosis
Haleem MS
Journal of Medical Systems 2017; 42: 20 (IGR: 19-2)


75440 Application of the ISNT rules on retinal nerve fibre layer thickness and neuroretinal rim area in healthy myopic eyes
Qiu K
Acta Ophthalmologica 2018; 96: 161-167 (IGR: 19-2)


75568 Classification of optic disc shape in glaucoma using machine learning based on quantified ocular parameters
Omodaka K
PLoS ONE 2017; 12: e0190012 (IGR: 19-2)


75544 Impact of optic disc hemorrhage on subsequent glaucoma progression in mild-to-moderate myopia
Ha A
PLoS ONE 2017; 12: e0189706 (IGR: 19-2)


75608 Automatic CDR Estimation for Early Glaucoma Diagnosis
Fernandez-Granero MA
Journal of healthcare engineering 2017; 2017: 5953621 (IGR: 19-2)


75569 Evaluation of Ganglion Cell-Inner Plexiform Layer Thinning in Eyes With Optic Disc Hemorrhage: A Trend-Based Progression Analysis
Lee WJ
Investigative Ophthalmology and Visual Science 2017; 58: 6449-6456 (IGR: 19-2)


75356 Factors associated with deep circulation in the peripapillary chorioretinal atrophy zone in normal-tension glaucoma with myopic disc
Kiyota N
Acta Ophthalmologica 2018; 96: e290-e297 (IGR: 19-2)


75412 3D Histomorphometric Reconstruction and Quantification of the Optic Nerve Head Connective Tissues
Yang H
Methods in molecular biology (Clifton, N.J.) 2018; 1695: 207-267 (IGR: 19-2)


75275 Signal Alteration in the Optic Nerve Head on 3D T2-weighted MRI: a Potential Neuroimaging Sign of Glaucomatous Optic Neuropathy
Lee JY
Current Eye Research 2018; 43: 397-405 (IGR: 19-2)


75477 Optic disc hemorrhages in glaucoma and common clinical features
Ozturker ZK
Canadian Journal of Ophthalmology 2017; 52: 583-591 (IGR: 19-2)


75380 Optic disc segmentation for glaucoma screening system using fundus images
Almazroa A
Clinical Ophthalmology 2017; 11: 2017-2029 (IGR: 19-2)


75179 Relationship Between Optic Nerve Head Drusen Volume and Structural and Functional Optic Nerve Damage
Skaat A
Journal of Glaucoma 2017; 26: 1095-1100 (IGR: 19-2)


75314 Heritability of the morphology of optic nerve head and surrounding structures: The Healthy Twin Study
Han JC
PLoS ONE 2017; 12: e0187498 (IGR: 19-2)


75611 Evolution of optic nerve photography for glaucoma screening: a review
Myers JS
Clinical and Experimental Ophthalmology 2018; 46: 169-176 (IGR: 19-2)


75698 Fundus Densitometry Findings Suggest Optic Disc Hemorrhages in Primary Open-Angle Glaucoma Have an Arterial Origin
Chou JC
American Journal of Ophthalmology 2018; 187: 108-116 (IGR: 19-2)


75525 Evaluation of Retinal Nerve Fiber Layer Thinning in Myopic Glaucoma: Impact of Optic Disc Morphology
Na KI
Investigative Ophthalmology and Visual Science 2017; 58: 6265-6272 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Kitaoka Y
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75335 The Evolving Role of the Relationship between Optic Nerve Structure and Function in Glaucoma
Yohannan J
Ophthalmology 2017; 124: S66-S70 (IGR: 19-2)


75480 A Novel Adaptive Deformable Model for Automated Optic Disc and Cup Segmentation to Aid Glaucoma Diagnosis
Han L
Journal of Medical Systems 2017; 42: 20 (IGR: 19-2)


75698 Fundus Densitometry Findings Suggest Optic Disc Hemorrhages in Primary Open-Angle Glaucoma Have an Arterial Origin
Cousins CC
American Journal of Ophthalmology 2018; 187: 108-116 (IGR: 19-2)


75314 Heritability of the morphology of optic nerve head and surrounding structures: The Healthy Twin Study
Ko H
PLoS ONE 2017; 12: e0187498 (IGR: 19-2)


75507 Relationship of corneal hysteresis and optic nerve parameters in healthy myopic subjects
Lu X
Scientific reports 2017; 7: 17538 (IGR: 19-2)


75356 Factors associated with deep circulation in the peripapillary chorioretinal atrophy zone in normal-tension glaucoma with myopic disc
Kunikata H
Acta Ophthalmologica 2018; 96: e290-e297 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Tanito M
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75602 Age, ocular magnification, and circumpapillary retinal nerve fiber layer thickness
Elze T
Journal of biomedical Optics 2017; 22: 1-19 (IGR: 19-2)


75335 The Evolving Role of the Relationship between Optic Nerve Structure and Function in Glaucoma
Boland MV
Ophthalmology 2017; 124: S66-S70 (IGR: 19-2)


75275 Signal Alteration in the Optic Nerve Head on 3D T2-weighted MRI: a Potential Neuroimaging Sign of Glaucomatous Optic Neuropathy
Kwon HJ
Current Eye Research 2018; 43: 397-405 (IGR: 19-2)


75608 Automatic CDR Estimation for Early Glaucoma Diagnosis
Sarmiento A
Journal of healthcare engineering 2017; 2017: 5953621 (IGR: 19-2)


75611 Evolution of optic nerve photography for glaucoma screening: a review
Fudemberg SJ
Clinical and Experimental Ophthalmology 2018; 46: 169-176 (IGR: 19-2)


75380 Optic disc segmentation for glaucoma screening system using fundus images
Sun W
Clinical Ophthalmology 2017; 11: 2017-2029 (IGR: 19-2)


75477 Optic disc hemorrhages in glaucoma and common clinical features
Munro K
Canadian Journal of Ophthalmology 2017; 52: 583-591 (IGR: 19-2)


75342 In-vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure
Tran H
PLoS ONE 2017; 12: e0188302 (IGR: 19-2)


75470 Imaging of the lamina cribrosa and its role in glaucoma: a review
Koh V
Clinical and Experimental Ophthalmology 2018; 46: 177-188 (IGR: 19-2)


75525 Evaluation of Retinal Nerve Fiber Layer Thinning in Myopic Glaucoma: Impact of Optic Disc Morphology
Lee WJ
Investigative Ophthalmology and Visual Science 2017; 58: 6265-6272 (IGR: 19-2)


75568 Classification of optic disc shape in glaucoma using machine learning based on quantified ocular parameters
An G
PLoS ONE 2017; 12: e0190012 (IGR: 19-2)


75129 Measurement of Optic Disc Cup Surface Depth Using Cirrus HD-OCT
Ha A
Journal of Glaucoma 2017; 26: 1072-1080 (IGR: 19-2)


75544 Impact of optic disc hemorrhage on subsequent glaucoma progression in mild-to-moderate myopia
Kim YK
PLoS ONE 2017; 12: e0189706 (IGR: 19-2)


75412 3D Histomorphometric Reconstruction and Quantification of the Optic Nerve Head Connective Tissues
Reynaud J
Methods in molecular biology (Clifton, N.J.) 2018; 1695: 207-267 (IGR: 19-2)


75569 Evaluation of Ganglion Cell-Inner Plexiform Layer Thinning in Eyes With Optic Disc Hemorrhage: A Trend-Based Progression Analysis
Kim YK
Investigative Ophthalmology and Visual Science 2017; 58: 6449-6456 (IGR: 19-2)


75440 Application of the ISNT rules on retinal nerve fibre layer thickness and neuroretinal rim area in healthy myopic eyes
Wang G
Acta Ophthalmologica 2018; 96: 161-167 (IGR: 19-2)


75179 Relationship Between Optic Nerve Head Drusen Volume and Structural and Functional Optic Nerve Damage
Muylaert S
Journal of Glaucoma 2017; 26: 1095-1100 (IGR: 19-2)


75608 Automatic CDR Estimation for Early Glaucoma Diagnosis
Sanchez-Morillo D
Journal of healthcare engineering 2017; 2017: 5953621 (IGR: 19-2)


75380 Optic disc segmentation for glaucoma screening system using fundus images
Alodhayb S
Clinical Ophthalmology 2017; 11: 2017-2029 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Yokoyama Y
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75568 Classification of optic disc shape in glaucoma using machine learning based on quantified ocular parameters
Tsuda S
PLoS ONE 2017; 12: e0190012 (IGR: 19-2)


75275 Signal Alteration in the Optic Nerve Head on 3D T2-weighted MRI: a Potential Neuroimaging Sign of Glaucomatous Optic Neuropathy
Park SJ
Current Eye Research 2018; 43: 397-405 (IGR: 19-2)


75569 Evaluation of Ganglion Cell-Inner Plexiform Layer Thinning in Eyes With Optic Disc Hemorrhage: A Trend-Based Progression Analysis
Park KH
Investigative Ophthalmology and Visual Science 2017; 58: 6449-6456 (IGR: 19-2)


75525 Evaluation of Retinal Nerve Fiber Layer Thinning in Myopic Glaucoma: Impact of Optic Disc Morphology
Kim YK
Investigative Ophthalmology and Visual Science 2017; 58: 6265-6272 (IGR: 19-2)


75602 Age, ocular magnification, and circumpapillary retinal nerve fiber layer thickness
Li D
Journal of biomedical Optics 2017; 22: 1-19 (IGR: 19-2)


75507 Relationship of corneal hysteresis and optic nerve parameters in healthy myopic subjects
Zhang R
Scientific reports 2017; 7: 17538 (IGR: 19-2)


75698 Fundus Densitometry Findings Suggest Optic Disc Hemorrhages in Primary Open-Angle Glaucoma Have an Arterial Origin
Miller JB
American Journal of Ophthalmology 2018; 187: 108-116 (IGR: 19-2)


75544 Impact of optic disc hemorrhage on subsequent glaucoma progression in mild-to-moderate myopia
Jeoung JW
PLoS ONE 2017; 12: e0189706 (IGR: 19-2)


75480 A Novel Adaptive Deformable Model for Automated Optic Disc and Cup Segmentation to Aid Glaucoma Diagnosis
Hemert Jv
Journal of Medical Systems 2017; 42: 20 (IGR: 19-2)


75129 Measurement of Optic Disc Cup Surface Depth Using Cirrus HD-OCT
Lee WJ
Journal of Glaucoma 2017; 26: 1072-1080 (IGR: 19-2)


75179 Relationship Between Optic Nerve Head Drusen Volume and Structural and Functional Optic Nerve Damage
Mogil RS
Journal of Glaucoma 2017; 26: 1095-1100 (IGR: 19-2)


75611 Evolution of optic nerve photography for glaucoma screening: a review
Lee D
Clinical and Experimental Ophthalmology 2018; 46: 169-176 (IGR: 19-2)


75440 Application of the ISNT rules on retinal nerve fibre layer thickness and neuroretinal rim area in healthy myopic eyes
Lu X
Acta Ophthalmologica 2018; 96: 161-167 (IGR: 19-2)


75342 In-vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure
Smith MA
PLoS ONE 2017; 12: e0188302 (IGR: 19-2)


75356 Factors associated with deep circulation in the peripapillary chorioretinal atrophy zone in normal-tension glaucoma with myopic disc
Takahashi S
Acta Ophthalmologica 2018; 96: e290-e297 (IGR: 19-2)


75470 Imaging of the lamina cribrosa and its role in glaucoma: a review
Girard MJ
Clinical and Experimental Ophthalmology 2018; 46: 177-188 (IGR: 19-2)


75477 Optic disc hemorrhages in glaucoma and common clinical features
Gupta N
Canadian Journal of Ophthalmology 2017; 52: 583-591 (IGR: 19-2)


75412 3D Histomorphometric Reconstruction and Quantification of the Optic Nerve Head Connective Tissues
Lockwood H
Methods in molecular biology (Clifton, N.J.) 2018; 1695: 207-267 (IGR: 19-2)


75314 Heritability of the morphology of optic nerve head and surrounding structures: The Healthy Twin Study
Kim SH
PLoS ONE 2017; 12: e0187498 (IGR: 19-2)


75544 Impact of optic disc hemorrhage on subsequent glaucoma progression in mild-to-moderate myopia
Park KH
PLoS ONE 2017; 12: e0189706 (IGR: 19-2)


75179 Relationship Between Optic Nerve Head Drusen Volume and Structural and Functional Optic Nerve Damage
Furlanetto RL
Journal of Glaucoma 2017; 26: 1095-1100 (IGR: 19-2)


75412 3D Histomorphometric Reconstruction and Quantification of the Optic Nerve Head Connective Tissues
Williams G
Methods in molecular biology (Clifton, N.J.) 2018; 1695: 207-267 (IGR: 19-2)


75470 Imaging of the lamina cribrosa and its role in glaucoma: a review
Cheng CY
Clinical and Experimental Ophthalmology 2018; 46: 177-188 (IGR: 19-2)


75314 Heritability of the morphology of optic nerve head and surrounding structures: The Healthy Twin Study
Rhee T
PLoS ONE 2017; 12: e0187498 (IGR: 19-2)


75569 Evaluation of Ganglion Cell-Inner Plexiform Layer Thinning in Eyes With Optic Disc Hemorrhage: A Trend-Based Progression Analysis
Jeoung JW
Investigative Ophthalmology and Visual Science 2017; 58: 6449-6456 (IGR: 19-2)


75698 Fundus Densitometry Findings Suggest Optic Disc Hemorrhages in Primary Open-Angle Glaucoma Have an Arterial Origin
Song BJ
American Journal of Ophthalmology 2018; 187: 108-116 (IGR: 19-2)


75525 Evaluation of Retinal Nerve Fiber Layer Thinning in Myopic Glaucoma: Impact of Optic Disc Morphology
Park KH
Investigative Ophthalmology and Visual Science 2017; 58: 6265-6272 (IGR: 19-2)


75380 Optic disc segmentation for glaucoma screening system using fundus images
Raahemifar K
Clinical Ophthalmology 2017; 11: 2017-2029 (IGR: 19-2)


75602 Age, ocular magnification, and circumpapillary retinal nerve fiber layer thickness
Baniasadi N
Journal of biomedical Optics 2017; 22: 1-19 (IGR: 19-2)


75440 Application of the ISNT rules on retinal nerve fibre layer thickness and neuroretinal rim area in healthy myopic eyes
Zhang R
Acta Ophthalmologica 2018; 96: 161-167 (IGR: 19-2)


75507 Relationship of corneal hysteresis and optic nerve parameters in healthy myopic subjects
Wang G
Scientific reports 2017; 7: 17538 (IGR: 19-2)


75129 Measurement of Optic Disc Cup Surface Depth Using Cirrus HD-OCT
Jeoung JW
Journal of Glaucoma 2017; 26: 1072-1080 (IGR: 19-2)


75608 Automatic CDR Estimation for Early Glaucoma Diagnosis
Jiménez S
Journal of healthcare engineering 2017; 2017: 5953621 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Nitta K
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75568 Classification of optic disc shape in glaucoma using machine learning based on quantified ocular parameters
Shiga Y
PLoS ONE 2017; 12: e0190012 (IGR: 19-2)


75275 Signal Alteration in the Optic Nerve Head on 3D T2-weighted MRI: a Potential Neuroimaging Sign of Glaucomatous Optic Neuropathy
Yoo C
Current Eye Research 2018; 43: 397-405 (IGR: 19-2)


75480 A Novel Adaptive Deformable Model for Automated Optic Disc and Cup Segmentation to Aid Glaucoma Diagnosis
Li B
Journal of Medical Systems 2017; 42: 20 (IGR: 19-2)


75342 In-vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure
Kostanyan T
PLoS ONE 2017; 12: e0188302 (IGR: 19-2)


75356 Factors associated with deep circulation in the peripapillary chorioretinal atrophy zone in normal-tension glaucoma with myopic disc
Shiga Y
Acta Ophthalmologica 2018; 96: e290-e297 (IGR: 19-2)


75440 Application of the ISNT rules on retinal nerve fibre layer thickness and neuroretinal rim area in healthy myopic eyes
Sun L
Acta Ophthalmologica 2018; 96: 161-167 (IGR: 19-2)


75380 Optic disc segmentation for glaucoma screening system using fundus images
Lakshminarayanan V
Clinical Ophthalmology 2017; 11: 2017-2029 (IGR: 19-2)


75179 Relationship Between Optic Nerve Head Drusen Volume and Structural and Functional Optic Nerve Damage
Netto CF
Journal of Glaucoma 2017; 26: 1095-1100 (IGR: 19-2)


75412 3D Histomorphometric Reconstruction and Quantification of the Optic Nerve Head Connective Tissues
Hardin C
Methods in molecular biology (Clifton, N.J.) 2018; 1695: 207-267 (IGR: 19-2)


75129 Measurement of Optic Disc Cup Surface Depth Using Cirrus HD-OCT
Park KH
Journal of Glaucoma 2017; 26: 1072-1080 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Katai M
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75275 Signal Alteration in the Optic Nerve Head on 3D T2-weighted MRI: a Potential Neuroimaging Sign of Glaucomatous Optic Neuropathy
Kim YY
Current Eye Research 2018; 43: 397-405 (IGR: 19-2)


75608 Automatic CDR Estimation for Early Glaucoma Diagnosis
Alemany P
Journal of healthcare engineering 2017; 2017: 5953621 (IGR: 19-2)


75356 Factors associated with deep circulation in the peripapillary chorioretinal atrophy zone in normal-tension glaucoma with myopic disc
Omodaka K
Acta Ophthalmologica 2018; 96: e290-e297 (IGR: 19-2)


75342 In-vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure
Schmitt SE
PLoS ONE 2017; 12: e0188302 (IGR: 19-2)


75698 Fundus Densitometry Findings Suggest Optic Disc Hemorrhages in Primary Open-Angle Glaucoma Have an Arterial Origin
Shen LQ
American Journal of Ophthalmology 2018; 187: 108-116 (IGR: 19-2)


75480 A Novel Adaptive Deformable Model for Automated Optic Disc and Cup Segmentation to Aid Glaucoma Diagnosis
Fleming A
Journal of Medical Systems 2017; 42: 20 (IGR: 19-2)


75525 Evaluation of Retinal Nerve Fiber Layer Thinning in Myopic Glaucoma: Impact of Optic Disc Morphology
Jeoung JW
Investigative Ophthalmology and Visual Science 2017; 58: 6265-6272 (IGR: 19-2)


75314 Heritability of the morphology of optic nerve head and surrounding structures: The Healthy Twin Study
Nam SW
PLoS ONE 2017; 12: e0187498 (IGR: 19-2)


75507 Relationship of corneal hysteresis and optic nerve parameters in healthy myopic subjects
Zhang M
Scientific reports 2017; 7: 17538 (IGR: 19-2)


75602 Age, ocular magnification, and circumpapillary retinal nerve fiber layer thickness
Wirkner K
Journal of biomedical Optics 2017; 22: 1-19 (IGR: 19-2)


75568 Classification of optic disc shape in glaucoma using machine learning based on quantified ocular parameters
Takada N
PLoS ONE 2017; 12: e0190012 (IGR: 19-2)


75356 Factors associated with deep circulation in the peripapillary chorioretinal atrophy zone in normal-tension glaucoma with myopic disc
Nakazawa T
Acta Ophthalmologica 2018; 96: e290-e297 (IGR: 19-2)


75480 A Novel Adaptive Deformable Model for Automated Optic Disc and Cup Segmentation to Aid Glaucoma Diagnosis
Pasquale LR
Journal of Medical Systems 2017; 42: 20 (IGR: 19-2)


75608 Automatic CDR Estimation for Early Glaucoma Diagnosis
Fondón I
Journal of healthcare engineering 2017; 2017: 5953621 (IGR: 19-2)


75698 Fundus Densitometry Findings Suggest Optic Disc Hemorrhages in Primary Open-Angle Glaucoma Have an Arterial Origin
Kass MA
American Journal of Ophthalmology 2018; 187: 108-116 (IGR: 19-2)


75568 Classification of optic disc shape in glaucoma using machine learning based on quantified ocular parameters
Kikawa T
PLoS ONE 2017; 12: e0190012 (IGR: 19-2)


75179 Relationship Between Optic Nerve Head Drusen Volume and Structural and Functional Optic Nerve Damage
Banik R
Journal of Glaucoma 2017; 26: 1095-1100 (IGR: 19-2)


75440 Application of the ISNT rules on retinal nerve fibre layer thickness and neuroretinal rim area in healthy myopic eyes
Zhang M
Acta Ophthalmologica 2018; 96: 161-167 (IGR: 19-2)


75412 3D Histomorphometric Reconstruction and Quantification of the Optic Nerve Head Connective Tissues
Reyes L
Methods in molecular biology (Clifton, N.J.) 2018; 1695: 207-267 (IGR: 19-2)


75275 Signal Alteration in the Optic Nerve Head on 3D T2-weighted MRI: a Potential Neuroimaging Sign of Glaucomatous Optic Neuropathy
Kim EY
Current Eye Research 2018; 43: 397-405 (IGR: 19-2)


75342 In-vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure
Bilonick RA
PLoS ONE 2017; 12: e0188302 (IGR: 19-2)


75314 Heritability of the morphology of optic nerve head and surrounding structures: The Healthy Twin Study
Hwang S
PLoS ONE 2017; 12: e0187498 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Omodaka K
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75602 Age, ocular magnification, and circumpapillary retinal nerve fiber layer thickness
Kirsten T
Journal of biomedical Optics 2017; 22: 1-19 (IGR: 19-2)


75698 Fundus Densitometry Findings Suggest Optic Disc Hemorrhages in Primary Open-Angle Glaucoma Have an Arterial Origin
Wiggs JL
American Journal of Ophthalmology 2018; 187: 108-116 (IGR: 19-2)


75342 In-vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure
Jan NJ
PLoS ONE 2017; 12: e0188302 (IGR: 19-2)


75412 3D Histomorphometric Reconstruction and Quantification of the Optic Nerve Head Connective Tissues
Gardiner SK
Methods in molecular biology (Clifton, N.J.) 2018; 1695: 207-267 (IGR: 19-2)


75602 Age, ocular magnification, and circumpapillary retinal nerve fiber layer thickness
Thiery J
Journal of biomedical Optics 2017; 22: 1-19 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Nakazawa T
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75314 Heritability of the morphology of optic nerve head and surrounding structures: The Healthy Twin Study
Lee GI
PLoS ONE 2017; 12: e0187498 (IGR: 19-2)


75480 A Novel Adaptive Deformable Model for Automated Optic Disc and Cup Segmentation to Aid Glaucoma Diagnosis
Song BJ
Journal of Medical Systems 2017; 42: 20 (IGR: 19-2)


75179 Relationship Between Optic Nerve Head Drusen Volume and Structural and Functional Optic Nerve Damage
Liebmann JM
Journal of Glaucoma 2017; 26: 1095-1100 (IGR: 19-2)


75568 Classification of optic disc shape in glaucoma using machine learning based on quantified ocular parameters
Takahashi H
PLoS ONE 2017; 12: e0190012 (IGR: 19-2)


75602 Age, ocular magnification, and circumpapillary retinal nerve fiber layer thickness
Loeffler M
Journal of biomedical Optics 2017; 22: 1-19 (IGR: 19-2)


75179 Relationship Between Optic Nerve Head Drusen Volume and Structural and Functional Optic Nerve Damage
Ritch R
Journal of Glaucoma 2017; 26: 1095-1100 (IGR: 19-2)


75342 In-vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure
Kagemann L
PLoS ONE 2017; 12: e0188302 (IGR: 19-2)


75314 Heritability of the morphology of optic nerve head and surrounding structures: The Healthy Twin Study
Sung J
PLoS ONE 2017; 12: e0187498 (IGR: 19-2)


75568 Classification of optic disc shape in glaucoma using machine learning based on quantified ocular parameters
Yokota H
PLoS ONE 2017; 12: e0190012 (IGR: 19-2)


75698 Fundus Densitometry Findings Suggest Optic Disc Hemorrhages in Primary Open-Angle Glaucoma Have an Arterial Origin
Pasquale LR
American Journal of Ophthalmology 2018; 187: 108-116 (IGR: 19-2)


75412 3D Histomorphometric Reconstruction and Quantification of the Optic Nerve Head Connective Tissues
Burgoyne CF
Methods in molecular biology (Clifton, N.J.) 2018; 1695: 207-267 (IGR: 19-2)


75314 Heritability of the morphology of optic nerve head and surrounding structures: The Healthy Twin Study
Song YM
PLoS ONE 2017; 12: e0187498 (IGR: 19-2)


75342 In-vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure
Tyler-Kabara EC
PLoS ONE 2017; 12: e0188302 (IGR: 19-2)


75568 Classification of optic disc shape in glaucoma using machine learning based on quantified ocular parameters
Akiba M
PLoS ONE 2017; 12: e0190012 (IGR: 19-2)


75179 Relationship Between Optic Nerve Head Drusen Volume and Structural and Functional Optic Nerve Damage
Park SC
Journal of Glaucoma 2017; 26: 1095-1100 (IGR: 19-2)


75602 Age, ocular magnification, and circumpapillary retinal nerve fiber layer thickness
Engel C
Journal of biomedical Optics 2017; 22: 1-19 (IGR: 19-2)


75342 In-vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure
Ishikawa H
PLoS ONE 2017; 12: e0188302 (IGR: 19-2)


75568 Classification of optic disc shape in glaucoma using machine learning based on quantified ocular parameters
Nakazawa T
PLoS ONE 2017; 12: e0190012 (IGR: 19-2)


75314 Heritability of the morphology of optic nerve head and surrounding structures: The Healthy Twin Study
Kee C
PLoS ONE 2017; 12: e0187498 (IGR: 19-2)


75602 Age, ocular magnification, and circumpapillary retinal nerve fiber layer thickness
Rauscher FG
Journal of biomedical Optics 2017; 22: 1-19 (IGR: 19-2)


75342 In-vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure
Schuman JS; Sigal IA; Wollstein G
PLoS ONE 2017; 12: e0188302 (IGR: 19-2)


74274 Association of intraocular pressure-related factors and retinal vessel diameter with optic disc rim area in subjects with and without primary open angle glaucoma
Zhang Q
Clinical and Experimental Ophthalmology 2018; 46: 389-399 (IGR: 19-1)


74554 Optic Disc Drusen and Family History of Glaucoma-Results of a Patient-directed Survey
Gramer G
Journal of Glaucoma 2017; 26: 940-946 (IGR: 19-1)


74167 Comparing glaucomatous disc change using stereo disc viewing and the MatchedFlicker programme in glaucoma experts and trainees
Schaefer JL
British Journal of Ophthalmology 2018; 102: 358-363 (IGR: 19-1)


74450 Pilot study of the pulsatile neuro-peripapillary retinal deformation in glaucoma and its relationship with glaucoma risk factors
Hidalgo-Aguirre M
Current Eye Research 2017; 42: 1620-1627 (IGR: 19-1)


74349 Contrast based circular approximation for accurate and robust optic disc segmentation in retinal images
Sigut J
PeerJ 2017; 5: e3763 (IGR: 19-1)


74214 Valsalva Maneuver-induced Changes in Anterior Lamina Cribrosa Surface DEPTH: A Comparison Between Normal and Glaucomatous Eyes
Kim YK
Journal of Glaucoma 2017; 26: 866-874 (IGR: 19-1)


74118 Statins reduce TGF-beta2-modulation of the extracellular matrix in cultured astrocytes of the human optic nerve head
Kim ML
Experimental Eye Research 2017; 164: 55-63 (IGR: 19-1)


74609 Interocular symmetry of retinal nerve fiber layer and optic nerve head parameters measured by Cirrus high-definition optical coherence tomography in a normal pediatric population
Pawar N
Indian Journal of Ophthalmology 2017; 65: 955-962 (IGR: 19-1)


74791 Relationship between anterior segment and optic nerve head parameters in healthy subjects
Cankaya AB
Arquivos Brasileiros de Oftalmologia 2017; 80: 285-289 (IGR: 19-1)


74218 Compressed 3D and 2D digital images versus standard 3D slide film for the evaluation of glaucomatous optic nerve features
Sandhu S
British Journal of Ophthalmology 2018; 102: 364-368 (IGR: 19-1)


74032 Sub-classification of myopic glaucomatous eyes according to optic disc and peripapillary features
Han S
PLoS ONE 2017; 12: e0181841 (IGR: 19-1)


74628 Intraday Repeatability of Bruch's Membrane Opening-Based Neuroretinal Rim Measurements
Enders P
Investigative Ophthalmology and Visual Science 2017; 58: 5195-5200 (IGR: 19-1)


74444 The Upright Body Position Increases Translaminar Pressure Gradient in Normotensive and Hypertensive Rats
Skrzypecki J
Current Eye Research 2017; 42: 1634-1637 (IGR: 19-1)


74398 Correlation of echographic and photographic assessment of optic nerve head cupping in children
Sayed MS
Journal of AAPOS 2017; 21: 389-392 (IGR: 19-1)


74235 Racioethnic Differences in Human Posterior Scleral and Optic Nerve Stump Deformation
Tamimi EA
Investigative Ophthalmology and Visual Science 2017; 58: 4235-4246 (IGR: 19-1)


74433 Reproducibility of Bruch Membrane Opening-Minimum Rim Width Measurements With Spectral Domain Optical Coherence Tomography
Park K
Journal of Glaucoma 2017; 26: 1041-1050 (IGR: 19-1)


74305 Morphometric parameters of the optic disc in normal and glaucomatous eyes based on time-domain optical coherence tomography image analysis
Buteikienė D
Medicina (Kaunas, Lithuania) 2017; 53: 242-252 (IGR: 19-1)


74313 Variations in optic nerve head morphology by intraocular pressure in open-angle glaucoma
Wong A
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 2219-2226 (IGR: 19-1)


74829 Occult Optic Disc Pit Maculopathy in a Glaucomatous Disc
Nagesha CK
Middle East African Journal of Ophthalmology 2017; 24: 165-166 (IGR: 19-1)


74152 Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans
Khoueir Z
American Journal of Ophthalmology 2017; 182: 180-193 (IGR: 19-1)


74068 Optic Nerve Head Drusen: Imaging Using Optical Coherence Tomography Angiography
Flores-Reyes E
Journal of Glaucoma 2017; 26: 845-849 (IGR: 19-1)


74080 Diagnostic accuracy of ganglion cell complex substructures in different stages of primary open-angle glaucoma
Elbendary AM
Canadian Journal of Ophthalmology 2017; 52: 355-360 (IGR: 19-1)


74302 A novel hypothesis for the pathogenesis of glaucomatous disc hemorrhage
Lee EJ
Progress in Retinal and Eye Research 2017; 60: 20-43 (IGR: 19-1)


74256 Volumetric Measurement of Optic Nerve Head Drusen Using Swept-Source Optical Coherence Tomography
Tsikata E
Journal of Glaucoma 2017; 26: 798-804 (IGR: 19-1)


74440 Translaminar Gradient and Glaucoma
Čmelo J
?eska a Slovenska Oftalmologie 2017; 73: 52-56 (IGR: 19-1)


74114 Finite Element Biomechanics of Optic Nerve Sheath Traction in Adduction
Shin A
Journal of Biomechanical Engineering 2017; 139: (IGR: 19-1)


74843 The impact of anthropometric and ocular parameters on optic cup-to-disc ratio
Fukuoka H
BMJ open ophthalmology 2017; 1: e000012 (IGR: 19-1)


74255 Visibility of Optic Nerve Head Structures With Spectral-domain and Swept-source Optical Coherence Tomography
Loureiro MM
Journal of Glaucoma 2017; 26: 792-797 (IGR: 19-1)


74192 Glaucoma and optic nerve drusen: Limitations of optic nerve head OCT
Poli M
Journal Français d'Ophtalmologie 2017; 40: 542-546 (IGR: 19-1)


74096 Is the Optic Nerve Head Structure Impacted by a Diagnostic Lumbar Puncture in Humans?
Poli M
Journal of Glaucoma 2017; 26: 1036-1040 (IGR: 19-1)


74092 Optic Disc Drusen and Family History of Glaucoma - Results of a Patient-directed Survey
Gramer G
Journal of Glaucoma 2017; 0: (IGR: 19-1)


74671 Optimization Strategies for Bruch's Membrane Opening Minimum Rim Area Calculation: Sequential versus Simultaneous Minimization
Enders P
Scientific reports 2017; 7: 13874 (IGR: 19-1)


74486 Differences in Optical Coherence Tomography Assessment of Bruch Membrane Opening Compared to Stereoscopic Photography for Estimating Cup-to-Disc Ratio
Mwanza JC
American Journal of Ophthalmology 2017; 184: 34-41 (IGR: 19-1)


74530 Are optic nerve heads of patients with helicobacter pylori infection more susceptible to glaucomatous damage?
Atilgan CU
Helicobacter 2017; 22: (IGR: 19-1)


74405 Optic Nerve Head Characteristics in Chronic Angle Closure Glaucoma Detected by Swept-Source OCT
Li D
Current Eye Research 2017; 42: 1450-1457 (IGR: 19-1)


74242 Preliminary Study of the Differences in Optic Nerve Head Hemoglobin Measures Between Patients With and Without Childhood Glaucoma
Perucho-González L
Journal of Pediatric Ophthalmology & Strabismus 2017; 54: 387-394 (IGR: 19-1)


74086 Comparing optical coherence tomography radial and cube scan patterns for measuring Bruch's membrane opening minimum rim width (BMO-MRW) in glaucoma and healthy eyes: cross-sectional and longitudinal analysis
Kabbara SW
British Journal of Ophthalmology 2018; 102: 344-351 (IGR: 19-1)


74200 Racial Differences in the Extracellular Matrix and Histone Acetylation of the Lamina Cribrosa and Peripapillary Sclera
Park HL
Investigative Ophthalmology and Visual Science 2017; 58: 4143-4154 (IGR: 19-1)


74352 Optic nerve head and retinal blood flow regulation during isometric exercise as assessed with laser speckle flowgraphy
Witkowska KJ
PLoS ONE 2017; 12: e0184772 (IGR: 19-1)


74073 Morphology of the optic disc in the Tajimi Study population
Mataki N
Japanese Journal of Ophthalmology 2017; 61: 441-447 (IGR: 19-1)


74563 Optical Coherence Tomography Angiography Vessel Density Measurements in Eyes With Primary Open-Angle Glaucoma and Disc Hemorrhage
Rao HL
Journal of Glaucoma 2017; 26: 888-895 (IGR: 19-1)


74298 Utility of Bruch membrane opening-based optic nerve head parameters in myopic subjects
Sastre-Ibañez M
European Journal of Ophthalmology 2017; 0: 0 (IGR: 19-1)


74252 Location of the Central Retinal Vessel Trunk in the Laminar and Prelaminar Tissue of Healthy and Glaucomatous Eyes
Wang B
Scientific reports 2017; 7: 9930 (IGR: 19-1)


74352 Optic nerve head and retinal blood flow regulation during isometric exercise as assessed with laser speckle flowgraphy
Bata AM
PLoS ONE 2017; 12: e0184772 (IGR: 19-1)


74218 Compressed 3D and 2D digital images versus standard 3D slide film for the evaluation of glaucomatous optic nerve features
Rudnisky C
British Journal of Ophthalmology 2018; 102: 364-368 (IGR: 19-1)


74068 Optic Nerve Head Drusen: Imaging Using Optical Coherence Tomography Angiography
Hoskens K
Journal of Glaucoma 2017; 26: 845-849 (IGR: 19-1)


74242 Preliminary Study of the Differences in Optic Nerve Head Hemoglobin Measures Between Patients With and Without Childhood Glaucoma
Méndez-Hernández CD
Journal of Pediatric Ophthalmology & Strabismus 2017; 54: 387-394 (IGR: 19-1)


74302 A novel hypothesis for the pathogenesis of glaucomatous disc hemorrhage
Han JC
Progress in Retinal and Eye Research 2017; 60: 20-43 (IGR: 19-1)


74114 Finite Element Biomechanics of Optic Nerve Sheath Traction in Adduction
Yoo L
Journal of Biomechanical Engineering 2017; 139: (IGR: 19-1)


74256 Volumetric Measurement of Optic Nerve Head Drusen Using Swept-Source Optical Coherence Tomography
Verticchio Vercellin AC
Journal of Glaucoma 2017; 26: 798-804 (IGR: 19-1)


74274 Association of intraocular pressure-related factors and retinal vessel diameter with optic disc rim area in subjects with and without primary open angle glaucoma
Jan C
Clinical and Experimental Ophthalmology 2018; 46: 389-399 (IGR: 19-1)


74167 Comparing glaucomatous disc change using stereo disc viewing and the MatchedFlicker programme in glaucoma experts and trainees
Meyer AM
British Journal of Ophthalmology 2018; 102: 358-363 (IGR: 19-1)


74192 Glaucoma and optic nerve drusen: Limitations of optic nerve head OCT
Colange J
Journal Français d'Ophtalmologie 2017; 40: 542-546 (IGR: 19-1)


74450 Pilot study of the pulsatile neuro-peripapillary retinal deformation in glaucoma and its relationship with glaucoma risk factors
Costantino S
Current Eye Research 2017; 42: 1620-1627 (IGR: 19-1)


74554 Optic Disc Drusen and Family History of Glaucoma-Results of a Patient-directed Survey
Gramer E
Journal of Glaucoma 2017; 26: 940-946 (IGR: 19-1)


74563 Optical Coherence Tomography Angiography Vessel Density Measurements in Eyes With Primary Open-Angle Glaucoma and Disc Hemorrhage
Pradhan ZS
Journal of Glaucoma 2017; 26: 888-895 (IGR: 19-1)


74609 Interocular symmetry of retinal nerve fiber layer and optic nerve head parameters measured by Cirrus high-definition optical coherence tomography in a normal pediatric population
Maheshwari D
Indian Journal of Ophthalmology 2017; 65: 955-962 (IGR: 19-1)


74096 Is the Optic Nerve Head Structure Impacted by a Diagnostic Lumbar Puncture in Humans?
Denis P
Journal of Glaucoma 2017; 26: 1036-1040 (IGR: 19-1)


74486 Differences in Optical Coherence Tomography Assessment of Bruch Membrane Opening Compared to Stereoscopic Photography for Estimating Cup-to-Disc Ratio
Huang LY
American Journal of Ophthalmology 2017; 184: 34-41 (IGR: 19-1)


74305 Morphometric parameters of the optic disc in normal and glaucomatous eyes based on time-domain optical coherence tomography image analysis
Kybartaitė-Žilienė A
Medicina (Kaunas, Lithuania) 2017; 53: 242-252 (IGR: 19-1)


74252 Location of the Central Retinal Vessel Trunk in the Laminar and Prelaminar Tissue of Healthy and Glaucomatous Eyes
Lucy KA
Scientific reports 2017; 7: 9930 (IGR: 19-1)


74200 Racial Differences in the Extracellular Matrix and Histone Acetylation of the Lamina Cribrosa and Peripapillary Sclera
Kim JH
Investigative Ophthalmology and Visual Science 2017; 58: 4143-4154 (IGR: 19-1)


74530 Are optic nerve heads of patients with helicobacter pylori infection more susceptible to glaucomatous damage?
Kosekahya P
Helicobacter 2017; 22: (IGR: 19-1)


74671 Optimization Strategies for Bruch's Membrane Opening Minimum Rim Area Calculation: Sequential versus Simultaneous Minimization
Adler W
Scientific reports 2017; 7: 13874 (IGR: 19-1)


74829 Occult Optic Disc Pit Maculopathy in a Glaucomatous Disc
Ganne P
Middle East African Journal of Ophthalmology 2017; 24: 165-166 (IGR: 19-1)


74628 Intraday Repeatability of Bruch's Membrane Opening-Based Neuroretinal Rim Measurements
Bremen A
Investigative Ophthalmology and Visual Science 2017; 58: 5195-5200 (IGR: 19-1)


74235 Racioethnic Differences in Human Posterior Scleral and Optic Nerve Stump Deformation
Pyne JD
Investigative Ophthalmology and Visual Science 2017; 58: 4235-4246 (IGR: 19-1)


74152 Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans
Jassim F
American Journal of Ophthalmology 2017; 182: 180-193 (IGR: 19-1)


74080 Diagnostic accuracy of ganglion cell complex substructures in different stages of primary open-angle glaucoma
Abd El-Latef MH
Canadian Journal of Ophthalmology 2017; 52: 355-360 (IGR: 19-1)


74405 Optic Nerve Head Characteristics in Chronic Angle Closure Glaucoma Detected by Swept-Source OCT
Li T
Current Eye Research 2017; 42: 1450-1457 (IGR: 19-1)


74298 Utility of Bruch membrane opening-based optic nerve head parameters in myopic subjects
Martinez-de-la-Casa JM
European Journal of Ophthalmology 2017; 0: 0 (IGR: 19-1)


74032 Sub-classification of myopic glaucomatous eyes according to optic disc and peripapillary features
Sung KR
PLoS ONE 2017; 12: e0181841 (IGR: 19-1)


74073 Morphology of the optic disc in the Tajimi Study population
Tomidokoro A
Japanese Journal of Ophthalmology 2017; 61: 441-447 (IGR: 19-1)


74398 Correlation of echographic and photographic assessment of optic nerve head cupping in children
Dale EA
Journal of AAPOS 2017; 21: 389-392 (IGR: 19-1)


74255 Visibility of Optic Nerve Head Structures With Spectral-domain and Swept-source Optical Coherence Tomography
Vianna JR
Journal of Glaucoma 2017; 26: 792-797 (IGR: 19-1)


74214 Valsalva Maneuver-induced Changes in Anterior Lamina Cribrosa Surface DEPTH: A Comparison Between Normal and Glaucomatous Eyes
Ha A
Journal of Glaucoma 2017; 26: 866-874 (IGR: 19-1)


74118 Statins reduce TGF-beta2-modulation of the extracellular matrix in cultured astrocytes of the human optic nerve head
Sung KR
Experimental Eye Research 2017; 164: 55-63 (IGR: 19-1)


74791 Relationship between anterior segment and optic nerve head parameters in healthy subjects
Ozates S
Arquivos Brasileiros de Oftalmologia 2017; 80: 285-289 (IGR: 19-1)


74444 The Upright Body Position Increases Translaminar Pressure Gradient in Normotensive and Hypertensive Rats
Ufnal M
Current Eye Research 2017; 42: 1634-1637 (IGR: 19-1)


74313 Variations in optic nerve head morphology by intraocular pressure in open-angle glaucoma
Matheos K
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 2219-2226 (IGR: 19-1)


74843 The impact of anthropometric and ocular parameters on optic cup-to-disc ratio
Tange C
BMJ open ophthalmology 2017; 1: e000012 (IGR: 19-1)


74086 Comparing optical coherence tomography radial and cube scan patterns for measuring Bruch's membrane opening minimum rim width (BMO-MRW) in glaucoma and healthy eyes: cross-sectional and longitudinal analysis
Zangwill LM
British Journal of Ophthalmology 2018; 102: 344-351 (IGR: 19-1)


74092 Optic Disc Drusen and Family History of Glaucoma - Results of a Patient-directed Survey
Gramer E
Journal of Glaucoma 2017; 0: (IGR: 19-1)


74349 Contrast based circular approximation for accurate and robust optic disc segmentation in retinal images
Nunez O
PeerJ 2017; 5: e3763 (IGR: 19-1)


74433 Reproducibility of Bruch Membrane Opening-Minimum Rim Width Measurements With Spectral Domain Optical Coherence Tomography
Kim J
Journal of Glaucoma 2017; 26: 1041-1050 (IGR: 19-1)


74080 Diagnostic accuracy of ganglion cell complex substructures in different stages of primary open-angle glaucoma
Elsorogy HI
Canadian Journal of Ophthalmology 2017; 52: 355-360 (IGR: 19-1)


74255 Visibility of Optic Nerve Head Structures With Spectral-domain and Swept-source Optical Coherence Tomography
Danthurebandara VM
Journal of Glaucoma 2017; 26: 792-797 (IGR: 19-1)


74096 Is the Optic Nerve Head Structure Impacted by a Diagnostic Lumbar Puncture in Humans?
Sellem E
Journal of Glaucoma 2017; 26: 1036-1040 (IGR: 19-1)


74200 Racial Differences in the Extracellular Matrix and Histone Acetylation of the Lamina Cribrosa and Peripapillary Sclera
Jung Y
Investigative Ophthalmology and Visual Science 2017; 58: 4143-4154 (IGR: 19-1)


74843 The impact of anthropometric and ocular parameters on optic cup-to-disc ratio
Otsuka R
BMJ open ophthalmology 2017; 1: e000012 (IGR: 19-1)


74152 Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans
Poon LY
American Journal of Ophthalmology 2017; 182: 180-193 (IGR: 19-1)


74073 Morphology of the optic disc in the Tajimi Study population
Araie M
Japanese Journal of Ophthalmology 2017; 61: 441-447 (IGR: 19-1)


74092 Optic Disc Drusen and Family History of Glaucoma - Results of a Patient-directed Survey
Weisschuh N
Journal of Glaucoma 2017; 0: (IGR: 19-1)


74671 Optimization Strategies for Bruch's Membrane Opening Minimum Rim Area Calculation: Sequential versus Simultaneous Minimization
Schaub F
Scientific reports 2017; 7: 13874 (IGR: 19-1)


74218 Compressed 3D and 2D digital images versus standard 3D slide film for the evaluation of glaucomatous optic nerve features
Arora S
British Journal of Ophthalmology 2018; 102: 364-368 (IGR: 19-1)


74352 Optic nerve head and retinal blood flow regulation during isometric exercise as assessed with laser speckle flowgraphy
Calzetti G
PLoS ONE 2017; 12: e0184772 (IGR: 19-1)


74235 Racioethnic Differences in Human Posterior Scleral and Optic Nerve Stump Deformation
Muli DK
Investigative Ophthalmology and Visual Science 2017; 58: 4235-4246 (IGR: 19-1)


74242 Preliminary Study of the Differences in Optic Nerve Head Hemoglobin Measures Between Patients With and Without Childhood Glaucoma
González-de-la-Rosa M
Journal of Pediatric Ophthalmology & Strabismus 2017; 54: 387-394 (IGR: 19-1)


74086 Comparing optical coherence tomography radial and cube scan patterns for measuring Bruch's membrane opening minimum rim width (BMO-MRW) in glaucoma and healthy eyes: cross-sectional and longitudinal analysis
Mundae R
British Journal of Ophthalmology 2018; 102: 344-351 (IGR: 19-1)


74349 Contrast based circular approximation for accurate and robust optic disc segmentation in retinal images
Fumero F
PeerJ 2017; 5: e3763 (IGR: 19-1)


74214 Valsalva Maneuver-induced Changes in Anterior Lamina Cribrosa Surface DEPTH: A Comparison Between Normal and Glaucomatous Eyes
Song YJ
Journal of Glaucoma 2017; 26: 866-874 (IGR: 19-1)


74313 Variations in optic nerve head morphology by intraocular pressure in open-angle glaucoma
Prime Z
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 2219-2226 (IGR: 19-1)


74118 Statins reduce TGF-beta2-modulation of the extracellular matrix in cultured astrocytes of the human optic nerve head
Shin JA
Experimental Eye Research 2017; 164: 55-63 (IGR: 19-1)


74068 Optic Nerve Head Drusen: Imaging Using Optical Coherence Tomography Angiography
Mansouri K
Journal of Glaucoma 2017; 26: 845-849 (IGR: 19-1)


74450 Pilot study of the pulsatile neuro-peripapillary retinal deformation in glaucoma and its relationship with glaucoma risk factors
Lesk MR
Current Eye Research 2017; 42: 1620-1627 (IGR: 19-1)


74554 Optic Disc Drusen and Family History of Glaucoma-Results of a Patient-directed Survey
Weisschuh N
Journal of Glaucoma 2017; 26: 940-946 (IGR: 19-1)


74302 A novel hypothesis for the pathogenesis of glaucomatous disc hemorrhage
Kee C
Progress in Retinal and Eye Research 2017; 60: 20-43 (IGR: 19-1)


74252 Location of the Central Retinal Vessel Trunk in the Laminar and Prelaminar Tissue of Healthy and Glaucomatous Eyes
Schuman JS
Scientific reports 2017; 7: 9930 (IGR: 19-1)


74167 Comparing glaucomatous disc change using stereo disc viewing and the MatchedFlicker programme in glaucoma experts and trainees
Rodgers CD
British Journal of Ophthalmology 2018; 102: 358-363 (IGR: 19-1)


74433 Reproducibility of Bruch Membrane Opening-Minimum Rim Width Measurements With Spectral Domain Optical Coherence Tomography
Lee J
Journal of Glaucoma 2017; 26: 1041-1050 (IGR: 19-1)


74305 Morphometric parameters of the optic disc in normal and glaucomatous eyes based on time-domain optical coherence tomography image analysis
Kriaučiūnienė L
Medicina (Kaunas, Lithuania) 2017; 53: 242-252 (IGR: 19-1)


74563 Optical Coherence Tomography Angiography Vessel Density Measurements in Eyes With Primary Open-Angle Glaucoma and Disc Hemorrhage
Weinreb RN
Journal of Glaucoma 2017; 26: 888-895 (IGR: 19-1)


74274 Association of intraocular pressure-related factors and retinal vessel diameter with optic disc rim area in subjects with and without primary open angle glaucoma
Guo CY
Clinical and Experimental Ophthalmology 2018; 46: 389-399 (IGR: 19-1)


74486 Differences in Optical Coherence Tomography Assessment of Bruch Membrane Opening Compared to Stereoscopic Photography for Estimating Cup-to-Disc Ratio
Budenz DL
American Journal of Ophthalmology 2017; 184: 34-41 (IGR: 19-1)


74609 Interocular symmetry of retinal nerve fiber layer and optic nerve head parameters measured by Cirrus high-definition optical coherence tomography in a normal pediatric population
Ravindran M
Indian Journal of Ophthalmology 2017; 65: 955-962 (IGR: 19-1)


74628 Intraday Repeatability of Bruch's Membrane Opening-Based Neuroretinal Rim Measurements
Schaub F
Investigative Ophthalmology and Visual Science 2017; 58: 5195-5200 (IGR: 19-1)


74530 Are optic nerve heads of patients with helicobacter pylori infection more susceptible to glaucomatous damage?
Yozgat A
Helicobacter 2017; 22: (IGR: 19-1)


74398 Correlation of echographic and photographic assessment of optic nerve head cupping in children
Osigian CJ
Journal of AAPOS 2017; 21: 389-392 (IGR: 19-1)


74298 Utility of Bruch membrane opening-based optic nerve head parameters in myopic subjects
Rebolleda G
European Journal of Ophthalmology 2017; 0: 0 (IGR: 19-1)


74405 Optic Nerve Head Characteristics in Chronic Angle Closure Glaucoma Detected by Swept-Source OCT
Paschalis EI
Current Eye Research 2017; 42: 1450-1457 (IGR: 19-1)


74256 Volumetric Measurement of Optic Nerve Head Drusen Using Swept-Source Optical Coherence Tomography
Falkenstein I
Journal of Glaucoma 2017; 26: 798-804 (IGR: 19-1)


74032 Sub-classification of myopic glaucomatous eyes according to optic disc and peripapillary features
Park J
PLoS ONE 2017; 12: e0181841 (IGR: 19-1)


74192 Glaucoma and optic nerve drusen: Limitations of optic nerve head OCT
Goutagny B
Journal Français d'Ophtalmologie 2017; 40: 542-546 (IGR: 19-1)


74114 Finite Element Biomechanics of Optic Nerve Sheath Traction in Adduction
Park J
Journal of Biomechanical Engineering 2017; 139: (IGR: 19-1)


74843 The impact of anthropometric and ocular parameters on optic cup-to-disc ratio
Ando F
BMJ open ophthalmology 2017; 1: e000012 (IGR: 19-1)


74152 Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans
Tsikata E
American Journal of Ophthalmology 2017; 182: 180-193 (IGR: 19-1)


74671 Optimization Strategies for Bruch's Membrane Opening Minimum Rim Area Calculation: Sequential versus Simultaneous Minimization
Hermann MM
Scientific reports 2017; 7: 13874 (IGR: 19-1)


74313 Variations in optic nerve head morphology by intraocular pressure in open-angle glaucoma
Danesh-Meyer HV
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 2219-2226 (IGR: 19-1)


74486 Differences in Optical Coherence Tomography Assessment of Bruch Membrane Opening Compared to Stereoscopic Photography for Estimating Cup-to-Disc Ratio
Shi W
American Journal of Ophthalmology 2017; 184: 34-41 (IGR: 19-1)


74349 Contrast based circular approximation for accurate and robust optic disc segmentation in retinal images
Gonzalez M
PeerJ 2017; 5: e3763 (IGR: 19-1)


74214 Valsalva Maneuver-induced Changes in Anterior Lamina Cribrosa Surface DEPTH: A Comparison Between Normal and Glaucomatous Eyes
Na KI
Journal of Glaucoma 2017; 26: 866-874 (IGR: 19-1)


74628 Intraday Repeatability of Bruch's Membrane Opening-Based Neuroretinal Rim Measurements
Hermann MM
Investigative Ophthalmology and Visual Science 2017; 58: 5195-5200 (IGR: 19-1)


74096 Is the Optic Nerve Head Structure Impacted by a Diagnostic Lumbar Puncture in Humans?
Aho-Glélé LS
Journal of Glaucoma 2017; 26: 1036-1040 (IGR: 19-1)


74255 Visibility of Optic Nerve Head Structures With Spectral-domain and Swept-source Optical Coherence Tomography
Sharpe GP
Journal of Glaucoma 2017; 26: 792-797 (IGR: 19-1)


74352 Optic nerve head and retinal blood flow regulation during isometric exercise as assessed with laser speckle flowgraphy
Luft N
PLoS ONE 2017; 12: e0184772 (IGR: 19-1)


74256 Volumetric Measurement of Optic Nerve Head Drusen Using Swept-Source Optical Coherence Tomography
Poon LY
Journal of Glaucoma 2017; 26: 798-804 (IGR: 19-1)


74235 Racioethnic Differences in Human Posterior Scleral and Optic Nerve Stump Deformation
Axman KF
Investigative Ophthalmology and Visual Science 2017; 58: 4235-4246 (IGR: 19-1)


74086 Comparing optical coherence tomography radial and cube scan patterns for measuring Bruch's membrane opening minimum rim width (BMO-MRW) in glaucoma and healthy eyes: cross-sectional and longitudinal analysis
Hammel N
British Journal of Ophthalmology 2018; 102: 344-351 (IGR: 19-1)


74252 Location of the Central Retinal Vessel Trunk in the Laminar and Prelaminar Tissue of Healthy and Glaucomatous Eyes
Ishikawa H
Scientific reports 2017; 7: 9930 (IGR: 19-1)


74167 Comparing glaucomatous disc change using stereo disc viewing and the MatchedFlicker programme in glaucoma experts and trainees
Rosenberg NC
British Journal of Ophthalmology 2018; 102: 358-363 (IGR: 19-1)


74032 Sub-classification of myopic glaucomatous eyes according to optic disc and peripapillary features
Yoon JY
PLoS ONE 2017; 12: e0181841 (IGR: 19-1)


74073 Morphology of the optic disc in the Tajimi Study population
Iwase A
Japanese Journal of Ophthalmology 2017; 61: 441-447 (IGR: 19-1)


74398 Correlation of echographic and photographic assessment of optic nerve head cupping in children
Cavuoto KM
Journal of AAPOS 2017; 21: 389-392 (IGR: 19-1)


74563 Optical Coherence Tomography Angiography Vessel Density Measurements in Eyes With Primary Open-Angle Glaucoma and Disc Hemorrhage
Dasari S
Journal of Glaucoma 2017; 26: 888-895 (IGR: 19-1)


74405 Optic Nerve Head Characteristics in Chronic Angle Closure Glaucoma Detected by Swept-Source OCT
Wang H
Current Eye Research 2017; 42: 1450-1457 (IGR: 19-1)


74298 Utility of Bruch membrane opening-based optic nerve head parameters in myopic subjects
Cifuentes-Canorea P
European Journal of Ophthalmology 2017; 0: 0 (IGR: 19-1)


74305 Morphometric parameters of the optic disc in normal and glaucomatous eyes based on time-domain optical coherence tomography image analysis
Barzdžiukas V
Medicina (Kaunas, Lithuania) 2017; 53: 242-252 (IGR: 19-1)


74530 Are optic nerve heads of patients with helicobacter pylori infection more susceptible to glaucomatous damage?
Sen E
Helicobacter 2017; 22: (IGR: 19-1)


74274 Association of intraocular pressure-related factors and retinal vessel diameter with optic disc rim area in subjects with and without primary open angle glaucoma
Wang FH
Clinical and Experimental Ophthalmology 2018; 46: 389-399 (IGR: 19-1)


74609 Interocular symmetry of retinal nerve fiber layer and optic nerve head parameters measured by Cirrus high-definition optical coherence tomography in a normal pediatric population
Ramakrishnan R
Indian Journal of Ophthalmology 2017; 65: 955-962 (IGR: 19-1)


74200 Racial Differences in the Extracellular Matrix and Histone Acetylation of the Lamina Cribrosa and Peripapillary Sclera
Park CK
Investigative Ophthalmology and Visual Science 2017; 58: 4143-4154 (IGR: 19-1)


74114 Finite Element Biomechanics of Optic Nerve Sheath Traction in Adduction
Demer JL
Journal of Biomechanical Engineering 2017; 139: (IGR: 19-1)


74080 Diagnostic accuracy of ganglion cell complex substructures in different stages of primary open-angle glaucoma
Enaam KM
Canadian Journal of Ophthalmology 2017; 52: 355-360 (IGR: 19-1)


74118 Statins reduce TGF-beta2-modulation of the extracellular matrix in cultured astrocytes of the human optic nerve head
Young Yoon J
Experimental Eye Research 2017; 164: 55-63 (IGR: 19-1)


74192 Glaucoma and optic nerve drusen: Limitations of optic nerve head OCT
Sellem E
Journal Français d'Ophtalmologie 2017; 40: 542-546 (IGR: 19-1)


74218 Compressed 3D and 2D digital images versus standard 3D slide film for the evaluation of glaucomatous optic nerve features
Kassam F
British Journal of Ophthalmology 2018; 102: 364-368 (IGR: 19-1)


74242 Preliminary Study of the Differences in Optic Nerve Head Hemoglobin Measures Between Patients With and Without Childhood Glaucoma
Fernández-Pérez C
Journal of Pediatric Ophthalmology & Strabismus 2017; 54: 387-394 (IGR: 19-1)


74398 Correlation of echographic and photographic assessment of optic nerve head cupping in children
Shi W
Journal of AAPOS 2017; 21: 389-392 (IGR: 19-1)


74405 Optic Nerve Head Characteristics in Chronic Angle Closure Glaucoma Detected by Swept-Source OCT
Taniguchi EV
Current Eye Research 2017; 42: 1450-1457 (IGR: 19-1)


74530 Are optic nerve heads of patients with helicobacter pylori infection more susceptible to glaucomatous damage?
Berker N
Helicobacter 2017; 22: (IGR: 19-1)


74352 Optic nerve head and retinal blood flow regulation during isometric exercise as assessed with laser speckle flowgraphy
Fondi K
PLoS ONE 2017; 12: e0184772 (IGR: 19-1)


74563 Optical Coherence Tomography Angiography Vessel Density Measurements in Eyes With Primary Open-Angle Glaucoma and Disc Hemorrhage
Riyazuddin M
Journal of Glaucoma 2017; 26: 888-895 (IGR: 19-1)


74298 Utility of Bruch membrane opening-based optic nerve head parameters in myopic subjects
Nieves-Moreno M
European Journal of Ophthalmology 2017; 0: 0 (IGR: 19-1)


74242 Preliminary Study of the Differences in Optic Nerve Head Hemoglobin Measures Between Patients With and Without Childhood Glaucoma
Sáez-Francés F
Journal of Pediatric Ophthalmology & Strabismus 2017; 54: 387-394 (IGR: 19-1)


74118 Statins reduce TGF-beta2-modulation of the extracellular matrix in cultured astrocytes of the human optic nerve head
Jang J
Experimental Eye Research 2017; 164: 55-63 (IGR: 19-1)


74218 Compressed 3D and 2D digital images versus standard 3D slide film for the evaluation of glaucomatous optic nerve features
Douglas G
British Journal of Ophthalmology 2018; 102: 364-368 (IGR: 19-1)


74671 Optimization Strategies for Bruch's Membrane Opening Minimum Rim Area Calculation: Sequential versus Simultaneous Minimization
Diestelhorst M
Scientific reports 2017; 7: 13874 (IGR: 19-1)


74086 Comparing optical coherence tomography radial and cube scan patterns for measuring Bruch's membrane opening minimum rim width (BMO-MRW) in glaucoma and healthy eyes: cross-sectional and longitudinal analysis
Bowd C
British Journal of Ophthalmology 2018; 102: 344-351 (IGR: 19-1)


74628 Intraday Repeatability of Bruch's Membrane Opening-Based Neuroretinal Rim Measurements
Diestelhorst M
Investigative Ophthalmology and Visual Science 2017; 58: 5195-5200 (IGR: 19-1)


74252 Location of the Central Retinal Vessel Trunk in the Laminar and Prelaminar Tissue of Healthy and Glaucomatous Eyes
Bilonick RA
Scientific reports 2017; 7: 9930 (IGR: 19-1)


74255 Visibility of Optic Nerve Head Structures With Spectral-domain and Swept-source Optical Coherence Tomography
Hutchison DM
Journal of Glaucoma 2017; 26: 792-797 (IGR: 19-1)


74843 The impact of anthropometric and ocular parameters on optic cup-to-disc ratio
Shimokata H
BMJ open ophthalmology 2017; 1: e000012 (IGR: 19-1)


74235 Racioethnic Differences in Human Posterior Scleral and Optic Nerve Stump Deformation
Howerton SJ
Investigative Ophthalmology and Visual Science 2017; 58: 4235-4246 (IGR: 19-1)


74167 Comparing glaucomatous disc change using stereo disc viewing and the MatchedFlicker programme in glaucoma experts and trainees
Leoncavallo AJ
British Journal of Ophthalmology 2018; 102: 358-363 (IGR: 19-1)


74349 Contrast based circular approximation for accurate and robust optic disc segmentation in retinal images
Arnay R
PeerJ 2017; 5: e3763 (IGR: 19-1)


74096 Is the Optic Nerve Head Structure Impacted by a Diagnostic Lumbar Puncture in Humans?
Bron AM
Journal of Glaucoma 2017; 26: 1036-1040 (IGR: 19-1)


74256 Volumetric Measurement of Optic Nerve Head Drusen Using Swept-Source Optical Coherence Tomography
Brauner S
Journal of Glaucoma 2017; 26: 798-804 (IGR: 19-1)


74032 Sub-classification of myopic glaucomatous eyes according to optic disc and peripapillary features
Shin JW
PLoS ONE 2017; 12: e0181841 (IGR: 19-1)


74274 Association of intraocular pressure-related factors and retinal vessel diameter with optic disc rim area in subjects with and without primary open angle glaucoma
Liang YB
Clinical and Experimental Ophthalmology 2018; 46: 389-399 (IGR: 19-1)


74152 Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans
Ben-David GS
American Journal of Ophthalmology 2017; 182: 180-193 (IGR: 19-1)


74486 Differences in Optical Coherence Tomography Assessment of Bruch Membrane Opening Compared to Stereoscopic Photography for Estimating Cup-to-Disc Ratio
Huang G
American Journal of Ophthalmology 2017; 184: 34-41 (IGR: 19-1)


74214 Valsalva Maneuver-induced Changes in Anterior Lamina Cribrosa Surface DEPTH: A Comparison Between Normal and Glaucomatous Eyes
Lee WJ
Journal of Glaucoma 2017; 26: 866-874 (IGR: 19-1)


74305 Morphometric parameters of the optic disc in normal and glaucomatous eyes based on time-domain optical coherence tomography image analysis
Janulevičienė I
Medicina (Kaunas, Lithuania) 2017; 53: 242-252 (IGR: 19-1)


74530 Are optic nerve heads of patients with helicobacter pylori infection more susceptible to glaucomatous damage?
Caglayan M
Helicobacter 2017; 22: (IGR: 19-1)


74235 Racioethnic Differences in Human Posterior Scleral and Optic Nerve Stump Deformation
Davis MR
Investigative Ophthalmology and Visual Science 2017; 58: 4235-4246 (IGR: 19-1)


74563 Optical Coherence Tomography Angiography Vessel Density Measurements in Eyes With Primary Open-Angle Glaucoma and Disc Hemorrhage
Venugopal JP
Journal of Glaucoma 2017; 26: 888-895 (IGR: 19-1)


74252 Location of the Central Retinal Vessel Trunk in the Laminar and Prelaminar Tissue of Healthy and Glaucomatous Eyes
Sigal IA
Scientific reports 2017; 7: 9930 (IGR: 19-1)


74086 Comparing optical coherence tomography radial and cube scan patterns for measuring Bruch's membrane opening minimum rim width (BMO-MRW) in glaucoma and healthy eyes: cross-sectional and longitudinal analysis
Medeiros FA
British Journal of Ophthalmology 2018; 102: 344-351 (IGR: 19-1)


74671 Optimization Strategies for Bruch's Membrane Opening Minimum Rim Area Calculation: Sequential versus Simultaneous Minimization
Dietlein T
Scientific reports 2017; 7: 13874 (IGR: 19-1)


74152 Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans
Liu Y
American Journal of Ophthalmology 2017; 182: 180-193 (IGR: 19-1)


74398 Correlation of echographic and photographic assessment of optic nerve head cupping in children
Chang TC
Journal of AAPOS 2017; 21: 389-392 (IGR: 19-1)


74242 Preliminary Study of the Differences in Optic Nerve Head Hemoglobin Measures Between Patients With and Without Childhood Glaucoma
Andrés-Guerrero V
Journal of Pediatric Ophthalmology & Strabismus 2017; 54: 387-394 (IGR: 19-1)


74167 Comparing glaucomatous disc change using stereo disc viewing and the MatchedFlicker programme in glaucoma experts and trainees
Lukowski ZL
British Journal of Ophthalmology 2018; 102: 358-363 (IGR: 19-1)


74274 Association of intraocular pressure-related factors and retinal vessel diameter with optic disc rim area in subjects with and without primary open angle glaucoma
Cao K
Clinical and Experimental Ophthalmology 2018; 46: 389-399 (IGR: 19-1)


74486 Differences in Optical Coherence Tomography Assessment of Bruch Membrane Opening Compared to Stereoscopic Photography for Estimating Cup-to-Disc Ratio
Lee RK
American Journal of Ophthalmology 2017; 184: 34-41 (IGR: 19-1)


74214 Valsalva Maneuver-induced Changes in Anterior Lamina Cribrosa Surface DEPTH: A Comparison Between Normal and Glaucomatous Eyes
Jeoung JW
Journal of Glaucoma 2017; 26: 866-874 (IGR: 19-1)


74218 Compressed 3D and 2D digital images versus standard 3D slide film for the evaluation of glaucomatous optic nerve features
Edwards MC
British Journal of Ophthalmology 2018; 102: 364-368 (IGR: 19-1)


74352 Optic nerve head and retinal blood flow regulation during isometric exercise as assessed with laser speckle flowgraphy
Wozniak PA
PLoS ONE 2017; 12: e0184772 (IGR: 19-1)


74256 Volumetric Measurement of Optic Nerve Head Drusen Using Swept-Source Optical Coherence Tomography
Khoueir Z
Journal of Glaucoma 2017; 26: 798-804 (IGR: 19-1)


74628 Intraday Repeatability of Bruch's Membrane Opening-Based Neuroretinal Rim Measurements
Dietlein T
Investigative Ophthalmology and Visual Science 2017; 58: 5195-5200 (IGR: 19-1)


74298 Utility of Bruch membrane opening-based optic nerve head parameters in myopic subjects
Morales-Fernandez L
European Journal of Ophthalmology 2017; 0: 0 (IGR: 19-1)


74405 Optic Nerve Head Characteristics in Chronic Angle Closure Glaucoma Detected by Swept-Source OCT
Choo ZN
Current Eye Research 2017; 42: 1450-1457 (IGR: 19-1)


74305 Morphometric parameters of the optic disc in normal and glaucomatous eyes based on time-domain optical coherence tomography image analysis
Paunksnis A
Medicina (Kaunas, Lithuania) 2017; 53: 242-252 (IGR: 19-1)


74255 Visibility of Optic Nerve Head Structures With Spectral-domain and Swept-source Optical Coherence Tomography
Nicolela MT
Journal of Glaucoma 2017; 26: 792-797 (IGR: 19-1)


74298 Utility of Bruch membrane opening-based optic nerve head parameters in myopic subjects
Saenz-Frances F
European Journal of Ophthalmology 2017; 0: 0 (IGR: 19-1)


74167 Comparing glaucomatous disc change using stereo disc viewing and the MatchedFlicker programme in glaucoma experts and trainees
Greer AB
British Journal of Ophthalmology 2018; 102: 358-363 (IGR: 19-1)


74255 Visibility of Optic Nerve Head Structures With Spectral-domain and Swept-source Optical Coherence Tomography
Chauhan BC
Journal of Glaucoma 2017; 26: 792-797 (IGR: 19-1)


74530 Are optic nerve heads of patients with helicobacter pylori infection more susceptible to glaucomatous damage?
Sendul SY
Helicobacter 2017; 22: (IGR: 19-1)


74274 Association of intraocular pressure-related factors and retinal vessel diameter with optic disc rim area in subjects with and without primary open angle glaucoma
Zhang Z
Clinical and Experimental Ophthalmology 2018; 46: 389-399 (IGR: 19-1)


74235 Racioethnic Differences in Human Posterior Scleral and Optic Nerve Stump Deformation
Girkin CA
Investigative Ophthalmology and Visual Science 2017; 58: 4235-4246 (IGR: 19-1)


74252 Location of the Central Retinal Vessel Trunk in the Laminar and Prelaminar Tissue of Healthy and Glaucomatous Eyes
Kagemann L
Scientific reports 2017; 7: 9930 (IGR: 19-1)


74214 Valsalva Maneuver-induced Changes in Anterior Lamina Cribrosa Surface DEPTH: A Comparison Between Normal and Glaucomatous Eyes
Park KH
Journal of Glaucoma 2017; 26: 866-874 (IGR: 19-1)


74352 Optic nerve head and retinal blood flow regulation during isometric exercise as assessed with laser speckle flowgraphy
Schmidl D
PLoS ONE 2017; 12: e0184772 (IGR: 19-1)


74152 Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans
Shieh E
American Journal of Ophthalmology 2017; 182: 180-193 (IGR: 19-1)


74405 Optic Nerve Head Characteristics in Chronic Angle Closure Glaucoma Detected by Swept-Source OCT
Shoji MK
Current Eye Research 2017; 42: 1450-1457 (IGR: 19-1)


74256 Volumetric Measurement of Optic Nerve Head Drusen Using Swept-Source Optical Coherence Tomography
Miller JB
Journal of Glaucoma 2017; 26: 798-804 (IGR: 19-1)


74563 Optical Coherence Tomography Angiography Vessel Density Measurements in Eyes With Primary Open-Angle Glaucoma and Disc Hemorrhage
Puttaiah NK
Journal of Glaucoma 2017; 26: 888-895 (IGR: 19-1)


74242 Preliminary Study of the Differences in Optic Nerve Head Hemoglobin Measures Between Patients With and Without Childhood Glaucoma
García-Feijoó J
Journal of Pediatric Ophthalmology & Strabismus 2017; 54: 387-394 (IGR: 19-1)


74086 Comparing optical coherence tomography radial and cube scan patterns for measuring Bruch's membrane opening minimum rim width (BMO-MRW) in glaucoma and healthy eyes: cross-sectional and longitudinal analysis
Weinreb RN
British Journal of Ophthalmology 2018; 102: 344-351 (IGR: 19-1)


74218 Compressed 3D and 2D digital images versus standard 3D slide film for the evaluation of glaucomatous optic nerve features
Verstraten K
British Journal of Ophthalmology 2018; 102: 364-368 (IGR: 19-1)


74671 Optimization Strategies for Bruch's Membrane Opening Minimum Rim Area Calculation: Sequential versus Simultaneous Minimization
Cursiefen C
Scientific reports 2017; 7: 13874 (IGR: 19-1)


74628 Intraday Repeatability of Bruch's Membrane Opening-Based Neuroretinal Rim Measurements
Cursiefen C
Investigative Ophthalmology and Visual Science 2017; 58: 5195-5200 (IGR: 19-1)


74274 Association of intraocular pressure-related factors and retinal vessel diameter with optic disc rim area in subjects with and without primary open angle glaucoma
Yang DY
Clinical and Experimental Ophthalmology 2018; 46: 389-399 (IGR: 19-1)


74086 Comparing optical coherence tomography radial and cube scan patterns for measuring Bruch's membrane opening minimum rim width (BMO-MRW) in glaucoma and healthy eyes: cross-sectional and longitudinal analysis
Belghith A
British Journal of Ophthalmology 2018; 102: 344-351 (IGR: 19-1)


74256 Volumetric Measurement of Optic Nerve Head Drusen Using Swept-Source Optical Coherence Tomography
Chen TC
Journal of Glaucoma 2017; 26: 798-804 (IGR: 19-1)


74298 Utility of Bruch membrane opening-based optic nerve head parameters in myopic subjects
Garcia-Feijoo J
European Journal of Ophthalmology 2017; 0: 0 (IGR: 19-1)


74405 Optic Nerve Head Characteristics in Chronic Angle Closure Glaucoma Detected by Swept-Source OCT
Greenstein SH
Current Eye Research 2017; 42: 1450-1457 (IGR: 19-1)


74628 Intraday Repeatability of Bruch's Membrane Opening-Based Neuroretinal Rim Measurements
Heindl LM
Investigative Ophthalmology and Visual Science 2017; 58: 5195-5200 (IGR: 19-1)


74218 Compressed 3D and 2D digital images versus standard 3D slide film for the evaluation of glaucomatous optic nerve features
Wong B
British Journal of Ophthalmology 2018; 102: 364-368 (IGR: 19-1)


74167 Comparing glaucomatous disc change using stereo disc viewing and the MatchedFlicker programme in glaucoma experts and trainees
Martorana GM
British Journal of Ophthalmology 2018; 102: 358-363 (IGR: 19-1)


74252 Location of the Central Retinal Vessel Trunk in the Laminar and Prelaminar Tissue of Healthy and Glaucomatous Eyes
Lu C
Scientific reports 2017; 7: 9930 (IGR: 19-1)


74352 Optic nerve head and retinal blood flow regulation during isometric exercise as assessed with laser speckle flowgraphy
Bolz M
PLoS ONE 2017; 12: e0184772 (IGR: 19-1)


74530 Are optic nerve heads of patients with helicobacter pylori infection more susceptible to glaucomatous damage?
Altiparmak E
Helicobacter 2017; 22: (IGR: 19-1)


74235 Racioethnic Differences in Human Posterior Scleral and Optic Nerve Stump Deformation
Vande Geest JP
Investigative Ophthalmology and Visual Science 2017; 58: 4235-4246 (IGR: 19-1)


74563 Optical Coherence Tomography Angiography Vessel Density Measurements in Eyes With Primary Open-Angle Glaucoma and Disc Hemorrhage
Rao DAS
Journal of Glaucoma 2017; 26: 888-895 (IGR: 19-1)


74671 Optimization Strategies for Bruch's Membrane Opening Minimum Rim Area Calculation: Sequential versus Simultaneous Minimization
Heindl LM
Scientific reports 2017; 7: 13874 (IGR: 19-1)


74152 Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans
Lee R
American Journal of Ophthalmology 2017; 182: 180-193 (IGR: 19-1)


74530 Are optic nerve heads of patients with helicobacter pylori infection more susceptible to glaucomatous damage?
Yilmazbas P
Helicobacter 2017; 22: (IGR: 19-1)


74405 Optic Nerve Head Characteristics in Chronic Angle Closure Glaucoma Detected by Swept-Source OCT
Brauner SC
Current Eye Research 2017; 42: 1450-1457 (IGR: 19-1)


74352 Optic nerve head and retinal blood flow regulation during isometric exercise as assessed with laser speckle flowgraphy
Popa-Cherecheanu A
PLoS ONE 2017; 12: e0184772 (IGR: 19-1)


74218 Compressed 3D and 2D digital images versus standard 3D slide film for the evaluation of glaucomatous optic nerve features
Damji KF
British Journal of Ophthalmology 2018; 102: 364-368 (IGR: 19-1)


74274 Association of intraocular pressure-related factors and retinal vessel diameter with optic disc rim area in subjects with and without primary open angle glaucoma
Thomas R
Clinical and Experimental Ophthalmology 2018; 46: 389-399 (IGR: 19-1)


74152 Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans
Guo R
American Journal of Ophthalmology 2017; 182: 180-193 (IGR: 19-1)


74563 Optical Coherence Tomography Angiography Vessel Density Measurements in Eyes With Primary Open-Angle Glaucoma and Disc Hemorrhage
Devi S
Journal of Glaucoma 2017; 26: 888-895 (IGR: 19-1)


74252 Location of the Central Retinal Vessel Trunk in the Laminar and Prelaminar Tissue of Healthy and Glaucomatous Eyes
Fujimoto JG
Scientific reports 2017; 7: 9930 (IGR: 19-1)


74167 Comparing glaucomatous disc change using stereo disc viewing and the MatchedFlicker programme in glaucoma experts and trainees
Zou B
British Journal of Ophthalmology 2018; 102: 358-363 (IGR: 19-1)


74352 Optic nerve head and retinal blood flow regulation during isometric exercise as assessed with laser speckle flowgraphy
Werkmeister RM
PLoS ONE 2017; 12: e0184772 (IGR: 19-1)


74405 Optic Nerve Head Characteristics in Chronic Angle Closure Glaucoma Detected by Swept-Source OCT
Turalba AV
Current Eye Research 2017; 42: 1450-1457 (IGR: 19-1)


74152 Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans
Papadogeorgou G
American Journal of Ophthalmology 2017; 182: 180-193 (IGR: 19-1)


74274 Association of intraocular pressure-related factors and retinal vessel diameter with optic disc rim area in subjects with and without primary open angle glaucoma
Wang NL
Clinical and Experimental Ophthalmology 2018; 46: 389-399 (IGR: 19-1)


74563 Optical Coherence Tomography Angiography Vessel Density Measurements in Eyes With Primary Open-Angle Glaucoma and Disc Hemorrhage
Mansouri K
Journal of Glaucoma 2017; 26: 888-895 (IGR: 19-1)


74167 Comparing glaucomatous disc change using stereo disc viewing and the MatchedFlicker programme in glaucoma experts and trainees
Shuster JJ
British Journal of Ophthalmology 2018; 102: 358-363 (IGR: 19-1)


74252 Location of the Central Retinal Vessel Trunk in the Laminar and Prelaminar Tissue of Healthy and Glaucomatous Eyes
Wollstein G
Scientific reports 2017; 7: 9930 (IGR: 19-1)


74405 Optic Nerve Head Characteristics in Chronic Angle Closure Glaucoma Detected by Swept-Source OCT
Pasquale LR
Current Eye Research 2017; 42: 1450-1457 (IGR: 19-1)


74563 Optical Coherence Tomography Angiography Vessel Density Measurements in Eyes With Primary Open-Angle Glaucoma and Disc Hemorrhage
Webers CAB
Journal of Glaucoma 2017; 26: 888-895 (IGR: 19-1)


74274 Association of intraocular pressure-related factors and retinal vessel diameter with optic disc rim area in subjects with and without primary open angle glaucoma

Clinical and Experimental Ophthalmology 2018; 46: 389-399 (IGR: 19-1)


74152 Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans
Braaf B
American Journal of Ophthalmology 2017; 182: 180-193 (IGR: 19-1)


74167 Comparing glaucomatous disc change using stereo disc viewing and the MatchedFlicker programme in glaucoma experts and trainees
Jay Katz L
British Journal of Ophthalmology 2018; 102: 358-363 (IGR: 19-1)


74352 Optic nerve head and retinal blood flow regulation during isometric exercise as assessed with laser speckle flowgraphy
Garhöfer G
PLoS ONE 2017; 12: e0184772 (IGR: 19-1)


74405 Optic Nerve Head Characteristics in Chronic Angle Closure Glaucoma Detected by Swept-Source OCT
Shen LQ
Current Eye Research 2017; 42: 1450-1457 (IGR: 19-1)


74352 Optic nerve head and retinal blood flow regulation during isometric exercise as assessed with laser speckle flowgraphy
Schmetterer L
PLoS ONE 2017; 12: e0184772 (IGR: 19-1)


74167 Comparing glaucomatous disc change using stereo disc viewing and the MatchedFlicker programme in glaucoma experts and trainees
Schuman JS
British Journal of Ophthalmology 2018; 102: 358-363 (IGR: 19-1)


74152 Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans
Simavli H; Que C
American Journal of Ophthalmology 2017; 182: 180-193 (IGR: 19-1)


74167 Comparing glaucomatous disc change using stereo disc viewing and the MatchedFlicker programme in glaucoma experts and trainees
Kass MA
British Journal of Ophthalmology 2018; 102: 358-363 (IGR: 19-1)


74152 Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans
Vakoc BJ
American Journal of Ophthalmology 2017; 182: 180-193 (IGR: 19-1)


74167 Comparing glaucomatous disc change using stereo disc viewing and the MatchedFlicker programme in glaucoma experts and trainees
Sherwood MB
British Journal of Ophthalmology 2018; 102: 358-363 (IGR: 19-1)


74152 Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans
Bouma BE; de Boer JF; Chen TC
American Journal of Ophthalmology 2017; 182: 180-193 (IGR: 19-1)


72808 Deformation of the Lamina Cribrosa and Optic Nerve Due to Changes in Cerebrospinal Fluid Pressure
Feola AJ
Investigative Ophthalmology and Visual Science 2017; 58: 2070-2078 (IGR: 18-4)


72611 The Optic Canal: A Bottleneck for Cerebrospinal Fluid Dynamics in Normal-Tension Glaucoma?
Pircher A
Frontiers in neurology 2017; 8: 47 (IGR: 18-4)


72924 The effect of parental factors in children with large cup-to-disc ratios
Park HL
PLoS ONE 2017; 12: e0175900 (IGR: 18-4)


73021 Gene Expression Profiling of the Optic Nerve Head of Patients with Primary Open-Angle Glaucoma
Wang X
Journal of Ophthalmology 2017; 2017: 6896390 (IGR: 18-4)


72788 Glaucoma in high myopia and parapapillary delta zone
Jonas JB
PLoS ONE 2017; 12: e0175120 (IGR: 18-4)


72822 Myopic glaucomatous eyes with or without optic disc shape alteration: a longitudinal study
Kwon J
British Journal of Ophthalmology 2017; 101: 1618-1622 (IGR: 18-4)


72900 Relationship between corneal biomechanical properties and optic nerve head changes after deep sclerectomy
Díez-Álvarez L
European Journal of Ophthalmology 2017; 0: 0 (IGR: 18-4)


72943 Circumpapillary retinal nerve fiber layer thickness, anterior lamina cribrosa depth, and lamina cribrosa thickness in neovascular glaucoma secondary to proliferative diabetic retinopathy: a cross-sectional study
Yokota S
BMC Ophthalmology 2017; 17: 57 (IGR: 18-4)


72687 Study on the deformations of the lamina cribrosa during glaucoma
Tian H
Acta biomaterialia 2017; 55: 340-348 (IGR: 18-4)


73039 Effect of acute intraocular pressure elevation on the minimum rim width in normal, ocular hypertensive and glaucoma eyes
Sharma S
British Journal of Ophthalmology 2018; 102: 131-135 (IGR: 18-4)


72759 Correlation between central corneal thickness and visual field defects, cup to disc ratio and retinal nerve fiber layer thickness in primary open angle glaucoma patients
Sarfraz MH
Pakistan journal of medical sciences 2017; 33: 132-136 (IGR: 18-4)


72619 Ganglion cell-inner plexiform layer and retinal nerve fiber layer thickness according to myopia and optic disc area: a quantitative and three-dimensional analysis
Seo S
BMC Ophthalmology 2017; 17: 22 (IGR: 18-4)


72739 Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma
Wu Z
Investigative Ophthalmology and Visual Science 2017; 58: 1825-1833 (IGR: 18-4)


73576 The association between retinal vein pulsation pressure and optic disc haemorrhages in glaucoma
An D
PLoS ONE 2017; 12: e0182316 (IGR: 18-4)


72793 Influence of the lamina cribrosa on the rate of global and localized retinal nerve fiber layer thinning in open-angle glaucoma
Park HL
Medicine 2017; 96: e6295 (IGR: 18-4)


72702 Relationship of Optic Nerve Structure and Function to Peripapillary Vessel Density Measurements of Optical Coherence Tomography Angiography in Glaucoma
Rao HL
Journal of Glaucoma 2017; 26: 548-554 (IGR: 18-4)


73049 Biomechanical Responses of Lamina Cribrosa to Intraocular Pressure Change Assessed by Optical Coherence Tomography in Glaucoma Eyes
Quigley H
Investigative Ophthalmology and Visual Science 2017; 58: 2566-2577 (IGR: 18-4)


72688 Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility
Lucy KA
Investigative Ophthalmology and Visual Science 2017; 58: 1751-1757 (IGR: 18-4)


72612 Influence of intraocular pressure reduction on progression of normal-tension glaucoma with myopic tilted disc and associated risk factors
Seol BR
Japanese Journal of Ophthalmology 2017; 61: 230-236 (IGR: 18-4)


72749 Development of visual field defect after first-detected optic disc hemorrhage in preperimetric open-angle glaucoma
Kim HJ
Japanese Journal of Ophthalmology 2017; 61: 307-313 (IGR: 18-4)


72618 OCT Angiography of the Glaucoma Optic Nerve
Lommatzsch C
Klinische Monatsblätter für Augenheilkunde 2018; 235: 205-211 (IGR: 18-4)


71873 Relationship between intraocular pressure and anterior lamina cribrosa depth: a cross-sectional observational study in a healthy Portuguese population
Sousa DC
European Journal of Ophthalmology 2017; 27: 295-300 (IGR: 18-4)


72164 A Genome-Wide Association Study of Vertical Cup-Disc Ratio in a Latino Population
Nannini DR
Investigative Ophthalmology and Visual Science 2017; 58: 87-95 (IGR: 18-4)


72831 Optic Disc Hemorrhage in Health and Disease
Razeghinejad MR
Survey of Ophthalmology 2017; 0: (IGR: 18-4)


73060 Rates of Local Retinal Nerve Fiber Layer Thinning before and after Disc Hemorrhage in Glaucoma
Akagi T
Ophthalmology 2017; 124: 1403-1411 (IGR: 18-4)


72614 Predicting the risk of parafoveal scotoma in myopic normal tension glaucoma: role of optic disc tilt and rotation
Sung MS
Eye 2017; 31: 1051-1059 (IGR: 18-4)


73025 Evaluation of Optic Nerve Head and Peripapillary Choroidal Vasculature Using Swept-source Optical Coherence Tomography Angiography
Na KI
Journal of Glaucoma 2017; 26: 665-668 (IGR: 18-4)


73167 Multiple Temporal Lamina Cribrosa Defects in Myopic Eyes with Glaucoma and Their Association with Visual Field Defects
Sawada Y
Ophthalmology 2017; 124: 1600-1611 (IGR: 18-4)


72982 Serial Changes in Lamina Cribrosa Depth and Neuroretinal Parameters in Glaucoma: Impact of Choroidal Thickness
Vianna JR
Ophthalmology 2017; 124: 1392-1402 (IGR: 18-4)


72702 Relationship of Optic Nerve Structure and Function to Peripapillary Vessel Density Measurements of Optical Coherence Tomography Angiography in Glaucoma
Pradhan ZS
Journal of Glaucoma 2017; 26: 548-554 (IGR: 18-4)


73060 Rates of Local Retinal Nerve Fiber Layer Thinning before and after Disc Hemorrhage in Glaucoma
Zangwill LM
Ophthalmology 2017; 124: 1403-1411 (IGR: 18-4)


72612 Influence of intraocular pressure reduction on progression of normal-tension glaucoma with myopic tilted disc and associated risk factors
Kim S
Japanese Journal of Ophthalmology 2017; 61: 230-236 (IGR: 18-4)


73576 The association between retinal vein pulsation pressure and optic disc haemorrhages in glaucoma
House P
PLoS ONE 2017; 12: e0182316 (IGR: 18-4)


73021 Gene Expression Profiling of the Optic Nerve Head of Patients with Primary Open-Angle Glaucoma
Gong K
Journal of Ophthalmology 2017; 2017: 6896390 (IGR: 18-4)


72618 OCT Angiography of the Glaucoma Optic Nerve
Koch JM
Klinische Monatsblätter für Augenheilkunde 2018; 235: 205-211 (IGR: 18-4)


72739 Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma
Lin C
Investigative Ophthalmology and Visual Science 2017; 58: 1825-1833 (IGR: 18-4)


72749 Development of visual field defect after first-detected optic disc hemorrhage in preperimetric open-angle glaucoma
Song YJ
Japanese Journal of Ophthalmology 2017; 61: 307-313 (IGR: 18-4)


72788 Glaucoma in high myopia and parapapillary delta zone
Weber P
PLoS ONE 2017; 12: e0175120 (IGR: 18-4)


72164 A Genome-Wide Association Study of Vertical Cup-Disc Ratio in a Latino Population
Torres M
Investigative Ophthalmology and Visual Science 2017; 58: 87-95 (IGR: 18-4)


72924 The effect of parental factors in children with large cup-to-disc ratios
Ha MJ
PLoS ONE 2017; 12: e0175900 (IGR: 18-4)


71873 Relationship between intraocular pressure and anterior lamina cribrosa depth: a cross-sectional observational study in a healthy Portuguese population
Leal I
European Journal of Ophthalmology 2017; 27: 295-300 (IGR: 18-4)


73039 Effect of acute intraocular pressure elevation on the minimum rim width in normal, ocular hypertensive and glaucoma eyes
Tun TA
British Journal of Ophthalmology 2018; 102: 131-135 (IGR: 18-4)


73049 Biomechanical Responses of Lamina Cribrosa to Intraocular Pressure Change Assessed by Optical Coherence Tomography in Glaucoma Eyes
Arora K
Investigative Ophthalmology and Visual Science 2017; 58: 2566-2577 (IGR: 18-4)


72611 The Optic Canal: A Bottleneck for Cerebrospinal Fluid Dynamics in Normal-Tension Glaucoma?
Montali M
Frontiers in neurology 2017; 8: 47 (IGR: 18-4)


72943 Circumpapillary retinal nerve fiber layer thickness, anterior lamina cribrosa depth, and lamina cribrosa thickness in neovascular glaucoma secondary to proliferative diabetic retinopathy: a cross-sectional study
Takihara Y
BMC Ophthalmology 2017; 17: 57 (IGR: 18-4)


72614 Predicting the risk of parafoveal scotoma in myopic normal tension glaucoma: role of optic disc tilt and rotation
Heo H
Eye 2017; 31: 1051-1059 (IGR: 18-4)


73167 Multiple Temporal Lamina Cribrosa Defects in Myopic Eyes with Glaucoma and Their Association with Visual Field Defects
Araie M
Ophthalmology 2017; 124: 1600-1611 (IGR: 18-4)


72687 Study on the deformations of the lamina cribrosa during glaucoma
Li L
Acta biomaterialia 2017; 55: 340-348 (IGR: 18-4)


72688 Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility
Wang B
Investigative Ophthalmology and Visual Science 2017; 58: 1751-1757 (IGR: 18-4)


72831 Optic Disc Hemorrhage in Health and Disease
Nowroozzadeh MH
Survey of Ophthalmology 2017; 0: (IGR: 18-4)


72759 Correlation between central corneal thickness and visual field defects, cup to disc ratio and retinal nerve fiber layer thickness in primary open angle glaucoma patients
Mehboob MA
Pakistan journal of medical sciences 2017; 33: 132-136 (IGR: 18-4)


73025 Evaluation of Optic Nerve Head and Peripapillary Choroidal Vasculature Using Swept-source Optical Coherence Tomography Angiography
Lee WJ
Journal of Glaucoma 2017; 26: 665-668 (IGR: 18-4)


72808 Deformation of the Lamina Cribrosa and Optic Nerve Due to Changes in Cerebrospinal Fluid Pressure
Coudrillier B
Investigative Ophthalmology and Visual Science 2017; 58: 2070-2078 (IGR: 18-4)


72982 Serial Changes in Lamina Cribrosa Depth and Neuroretinal Parameters in Glaucoma: Impact of Choroidal Thickness
Lanoe VR
Ophthalmology 2017; 124: 1392-1402 (IGR: 18-4)


72822 Myopic glaucomatous eyes with or without optic disc shape alteration: a longitudinal study
Sung KR
British Journal of Ophthalmology 2017; 101: 1618-1622 (IGR: 18-4)


72900 Relationship between corneal biomechanical properties and optic nerve head changes after deep sclerectomy
Muñoz-Negrete FJ
European Journal of Ophthalmology 2017; 0: 0 (IGR: 18-4)


72793 Influence of the lamina cribrosa on the rate of global and localized retinal nerve fiber layer thinning in open-angle glaucoma
Kim SI
Medicine 2017; 96: e6295 (IGR: 18-4)


72619 Ganglion cell-inner plexiform layer and retinal nerve fiber layer thickness according to myopia and optic disc area: a quantitative and three-dimensional analysis
Lee CE
BMC Ophthalmology 2017; 17: 22 (IGR: 18-4)


72900 Relationship between corneal biomechanical properties and optic nerve head changes after deep sclerectomy
Casas-Llera P
European Journal of Ophthalmology 2017; 0: 0 (IGR: 18-4)


72793 Influence of the lamina cribrosa on the rate of global and localized retinal nerve fiber layer thinning in open-angle glaucoma
Park CK
Medicine 2017; 96: e6295 (IGR: 18-4)


72687 Study on the deformations of the lamina cribrosa during glaucoma
Song F
Acta biomaterialia 2017; 55: 340-348 (IGR: 18-4)


72619 Ganglion cell-inner plexiform layer and retinal nerve fiber layer thickness according to myopia and optic disc area: a quantitative and three-dimensional analysis
Jeong JH
BMC Ophthalmology 2017; 17: 22 (IGR: 18-4)


72164 A Genome-Wide Association Study of Vertical Cup-Disc Ratio in a Latino Population
Chen YI
Investigative Ophthalmology and Visual Science 2017; 58: 87-95 (IGR: 18-4)


73025 Evaluation of Optic Nerve Head and Peripapillary Choroidal Vasculature Using Swept-source Optical Coherence Tomography Angiography
Kim YK
Journal of Glaucoma 2017; 26: 665-668 (IGR: 18-4)


73167 Multiple Temporal Lamina Cribrosa Defects in Myopic Eyes with Glaucoma and Their Association with Visual Field Defects
Ishikawa M
Ophthalmology 2017; 124: 1600-1611 (IGR: 18-4)


72982 Serial Changes in Lamina Cribrosa Depth and Neuroretinal Parameters in Glaucoma: Impact of Choroidal Thickness
Quach J
Ophthalmology 2017; 124: 1392-1402 (IGR: 18-4)


72822 Myopic glaucomatous eyes with or without optic disc shape alteration: a longitudinal study
Park JM
British Journal of Ophthalmology 2017; 101: 1618-1622 (IGR: 18-4)


72702 Relationship of Optic Nerve Structure and Function to Peripapillary Vessel Density Measurements of Optical Coherence Tomography Angiography in Glaucoma
Weinreb RN
Journal of Glaucoma 2017; 26: 548-554 (IGR: 18-4)


72688 Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility
Schuman JS
Investigative Ophthalmology and Visual Science 2017; 58: 1751-1757 (IGR: 18-4)


72749 Development of visual field defect after first-detected optic disc hemorrhage in preperimetric open-angle glaucoma
Kim YK
Japanese Journal of Ophthalmology 2017; 61: 307-313 (IGR: 18-4)


72618 OCT Angiography of the Glaucoma Optic Nerve
Claußnitzer H
Klinische Monatsblätter für Augenheilkunde 2018; 235: 205-211 (IGR: 18-4)


72788 Glaucoma in high myopia and parapapillary delta zone
Nagaoka N
PLoS ONE 2017; 12: e0175120 (IGR: 18-4)


72808 Deformation of the Lamina Cribrosa and Optic Nerve Due to Changes in Cerebrospinal Fluid Pressure
Mulvihill J
Investigative Ophthalmology and Visual Science 2017; 58: 2070-2078 (IGR: 18-4)


72924 The effect of parental factors in children with large cup-to-disc ratios
Shin SY
PLoS ONE 2017; 12: e0175900 (IGR: 18-4)


72612 Influence of intraocular pressure reduction on progression of normal-tension glaucoma with myopic tilted disc and associated risk factors
Kim DM
Japanese Journal of Ophthalmology 2017; 61: 230-236 (IGR: 18-4)


73060 Rates of Local Retinal Nerve Fiber Layer Thinning before and after Disc Hemorrhage in Glaucoma
Saunders LJ
Ophthalmology 2017; 124: 1403-1411 (IGR: 18-4)


72739 Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma
Crowther M
Investigative Ophthalmology and Visual Science 2017; 58: 1825-1833 (IGR: 18-4)


72614 Predicting the risk of parafoveal scotoma in myopic normal tension glaucoma: role of optic disc tilt and rotation
Ji YS
Eye 2017; 31: 1051-1059 (IGR: 18-4)


72611 The Optic Canal: A Bottleneck for Cerebrospinal Fluid Dynamics in Normal-Tension Glaucoma?
Berberat J
Frontiers in neurology 2017; 8: 47 (IGR: 18-4)


73576 The association between retinal vein pulsation pressure and optic disc haemorrhages in glaucoma
Barry C
PLoS ONE 2017; 12: e0182316 (IGR: 18-4)


73039 Effect of acute intraocular pressure elevation on the minimum rim width in normal, ocular hypertensive and glaucoma eyes
Baskaran M
British Journal of Ophthalmology 2018; 102: 131-135 (IGR: 18-4)


73049 Biomechanical Responses of Lamina Cribrosa to Intraocular Pressure Change Assessed by Optical Coherence Tomography in Glaucoma Eyes
Idrees S
Investigative Ophthalmology and Visual Science 2017; 58: 2566-2577 (IGR: 18-4)


72943 Circumpapillary retinal nerve fiber layer thickness, anterior lamina cribrosa depth, and lamina cribrosa thickness in neovascular glaucoma secondary to proliferative diabetic retinopathy: a cross-sectional study
Takamura Y
BMC Ophthalmology 2017; 17: 57 (IGR: 18-4)


71873 Relationship between intraocular pressure and anterior lamina cribrosa depth: a cross-sectional observational study in a healthy Portuguese population
Marques-Neves C
European Journal of Ophthalmology 2017; 27: 295-300 (IGR: 18-4)


72759 Correlation between central corneal thickness and visual field defects, cup to disc ratio and retinal nerve fiber layer thickness in primary open angle glaucoma patients
Haq RI
Pakistan journal of medical sciences 2017; 33: 132-136 (IGR: 18-4)


72688 Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility
Bilonick RA
Investigative Ophthalmology and Visual Science 2017; 58: 1751-1757 (IGR: 18-4)


71873 Relationship between intraocular pressure and anterior lamina cribrosa depth: a cross-sectional observational study in a healthy Portuguese population
Pinto F
European Journal of Ophthalmology 2017; 27: 295-300 (IGR: 18-4)


73039 Effect of acute intraocular pressure elevation on the minimum rim width in normal, ocular hypertensive and glaucoma eyes
Atalay E
British Journal of Ophthalmology 2018; 102: 131-135 (IGR: 18-4)


73049 Biomechanical Responses of Lamina Cribrosa to Intraocular Pressure Change Assessed by Optical Coherence Tomography in Glaucoma Eyes
Solano F
Investigative Ophthalmology and Visual Science 2017; 58: 2566-2577 (IGR: 18-4)


72702 Relationship of Optic Nerve Structure and Function to Peripapillary Vessel Density Measurements of Optical Coherence Tomography Angiography in Glaucoma
Dasari S
Journal of Glaucoma 2017; 26: 548-554 (IGR: 18-4)


72614 Predicting the risk of parafoveal scotoma in myopic normal tension glaucoma: role of optic disc tilt and rotation
Park SW
Eye 2017; 31: 1051-1059 (IGR: 18-4)


72982 Serial Changes in Lamina Cribrosa Depth and Neuroretinal Parameters in Glaucoma: Impact of Choroidal Thickness
Sharpe GP
Ophthalmology 2017; 124: 1392-1402 (IGR: 18-4)


73576 The association between retinal vein pulsation pressure and optic disc haemorrhages in glaucoma
Turpin A
PLoS ONE 2017; 12: e0182316 (IGR: 18-4)


72611 The Optic Canal: A Bottleneck for Cerebrospinal Fluid Dynamics in Normal-Tension Glaucoma?
Remonda L
Frontiers in neurology 2017; 8: 47 (IGR: 18-4)


72612 Influence of intraocular pressure reduction on progression of normal-tension glaucoma with myopic tilted disc and associated risk factors
Park KH
Japanese Journal of Ophthalmology 2017; 61: 230-236 (IGR: 18-4)


73060 Rates of Local Retinal Nerve Fiber Layer Thinning before and after Disc Hemorrhage in Glaucoma
Yarmohammadi A
Ophthalmology 2017; 124: 1403-1411 (IGR: 18-4)


72749 Development of visual field defect after first-detected optic disc hemorrhage in preperimetric open-angle glaucoma
Jeoung JW
Japanese Journal of Ophthalmology 2017; 61: 307-313 (IGR: 18-4)


72618 OCT Angiography of the Glaucoma Optic Nerve
Heinz C
Klinische Monatsblätter für Augenheilkunde 2018; 235: 205-211 (IGR: 18-4)


72164 A Genome-Wide Association Study of Vertical Cup-Disc Ratio in a Latino Population
Taylor KD
Investigative Ophthalmology and Visual Science 2017; 58: 87-95 (IGR: 18-4)


72900 Relationship between corneal biomechanical properties and optic nerve head changes after deep sclerectomy
Oblanca N
European Journal of Ophthalmology 2017; 0: 0 (IGR: 18-4)


73021 Gene Expression Profiling of the Optic Nerve Head of Patients with Primary Open-Angle Glaucoma
Wang C
Journal of Ophthalmology 2017; 2017: 6896390 (IGR: 18-4)


72619 Ganglion cell-inner plexiform layer and retinal nerve fiber layer thickness according to myopia and optic disc area: a quantitative and three-dimensional analysis
Park KH
BMC Ophthalmology 2017; 17: 22 (IGR: 18-4)


72943 Circumpapillary retinal nerve fiber layer thickness, anterior lamina cribrosa depth, and lamina cribrosa thickness in neovascular glaucoma secondary to proliferative diabetic retinopathy: a cross-sectional study
Inatani M
BMC Ophthalmology 2017; 17: 57 (IGR: 18-4)


73025 Evaluation of Optic Nerve Head and Peripapillary Choroidal Vasculature Using Swept-source Optical Coherence Tomography Angiography
Jeoung JW
Journal of Glaucoma 2017; 26: 665-668 (IGR: 18-4)


73167 Multiple Temporal Lamina Cribrosa Defects in Myopic Eyes with Glaucoma and Their Association with Visual Field Defects
Yoshitomi T
Ophthalmology 2017; 124: 1600-1611 (IGR: 18-4)


72788 Glaucoma in high myopia and parapapillary delta zone
Ohno-Matsui K
PLoS ONE 2017; 12: e0175120 (IGR: 18-4)


72808 Deformation of the Lamina Cribrosa and Optic Nerve Due to Changes in Cerebrospinal Fluid Pressure
Geraldes DM
Investigative Ophthalmology and Visual Science 2017; 58: 2070-2078 (IGR: 18-4)


72739 Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma
Mak H
Investigative Ophthalmology and Visual Science 2017; 58: 1825-1833 (IGR: 18-4)


73060 Rates of Local Retinal Nerve Fiber Layer Thinning before and after Disc Hemorrhage in Glaucoma
Manalastas PIC
Ophthalmology 2017; 124: 1403-1411 (IGR: 18-4)


72982 Serial Changes in Lamina Cribrosa Depth and Neuroretinal Parameters in Glaucoma: Impact of Choroidal Thickness
Hutchison DM
Ophthalmology 2017; 124: 1392-1402 (IGR: 18-4)


72749 Development of visual field defect after first-detected optic disc hemorrhage in preperimetric open-angle glaucoma
Park KH
Japanese Journal of Ophthalmology 2017; 61: 307-313 (IGR: 18-4)


73021 Gene Expression Profiling of the Optic Nerve Head of Patients with Primary Open-Angle Glaucoma
Qu C
Journal of Ophthalmology 2017; 2017: 6896390 (IGR: 18-4)


72808 Deformation of the Lamina Cribrosa and Optic Nerve Due to Changes in Cerebrospinal Fluid Pressure
Vo NT
Investigative Ophthalmology and Visual Science 2017; 58: 2070-2078 (IGR: 18-4)


72688 Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility
Ling Y
Investigative Ophthalmology and Visual Science 2017; 58: 1751-1757 (IGR: 18-4)


73025 Evaluation of Optic Nerve Head and Peripapillary Choroidal Vasculature Using Swept-source Optical Coherence Tomography Angiography
Park KH
Journal of Glaucoma 2017; 26: 665-668 (IGR: 18-4)


72611 The Optic Canal: A Bottleneck for Cerebrospinal Fluid Dynamics in Normal-Tension Glaucoma?
Killer HE
Frontiers in neurology 2017; 8: 47 (IGR: 18-4)


73049 Biomechanical Responses of Lamina Cribrosa to Intraocular Pressure Change Assessed by Optical Coherence Tomography in Glaucoma Eyes
Bedrood S
Investigative Ophthalmology and Visual Science 2017; 58: 2566-2577 (IGR: 18-4)


72702 Relationship of Optic Nerve Structure and Function to Peripapillary Vessel Density Measurements of Optical Coherence Tomography Angiography in Glaucoma
Riyazuddin M
Journal of Glaucoma 2017; 26: 548-554 (IGR: 18-4)


71873 Relationship between intraocular pressure and anterior lamina cribrosa depth: a cross-sectional observational study in a healthy Portuguese population
Abegão Pinto L
European Journal of Ophthalmology 2017; 27: 295-300 (IGR: 18-4)


73576 The association between retinal vein pulsation pressure and optic disc haemorrhages in glaucoma
McKendrick AM
PLoS ONE 2017; 12: e0182316 (IGR: 18-4)


72164 A Genome-Wide Association Study of Vertical Cup-Disc Ratio in a Latino Population
Rotter JI
Investigative Ophthalmology and Visual Science 2017; 58: 87-95 (IGR: 18-4)


72739 Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma
Yu M
Investigative Ophthalmology and Visual Science 2017; 58: 1825-1833 (IGR: 18-4)


73039 Effect of acute intraocular pressure elevation on the minimum rim width in normal, ocular hypertensive and glaucoma eyes
Thakku SG
British Journal of Ophthalmology 2018; 102: 131-135 (IGR: 18-4)


72900 Relationship between corneal biomechanical properties and optic nerve head changes after deep sclerectomy
de Juan V
European Journal of Ophthalmology 2017; 0: 0 (IGR: 18-4)


72612 Influence of intraocular pressure reduction on progression of normal-tension glaucoma with myopic tilted disc and associated risk factors
Jeoung JW
Japanese Journal of Ophthalmology 2017; 61: 230-236 (IGR: 18-4)


72619 Ganglion cell-inner plexiform layer and retinal nerve fiber layer thickness according to myopia and optic disc area: a quantitative and three-dimensional analysis
Kim DM
BMC Ophthalmology 2017; 17: 22 (IGR: 18-4)


73049 Biomechanical Responses of Lamina Cribrosa to Intraocular Pressure Change Assessed by Optical Coherence Tomography in Glaucoma Eyes
Lee C
Investigative Ophthalmology and Visual Science 2017; 58: 2566-2577 (IGR: 18-4)


72739 Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma
Leung CK
Investigative Ophthalmology and Visual Science 2017; 58: 1825-1833 (IGR: 18-4)


72612 Influence of intraocular pressure reduction on progression of normal-tension glaucoma with myopic tilted disc and associated risk factors
Kim SH
Japanese Journal of Ophthalmology 2017; 61: 230-236 (IGR: 18-4)


73060 Rates of Local Retinal Nerve Fiber Layer Thinning before and after Disc Hemorrhage in Glaucoma
Suh MH
Ophthalmology 2017; 124: 1403-1411 (IGR: 18-4)


72619 Ganglion cell-inner plexiform layer and retinal nerve fiber layer thickness according to myopia and optic disc area: a quantitative and three-dimensional analysis
Jeoung JW
BMC Ophthalmology 2017; 17: 22 (IGR: 18-4)


72900 Relationship between corneal biomechanical properties and optic nerve head changes after deep sclerectomy
Rebolleda G
European Journal of Ophthalmology 2017; 0: 0 (IGR: 18-4)


72982 Serial Changes in Lamina Cribrosa Depth and Neuroretinal Parameters in Glaucoma: Impact of Choroidal Thickness
Belliveau AC
Ophthalmology 2017; 124: 1392-1402 (IGR: 18-4)


73039 Effect of acute intraocular pressure elevation on the minimum rim width in normal, ocular hypertensive and glaucoma eyes
Liang Z
British Journal of Ophthalmology 2018; 102: 131-135 (IGR: 18-4)


72164 A Genome-Wide Association Study of Vertical Cup-Disc Ratio in a Latino Population
Varma R
Investigative Ophthalmology and Visual Science 2017; 58: 87-95 (IGR: 18-4)


73576 The association between retinal vein pulsation pressure and optic disc haemorrhages in glaucoma
Chauhan BC
PLoS ONE 2017; 12: e0182316 (IGR: 18-4)


73021 Gene Expression Profiling of the Optic Nerve Head of Patients with Primary Open-Angle Glaucoma
Li H
Journal of Ophthalmology 2017; 2017: 6896390 (IGR: 18-4)


72688 Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility
Kagemann L
Investigative Ophthalmology and Visual Science 2017; 58: 1751-1757 (IGR: 18-4)


72702 Relationship of Optic Nerve Structure and Function to Peripapillary Vessel Density Measurements of Optical Coherence Tomography Angiography in Glaucoma
Raveendran S
Journal of Glaucoma 2017; 26: 548-554 (IGR: 18-4)


72808 Deformation of the Lamina Cribrosa and Optic Nerve Due to Changes in Cerebrospinal Fluid Pressure
Albon J
Investigative Ophthalmology and Visual Science 2017; 58: 2070-2078 (IGR: 18-4)


73039 Effect of acute intraocular pressure elevation on the minimum rim width in normal, ocular hypertensive and glaucoma eyes
Milea D
British Journal of Ophthalmology 2018; 102: 131-135 (IGR: 18-4)


72164 A Genome-Wide Association Study of Vertical Cup-Disc Ratio in a Latino Population
Gao X
Investigative Ophthalmology and Visual Science 2017; 58: 87-95 (IGR: 18-4)


72808 Deformation of the Lamina Cribrosa and Optic Nerve Due to Changes in Cerebrospinal Fluid Pressure
Abel RL
Investigative Ophthalmology and Visual Science 2017; 58: 2070-2078 (IGR: 18-4)


73576 The association between retinal vein pulsation pressure and optic disc haemorrhages in glaucoma
Manners S
PLoS ONE 2017; 12: e0182316 (IGR: 18-4)


72702 Relationship of Optic Nerve Structure and Function to Peripapillary Vessel Density Measurements of Optical Coherence Tomography Angiography in Glaucoma
Puttaiah NK
Journal of Glaucoma 2017; 26: 548-554 (IGR: 18-4)


73060 Rates of Local Retinal Nerve Fiber Layer Thinning before and after Disc Hemorrhage in Glaucoma
Girkin CA
Ophthalmology 2017; 124: 1403-1411 (IGR: 18-4)


73049 Biomechanical Responses of Lamina Cribrosa to Intraocular Pressure Change Assessed by Optical Coherence Tomography in Glaucoma Eyes
Jefferys J
Investigative Ophthalmology and Visual Science 2017; 58: 2566-2577 (IGR: 18-4)


72982 Serial Changes in Lamina Cribrosa Depth and Neuroretinal Parameters in Glaucoma: Impact of Choroidal Thickness
Shuba LM
Ophthalmology 2017; 124: 1392-1402 (IGR: 18-4)


72688 Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility
Sigal IA
Investigative Ophthalmology and Visual Science 2017; 58: 1751-1757 (IGR: 18-4)


73039 Effect of acute intraocular pressure elevation on the minimum rim width in normal, ocular hypertensive and glaucoma eyes
Strouthidis NG
British Journal of Ophthalmology 2018; 102: 131-135 (IGR: 18-4)


72688 Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility
Grulkowski I
Investigative Ophthalmology and Visual Science 2017; 58: 1751-1757 (IGR: 18-4)


73049 Biomechanical Responses of Lamina Cribrosa to Intraocular Pressure Change Assessed by Optical Coherence Tomography in Glaucoma Eyes
Nguyen T
Investigative Ophthalmology and Visual Science 2017; 58: 2566-2577 (IGR: 18-4)


72982 Serial Changes in Lamina Cribrosa Depth and Neuroretinal Parameters in Glaucoma: Impact of Choroidal Thickness
Nicolela MT
Ophthalmology 2017; 124: 1392-1402 (IGR: 18-4)


72808 Deformation of the Lamina Cribrosa and Optic Nerve Due to Changes in Cerebrospinal Fluid Pressure
Samuels BC
Investigative Ophthalmology and Visual Science 2017; 58: 2070-2078 (IGR: 18-4)


73060 Rates of Local Retinal Nerve Fiber Layer Thinning before and after Disc Hemorrhage in Glaucoma
Liebmann JM
Ophthalmology 2017; 124: 1403-1411 (IGR: 18-4)


73576 The association between retinal vein pulsation pressure and optic disc haemorrhages in glaucoma
Graham SL
PLoS ONE 2017; 12: e0182316 (IGR: 18-4)


72702 Relationship of Optic Nerve Structure and Function to Peripapillary Vessel Density Measurements of Optical Coherence Tomography Angiography in Glaucoma
Venugopal JP
Journal of Glaucoma 2017; 26: 548-554 (IGR: 18-4)


72688 Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility
Liu JJ
Investigative Ophthalmology and Visual Science 2017; 58: 1751-1757 (IGR: 18-4)


73576 The association between retinal vein pulsation pressure and optic disc haemorrhages in glaucoma
Yu DY
PLoS ONE 2017; 12: e0182316 (IGR: 18-4)


72808 Deformation of the Lamina Cribrosa and Optic Nerve Due to Changes in Cerebrospinal Fluid Pressure
Ethier CR
Investigative Ophthalmology and Visual Science 2017; 58: 2070-2078 (IGR: 18-4)


72702 Relationship of Optic Nerve Structure and Function to Peripapillary Vessel Density Measurements of Optical Coherence Tomography Angiography in Glaucoma
Rao DAS
Journal of Glaucoma 2017; 26: 548-554 (IGR: 18-4)


73039 Effect of acute intraocular pressure elevation on the minimum rim width in normal, ocular hypertensive and glaucoma eyes
Aung T
British Journal of Ophthalmology 2018; 102: 131-135 (IGR: 18-4)


72982 Serial Changes in Lamina Cribrosa Depth and Neuroretinal Parameters in Glaucoma: Impact of Choroidal Thickness
Chauhan BC
Ophthalmology 2017; 124: 1392-1402 (IGR: 18-4)


73060 Rates of Local Retinal Nerve Fiber Layer Thinning before and after Disc Hemorrhage in Glaucoma
Weinreb RN
Ophthalmology 2017; 124: 1403-1411 (IGR: 18-4)


73576 The association between retinal vein pulsation pressure and optic disc haemorrhages in glaucoma
Morgan WH
PLoS ONE 2017; 12: e0182316 (IGR: 18-4)


72702 Relationship of Optic Nerve Structure and Function to Peripapillary Vessel Density Measurements of Optical Coherence Tomography Angiography in Glaucoma
Devi S
Journal of Glaucoma 2017; 26: 548-554 (IGR: 18-4)


72688 Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility
Fujimoto JG
Investigative Ophthalmology and Visual Science 2017; 58: 1751-1757 (IGR: 18-4)


73039 Effect of acute intraocular pressure elevation on the minimum rim width in normal, ocular hypertensive and glaucoma eyes
Girard MJ
British Journal of Ophthalmology 2018; 102: 131-135 (IGR: 18-4)


72702 Relationship of Optic Nerve Structure and Function to Peripapillary Vessel Density Measurements of Optical Coherence Tomography Angiography in Glaucoma
Mansouri K
Journal of Glaucoma 2017; 26: 548-554 (IGR: 18-4)


72688 Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility
Ishikawa H; Wollstein G
Investigative Ophthalmology and Visual Science 2017; 58: 1751-1757 (IGR: 18-4)


72702 Relationship of Optic Nerve Structure and Function to Peripapillary Vessel Density Measurements of Optical Coherence Tomography Angiography in Glaucoma
Webers CAB
Journal of Glaucoma 2017; 26: 548-554 (IGR: 18-4)


71197 Pilot Study of Lamina Cribrosa Intensity Measurements in Glaucoma Using Swept-Source Optical Coherence Tomography
Srinivas S
Journal of Glaucoma 2017; 26: 138-143 (IGR: 18-3)


71536 Relationship Between Anterior Lamina Cribrosa Surface Tilt and Glaucoma Development in Myopic Eyes
Lee EJ
Journal of Glaucoma 2017; 26: 415-422 (IGR: 18-3)


71321 The pressure-induced deformation response of the human lamina cribrosa: Analysis of regional variations
Midgett DE
Acta biomaterialia 2017; 53: 123-139 (IGR: 18-3)


71101 Distribution of intraocular pressure, central corneal thickness and vertical cup-to-disc ratio in a healthy Iranian population: the Yazd Eye Study
Pakravan M
Acta Ophthalmologica 2017; 95: e144-e151 (IGR: 18-3)


71611 Enhanced depth OCT imaging of the lamina cribrosa for 24 hours
Naranjo-Bonilla P
International Journal of Ophthalmology 2017; 10: 306-309 (IGR: 18-3)


71476 Optic disc, rim and peripapillary chorioretinal atrophy in normal Japanese eyes: the Kumejima Study
Iwase A
Japanese Journal of Ophthalmology 2017; 61: 223-229 (IGR: 18-3)


71289 Relationship between Central Retinal Vessel Trunk Location and Visual Field Loss in Glaucoma
Wang M
American Journal of Ophthalmology 2017; 176: 53-60 (IGR: 18-3)


71460 Astrocytes in the Optic Nerve Head of Glaucomatous Mice Display a Characteristic Reactive Phenotype
Wang R
Investigative Ophthalmology and Visual Science 2017; 58: 924-932 (IGR: 18-3)


71184 Intracranial Pressure Influences the Behavior of the Optic Nerve Head
Hua Y
Journal of Biomechanical Engineering 2017; 139: (IGR: 18-3)


71394 Measuring Deformation in the Mouse Optic Nerve Head and Peripapillary Sclera
Nguyen C
Investigative Ophthalmology and Visual Science 2017; 58: 721-733 (IGR: 18-3)


71494 The Proportion of Individuals Likely to Benefit from Customized Optic Nerve Head Structure-Function Mapping
McKendrick AM
Ophthalmology 2017; 124: 554-561 (IGR: 18-3)


71010 Progressive Retinal Nerve Fiber Layer Atrophy Associated With Enlarging Peripapillary Pit
Lee EJ
Journal of Glaucoma 2017; 26: e79-e81 (IGR: 18-3)


71434 Prostaglandins and optic papilla blood flow
Zhang SH
Chinese Journal of Ophthalmology 2017; 53: 73-76 (IGR: 18-3)


71558 Enhanced Diagnostic Capability for Glaucoma of 3-Dimensional Versus 2-Dimensional Neuroretinal Rim Parameters Using Spectral Domain Optical Coherence Tomography
Fan KC
Journal of Glaucoma 2017; 26: 450-458 (IGR: 18-3)


71023 Patterns of Damage in Young Myopic Glaucomatous-appearing Patients With Different Optic Disc Tilt Direction
Lee JE
Journal of Glaucoma 2017; 26: 144-152 (IGR: 18-3)


71062 Optic Disc Swelling After Intraocular Pressure Lowering Treatment in Acute Primary Angle Closure
Kim BH
Journal of Glaucoma 2017; 26: e87-e89 (IGR: 18-3)


71395 Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma
Lee SH
Investigative Ophthalmology and Visual Science 2017; 58: 755-762 (IGR: 18-3)


71470 Differentiation of glaucomatous optic discs with different appearances using optic disc topography parameters: The Glaucoma Stereo Analysis Study
Tanito M
PLoS ONE 2017; 12: e0169858 (IGR: 18-3)


71363 Glymphatic stasis at the site of the lamina cribrosa as a potential mechanism underlying open-angle glaucoma
Wostyn P
Clinical and Experimental Ophthalmology 2017; 45: 539-547 (IGR: 18-3)


71062 Optic Disc Swelling After Intraocular Pressure Lowering Treatment in Acute Primary Angle Closure
Lee EJ
Journal of Glaucoma 2017; 26: e87-e89 (IGR: 18-3)


71558 Enhanced Diagnostic Capability for Glaucoma of 3-Dimensional Versus 2-Dimensional Neuroretinal Rim Parameters Using Spectral Domain Optical Coherence Tomography
Tsikata E
Journal of Glaucoma 2017; 26: 450-458 (IGR: 18-3)


71395 Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma
Kim TW
Investigative Ophthalmology and Visual Science 2017; 58: 755-762 (IGR: 18-3)


71321 The pressure-induced deformation response of the human lamina cribrosa: Analysis of regional variations
Pease ME
Acta biomaterialia 2017; 53: 123-139 (IGR: 18-3)


71023 Patterns of Damage in Young Myopic Glaucomatous-appearing Patients With Different Optic Disc Tilt Direction
Lee J
Journal of Glaucoma 2017; 26: 144-152 (IGR: 18-3)


71611 Enhanced depth OCT imaging of the lamina cribrosa for 24 hours
Giménez-Gómez R
International Journal of Ophthalmology 2017; 10: 306-309 (IGR: 18-3)


71394 Measuring Deformation in the Mouse Optic Nerve Head and Peripapillary Sclera
Midgett D
Investigative Ophthalmology and Visual Science 2017; 58: 721-733 (IGR: 18-3)


71470 Differentiation of glaucomatous optic discs with different appearances using optic disc topography parameters: The Glaucoma Stereo Analysis Study
Nitta K
PLoS ONE 2017; 12: e0169858 (IGR: 18-3)


71363 Glymphatic stasis at the site of the lamina cribrosa as a potential mechanism underlying open-angle glaucoma
Killer HE
Clinical and Experimental Ophthalmology 2017; 45: 539-547 (IGR: 18-3)


71101 Distribution of intraocular pressure, central corneal thickness and vertical cup-to-disc ratio in a healthy Iranian population: the Yazd Eye Study
Javadi MA
Acta Ophthalmologica 2017; 95: e144-e151 (IGR: 18-3)


71197 Pilot Study of Lamina Cribrosa Intensity Measurements in Glaucoma Using Swept-Source Optical Coherence Tomography
Dastiridou A
Journal of Glaucoma 2017; 26: 138-143 (IGR: 18-3)


71476 Optic disc, rim and peripapillary chorioretinal atrophy in normal Japanese eyes: the Kumejima Study
Sawaguchi S
Japanese Journal of Ophthalmology 2017; 61: 223-229 (IGR: 18-3)


71494 The Proportion of Individuals Likely to Benefit from Customized Optic Nerve Head Structure-Function Mapping
Denniss J
Ophthalmology 2017; 124: 554-561 (IGR: 18-3)


71010 Progressive Retinal Nerve Fiber Layer Atrophy Associated With Enlarging Peripapillary Pit
Kim TW
Journal of Glaucoma 2017; 26: e79-e81 (IGR: 18-3)


71536 Relationship Between Anterior Lamina Cribrosa Surface Tilt and Glaucoma Development in Myopic Eyes
Han JC
Journal of Glaucoma 2017; 26: 415-422 (IGR: 18-3)


71434 Prostaglandins and optic papilla blood flow
Zhao JL
Chinese Journal of Ophthalmology 2017; 53: 73-76 (IGR: 18-3)


71184 Intracranial Pressure Influences the Behavior of the Optic Nerve Head
Tong J
Journal of Biomechanical Engineering 2017; 139: (IGR: 18-3)


71289 Relationship between Central Retinal Vessel Trunk Location and Visual Field Loss in Glaucoma
Wang H
American Journal of Ophthalmology 2017; 176: 53-60 (IGR: 18-3)


71460 Astrocytes in the Optic Nerve Head of Glaucomatous Mice Display a Characteristic Reactive Phenotype
Seifert P
Investigative Ophthalmology and Visual Science 2017; 58: 924-932 (IGR: 18-3)


71470 Differentiation of glaucomatous optic discs with different appearances using optic disc topography parameters: The Glaucoma Stereo Analysis Study
Katai M
PLoS ONE 2017; 12: e0169858 (IGR: 18-3)


71363 Glymphatic stasis at the site of the lamina cribrosa as a potential mechanism underlying open-angle glaucoma
De Deyn PP
Clinical and Experimental Ophthalmology 2017; 45: 539-547 (IGR: 18-3)


71184 Intracranial Pressure Influences the Behavior of the Optic Nerve Head
Ghate D
Journal of Biomechanical Engineering 2017; 139: (IGR: 18-3)


71536 Relationship Between Anterior Lamina Cribrosa Surface Tilt and Glaucoma Development in Myopic Eyes
Kee C
Journal of Glaucoma 2017; 26: 415-422 (IGR: 18-3)


71321 The pressure-induced deformation response of the human lamina cribrosa: Analysis of regional variations
Jefferys JL
Acta biomaterialia 2017; 53: 123-139 (IGR: 18-3)


71289 Relationship between Central Retinal Vessel Trunk Location and Visual Field Loss in Glaucoma
Pasquale LR
American Journal of Ophthalmology 2017; 176: 53-60 (IGR: 18-3)


71476 Optic disc, rim and peripapillary chorioretinal atrophy in normal Japanese eyes: the Kumejima Study
Sakai H
Japanese Journal of Ophthalmology 2017; 61: 223-229 (IGR: 18-3)


71395 Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma
Lee EJ
Investigative Ophthalmology and Visual Science 2017; 58: 755-762 (IGR: 18-3)


71558 Enhanced Diagnostic Capability for Glaucoma of 3-Dimensional Versus 2-Dimensional Neuroretinal Rim Parameters Using Spectral Domain Optical Coherence Tomography
Khoueir Z
Journal of Glaucoma 2017; 26: 450-458 (IGR: 18-3)


71101 Distribution of intraocular pressure, central corneal thickness and vertical cup-to-disc ratio in a healthy Iranian population: the Yazd Eye Study
Yazdani S
Acta Ophthalmologica 2017; 95: e144-e151 (IGR: 18-3)


71394 Measuring Deformation in the Mouse Optic Nerve Head and Peripapillary Sclera
Kimball EC
Investigative Ophthalmology and Visual Science 2017; 58: 721-733 (IGR: 18-3)


71460 Astrocytes in the Optic Nerve Head of Glaucomatous Mice Display a Characteristic Reactive Phenotype
Jakobs TC
Investigative Ophthalmology and Visual Science 2017; 58: 924-932 (IGR: 18-3)


71611 Enhanced depth OCT imaging of the lamina cribrosa for 24 hours
Ríos-Jiménez D
International Journal of Ophthalmology 2017; 10: 306-309 (IGR: 18-3)


71197 Pilot Study of Lamina Cribrosa Intensity Measurements in Glaucoma Using Swept-Source Optical Coherence Tomography
Durbin MK
Journal of Glaucoma 2017; 26: 138-143 (IGR: 18-3)


71494 The Proportion of Individuals Likely to Benefit from Customized Optic Nerve Head Structure-Function Mapping
Wang YX
Ophthalmology 2017; 124: 554-561 (IGR: 18-3)


71023 Patterns of Damage in Young Myopic Glaucomatous-appearing Patients With Different Optic Disc Tilt Direction
Lee JY
Journal of Glaucoma 2017; 26: 144-152 (IGR: 18-3)


71289 Relationship between Central Retinal Vessel Trunk Location and Visual Field Loss in Glaucoma
Baniasadi N
American Journal of Ophthalmology 2017; 176: 53-60 (IGR: 18-3)


71184 Intracranial Pressure Influences the Behavior of the Optic Nerve Head
Kedar S
Journal of Biomechanical Engineering 2017; 139: (IGR: 18-3)


71023 Patterns of Damage in Young Myopic Glaucomatous-appearing Patients With Different Optic Disc Tilt Direction
Kook MS
Journal of Glaucoma 2017; 26: 144-152 (IGR: 18-3)


71395 Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma
Girard MJ
Investigative Ophthalmology and Visual Science 2017; 58: 755-762 (IGR: 18-3)


71197 Pilot Study of Lamina Cribrosa Intensity Measurements in Glaucoma Using Swept-Source Optical Coherence Tomography
Nittala MG
Journal of Glaucoma 2017; 26: 138-143 (IGR: 18-3)


71476 Optic disc, rim and peripapillary chorioretinal atrophy in normal Japanese eyes: the Kumejima Study
Tanaka K
Japanese Journal of Ophthalmology 2017; 61: 223-229 (IGR: 18-3)


71101 Distribution of intraocular pressure, central corneal thickness and vertical cup-to-disc ratio in a healthy Iranian population: the Yazd Eye Study
Ghahari E
Acta Ophthalmologica 2017; 95: e144-e151 (IGR: 18-3)


71611 Enhanced depth OCT imaging of the lamina cribrosa for 24 hours
Varas-Fabra ML
International Journal of Ophthalmology 2017; 10: 306-309 (IGR: 18-3)


71470 Differentiation of glaucomatous optic discs with different appearances using optic disc topography parameters: The Glaucoma Stereo Analysis Study
Kitaoka Y
PLoS ONE 2017; 12: e0169858 (IGR: 18-3)


71321 The pressure-induced deformation response of the human lamina cribrosa: Analysis of regional variations
Patel M
Acta biomaterialia 2017; 53: 123-139 (IGR: 18-3)


71494 The Proportion of Individuals Likely to Benefit from Customized Optic Nerve Head Structure-Function Mapping
Jonas JB
Ophthalmology 2017; 124: 554-561 (IGR: 18-3)


71558 Enhanced Diagnostic Capability for Glaucoma of 3-Dimensional Versus 2-Dimensional Neuroretinal Rim Parameters Using Spectral Domain Optical Coherence Tomography
Simavli H
Journal of Glaucoma 2017; 26: 450-458 (IGR: 18-3)


71394 Measuring Deformation in the Mouse Optic Nerve Head and Peripapillary Sclera
Steinhart MR
Investigative Ophthalmology and Visual Science 2017; 58: 721-733 (IGR: 18-3)


71476 Optic disc, rim and peripapillary chorioretinal atrophy in normal Japanese eyes: the Kumejima Study
Tsutsumi T
Japanese Journal of Ophthalmology 2017; 61: 223-229 (IGR: 18-3)


71395 Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma
Mari JM
Investigative Ophthalmology and Visual Science 2017; 58: 755-762 (IGR: 18-3)


71494 The Proportion of Individuals Likely to Benefit from Customized Optic Nerve Head Structure-Function Mapping
Turpin A
Ophthalmology 2017; 124: 554-561 (IGR: 18-3)


71611 Enhanced depth OCT imaging of the lamina cribrosa for 24 hours
Muñoz-Villanueva MD
International Journal of Ophthalmology 2017; 10: 306-309 (IGR: 18-3)


71289 Relationship between Central Retinal Vessel Trunk Location and Visual Field Loss in Glaucoma
Shen LQ
American Journal of Ophthalmology 2017; 176: 53-60 (IGR: 18-3)


71184 Intracranial Pressure Influences the Behavior of the Optic Nerve Head
Gu L
Journal of Biomechanical Engineering 2017; 139: (IGR: 18-3)


71101 Distribution of intraocular pressure, central corneal thickness and vertical cup-to-disc ratio in a healthy Iranian population: the Yazd Eye Study
Behroozi Z
Acta Ophthalmologica 2017; 95: e144-e151 (IGR: 18-3)


71470 Differentiation of glaucomatous optic discs with different appearances using optic disc topography parameters: The Glaucoma Stereo Analysis Study
Yokoyama Y
PLoS ONE 2017; 12: e0169858 (IGR: 18-3)


71197 Pilot Study of Lamina Cribrosa Intensity Measurements in Glaucoma Using Swept-Source Optical Coherence Tomography
Huang AA
Journal of Glaucoma 2017; 26: 138-143 (IGR: 18-3)


71321 The pressure-induced deformation response of the human lamina cribrosa: Analysis of regional variations
Franck C
Acta biomaterialia 2017; 53: 123-139 (IGR: 18-3)


71558 Enhanced Diagnostic Capability for Glaucoma of 3-Dimensional Versus 2-Dimensional Neuroretinal Rim Parameters Using Spectral Domain Optical Coherence Tomography
Guo R
Journal of Glaucoma 2017; 26: 450-458 (IGR: 18-3)


71394 Measuring Deformation in the Mouse Optic Nerve Head and Peripapillary Sclera
Nguyen TD
Investigative Ophthalmology and Visual Science 2017; 58: 721-733 (IGR: 18-3)


71611 Enhanced depth OCT imaging of the lamina cribrosa for 24 hours
García-Catalán R
International Journal of Ophthalmology 2017; 10: 306-309 (IGR: 18-3)


71394 Measuring Deformation in the Mouse Optic Nerve Head and Peripapillary Sclera
Pease ME
Investigative Ophthalmology and Visual Science 2017; 58: 721-733 (IGR: 18-3)


71470 Differentiation of glaucomatous optic discs with different appearances using optic disc topography parameters: The Glaucoma Stereo Analysis Study
Omodaka K
PLoS ONE 2017; 12: e0169858 (IGR: 18-3)


71321 The pressure-induced deformation response of the human lamina cribrosa: Analysis of regional variations
Quigley HA
Acta biomaterialia 2017; 53: 123-139 (IGR: 18-3)


71289 Relationship between Central Retinal Vessel Trunk Location and Visual Field Loss in Glaucoma
Bex PJ
American Journal of Ophthalmology 2017; 176: 53-60 (IGR: 18-3)


71197 Pilot Study of Lamina Cribrosa Intensity Measurements in Glaucoma Using Swept-Source Optical Coherence Tomography
Tan JC
Journal of Glaucoma 2017; 26: 138-143 (IGR: 18-3)


71101 Distribution of intraocular pressure, central corneal thickness and vertical cup-to-disc ratio in a healthy Iranian population: the Yazd Eye Study
Soleimanizad R
Acta Ophthalmologica 2017; 95: e144-e151 (IGR: 18-3)


71476 Optic disc, rim and peripapillary chorioretinal atrophy in normal Japanese eyes: the Kumejima Study
Araie M
Japanese Journal of Ophthalmology 2017; 61: 223-229 (IGR: 18-3)


71558 Enhanced Diagnostic Capability for Glaucoma of 3-Dimensional Versus 2-Dimensional Neuroretinal Rim Parameters Using Spectral Domain Optical Coherence Tomography
A de Luna R
Journal of Glaucoma 2017; 26: 450-458 (IGR: 18-3)


71470 Differentiation of glaucomatous optic discs with different appearances using optic disc topography parameters: The Glaucoma Stereo Analysis Study
Nakazawa T
PLoS ONE 2017; 12: e0169858 (IGR: 18-3)


71558 Enhanced Diagnostic Capability for Glaucoma of 3-Dimensional Versus 2-Dimensional Neuroretinal Rim Parameters Using Spectral Domain Optical Coherence Tomography
Pandit S
Journal of Glaucoma 2017; 26: 450-458 (IGR: 18-3)


71394 Measuring Deformation in the Mouse Optic Nerve Head and Peripapillary Sclera
Oglesby EN
Investigative Ophthalmology and Visual Science 2017; 58: 721-733 (IGR: 18-3)


71289 Relationship between Central Retinal Vessel Trunk Location and Visual Field Loss in Glaucoma
Elze T
American Journal of Ophthalmology 2017; 176: 53-60 (IGR: 18-3)


71611 Enhanced depth OCT imaging of the lamina cribrosa for 24 hours
Font-Ugalde P
International Journal of Ophthalmology 2017; 10: 306-309 (IGR: 18-3)


71321 The pressure-induced deformation response of the human lamina cribrosa: Analysis of regional variations
Nguyen TD
Acta biomaterialia 2017; 53: 123-139 (IGR: 18-3)


71101 Distribution of intraocular pressure, central corneal thickness and vertical cup-to-disc ratio in a healthy Iranian population: the Yazd Eye Study
Moghimi S
Acta Ophthalmologica 2017; 95: e144-e151 (IGR: 18-3)


71197 Pilot Study of Lamina Cribrosa Intensity Measurements in Glaucoma Using Swept-Source Optical Coherence Tomography
Francis BA
Journal of Glaucoma 2017; 26: 138-143 (IGR: 18-3)


71394 Measuring Deformation in the Mouse Optic Nerve Head and Peripapillary Sclera
Jefferys JL
Investigative Ophthalmology and Visual Science 2017; 58: 721-733 (IGR: 18-3)


71558 Enhanced Diagnostic Capability for Glaucoma of 3-Dimensional Versus 2-Dimensional Neuroretinal Rim Parameters Using Spectral Domain Optical Coherence Tomography
Que CJ
Journal of Glaucoma 2017; 26: 450-458 (IGR: 18-3)


71197 Pilot Study of Lamina Cribrosa Intensity Measurements in Glaucoma Using Swept-Source Optical Coherence Tomography
Sadda SR
Journal of Glaucoma 2017; 26: 138-143 (IGR: 18-3)


71611 Enhanced depth OCT imaging of the lamina cribrosa for 24 hours
Poblador-Fernández MS
International Journal of Ophthalmology 2017; 10: 306-309 (IGR: 18-3)


71101 Distribution of intraocular pressure, central corneal thickness and vertical cup-to-disc ratio in a healthy Iranian population: the Yazd Eye Study
Nilforoushan N
Acta Ophthalmologica 2017; 95: e144-e151 (IGR: 18-3)


71197 Pilot Study of Lamina Cribrosa Intensity Measurements in Glaucoma Using Swept-Source Optical Coherence Tomography
Chopra V
Journal of Glaucoma 2017; 26: 138-143 (IGR: 18-3)


71558 Enhanced Diagnostic Capability for Glaucoma of 3-Dimensional Versus 2-Dimensional Neuroretinal Rim Parameters Using Spectral Domain Optical Coherence Tomography
de Boer JF
Journal of Glaucoma 2017; 26: 450-458 (IGR: 18-3)


71101 Distribution of intraocular pressure, central corneal thickness and vertical cup-to-disc ratio in a healthy Iranian population: the Yazd Eye Study
Zarei R
Acta Ophthalmologica 2017; 95: e144-e151 (IGR: 18-3)


71611 Enhanced depth OCT imaging of the lamina cribrosa for 24 hours
Lancho-Alonso JL
International Journal of Ophthalmology 2017; 10: 306-309 (IGR: 18-3)


71394 Measuring Deformation in the Mouse Optic Nerve Head and Peripapillary Sclera
Quigley HA
Investigative Ophthalmology and Visual Science 2017; 58: 721-733 (IGR: 18-3)


71101 Distribution of intraocular pressure, central corneal thickness and vertical cup-to-disc ratio in a healthy Iranian population: the Yazd Eye Study
Eslami Y
Acta Ophthalmologica 2017; 95: e144-e151 (IGR: 18-3)


71558 Enhanced Diagnostic Capability for Glaucoma of 3-Dimensional Versus 2-Dimensional Neuroretinal Rim Parameters Using Spectral Domain Optical Coherence Tomography
Chen TC
Journal of Glaucoma 2017; 26: 450-458 (IGR: 18-3)


71611 Enhanced depth OCT imaging of the lamina cribrosa for 24 hours
Gallardo-Galera JM
International Journal of Ophthalmology 2017; 10: 306-309 (IGR: 18-3)


71101 Distribution of intraocular pressure, central corneal thickness and vertical cup-to-disc ratio in a healthy Iranian population: the Yazd Eye Study
Ghassami M; Ziaei H; Katibeh M; Tabesh H; Yaseri M
Acta Ophthalmologica 2017; 95: e144-e151 (IGR: 18-3)


69879 Evaluation of a Myopic Normative Database for Analysis of Retinal Nerve Fiber Layer Thickness
Biswas S
JAMA ophthalmology 2016; 134: 1032-1039 (IGR: 18-2)


70732 Novel Bruch's Membrane Opening Minimum Rim Area Equalizes Disc Size Dependency and Offers High Diagnostic Power for Glaucoma
Enders P
Investigative Ophthalmology and Visual Science 2016; 57: 6596-6603 (IGR: 18-2)


70149 Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects
Suh MH
Ophthalmology 2016; 123: 2309-2317 (IGR: 18-2)


70694 Asymmetrical Intraocular Pressures and Asymmetrical Papilloedema in Pseudotumor Cerebri Syndrome
Lawlor M
Neuro-Ophthalmology 2016; 40: 292-296 (IGR: 18-2)


70145 Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation
Zilly J
Computerized Medical Imaging and Graphics 2017; 55: 28-41 (IGR: 18-2)


70802 Research advances of optic nerve lamina cribrosa structure and its measurement analysis
Tian T
Chinese Journal of Ophthalmology 2016; 52: 952-956 (IGR: 18-2)


70250 Reduction of the Lamina Cribrosa Curvature After Trabeculectomy in Glaucoma
Lee SH
Investigative Ophthalmology and Visual Science 2016; 57: 5006-5014 (IGR: 18-2)


70899 Association of Myopic Deformation of Optic Disc with Visual Field Progression in Paired Eyes with Open-Angle Glaucoma
Sawada Y
PLoS ONE 2017; 12: e0170733 (IGR: 18-2)


69791 Increased Global DNA Methylation and Decreased TGFβ1 Promoter Methylation in Glaucomatous Lamina Cribrosa Cells
McDonnell FS
Journal of Glaucoma 2016; 25: e834-e842 (IGR: 18-2)


70638 Lamina cribrosa in glaucoma
Downs JC
Current Opinions in Ophthalmology 2017; 28: 113-119 (IGR: 18-2)


70401 Comprehensive Three-Dimensional Analysis of the Neuroretinal Rim in Glaucoma Using High-Density Spectral-Domain Optical Coherence Tomography Volume Scans
Tsikata E
Investigative Ophthalmology and Visual Science 2016; 57: 5498-5508 (IGR: 18-2)


70106 Association of Myopic Optic Disc Deformation with Visual Field Defects in Paired Eyes with Open-Angle Glaucoma: A Cross-Sectional Study
Sawada Y
PLoS ONE 2016; 11: e0161961 (IGR: 18-2)


70712 Ocular characteristics associated with the location of focal lamina cribrosa defects in open-angle glaucoma patients
Park HY
Eye 2017; 31: 578-587 (IGR: 18-2)


70486 Consistency of Bruch Membrane Opening Detection as Determined by Optical Coherence Tomography
Hwang YH
Journal of Glaucoma 2016; 25: 873-878 (IGR: 18-2)


70246 Shape Changes of the Anterior Lamina Cribrosa in Normal, Ocular Hypertensive, and Glaucomatous Eyes Following Acute Intraocular Pressure Elevation
Tun TA
Investigative Ophthalmology and Visual Science 2016; 57: 4869-4877 (IGR: 18-2)


70509 Comparison of Bruch's Membrane Opening Minimum Rim Width Among Those With Normal Ocular Health by Race
Rhodes LA
American Journal of Ophthalmology 2017; 174: 113-118 (IGR: 18-2)


70396 Optic cup segmentation from fundus images for glaucoma diagnosis
Hu M
Bioengineered 2017; 8: 21-28 (IGR: 18-2)


70282 Optic Nerve Head Diagnostics with Optical Coherence Tomography
Unterlauft JD
Klinische Monatsblätter für Augenheilkunde 2018; 235: 47-57 (IGR: 18-2)


70661 Verification of a virtual fields method to extract the mechanical properties of human optic nerve head tissues in vivo
Zhang L
Biomechanics and modeling in mechanobiology 2017; 16: 871-887 (IGR: 18-2)


70177 Optic Nerve Head Morphology in Nonarteritic Anterior Ischemic Optic Neuropathy Compared to Open-Angle Glaucoma
Fard MA
Investigative Ophthalmology and Visual Science 2016; 57: 4632-4640 (IGR: 18-2)


70463 Vertical asymmetry of lamina cribrosa tilt angles using wide bandwidth, femtosecond mode-locked laser OCT; effect of myopia and glaucoma
Shoji T
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 197-205 (IGR: 18-2)


70502 Optic disc hemorrhage in glaucoma: pathophysiology and prognostic significance
Kim KE
Current Opinions in Ophthalmology 2017; 28: 105-112 (IGR: 18-2)


70381 Optic Disc Characteristics and Visual Field Progression in Normal Tension Glaucoma Patients With Tilted Optic Discs
Kwun Y
Journal of Glaucoma 2016; 25: 901-907 (IGR: 18-2)


70397 Intra- and Inter-Rater Agreement of Anterior Lamina Cribrosa Depth Measurements Using Enhanced-Depth Imaging Optical Coherence Tomography
Leal I
Ophthalmic Research 2017; 57: 92-99 (IGR: 18-2)


70268 Developing new automated alternation flicker using optic disc photography for the detection of glaucoma progression
Ahn J
Eye 2017; 31: 119-126 (IGR: 18-2)


69883 Clinical evaluation of the optic disc in glaucoma
Greslechner R
Ophthalmologe 2016; 113: 816-823 (IGR: 18-2)


70374 Deformation of Optic Nerve Head and Peripapillary Tissues by Horizontal Duction
Chang MY
American Journal of Ophthalmology 2017; 174: 85-94 (IGR: 18-2)


70137 Optic disc area in different types of glaucoma
Tekeli O
International Journal of Ophthalmology 2016; 9: 1134-1137 (IGR: 18-2)


70377 Correlations Between Retinal Nerve Fiber Layer Thickness and Axial Length, Peripapillary Retinal Tilt, Optic Disc Size, and Retinal Artery Position in Healthy Eyes
Yamashita T
Journal of Glaucoma 2017; 26: 34-40 (IGR: 18-2)


70852 Retinal and choroidal oxygen saturation of the optic nerve head in open-angle glaucoma subjects by multispectral imaging
Li GY
Medicine 2016; 95: e5775 (IGR: 18-2)


70531 Optic disc and peripapillary retinal nerve fiber layer characteristics associated with glaucomatous optic disc in young myopia
Lee JE
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 591-598 (IGR: 18-2)


70182 Positional and Curvature Difference of Lamina Cribrosa According to the Baseline Intraocular Pressure in Primary Open-Angle Glaucoma: A Swept-Source Optical Coherence Tomography (SS-OCT) Study
Kim YW
PLoS ONE 2016; 11: e0162182 (IGR: 18-2)


70224 Bruch's Membrane Opening-Minimum Rim Width Assessment With Spectral-Domain Optical Coherence Tomography Performs Better Than Confocal Scanning Laser Ophthalmoscopy in Discriminating Early Glaucoma Patients From Control Subjects
Toshev AP
Journal of Glaucoma 2017; 26: 27-33 (IGR: 18-2)


70753 Translaminar pressure in Caucasian normal tension glaucoma patients
Pircher A
Acta Ophthalmologica 2017; 95: e524-e531 (IGR: 18-2)


70527 Peripapillary schisis in open-angle glaucoma
Dhingra N
Eye 2017; 31: 499-502 (IGR: 18-2)


70170 Real-Time Ultrasound Elastographic Features of Primary Open Angle Glaucoma
Unal O
Ultrasound quarterly 2016; 32: 333-337 (IGR: 18-2)


70290 Optic nerve head slope-based quantitative parameters for identifying open-angle glaucoma on SPECTRALIS OCT images
Al-Hinnawi AM
International Ophthalmology 2017; 37: 979-988 (IGR: 18-2)


70408 Imaging of the lamina cribrosa for early detection of glaucoma : Latest trends from the annual ARVO meeting 2016
Matlach J
Ophthalmologe 2016; 113: 960-963 (IGR: 18-2)


70334 Optic disc tilt direction affects regional visual field progression rates in myopic eyes with open-angle glaucoma
Lee JR
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2267-2276 (IGR: 18-2)


70214 Measurement of lamina and prelaminar thicknesses of both eyes in patients with unilateral branch retinal vein occlusion
Son Y
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 503-508 (IGR: 18-2)


70134 Effect of head tilt on repeatability of optic nerve head parameters using cirrus spectral-domain optical coherence tomography
Koh LH
International Journal of Ophthalmology 2016; 9: 1170-1175 (IGR: 18-2)


70907 Discriminatory Power of Superficial Vessel Density and Prelaminar Vascular Flow Index in Eyes With Glaucoma and Ocular Hypertension and Normal Eyes
Chihara E
Investigative Ophthalmology and Visual Science 2017; 58: 690-697 (IGR: 18-2)


70172 Reproducibility of optic disk evaluation in supine subjects with a Heidelberg Retina Tomograph II laser tomographic scanner
Harada Y
Clinical Ophthalmology 2016; 10: 1617-1622 (IGR: 18-2)


69961 Alterations of the Lamina Cribrosa Are Associated with Peripapillary Retinoschisis in Glaucoma and Pachychoroid Spectrum Disease
Lee JH
Ophthalmology 2016; 123: 2066-2076 (IGR: 18-2)


70365 Comparison of Heidelberg Retina Tomograph-3 glaucoma probability score and Moorfields regression analysis of optic nerve head in glaucoma patients and healthy individuals
Caglar Ç
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 153-161 (IGR: 18-2)


70521 Thirteen-Year Follow-up of Optic Disc Hemorrhages in the Ocular Hypertension Treatment Study
Budenz DL
American Journal of Ophthalmology 2017; 174: 126-133 (IGR: 18-2)


70250 Reduction of the Lamina Cribrosa Curvature After Trabeculectomy in Glaucoma
Yu DA
Investigative Ophthalmology and Visual Science 2016; 57: 5006-5014 (IGR: 18-2)


70282 Optic Nerve Head Diagnostics with Optical Coherence Tomography
Tegetmeyer H
Klinische Monatsblätter für Augenheilkunde 2018; 235: 47-57 (IGR: 18-2)


70408 Imaging of the lamina cribrosa for early detection of glaucoma : Latest trends from the annual ARVO meeting 2016
Pfeiffer N
Ophthalmologe 2016; 113: 960-963 (IGR: 18-2)


70334 Optic disc tilt direction affects regional visual field progression rates in myopic eyes with open-angle glaucoma
Lee J
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2267-2276 (IGR: 18-2)


70134 Effect of head tilt on repeatability of optic nerve head parameters using cirrus spectral-domain optical coherence tomography
Ismail MA
International Journal of Ophthalmology 2016; 9: 1170-1175 (IGR: 18-2)


70463 Vertical asymmetry of lamina cribrosa tilt angles using wide bandwidth, femtosecond mode-locked laser OCT; effect of myopia and glaucoma
Kuroda H
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 197-205 (IGR: 18-2)


70377 Correlations Between Retinal Nerve Fiber Layer Thickness and Axial Length, Peripapillary Retinal Tilt, Optic Disc Size, and Retinal Artery Position in Healthy Eyes
Sakamoto T
Journal of Glaucoma 2017; 26: 34-40 (IGR: 18-2)


70290 Optic nerve head slope-based quantitative parameters for identifying open-angle glaucoma on SPECTRALIS OCT images
Al-Naami BO
International Ophthalmology 2017; 37: 979-988 (IGR: 18-2)


69961 Alterations of the Lamina Cribrosa Are Associated with Peripapillary Retinoschisis in Glaucoma and Pachychoroid Spectrum Disease
Park HY
Ophthalmology 2016; 123: 2066-2076 (IGR: 18-2)


70381 Optic Disc Characteristics and Visual Field Progression in Normal Tension Glaucoma Patients With Tilted Optic Discs
Han G
Journal of Glaucoma 2016; 25: 901-907 (IGR: 18-2)


70852 Retinal and choroidal oxygen saturation of the optic nerve head in open-angle glaucoma subjects by multispectral imaging
Al-Wesabi SA
Medicine 2016; 95: e5775 (IGR: 18-2)


70401 Comprehensive Three-Dimensional Analysis of the Neuroretinal Rim in Glaucoma Using High-Density Spectral-Domain Optical Coherence Tomography Volume Scans
Lee R
Investigative Ophthalmology and Visual Science 2016; 57: 5498-5508 (IGR: 18-2)


70172 Reproducibility of optic disk evaluation in supine subjects with a Heidelberg Retina Tomograph II laser tomographic scanner
Akita T
Clinical Ophthalmology 2016; 10: 1617-1622 (IGR: 18-2)


69879 Evaluation of a Myopic Normative Database for Analysis of Retinal Nerve Fiber Layer Thickness
Lin C
JAMA ophthalmology 2016; 134: 1032-1039 (IGR: 18-2)


70214 Measurement of lamina and prelaminar thicknesses of both eyes in patients with unilateral branch retinal vein occlusion
Lee S
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 503-508 (IGR: 18-2)


70802 Research advances of optic nerve lamina cribrosa structure and its measurement analysis
Pan YZ
Chinese Journal of Ophthalmology 2016; 52: 952-956 (IGR: 18-2)


70527 Peripapillary schisis in open-angle glaucoma
Manoharan R
Eye 2017; 31: 499-502 (IGR: 18-2)


70694 Asymmetrical Intraocular Pressures and Asymmetrical Papilloedema in Pseudotumor Cerebri Syndrome
Zhang MG
Neuro-Ophthalmology 2016; 40: 292-296 (IGR: 18-2)


70486 Consistency of Bruch Membrane Opening Detection as Determined by Optical Coherence Tomography
Kim MK
Journal of Glaucoma 2016; 25: 873-878 (IGR: 18-2)


70509 Comparison of Bruch's Membrane Opening Minimum Rim Width Among Those With Normal Ocular Health by Race
Huisingh CE
American Journal of Ophthalmology 2017; 174: 113-118 (IGR: 18-2)


70149 Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects
Zangwill LM
Ophthalmology 2016; 123: 2309-2317 (IGR: 18-2)


70396 Optic cup segmentation from fundus images for glaucoma diagnosis
Zhu C
Bioengineered 2017; 8: 21-28 (IGR: 18-2)


70170 Real-Time Ultrasound Elastographic Features of Primary Open Angle Glaucoma
Cay N
Ultrasound quarterly 2016; 32: 333-337 (IGR: 18-2)


70907 Discriminatory Power of Superficial Vessel Density and Prelaminar Vascular Flow Index in Eyes With Glaucoma and Ocular Hypertension and Normal Eyes
Dimitrova G
Investigative Ophthalmology and Visual Science 2017; 58: 690-697 (IGR: 18-2)


70177 Optic Nerve Head Morphology in Nonarteritic Anterior Ischemic Optic Neuropathy Compared to Open-Angle Glaucoma
Afzali M
Investigative Ophthalmology and Visual Science 2016; 57: 4632-4640 (IGR: 18-2)


70365 Comparison of Heidelberg Retina Tomograph-3 glaucoma probability score and Moorfields regression analysis of optic nerve head in glaucoma patients and healthy individuals
Gul A
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 153-161 (IGR: 18-2)


70712 Ocular characteristics associated with the location of focal lamina cribrosa defects in open-angle glaucoma patients
Hwang YS
Eye 2017; 31: 578-587 (IGR: 18-2)


70502 Optic disc hemorrhage in glaucoma: pathophysiology and prognostic significance
Park KH
Current Opinions in Ophthalmology 2017; 28: 105-112 (IGR: 18-2)


70374 Deformation of Optic Nerve Head and Peripapillary Tissues by Horizontal Duction
Shin A
American Journal of Ophthalmology 2017; 174: 85-94 (IGR: 18-2)


70145 Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation
Buhmann JM
Computerized Medical Imaging and Graphics 2017; 55: 28-41 (IGR: 18-2)


70899 Association of Myopic Deformation of Optic Disc with Visual Field Progression in Paired Eyes with Open-Angle Glaucoma
Hangai M
PLoS ONE 2017; 12: e0170733 (IGR: 18-2)


69883 Clinical evaluation of the optic disc in glaucoma
Spiegel D
Ophthalmologe 2016; 113: 816-823 (IGR: 18-2)


70182 Positional and Curvature Difference of Lamina Cribrosa According to the Baseline Intraocular Pressure in Primary Open-Angle Glaucoma: A Swept-Source Optical Coherence Tomography (SS-OCT) Study
Jeoung JW
PLoS ONE 2016; 11: e0162182 (IGR: 18-2)


70106 Association of Myopic Optic Disc Deformation with Visual Field Defects in Paired Eyes with Open-Angle Glaucoma: A Cross-Sectional Study
Hangai M
PLoS ONE 2016; 11: e0161961 (IGR: 18-2)


70732 Novel Bruch's Membrane Opening Minimum Rim Area Equalizes Disc Size Dependency and Offers High Diagnostic Power for Glaucoma
Adler W
Investigative Ophthalmology and Visual Science 2016; 57: 6596-6603 (IGR: 18-2)


70521 Thirteen-Year Follow-up of Optic Disc Hemorrhages in the Ocular Hypertension Treatment Study
Huecker JB
American Journal of Ophthalmology 2017; 174: 126-133 (IGR: 18-2)


70531 Optic disc and peripapillary retinal nerve fiber layer characteristics associated with glaucomatous optic disc in young myopia
Sung KR
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 591-598 (IGR: 18-2)


70397 Intra- and Inter-Rater Agreement of Anterior Lamina Cribrosa Depth Measurements Using Enhanced-Depth Imaging Optical Coherence Tomography
Sousa DC
Ophthalmic Research 2017; 57: 92-99 (IGR: 18-2)


70268 Developing new automated alternation flicker using optic disc photography for the detection of glaucoma progression
Yun IS
Eye 2017; 31: 119-126 (IGR: 18-2)


69791 Increased Global DNA Methylation and Decreased TGFβ1 Promoter Methylation in Glaucomatous Lamina Cribrosa Cells
McNally SA
Journal of Glaucoma 2016; 25: e834-e842 (IGR: 18-2)


70638 Lamina cribrosa in glaucoma
Girkin CA
Current Opinions in Ophthalmology 2017; 28: 113-119 (IGR: 18-2)


70661 Verification of a virtual fields method to extract the mechanical properties of human optic nerve head tissues in vivo
Thakku SG
Biomechanics and modeling in mechanobiology 2017; 16: 871-887 (IGR: 18-2)


70224 Bruch's Membrane Opening-Minimum Rim Width Assessment With Spectral-Domain Optical Coherence Tomography Performs Better Than Confocal Scanning Laser Ophthalmoscopy in Discriminating Early Glaucoma Patients From Control Subjects
Lamparter J
Journal of Glaucoma 2017; 26: 27-33 (IGR: 18-2)


70137 Optic disc area in different types of glaucoma
Savku E
International Journal of Ophthalmology 2016; 9: 1134-1137 (IGR: 18-2)


70753 Translaminar pressure in Caucasian normal tension glaucoma patients
Remonda L
Acta Ophthalmologica 2017; 95: e524-e531 (IGR: 18-2)


70246 Shape Changes of the Anterior Lamina Cribrosa in Normal, Ocular Hypertensive, and Glaucomatous Eyes Following Acute Intraocular Pressure Elevation
Thakku SG
Investigative Ophthalmology and Visual Science 2016; 57: 4869-4877 (IGR: 18-2)


69791 Increased Global DNA Methylation and Decreased TGFβ1 Promoter Methylation in Glaucomatous Lamina Cribrosa Cells
Clark AF
Journal of Glaucoma 2016; 25: e834-e842 (IGR: 18-2)


70527 Peripapillary schisis in open-angle glaucoma
Gill S
Eye 2017; 31: 499-502 (IGR: 18-2)


70531 Optic disc and peripapillary retinal nerve fiber layer characteristics associated with glaucomatous optic disc in young myopia
Park JM
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 591-598 (IGR: 18-2)


70214 Measurement of lamina and prelaminar thicknesses of both eyes in patients with unilateral branch retinal vein occlusion
Park J
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 503-508 (IGR: 18-2)


70396 Optic cup segmentation from fundus images for glaucoma diagnosis
Li X
Bioengineered 2017; 8: 21-28 (IGR: 18-2)


70170 Real-Time Ultrasound Elastographic Features of Primary Open Angle Glaucoma
Yulek F
Ultrasound quarterly 2016; 32: 333-337 (IGR: 18-2)


70397 Intra- and Inter-Rater Agreement of Anterior Lamina Cribrosa Depth Measurements Using Enhanced-Depth Imaging Optical Coherence Tomography
Pinto F
Ophthalmic Research 2017; 57: 92-99 (IGR: 18-2)


70172 Reproducibility of optic disk evaluation in supine subjects with a Heidelberg Retina Tomograph II laser tomographic scanner
Takenaka J
Clinical Ophthalmology 2016; 10: 1617-1622 (IGR: 18-2)


70365 Comparison of Heidelberg Retina Tomograph-3 glaucoma probability score and Moorfields regression analysis of optic nerve head in glaucoma patients and healthy individuals
Batur M
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 153-161 (IGR: 18-2)


70182 Positional and Curvature Difference of Lamina Cribrosa According to the Baseline Intraocular Pressure in Primary Open-Angle Glaucoma: A Swept-Source Optical Coherence Tomography (SS-OCT) Study
Girard MJ
PLoS ONE 2016; 11: e0162182 (IGR: 18-2)


70224 Bruch's Membrane Opening-Minimum Rim Width Assessment With Spectral-Domain Optical Coherence Tomography Performs Better Than Confocal Scanning Laser Ophthalmoscopy in Discriminating Early Glaucoma Patients From Control Subjects
Pfeiffer N
Journal of Glaucoma 2017; 26: 27-33 (IGR: 18-2)


70137 Optic disc area in different types of glaucoma
Abdullayev A
International Journal of Ophthalmology 2016; 9: 1134-1137 (IGR: 18-2)


70509 Comparison of Bruch's Membrane Opening Minimum Rim Width Among Those With Normal Ocular Health by Race
Quinn AE
American Journal of Ophthalmology 2017; 174: 113-118 (IGR: 18-2)


70907 Discriminatory Power of Superficial Vessel Density and Prelaminar Vascular Flow Index in Eyes With Glaucoma and Ocular Hypertension and Normal Eyes
Amano H
Investigative Ophthalmology and Visual Science 2017; 58: 690-697 (IGR: 18-2)


70401 Comprehensive Three-Dimensional Analysis of the Neuroretinal Rim in Glaucoma Using High-Density Spectral-Domain Optical Coherence Tomography Volume Scans
Shieh E
Investigative Ophthalmology and Visual Science 2016; 57: 5498-5508 (IGR: 18-2)


70334 Optic disc tilt direction affects regional visual field progression rates in myopic eyes with open-angle glaucoma
Lee JE
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2267-2276 (IGR: 18-2)


70134 Effect of head tilt on repeatability of optic nerve head parameters using cirrus spectral-domain optical coherence tomography
Yap SC
International Journal of Ophthalmology 2016; 9: 1170-1175 (IGR: 18-2)


70374 Deformation of Optic Nerve Head and Peripapillary Tissues by Horizontal Duction
Park J
American Journal of Ophthalmology 2017; 174: 85-94 (IGR: 18-2)


70145 Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation
Mahapatra D
Computerized Medical Imaging and Graphics 2017; 55: 28-41 (IGR: 18-2)


70250 Reduction of the Lamina Cribrosa Curvature After Trabeculectomy in Glaucoma
Kim TW
Investigative Ophthalmology and Visual Science 2016; 57: 5006-5014 (IGR: 18-2)


70899 Association of Myopic Deformation of Optic Disc with Visual Field Progression in Paired Eyes with Open-Angle Glaucoma
Ishikawa M
PLoS ONE 2017; 12: e0170733 (IGR: 18-2)


70290 Optic nerve head slope-based quantitative parameters for identifying open-angle glaucoma on SPECTRALIS OCT images
Al-Latayfeh MM
International Ophthalmology 2017; 37: 979-988 (IGR: 18-2)


70408 Imaging of the lamina cribrosa for early detection of glaucoma : Latest trends from the annual ARVO meeting 2016
Prokosch-Willing V
Ophthalmologe 2016; 113: 960-963 (IGR: 18-2)


70106 Association of Myopic Optic Disc Deformation with Visual Field Defects in Paired Eyes with Open-Angle Glaucoma: A Cross-Sectional Study
Ishikawa M
PLoS ONE 2016; 11: e0161961 (IGR: 18-2)


70753 Translaminar pressure in Caucasian normal tension glaucoma patients
Weinreb RN
Acta Ophthalmologica 2017; 95: e524-e531 (IGR: 18-2)


70268 Developing new automated alternation flicker using optic disc photography for the detection of glaucoma progression
Yoo HG
Eye 2017; 31: 119-126 (IGR: 18-2)


69879 Evaluation of a Myopic Normative Database for Analysis of Retinal Nerve Fiber Layer Thickness
Leung CK
JAMA ophthalmology 2016; 134: 1032-1039 (IGR: 18-2)


69961 Alterations of the Lamina Cribrosa Are Associated with Peripapillary Retinoschisis in Glaucoma and Pachychoroid Spectrum Disease
Baek J
Ophthalmology 2016; 123: 2066-2076 (IGR: 18-2)


70661 Verification of a virtual fields method to extract the mechanical properties of human optic nerve head tissues in vivo
Beotra MR
Biomechanics and modeling in mechanobiology 2017; 16: 871-887 (IGR: 18-2)


70521 Thirteen-Year Follow-up of Optic Disc Hemorrhages in the Ocular Hypertension Treatment Study
Gedde SJ
American Journal of Ophthalmology 2017; 174: 126-133 (IGR: 18-2)


70246 Shape Changes of the Anterior Lamina Cribrosa in Normal, Ocular Hypertensive, and Glaucomatous Eyes Following Acute Intraocular Pressure Elevation
Png O
Investigative Ophthalmology and Visual Science 2016; 57: 4869-4877 (IGR: 18-2)


70149 Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects
Manalastas PI
Ophthalmology 2016; 123: 2309-2317 (IGR: 18-2)


70732 Novel Bruch's Membrane Opening Minimum Rim Area Equalizes Disc Size Dependency and Offers High Diagnostic Power for Glaucoma
Schaub F
Investigative Ophthalmology and Visual Science 2016; 57: 6596-6603 (IGR: 18-2)


70377 Correlations Between Retinal Nerve Fiber Layer Thickness and Axial Length, Peripapillary Retinal Tilt, Optic Disc Size, and Retinal Artery Position in Healthy Eyes
Yoshihara N
Journal of Glaucoma 2017; 26: 34-40 (IGR: 18-2)


70694 Asymmetrical Intraocular Pressures and Asymmetrical Papilloedema in Pseudotumor Cerebri Syndrome
Virgo J
Neuro-Ophthalmology 2016; 40: 292-296 (IGR: 18-2)


70852 Retinal and choroidal oxygen saturation of the optic nerve head in open-angle glaucoma subjects by multispectral imaging
Zhang H
Medicine 2016; 95: e5775 (IGR: 18-2)


70177 Optic Nerve Head Morphology in Nonarteritic Anterior Ischemic Optic Neuropathy Compared to Open-Angle Glaucoma
Abdi P
Investigative Ophthalmology and Visual Science 2016; 57: 4632-4640 (IGR: 18-2)


70463 Vertical asymmetry of lamina cribrosa tilt angles using wide bandwidth, femtosecond mode-locked laser OCT; effect of myopia and glaucoma
Suzuki M
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 197-205 (IGR: 18-2)


70712 Ocular characteristics associated with the location of focal lamina cribrosa defects in open-angle glaucoma patients
Park CK
Eye 2017; 31: 578-587 (IGR: 18-2)


70486 Consistency of Bruch Membrane Opening Detection as Determined by Optical Coherence Tomography
Ahn SI
Journal of Glaucoma 2016; 25: 873-878 (IGR: 18-2)


70381 Optic Disc Characteristics and Visual Field Progression in Normal Tension Glaucoma Patients With Tilted Optic Discs
Choy YJ
Journal of Glaucoma 2016; 25: 901-907 (IGR: 18-2)


70397 Intra- and Inter-Rater Agreement of Anterior Lamina Cribrosa Depth Measurements Using Enhanced-Depth Imaging Optical Coherence Tomography
Marques-Neves C
Ophthalmic Research 2017; 57: 92-99 (IGR: 18-2)


70170 Real-Time Ultrasound Elastographic Features of Primary Open Angle Glaucoma
Taslipinar AG
Ultrasound quarterly 2016; 32: 333-337 (IGR: 18-2)


70899 Association of Myopic Deformation of Optic Disc with Visual Field Progression in Paired Eyes with Open-Angle Glaucoma
Yoshitomi T
PLoS ONE 2017; 12: e0170733 (IGR: 18-2)


70907 Discriminatory Power of Superficial Vessel Density and Prelaminar Vascular Flow Index in Eyes With Glaucoma and Ocular Hypertension and Normal Eyes
Chihara T
Investigative Ophthalmology and Visual Science 2017; 58: 690-697 (IGR: 18-2)


70401 Comprehensive Three-Dimensional Analysis of the Neuroretinal Rim in Glaucoma Using High-Density Spectral-Domain Optical Coherence Tomography Volume Scans
Simavli H
Investigative Ophthalmology and Visual Science 2016; 57: 5498-5508 (IGR: 18-2)


70172 Reproducibility of optic disk evaluation in supine subjects with a Heidelberg Retina Tomograph II laser tomographic scanner
Nakamura-Kadohiro Y
Clinical Ophthalmology 2016; 10: 1617-1622 (IGR: 18-2)


70106 Association of Myopic Optic Disc Deformation with Visual Field Defects in Paired Eyes with Open-Angle Glaucoma: A Cross-Sectional Study
Yoshitomi T
PLoS ONE 2016; 11: e0161961 (IGR: 18-2)


70268 Developing new automated alternation flicker using optic disc photography for the detection of glaucoma progression
Choi JJ
Eye 2017; 31: 119-126 (IGR: 18-2)


70753 Translaminar pressure in Caucasian normal tension glaucoma patients
Killer HE
Acta Ophthalmologica 2017; 95: e524-e531 (IGR: 18-2)


70149 Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects
Belghith A
Ophthalmology 2016; 123: 2309-2317 (IGR: 18-2)


70527 Peripapillary schisis in open-angle glaucoma
Nagar M
Eye 2017; 31: 499-502 (IGR: 18-2)


70531 Optic disc and peripapillary retinal nerve fiber layer characteristics associated with glaucomatous optic disc in young myopia
Yoon JY
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 591-598 (IGR: 18-2)


69961 Alterations of the Lamina Cribrosa Are Associated with Peripapillary Retinoschisis in Glaucoma and Pachychoroid Spectrum Disease
Lee WK
Ophthalmology 2016; 123: 2066-2076 (IGR: 18-2)


70694 Asymmetrical Intraocular Pressures and Asymmetrical Papilloedema in Pseudotumor Cerebri Syndrome
Plant GT
Neuro-Ophthalmology 2016; 40: 292-296 (IGR: 18-2)


70732 Novel Bruch's Membrane Opening Minimum Rim Area Equalizes Disc Size Dependency and Offers High Diagnostic Power for Glaucoma
Hermann MM
Investigative Ophthalmology and Visual Science 2016; 57: 6596-6603 (IGR: 18-2)


70377 Correlations Between Retinal Nerve Fiber Layer Thickness and Axial Length, Peripapillary Retinal Tilt, Optic Disc Size, and Retinal Artery Position in Healthy Eyes
Terasaki H
Journal of Glaucoma 2017; 26: 34-40 (IGR: 18-2)


70521 Thirteen-Year Follow-up of Optic Disc Hemorrhages in the Ocular Hypertension Treatment Study
Gordon M
American Journal of Ophthalmology 2017; 174: 126-133 (IGR: 18-2)


70177 Optic Nerve Head Morphology in Nonarteritic Anterior Ischemic Optic Neuropathy Compared to Open-Angle Glaucoma
Chen R
Investigative Ophthalmology and Visual Science 2016; 57: 4632-4640 (IGR: 18-2)


70365 Comparison of Heidelberg Retina Tomograph-3 glaucoma probability score and Moorfields regression analysis of optic nerve head in glaucoma patients and healthy individuals
Yasar T
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 153-161 (IGR: 18-2)


70224 Bruch's Membrane Opening-Minimum Rim Width Assessment With Spectral-Domain Optical Coherence Tomography Performs Better Than Confocal Scanning Laser Ophthalmoscopy in Discriminating Early Glaucoma Patients From Control Subjects
Hoffmann EM
Journal of Glaucoma 2017; 26: 27-33 (IGR: 18-2)


70334 Optic disc tilt direction affects regional visual field progression rates in myopic eyes with open-angle glaucoma
Lee JY
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2267-2276 (IGR: 18-2)


70134 Effect of head tilt on repeatability of optic nerve head parameters using cirrus spectral-domain optical coherence tomography
Wong EP
International Journal of Ophthalmology 2016; 9: 1170-1175 (IGR: 18-2)


70381 Optic Disc Characteristics and Visual Field Progression in Normal Tension Glaucoma Patients With Tilted Optic Discs
Han JC
Journal of Glaucoma 2016; 25: 901-907 (IGR: 18-2)


69791 Increased Global DNA Methylation and Decreased TGFβ1 Promoter Methylation in Glaucomatous Lamina Cribrosa Cells
O'brien CJ
Journal of Glaucoma 2016; 25: e834-e842 (IGR: 18-2)


70661 Verification of a virtual fields method to extract the mechanical properties of human optic nerve head tissues in vivo
Baskaran M
Biomechanics and modeling in mechanobiology 2017; 16: 871-887 (IGR: 18-2)


70463 Vertical asymmetry of lamina cribrosa tilt angles using wide bandwidth, femtosecond mode-locked laser OCT; effect of myopia and glaucoma
Ibuki H
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 197-205 (IGR: 18-2)


70509 Comparison of Bruch's Membrane Opening Minimum Rim Width Among Those With Normal Ocular Health by Race
McGwin G
American Journal of Ophthalmology 2017; 174: 113-118 (IGR: 18-2)


70246 Shape Changes of the Anterior Lamina Cribrosa in Normal, Ocular Hypertensive, and Glaucomatous Eyes Following Acute Intraocular Pressure Elevation
Baskaran M
Investigative Ophthalmology and Visual Science 2016; 57: 4869-4877 (IGR: 18-2)


70396 Optic cup segmentation from fundus images for glaucoma diagnosis
Xu Y
Bioengineered 2017; 8: 21-28 (IGR: 18-2)


70250 Reduction of the Lamina Cribrosa Curvature After Trabeculectomy in Glaucoma
Lee EJ
Investigative Ophthalmology and Visual Science 2016; 57: 5006-5014 (IGR: 18-2)


70182 Positional and Curvature Difference of Lamina Cribrosa According to the Baseline Intraocular Pressure in Primary Open-Angle Glaucoma: A Swept-Source Optical Coherence Tomography (SS-OCT) Study
Mari JM
PLoS ONE 2016; 11: e0162182 (IGR: 18-2)


70374 Deformation of Optic Nerve Head and Peripapillary Tissues by Horizontal Duction
Nagiel A
American Journal of Ophthalmology 2017; 174: 85-94 (IGR: 18-2)


70509 Comparison of Bruch's Membrane Opening Minimum Rim Width Among Those With Normal Ocular Health by Race
LaRussa F
American Journal of Ophthalmology 2017; 174: 113-118 (IGR: 18-2)


70246 Shape Changes of the Anterior Lamina Cribrosa in Normal, Ocular Hypertensive, and Glaucomatous Eyes Following Acute Intraocular Pressure Elevation
Htoon HM
Investigative Ophthalmology and Visual Science 2016; 57: 4869-4877 (IGR: 18-2)


70177 Optic Nerve Head Morphology in Nonarteritic Anterior Ischemic Optic Neuropathy Compared to Open-Angle Glaucoma
Yaseri M
Investigative Ophthalmology and Visual Science 2016; 57: 4632-4640 (IGR: 18-2)


70463 Vertical asymmetry of lamina cribrosa tilt angles using wide bandwidth, femtosecond mode-locked laser OCT; effect of myopia and glaucoma
Araie M
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 197-205 (IGR: 18-2)


70374 Deformation of Optic Nerve Head and Peripapillary Tissues by Horizontal Duction
Lalane RA
American Journal of Ophthalmology 2017; 174: 85-94 (IGR: 18-2)


70149 Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects
Yarmohammadi A
Ophthalmology 2016; 123: 2309-2317 (IGR: 18-2)


69791 Increased Global DNA Methylation and Decreased TGFβ1 Promoter Methylation in Glaucomatous Lamina Cribrosa Cells
Wallace DM
Journal of Glaucoma 2016; 25: e834-e842 (IGR: 18-2)


70401 Comprehensive Three-Dimensional Analysis of the Neuroretinal Rim in Glaucoma Using High-Density Spectral-Domain Optical Coherence Tomography Volume Scans
Que CJ
Investigative Ophthalmology and Visual Science 2016; 57: 5498-5508 (IGR: 18-2)


70182 Positional and Curvature Difference of Lamina Cribrosa According to the Baseline Intraocular Pressure in Primary Open-Angle Glaucoma: A Swept-Source Optical Coherence Tomography (SS-OCT) Study
Park KH
PLoS ONE 2016; 11: e0162182 (IGR: 18-2)


70381 Optic Disc Characteristics and Visual Field Progression in Normal Tension Glaucoma Patients With Tilted Optic Discs
Kee C
Journal of Glaucoma 2016; 25: 901-907 (IGR: 18-2)


70732 Novel Bruch's Membrane Opening Minimum Rim Area Equalizes Disc Size Dependency and Offers High Diagnostic Power for Glaucoma
Dietlein T
Investigative Ophthalmology and Visual Science 2016; 57: 6596-6603 (IGR: 18-2)


70521 Thirteen-Year Follow-up of Optic Disc Hemorrhages in the Ocular Hypertension Treatment Study
Kass M
American Journal of Ophthalmology 2017; 174: 126-133 (IGR: 18-2)


70250 Reduction of the Lamina Cribrosa Curvature After Trabeculectomy in Glaucoma
Girard MJ
Investigative Ophthalmology and Visual Science 2016; 57: 5006-5014 (IGR: 18-2)


70172 Reproducibility of optic disk evaluation in supine subjects with a Heidelberg Retina Tomograph II laser tomographic scanner
Tanaka J
Clinical Ophthalmology 2016; 10: 1617-1622 (IGR: 18-2)


70661 Verification of a virtual fields method to extract the mechanical properties of human optic nerve head tissues in vivo
Aung T
Biomechanics and modeling in mechanobiology 2017; 16: 871-887 (IGR: 18-2)


70397 Intra- and Inter-Rater Agreement of Anterior Lamina Cribrosa Depth Measurements Using Enhanced-Depth Imaging Optical Coherence Tomography
Abegão Pinto L
Ophthalmic Research 2017; 57: 92-99 (IGR: 18-2)


70268 Developing new automated alternation flicker using optic disc photography for the detection of glaucoma progression
Lee M
Eye 2017; 31: 119-126 (IGR: 18-2)


70531 Optic disc and peripapillary retinal nerve fiber layer characteristics associated with glaucomatous optic disc in young myopia
Kang SY
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 591-598 (IGR: 18-2)


70377 Correlations Between Retinal Nerve Fiber Layer Thickness and Axial Length, Peripapillary Retinal Tilt, Optic Disc Size, and Retinal Artery Position in Healthy Eyes
Tanaka M
Journal of Glaucoma 2017; 26: 34-40 (IGR: 18-2)


70170 Real-Time Ultrasound Elastographic Features of Primary Open Angle Glaucoma
Bozkurt S
Ultrasound quarterly 2016; 32: 333-337 (IGR: 18-2)


70334 Optic disc tilt direction affects regional visual field progression rates in myopic eyes with open-angle glaucoma
Kook MS
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2267-2276 (IGR: 18-2)


70134 Effect of head tilt on repeatability of optic nerve head parameters using cirrus spectral-domain optical coherence tomography
Yip LW
International Journal of Ophthalmology 2016; 9: 1170-1175 (IGR: 18-2)


70177 Optic Nerve Head Morphology in Nonarteritic Anterior Ischemic Optic Neuropathy Compared to Open-Angle Glaucoma
Azaripour E
Investigative Ophthalmology and Visual Science 2016; 57: 4632-4640 (IGR: 18-2)


70374 Deformation of Optic Nerve Head and Peripapillary Tissues by Horizontal Duction
Schwartz SD
American Journal of Ophthalmology 2017; 174: 85-94 (IGR: 18-2)


70377 Correlations Between Retinal Nerve Fiber Layer Thickness and Axial Length, Peripapillary Retinal Tilt, Optic Disc Size, and Retinal Artery Position in Healthy Eyes
Kii Y
Journal of Glaucoma 2017; 26: 34-40 (IGR: 18-2)


70732 Novel Bruch's Membrane Opening Minimum Rim Area Equalizes Disc Size Dependency and Offers High Diagnostic Power for Glaucoma
Cursiefen C
Investigative Ophthalmology and Visual Science 2016; 57: 6596-6603 (IGR: 18-2)


70521 Thirteen-Year Follow-up of Optic Disc Hemorrhages in the Ocular Hypertension Treatment Study

American Journal of Ophthalmology 2017; 174: 126-133 (IGR: 18-2)


70170 Real-Time Ultrasound Elastographic Features of Primary Open Angle Glaucoma
Gumus M
Ultrasound quarterly 2016; 32: 333-337 (IGR: 18-2)


70250 Reduction of the Lamina Cribrosa Curvature After Trabeculectomy in Glaucoma
Mari JM
Investigative Ophthalmology and Visual Science 2016; 57: 5006-5014 (IGR: 18-2)


70172 Reproducibility of optic disk evaluation in supine subjects with a Heidelberg Retina Tomograph II laser tomographic scanner
Kiuchi Y
Clinical Ophthalmology 2016; 10: 1617-1622 (IGR: 18-2)


70531 Optic disc and peripapillary retinal nerve fiber layer characteristics associated with glaucomatous optic disc in young myopia
Park SB
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 591-598 (IGR: 18-2)


70661 Verification of a virtual fields method to extract the mechanical properties of human optic nerve head tissues in vivo
Goh JC
Biomechanics and modeling in mechanobiology 2017; 16: 871-887 (IGR: 18-2)


70246 Shape Changes of the Anterior Lamina Cribrosa in Normal, Ocular Hypertensive, and Glaucomatous Eyes Following Acute Intraocular Pressure Elevation
Sharma S
Investigative Ophthalmology and Visual Science 2016; 57: 4869-4877 (IGR: 18-2)


70463 Vertical asymmetry of lamina cribrosa tilt angles using wide bandwidth, femtosecond mode-locked laser OCT; effect of myopia and glaucoma
Yoneya S
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 197-205 (IGR: 18-2)


70509 Comparison of Bruch's Membrane Opening Minimum Rim Width Among Those With Normal Ocular Health by Race
Box D
American Journal of Ophthalmology 2017; 174: 113-118 (IGR: 18-2)


70149 Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects
Medeiros FA
Ophthalmology 2016; 123: 2309-2317 (IGR: 18-2)


70401 Comprehensive Three-Dimensional Analysis of the Neuroretinal Rim in Glaucoma Using High-Density Spectral-Domain Optical Coherence Tomography Volume Scans
Guo R
Investigative Ophthalmology and Visual Science 2016; 57: 5498-5508 (IGR: 18-2)


70661 Verification of a virtual fields method to extract the mechanical properties of human optic nerve head tissues in vivo
Strouthidis NG
Biomechanics and modeling in mechanobiology 2017; 16: 871-887 (IGR: 18-2)


70531 Optic disc and peripapillary retinal nerve fiber layer characteristics associated with glaucomatous optic disc in young myopia
Koo HJ
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 591-598 (IGR: 18-2)


70732 Novel Bruch's Membrane Opening Minimum Rim Area Equalizes Disc Size Dependency and Offers High Diagnostic Power for Glaucoma
Heindl LM
Investigative Ophthalmology and Visual Science 2016; 57: 6596-6603 (IGR: 18-2)


70377 Correlations Between Retinal Nerve Fiber Layer Thickness and Axial Length, Peripapillary Retinal Tilt, Optic Disc Size, and Retinal Artery Position in Healthy Eyes
Nakao K
Journal of Glaucoma 2017; 26: 34-40 (IGR: 18-2)


70246 Shape Changes of the Anterior Lamina Cribrosa in Normal, Ocular Hypertensive, and Glaucomatous Eyes Following Acute Intraocular Pressure Elevation
Nongpiur ME
Investigative Ophthalmology and Visual Science 2016; 57: 4869-4877 (IGR: 18-2)


70509 Comparison of Bruch's Membrane Opening Minimum Rim Width Among Those With Normal Ocular Health by Race
Owsley C
American Journal of Ophthalmology 2017; 174: 113-118 (IGR: 18-2)


70401 Comprehensive Three-Dimensional Analysis of the Neuroretinal Rim in Glaucoma Using High-Density Spectral-Domain Optical Coherence Tomography Volume Scans
Khoueir Z
Investigative Ophthalmology and Visual Science 2016; 57: 5498-5508 (IGR: 18-2)


70177 Optic Nerve Head Morphology in Nonarteritic Anterior Ischemic Optic Neuropathy Compared to Open-Angle Glaucoma
Moghimi S
Investigative Ophthalmology and Visual Science 2016; 57: 4632-4640 (IGR: 18-2)


70374 Deformation of Optic Nerve Head and Peripapillary Tissues by Horizontal Duction
Demer JL
American Journal of Ophthalmology 2017; 174: 85-94 (IGR: 18-2)


70149 Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects
Diniz-Filho A
Ophthalmology 2016; 123: 2309-2317 (IGR: 18-2)


70509 Comparison of Bruch's Membrane Opening Minimum Rim Width Among Those With Normal Ocular Health by Race
Girkin CA
American Journal of Ophthalmology 2017; 174: 113-118 (IGR: 18-2)


70661 Verification of a virtual fields method to extract the mechanical properties of human optic nerve head tissues in vivo
Girard MJ
Biomechanics and modeling in mechanobiology 2017; 16: 871-887 (IGR: 18-2)


70246 Shape Changes of the Anterior Lamina Cribrosa in Normal, Ocular Hypertensive, and Glaucomatous Eyes Following Acute Intraocular Pressure Elevation
Cheng CY
Investigative Ophthalmology and Visual Science 2016; 57: 4869-4877 (IGR: 18-2)


70401 Comprehensive Three-Dimensional Analysis of the Neuroretinal Rim in Glaucoma Using High-Density Spectral-Domain Optical Coherence Tomography Volume Scans
de Boer J
Investigative Ophthalmology and Visual Science 2016; 57: 5498-5508 (IGR: 18-2)


70149 Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects
Saunders LJ
Ophthalmology 2016; 123: 2309-2317 (IGR: 18-2)


70246 Shape Changes of the Anterior Lamina Cribrosa in Normal, Ocular Hypertensive, and Glaucomatous Eyes Following Acute Intraocular Pressure Elevation
Aung T
Investigative Ophthalmology and Visual Science 2016; 57: 4869-4877 (IGR: 18-2)


70149 Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects
Yousefi S
Ophthalmology 2016; 123: 2309-2317 (IGR: 18-2)


70401 Comprehensive Three-Dimensional Analysis of the Neuroretinal Rim in Glaucoma Using High-Density Spectral-Domain Optical Coherence Tomography Volume Scans
Chen TC
Investigative Ophthalmology and Visual Science 2016; 57: 5498-5508 (IGR: 18-2)


70246 Shape Changes of the Anterior Lamina Cribrosa in Normal, Ocular Hypertensive, and Glaucomatous Eyes Following Acute Intraocular Pressure Elevation
Strouthidis NG
Investigative Ophthalmology and Visual Science 2016; 57: 4869-4877 (IGR: 18-2)


70149 Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects
Weinreb RN
Ophthalmology 2016; 123: 2309-2317 (IGR: 18-2)


70246 Shape Changes of the Anterior Lamina Cribrosa in Normal, Ocular Hypertensive, and Glaucomatous Eyes Following Acute Intraocular Pressure Elevation
Girard MJ
Investigative Ophthalmology and Visual Science 2016; 57: 4869-4877 (IGR: 18-2)


68924 Optic Nerve Head Blood Flow, as Measured by Laser Speckle Flowgraphy, Is Significantly Reduced in Preperimetric Glaucoma
Shiga Y
Current Eye Research 2016; 0: 1-7 (IGR: 18-1)


69266 Analysis of morphologic changes of lamina cribrosa in primary open angle glaucoma using enhanced depth imaging optical coherence tomography
Li L
Chinese Journal of Ophthalmology 2016; 52: 422-428 (IGR: 18-1)


69179 Morphometric Optic Nerve Head Analysis in Glaucoma Patients: A Comparison between the Simultaneous Nonmydriatic Stereoscopic Fundus Camera (Kowa Nonmyd WX3D) and the Heidelberg Scanning Laser Ophthalmoscope (HRT III)
Mariacher S
Journal of Ophthalmology 2016; 2016: 4764857 (IGR: 18-1)


68923 Optic Disc Rotation as a Clue for Predicting Visual Field Progression in Myopic Normal-Tension Glaucoma
Sung MS
Ophthalmology 2016; 123: 1484-1493 (IGR: 18-1)


69476 Comparison of Bruch's Membrane Opening Minimum Rim Width and Peripapillary Retinal Nerve Fiber Layer Thickness in Early Glaucoma Assessment
Gmeiner JM
Investigative Ophthalmology and Visual Science 2016; 57: OCT575-84 (IGR: 18-1)


69335 Agreement of New Automated Matched Alternation Flicker using Undilated Fundus Photography for the Detection of Glaucomatous Structural Change
Yun IS
Current Eye Research 2016; 0: 1-5 (IGR: 18-1)


69160 Retinal Nerve Fiber Layer Damage in Young Myopic Eyes With Optic Disc Torsion and Glaucomatous Hemifield Defect
Lee JE
Journal of Glaucoma 2017; 26: 77-86 (IGR: 18-1)


69490 Challenges In Early Glaucoma Detection
Dervisevic E
Medicinski arhiv 2016; 70: 203-207 (IGR: 18-1)


69479 Glaucoma Diagnostic Ability of the New Circumpapillary Retinal Nerve Fiber Layer Thickness Analysis Based on Bruch's Membrane Opening
Lee EJ
Investigative Ophthalmology and Visual Science 2016; 57: 4194-4204 (IGR: 18-1)


69048 Variance components in confocal scanning laser tomography measurements of neuro-retinal rim area and the effect of repeated measurements on the power to detect loss over time
Sandberg Melin C
Acta Ophthalmologica 2016; 94: 705-711 (IGR: 18-1)


69361 The use of Bruch's membrane opening-based optical coherence tomography of the optic nerve head for glaucoma detection in microdiscs
Enders P
British Journal of Ophthalmology 2017; 101: 530-535 (IGR: 18-1)


69313 In Vivo Detection of Laminar and Peripapillary Scleral Hypercompliance in Early Monkey Experimental Glaucoma
Ivers KM
Investigative Ophthalmology and Visual Science 2016; 57: OCT388-403 (IGR: 18-1)


69315 Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices
Agrawal A
Investigative Ophthalmology and Visual Science 2016; 57: OCT413-20 (IGR: 18-1)


69267 Microcirculation of optic nerve head and glaucoma
Zhang SH
Chinese Journal of Ophthalmology 2016; 52: 466-470 (IGR: 18-1)


69221 Retinal Nerve Fiber Layer and Peripapillary Choroidal Thicknesses in Non-Glaucomatous Unilateral Optic Atrophy Compared with Unilateral Advanced Pseudoexfoliative Glaucoma
Kucukevcilioglu M
Current Eye Research 2016; 0: 1-5 (IGR: 18-1)


69383 Age-related posterior ciliary muscle restriction - A link between trabecular meshwork and optic nerve head pathophysiology
Croft MA
Experimental Eye Research 2017; 158: 187-189 (IGR: 18-1)


68987 Anterior lamina cribrosa surface position in idiopathic intracranial hypertension and glaucoma
Villarruel JM
European Journal of Ophthalmology 2016; 0: 27274186 (IGR: 18-1)


69353 Optic Disc Hemorrhages and Laminar Disinsertions in Glaucoma
Sharpe GP
Ophthalmology 2016; 123: 1949-1956 (IGR: 18-1)


69210 What is a typical optic nerve head?
Voorhees AP
Experimental Eye Research 2016; 149: 40-47 (IGR: 18-1)


69238 Lamina Cribrosa Microarchitecture in Monkey Early Experimental Glaucoma: Global Change
Reynaud J
Investigative Ophthalmology and Visual Science 2016; 57: 3451-3469 (IGR: 18-1)


69155 Comparison of swept-source and enhanced depth imaging spectral-domain optical coherence tomography in quantitative characterisation of the optic nerve head
Li D
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


68941 Identification and localization of lamina cribrosa cells in the human optic nerve head
Tovar-Vidales T
Experimental Eye Research 2016; 147: 94-97 (IGR: 18-1)


69423 Relationship between corneal hysteresis and lamina cribrosa displacement after medical reduction of intraocular pressure
Lanzagorta-Aresti A
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69225 Diagnostic Performance of a Novel Three-Dimensional Neuroretinal Rim Parameter for Glaucoma Using High-Density Volume Scans
Shieh E
American Journal of Ophthalmology 2016; 169: 168-178 (IGR: 18-1)


69029 Pro-fibrotic pathway activation in trabecular meshwork and lamina cribrosa is the main driving force of glaucoma
Zhavoronkov A
Cell cycle (Georgetown, Tex.) 2016; 15: 1643-1652 (IGR: 18-1)


69357 Eyes with Suspicious Appearance of the Optic Disc and Normal Intraocular Pressure: Using Clinical and Epidemiological Characteristics to Differentiate Those with and without Glaucoma
Dias DT
PLoS ONE 2016; 11: e0158983 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Moore NA
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69284 Lamina depth and thickness correlate with glaucoma severity
Kim M
Indian Journal of Ophthalmology 2016; 64: 358-363 (IGR: 18-1)


69136 Decreased Lamina Cribrosa Beam Thickness and Pore Diameter Relative to Distance From the Central Retinal Vessel Trunk
Wang B
Investigative Ophthalmology and Visual Science 2016; 57: 3088-3092 (IGR: 18-1)


69314 Comparing Optic Nerve Head Rim Width, Rim Area, and Peripapillary Retinal Nerve Fiber Layer Thickness to Axon Count in Experimental Glaucoma
Fortune B
Investigative Ophthalmology and Visual Science 2016; 57: OCT404-12 (IGR: 18-1)


69386 Structural Change Can Be Detected in Advanced-Glaucoma Eyes
Belghith A
Investigative Ophthalmology and Visual Science 2016; 57: OCT511-8 (IGR: 18-1)


69229 Anterior Lamina Cribrosa Surface Depth in Open-Angle Glaucoma: Relationship with the Position of the Central Retinal Vessel Trunk
Oh BL
PLoS ONE 2016; 11: e0158443 (IGR: 18-1)


69487 Experimental Glaucoma Causes Optic Nerve Head Neural Rim Tissue Compression: A Potentially Important Mechanism of Axon Injury
Fortune B
Investigative Ophthalmology and Visual Science 2016; 57: 4403-4411 (IGR: 18-1)


68759 The Optic Nerve Head in Primary Open-Angle Glaucoma Eyes With High Myopia: Characteristics and Association With Visual Field Defects
Chen LW
Journal of Glaucoma 2016; 25: e569-e575 (IGR: 18-1)


69361 The use of Bruch's membrane opening-based optical coherence tomography of the optic nerve head for glaucoma detection in microdiscs
Schaub F
British Journal of Ophthalmology 2017; 101: 530-535 (IGR: 18-1)


69386 Structural Change Can Be Detected in Advanced-Glaucoma Eyes
Medeiros FA
Investigative Ophthalmology and Visual Science 2016; 57: OCT511-8 (IGR: 18-1)


69314 Comparing Optic Nerve Head Rim Width, Rim Area, and Peripapillary Retinal Nerve Fiber Layer Thickness to Axon Count in Experimental Glaucoma
Hardin C
Investigative Ophthalmology and Visual Science 2016; 57: OCT404-12 (IGR: 18-1)


69315 Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices
Baxi J
Investigative Ophthalmology and Visual Science 2016; 57: OCT413-20 (IGR: 18-1)


69479 Glaucoma Diagnostic Ability of the New Circumpapillary Retinal Nerve Fiber Layer Thickness Analysis Based on Bruch's Membrane Opening
Lee KM
Investigative Ophthalmology and Visual Science 2016; 57: 4194-4204 (IGR: 18-1)


69048 Variance components in confocal scanning laser tomography measurements of neuro-retinal rim area and the effect of repeated measurements on the power to detect loss over time
Nuija E
Acta Ophthalmologica 2016; 94: 705-711 (IGR: 18-1)


69490 Challenges In Early Glaucoma Detection
Pavljasevic S
Medicinski arhiv 2016; 70: 203-207 (IGR: 18-1)


69335 Agreement of New Automated Matched Alternation Flicker using Undilated Fundus Photography for the Detection of Glaucomatous Structural Change
Rho S
Current Eye Research 2016; 0: 1-5 (IGR: 18-1)


69353 Optic Disc Hemorrhages and Laminar Disinsertions in Glaucoma
Danthurebandara VM
Ophthalmology 2016; 123: 1949-1956 (IGR: 18-1)


68759 The Optic Nerve Head in Primary Open-Angle Glaucoma Eyes With High Myopia: Characteristics and Association With Visual Field Defects
Lan YW
Journal of Glaucoma 2016; 25: e569-e575 (IGR: 18-1)


69284 Lamina depth and thickness correlate with glaucoma severity
Bojikian KD
Indian Journal of Ophthalmology 2016; 64: 358-363 (IGR: 18-1)


69238 Lamina Cribrosa Microarchitecture in Monkey Early Experimental Glaucoma: Global Change
Lockwood H
Investigative Ophthalmology and Visual Science 2016; 57: 3451-3469 (IGR: 18-1)


69179 Morphometric Optic Nerve Head Analysis in Glaucoma Patients: A Comparison between the Simultaneous Nonmydriatic Stereoscopic Fundus Camera (Kowa Nonmyd WX3D) and the Heidelberg Scanning Laser Ophthalmoscope (HRT III)
Hipp S
Journal of Ophthalmology 2016; 2016: 4764857 (IGR: 18-1)


68924 Optic Nerve Head Blood Flow, as Measured by Laser Speckle Flowgraphy, Is Significantly Reduced in Preperimetric Glaucoma
Kunikata H
Current Eye Research 2016; 0: 1-7 (IGR: 18-1)


69423 Relationship between corneal hysteresis and lamina cribrosa displacement after medical reduction of intraocular pressure
Perez-Lopez M
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69029 Pro-fibrotic pathway activation in trabecular meshwork and lamina cribrosa is the main driving force of glaucoma
Kanherkar RR
Cell cycle (Georgetown, Tex.) 2016; 15: 1643-1652 (IGR: 18-1)


69357 Eyes with Suspicious Appearance of the Optic Disc and Normal Intraocular Pressure: Using Clinical and Epidemiological Characteristics to Differentiate Those with and without Glaucoma
Ushida M
PLoS ONE 2016; 11: e0158983 (IGR: 18-1)


69313 In Vivo Detection of Laminar and Peripapillary Scleral Hypercompliance in Early Monkey Experimental Glaucoma
Yang H
Investigative Ophthalmology and Visual Science 2016; 57: OCT388-403 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Harris A
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69225 Diagnostic Performance of a Novel Three-Dimensional Neuroretinal Rim Parameter for Glaucoma Using High-Density Volume Scans
Lee R
American Journal of Ophthalmology 2016; 169: 168-178 (IGR: 18-1)


69160 Retinal Nerve Fiber Layer Damage in Young Myopic Eyes With Optic Disc Torsion and Glaucomatous Hemifield Defect
Lee JY
Journal of Glaucoma 2017; 26: 77-86 (IGR: 18-1)


69266 Analysis of morphologic changes of lamina cribrosa in primary open angle glaucoma using enhanced depth imaging optical coherence tomography
Bian AL
Chinese Journal of Ophthalmology 2016; 52: 422-428 (IGR: 18-1)


69221 Retinal Nerve Fiber Layer and Peripapillary Choroidal Thicknesses in Non-Glaucomatous Unilateral Optic Atrophy Compared with Unilateral Advanced Pseudoexfoliative Glaucoma
Ayyildiz O
Current Eye Research 2016; 0: 1-5 (IGR: 18-1)


69155 Comparison of swept-source and enhanced depth imaging spectral-domain optical coherence tomography in quantitative characterisation of the optic nerve head
Taniguchi EV
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69476 Comparison of Bruch's Membrane Opening Minimum Rim Width and Peripapillary Retinal Nerve Fiber Layer Thickness in Early Glaucoma Assessment
Schrems WA
Investigative Ophthalmology and Visual Science 2016; 57: OCT575-84 (IGR: 18-1)


69487 Experimental Glaucoma Causes Optic Nerve Head Neural Rim Tissue Compression: A Potentially Important Mechanism of Axon Injury
Reynaud J
Investigative Ophthalmology and Visual Science 2016; 57: 4403-4411 (IGR: 18-1)


69136 Decreased Lamina Cribrosa Beam Thickness and Pore Diameter Relative to Distance From the Central Retinal Vessel Trunk
Lucy KA
Investigative Ophthalmology and Visual Science 2016; 57: 3088-3092 (IGR: 18-1)


68987 Anterior lamina cribrosa surface position in idiopathic intracranial hypertension and glaucoma
Li XQ
European Journal of Ophthalmology 2016; 0: 27274186 (IGR: 18-1)


69229 Anterior Lamina Cribrosa Surface Depth in Open-Angle Glaucoma: Relationship with the Position of the Central Retinal Vessel Trunk
Lee EJ
PLoS ONE 2016; 11: e0158443 (IGR: 18-1)


69210 What is a typical optic nerve head?
Grimm JL
Experimental Eye Research 2016; 149: 40-47 (IGR: 18-1)


68923 Optic Disc Rotation as a Clue for Predicting Visual Field Progression in Myopic Normal-Tension Glaucoma
Kang YS
Ophthalmology 2016; 123: 1484-1493 (IGR: 18-1)


69383 Age-related posterior ciliary muscle restriction - A link between trabecular meshwork and optic nerve head pathophysiology
Lütjen-Drecoll E
Experimental Eye Research 2017; 158: 187-189 (IGR: 18-1)


68941 Identification and localization of lamina cribrosa cells in the human optic nerve head
Wordinger RJ
Experimental Eye Research 2016; 147: 94-97 (IGR: 18-1)


69267 Microcirculation of optic nerve head and glaucoma
Zhao JL
Chinese Journal of Ophthalmology 2016; 52: 466-470 (IGR: 18-1)


69357 Eyes with Suspicious Appearance of the Optic Disc and Normal Intraocular Pressure: Using Clinical and Epidemiological Characteristics to Differentiate Those with and without Glaucoma
Sousa MC
PLoS ONE 2016; 11: e0158983 (IGR: 18-1)


69221 Retinal Nerve Fiber Layer and Peripapillary Choroidal Thicknesses in Non-Glaucomatous Unilateral Optic Atrophy Compared with Unilateral Advanced Pseudoexfoliative Glaucoma
Aykas S
Current Eye Research 2016; 0: 1-5 (IGR: 18-1)


69155 Comparison of swept-source and enhanced depth imaging spectral-domain optical coherence tomography in quantitative characterisation of the optic nerve head
Cai S
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69229 Anterior Lamina Cribrosa Surface Depth in Open-Angle Glaucoma: Relationship with the Position of the Central Retinal Vessel Trunk
Kim H
PLoS ONE 2016; 11: e0158443 (IGR: 18-1)


69238 Lamina Cribrosa Microarchitecture in Monkey Early Experimental Glaucoma: Global Change
Gardiner SK
Investigative Ophthalmology and Visual Science 2016; 57: 3451-3469 (IGR: 18-1)


69313 In Vivo Detection of Laminar and Peripapillary Scleral Hypercompliance in Early Monkey Experimental Glaucoma
Gardiner SK
Investigative Ophthalmology and Visual Science 2016; 57: OCT388-403 (IGR: 18-1)


68924 Optic Nerve Head Blood Flow, as Measured by Laser Speckle Flowgraphy, Is Significantly Reduced in Preperimetric Glaucoma
Aizawa N
Current Eye Research 2016; 0: 1-7 (IGR: 18-1)


69383 Age-related posterior ciliary muscle restriction - A link between trabecular meshwork and optic nerve head pathophysiology
Kaufman PL
Experimental Eye Research 2017; 158: 187-189 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Wentz S
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


68941 Identification and localization of lamina cribrosa cells in the human optic nerve head
Clark AF
Experimental Eye Research 2016; 147: 94-97 (IGR: 18-1)


69266 Analysis of morphologic changes of lamina cribrosa in primary open angle glaucoma using enhanced depth imaging optical coherence tomography
Cheng GW
Chinese Journal of Ophthalmology 2016; 52: 422-428 (IGR: 18-1)


69314 Comparing Optic Nerve Head Rim Width, Rim Area, and Peripapillary Retinal Nerve Fiber Layer Thickness to Axon Count in Experimental Glaucoma
Reynaud J
Investigative Ophthalmology and Visual Science 2016; 57: OCT404-12 (IGR: 18-1)


68987 Anterior lamina cribrosa surface position in idiopathic intracranial hypertension and glaucoma
Bach-Holm D
European Journal of Ophthalmology 2016; 0: 27274186 (IGR: 18-1)


69335 Agreement of New Automated Matched Alternation Flicker using Undilated Fundus Photography for the Detection of Glaucomatous Structural Change
Jang S
Current Eye Research 2016; 0: 1-5 (IGR: 18-1)


69048 Variance components in confocal scanning laser tomography measurements of neuro-retinal rim area and the effect of repeated measurements on the power to detect loss over time
Alm A
Acta Ophthalmologica 2016; 94: 705-711 (IGR: 18-1)


69487 Experimental Glaucoma Causes Optic Nerve Head Neural Rim Tissue Compression: A Potentially Important Mechanism of Axon Injury
Hardin C
Investigative Ophthalmology and Visual Science 2016; 57: 4403-4411 (IGR: 18-1)


69210 What is a typical optic nerve head?
Bilonick RA
Experimental Eye Research 2016; 149: 40-47 (IGR: 18-1)


69476 Comparison of Bruch's Membrane Opening Minimum Rim Width and Peripapillary Retinal Nerve Fiber Layer Thickness in Early Glaucoma Assessment
Mardin CY
Investigative Ophthalmology and Visual Science 2016; 57: OCT575-84 (IGR: 18-1)


68759 The Optic Nerve Head in Primary Open-Angle Glaucoma Eyes With High Myopia: Characteristics and Association With Visual Field Defects
Hsieh JW
Journal of Glaucoma 2016; 25: e569-e575 (IGR: 18-1)


69490 Challenges In Early Glaucoma Detection
Dervisevic A
Medicinski arhiv 2016; 70: 203-207 (IGR: 18-1)


69284 Lamina depth and thickness correlate with glaucoma severity
Slabaugh MA
Indian Journal of Ophthalmology 2016; 64: 358-363 (IGR: 18-1)


69479 Glaucoma Diagnostic Ability of the New Circumpapillary Retinal Nerve Fiber Layer Thickness Analysis Based on Bruch's Membrane Opening
Kim H
Investigative Ophthalmology and Visual Science 2016; 57: 4194-4204 (IGR: 18-1)


69386 Structural Change Can Be Detected in Advanced-Glaucoma Eyes
Bowd C
Investigative Ophthalmology and Visual Science 2016; 57: OCT511-8 (IGR: 18-1)


69029 Pro-fibrotic pathway activation in trabecular meshwork and lamina cribrosa is the main driving force of glaucoma
Izumchenko E
Cell cycle (Georgetown, Tex.) 2016; 15: 1643-1652 (IGR: 18-1)


69267 Microcirculation of optic nerve head and glaucoma
Wu C
Chinese Journal of Ophthalmology 2016; 52: 466-470 (IGR: 18-1)


68923 Optic Disc Rotation as a Clue for Predicting Visual Field Progression in Myopic Normal-Tension Glaucoma
Heo H
Ophthalmology 2016; 123: 1484-1493 (IGR: 18-1)


69423 Relationship between corneal hysteresis and lamina cribrosa displacement after medical reduction of intraocular pressure
Palacios-Pozo E
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69315 Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices
Calhoun W
Investigative Ophthalmology and Visual Science 2016; 57: OCT413-20 (IGR: 18-1)


69160 Retinal Nerve Fiber Layer Damage in Young Myopic Eyes With Optic Disc Torsion and Glaucomatous Hemifield Defect
Kook MS
Journal of Glaucoma 2017; 26: 77-86 (IGR: 18-1)


69179 Morphometric Optic Nerve Head Analysis in Glaucoma Patients: A Comparison between the Simultaneous Nonmydriatic Stereoscopic Fundus Camera (Kowa Nonmyd WX3D) and the Heidelberg Scanning Laser Ophthalmoscope (HRT III)
Wirthky R
Journal of Ophthalmology 2016; 2016: 4764857 (IGR: 18-1)


69136 Decreased Lamina Cribrosa Beam Thickness and Pore Diameter Relative to Distance From the Central Retinal Vessel Trunk
Schuman JS
Investigative Ophthalmology and Visual Science 2016; 57: 3088-3092 (IGR: 18-1)


69361 The use of Bruch's membrane opening-based optical coherence tomography of the optic nerve head for glaucoma detection in microdiscs
Adler W
British Journal of Ophthalmology 2017; 101: 530-535 (IGR: 18-1)


69225 Diagnostic Performance of a Novel Three-Dimensional Neuroretinal Rim Parameter for Glaucoma Using High-Density Volume Scans
Que C
American Journal of Ophthalmology 2016; 169: 168-178 (IGR: 18-1)


69353 Optic Disc Hemorrhages and Laminar Disinsertions in Glaucoma
Vianna JR
Ophthalmology 2016; 123: 1949-1956 (IGR: 18-1)


69284 Lamina depth and thickness correlate with glaucoma severity
Ding L
Indian Journal of Ophthalmology 2016; 64: 358-363 (IGR: 18-1)


68987 Anterior lamina cribrosa surface position in idiopathic intracranial hypertension and glaucoma
Hamann S
European Journal of Ophthalmology 2016; 0: 27274186 (IGR: 18-1)


69423 Relationship between corneal hysteresis and lamina cribrosa displacement after medical reduction of intraocular pressure
Davo-Cabrera J
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69210 What is a typical optic nerve head?
Kagemann L
Experimental Eye Research 2016; 149: 40-47 (IGR: 18-1)


69221 Retinal Nerve Fiber Layer and Peripapillary Choroidal Thicknesses in Non-Glaucomatous Unilateral Optic Atrophy Compared with Unilateral Advanced Pseudoexfoliative Glaucoma
Gokce G
Current Eye Research 2016; 0: 1-5 (IGR: 18-1)


69225 Diagnostic Performance of a Novel Three-Dimensional Neuroretinal Rim Parameter for Glaucoma Using High-Density Volume Scans
Srinivasan V
American Journal of Ophthalmology 2016; 169: 168-178 (IGR: 18-1)


69386 Structural Change Can Be Detected in Advanced-Glaucoma Eyes
Liebmann JM
Investigative Ophthalmology and Visual Science 2016; 57: OCT511-8 (IGR: 18-1)


69476 Comparison of Bruch's Membrane Opening Minimum Rim Width and Peripapillary Retinal Nerve Fiber Layer Thickness in Early Glaucoma Assessment
Laemmer R
Investigative Ophthalmology and Visual Science 2016; 57: OCT575-84 (IGR: 18-1)


69029 Pro-fibrotic pathway activation in trabecular meshwork and lamina cribrosa is the main driving force of glaucoma
Teka M
Cell cycle (Georgetown, Tex.) 2016; 15: 1643-1652 (IGR: 18-1)


69487 Experimental Glaucoma Causes Optic Nerve Head Neural Rim Tissue Compression: A Potentially Important Mechanism of Axon Injury
Wang L
Investigative Ophthalmology and Visual Science 2016; 57: 4403-4411 (IGR: 18-1)


69136 Decreased Lamina Cribrosa Beam Thickness and Pore Diameter Relative to Distance From the Central Retinal Vessel Trunk
Sigal IA
Investigative Ophthalmology and Visual Science 2016; 57: 3088-3092 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Verticchio Vercellin AC
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


68923 Optic Disc Rotation as a Clue for Predicting Visual Field Progression in Myopic Normal-Tension Glaucoma
Park SW
Ophthalmology 2016; 123: 1484-1493 (IGR: 18-1)


69357 Eyes with Suspicious Appearance of the Optic Disc and Normal Intraocular Pressure: Using Clinical and Epidemiological Characteristics to Differentiate Those with and without Glaucoma
Dorairaj S
PLoS ONE 2016; 11: e0158983 (IGR: 18-1)


69155 Comparison of swept-source and enhanced depth imaging spectral-domain optical coherence tomography in quantitative characterisation of the optic nerve head
Paschalis EI
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69229 Anterior Lamina Cribrosa Surface Depth in Open-Angle Glaucoma: Relationship with the Position of the Central Retinal Vessel Trunk
Girard MJ
PLoS ONE 2016; 11: e0158443 (IGR: 18-1)


69179 Morphometric Optic Nerve Head Analysis in Glaucoma Patients: A Comparison between the Simultaneous Nonmydriatic Stereoscopic Fundus Camera (Kowa Nonmyd WX3D) and the Heidelberg Scanning Laser Ophthalmoscope (HRT III)
Blumenstock G
Journal of Ophthalmology 2016; 2016: 4764857 (IGR: 18-1)


69313 In Vivo Detection of Laminar and Peripapillary Scleral Hypercompliance in Early Monkey Experimental Glaucoma
Qin L
Investigative Ophthalmology and Visual Science 2016; 57: OCT388-403 (IGR: 18-1)


69314 Comparing Optic Nerve Head Rim Width, Rim Area, and Peripapillary Retinal Nerve Fiber Layer Thickness to Axon Count in Experimental Glaucoma
Cull G
Investigative Ophthalmology and Visual Science 2016; 57: OCT404-12 (IGR: 18-1)


69315 Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices
Chen CL
Investigative Ophthalmology and Visual Science 2016; 57: OCT413-20 (IGR: 18-1)


69353 Optic Disc Hemorrhages and Laminar Disinsertions in Glaucoma
Alotaibi N
Ophthalmology 2016; 123: 1949-1956 (IGR: 18-1)


69361 The use of Bruch's membrane opening-based optical coherence tomography of the optic nerve head for glaucoma detection in microdiscs
Nikoluk R
British Journal of Ophthalmology 2017; 101: 530-535 (IGR: 18-1)


68924 Optic Nerve Head Blood Flow, as Measured by Laser Speckle Flowgraphy, Is Significantly Reduced in Preperimetric Glaucoma
Kiyota N
Current Eye Research 2016; 0: 1-7 (IGR: 18-1)


69266 Analysis of morphologic changes of lamina cribrosa in primary open angle glaucoma using enhanced depth imaging optical coherence tomography
Zhou Q
Chinese Journal of Ophthalmology 2016; 52: 422-428 (IGR: 18-1)


69479 Glaucoma Diagnostic Ability of the New Circumpapillary Retinal Nerve Fiber Layer Thickness Analysis Based on Bruch's Membrane Opening
Kim TW
Investigative Ophthalmology and Visual Science 2016; 57: 4194-4204 (IGR: 18-1)


69238 Lamina Cribrosa Microarchitecture in Monkey Early Experimental Glaucoma: Global Change
Williams G
Investigative Ophthalmology and Visual Science 2016; 57: 3451-3469 (IGR: 18-1)


69048 Variance components in confocal scanning laser tomography measurements of neuro-retinal rim area and the effect of repeated measurements on the power to detect loss over time
Yu Z
Acta Ophthalmologica 2016; 94: 705-711 (IGR: 18-1)


69490 Challenges In Early Glaucoma Detection
Kasumovic SS
Medicinski arhiv 2016; 70: 203-207 (IGR: 18-1)


69335 Agreement of New Automated Matched Alternation Flicker using Undilated Fundus Photography for the Detection of Glaucomatous Structural Change
Ahn J
Current Eye Research 2016; 0: 1-5 (IGR: 18-1)


69313 In Vivo Detection of Laminar and Peripapillary Scleral Hypercompliance in Early Monkey Experimental Glaucoma
Reyes L
Investigative Ophthalmology and Visual Science 2016; 57: OCT388-403 (IGR: 18-1)


69225 Diagnostic Performance of a Novel Three-Dimensional Neuroretinal Rim Parameter for Glaucoma Using High-Density Volume Scans
Guo R
American Journal of Ophthalmology 2016; 169: 168-178 (IGR: 18-1)


69284 Lamina depth and thickness correlate with glaucoma severity
Chen PP
Indian Journal of Ophthalmology 2016; 64: 358-363 (IGR: 18-1)


69361 The use of Bruch's membrane opening-based optical coherence tomography of the optic nerve head for glaucoma detection in microdiscs
Hermann MM
British Journal of Ophthalmology 2017; 101: 530-535 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Parekh P
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69029 Pro-fibrotic pathway activation in trabecular meshwork and lamina cribrosa is the main driving force of glaucoma
Cantor C
Cell cycle (Georgetown, Tex.) 2016; 15: 1643-1652 (IGR: 18-1)


69315 Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices
Ishikawa H
Investigative Ophthalmology and Visual Science 2016; 57: OCT413-20 (IGR: 18-1)


69229 Anterior Lamina Cribrosa Surface Depth in Open-Angle Glaucoma: Relationship with the Position of the Central Retinal Vessel Trunk
Mari JM
PLoS ONE 2016; 11: e0158443 (IGR: 18-1)


69353 Optic Disc Hemorrhages and Laminar Disinsertions in Glaucoma
Hutchison DM
Ophthalmology 2016; 123: 1949-1956 (IGR: 18-1)


69221 Retinal Nerve Fiber Layer and Peripapillary Choroidal Thicknesses in Non-Glaucomatous Unilateral Optic Atrophy Compared with Unilateral Advanced Pseudoexfoliative Glaucoma
Koylu MT
Current Eye Research 2016; 0: 1-5 (IGR: 18-1)


69386 Structural Change Can Be Detected in Advanced-Glaucoma Eyes
Girkin CA
Investigative Ophthalmology and Visual Science 2016; 57: OCT511-8 (IGR: 18-1)


69155 Comparison of swept-source and enhanced depth imaging spectral-domain optical coherence tomography in quantitative characterisation of the optic nerve head
Wang H
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69238 Lamina Cribrosa Microarchitecture in Monkey Early Experimental Glaucoma: Global Change
Yang H
Investigative Ophthalmology and Visual Science 2016; 57: 3451-3469 (IGR: 18-1)


69179 Morphometric Optic Nerve Head Analysis in Glaucoma Patients: A Comparison between the Simultaneous Nonmydriatic Stereoscopic Fundus Camera (Kowa Nonmyd WX3D) and the Heidelberg Scanning Laser Ophthalmoscope (HRT III)
Bartz-Schmidt KU
Journal of Ophthalmology 2016; 2016: 4764857 (IGR: 18-1)


69136 Decreased Lamina Cribrosa Beam Thickness and Pore Diameter Relative to Distance From the Central Retinal Vessel Trunk
Bilonick RA
Investigative Ophthalmology and Visual Science 2016; 57: 3088-3092 (IGR: 18-1)


69314 Comparing Optic Nerve Head Rim Width, Rim Area, and Peripapillary Retinal Nerve Fiber Layer Thickness to Axon Count in Experimental Glaucoma
Yang H
Investigative Ophthalmology and Visual Science 2016; 57: OCT404-12 (IGR: 18-1)


68924 Optic Nerve Head Blood Flow, as Measured by Laser Speckle Flowgraphy, Is Significantly Reduced in Preperimetric Glaucoma
Maiya Y
Current Eye Research 2016; 0: 1-7 (IGR: 18-1)


69487 Experimental Glaucoma Causes Optic Nerve Head Neural Rim Tissue Compression: A Potentially Important Mechanism of Axon Injury
Sigal IA
Investigative Ophthalmology and Visual Science 2016; 57: 4403-4411 (IGR: 18-1)


69357 Eyes with Suspicious Appearance of the Optic Disc and Normal Intraocular Pressure: Using Clinical and Epidemiological Characteristics to Differentiate Those with and without Glaucoma
Biteli LG
PLoS ONE 2016; 11: e0158983 (IGR: 18-1)


69048 Variance components in confocal scanning laser tomography measurements of neuro-retinal rim area and the effect of repeated measurements on the power to detect loss over time
Söderberg PG
Acta Ophthalmologica 2016; 94: 705-711 (IGR: 18-1)


69335 Agreement of New Automated Matched Alternation Flicker using Undilated Fundus Photography for the Detection of Glaucomatous Structural Change
Choi JJ
Current Eye Research 2016; 0: 1-5 (IGR: 18-1)


69476 Comparison of Bruch's Membrane Opening Minimum Rim Width and Peripapillary Retinal Nerve Fiber Layer Thickness in Early Glaucoma Assessment
Kruse FE
Investigative Ophthalmology and Visual Science 2016; 57: OCT575-84 (IGR: 18-1)


69210 What is a typical optic nerve head?
Ishikawa H
Experimental Eye Research 2016; 149: 40-47 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Gross J
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69155 Comparison of swept-source and enhanced depth imaging spectral-domain optical coherence tomography in quantitative characterisation of the optic nerve head
Miller JB
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69136 Decreased Lamina Cribrosa Beam Thickness and Pore Diameter Relative to Distance From the Central Retinal Vessel Trunk
Kagemann L
Investigative Ophthalmology and Visual Science 2016; 57: 3088-3092 (IGR: 18-1)


69314 Comparing Optic Nerve Head Rim Width, Rim Area, and Peripapillary Retinal Nerve Fiber Layer Thickness to Axon Count in Experimental Glaucoma
Wang L
Investigative Ophthalmology and Visual Science 2016; 57: OCT404-12 (IGR: 18-1)


69210 What is a typical optic nerve head?
Schuman JS
Experimental Eye Research 2016; 149: 40-47 (IGR: 18-1)


69357 Eyes with Suspicious Appearance of the Optic Disc and Normal Intraocular Pressure: Using Clinical and Epidemiological Characteristics to Differentiate Those with and without Glaucoma
Leite MT
PLoS ONE 2016; 11: e0158983 (IGR: 18-1)


69229 Anterior Lamina Cribrosa Surface Depth in Open-Angle Glaucoma: Relationship with the Position of the Central Retinal Vessel Trunk
Kim TW
PLoS ONE 2016; 11: e0158443 (IGR: 18-1)


69476 Comparison of Bruch's Membrane Opening Minimum Rim Width and Peripapillary Retinal Nerve Fiber Layer Thickness in Early Glaucoma Assessment
Schrems-Hoesl LM
Investigative Ophthalmology and Visual Science 2016; 57: OCT575-84 (IGR: 18-1)


69386 Structural Change Can Be Detected in Advanced-Glaucoma Eyes
Weinreb RN
Investigative Ophthalmology and Visual Science 2016; 57: OCT511-8 (IGR: 18-1)


69315 Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices
Schuman JS
Investigative Ophthalmology and Visual Science 2016; 57: OCT413-20 (IGR: 18-1)


69225 Diagnostic Performance of a Novel Three-Dimensional Neuroretinal Rim Parameter for Glaucoma Using High-Density Volume Scans
DeLuna R
American Journal of Ophthalmology 2016; 169: 168-178 (IGR: 18-1)


69335 Agreement of New Automated Matched Alternation Flicker using Undilated Fundus Photography for the Detection of Glaucomatous Structural Change
Lee M
Current Eye Research 2016; 0: 1-5 (IGR: 18-1)


69361 The use of Bruch's membrane opening-based optical coherence tomography of the optic nerve head for glaucoma detection in microdiscs
Heindl LM
British Journal of Ophthalmology 2017; 101: 530-535 (IGR: 18-1)


68924 Optic Nerve Head Blood Flow, as Measured by Laser Speckle Flowgraphy, Is Significantly Reduced in Preperimetric Glaucoma
Yokoyama Y
Current Eye Research 2016; 0: 1-7 (IGR: 18-1)


69238 Lamina Cribrosa Microarchitecture in Monkey Early Experimental Glaucoma: Global Change
Burgoyne CF
Investigative Ophthalmology and Visual Science 2016; 57: 3451-3469 (IGR: 18-1)


69179 Morphometric Optic Nerve Head Analysis in Glaucoma Patients: A Comparison between the Simultaneous Nonmydriatic Stereoscopic Fundus Camera (Kowa Nonmyd WX3D) and the Heidelberg Scanning Laser Ophthalmoscope (HRT III)
Ziemssen F
Journal of Ophthalmology 2016; 2016: 4764857 (IGR: 18-1)


69029 Pro-fibrotic pathway activation in trabecular meshwork and lamina cribrosa is the main driving force of glaucoma
Manaye K
Cell cycle (Georgetown, Tex.) 2016; 15: 1643-1652 (IGR: 18-1)


69487 Experimental Glaucoma Causes Optic Nerve Head Neural Rim Tissue Compression: A Potentially Important Mechanism of Axon Injury
Burgoyne CF
Investigative Ophthalmology and Visual Science 2016; 57: 4403-4411 (IGR: 18-1)


69353 Optic Disc Hemorrhages and Laminar Disinsertions in Glaucoma
Belliveau AC
Ophthalmology 2016; 123: 1949-1956 (IGR: 18-1)


69313 In Vivo Detection of Laminar and Peripapillary Scleral Hypercompliance in Early Monkey Experimental Glaucoma
Fortune B
Investigative Ophthalmology and Visual Science 2016; 57: OCT388-403 (IGR: 18-1)


69221 Retinal Nerve Fiber Layer and Peripapillary Choroidal Thicknesses in Non-Glaucomatous Unilateral Optic Atrophy Compared with Unilateral Advanced Pseudoexfoliative Glaucoma
Ozgonul C
Current Eye Research 2016; 0: 1-5 (IGR: 18-1)


69136 Decreased Lamina Cribrosa Beam Thickness and Pore Diameter Relative to Distance From the Central Retinal Vessel Trunk
Kostanyan T
Investigative Ophthalmology and Visual Science 2016; 57: 3088-3092 (IGR: 18-1)


69353 Optic Disc Hemorrhages and Laminar Disinsertions in Glaucoma
Shuba LM
Ophthalmology 2016; 123: 1949-1956 (IGR: 18-1)


69357 Eyes with Suspicious Appearance of the Optic Disc and Normal Intraocular Pressure: Using Clinical and Epidemiological Characteristics to Differentiate Those with and without Glaucoma
Paranhos A
PLoS ONE 2016; 11: e0158983 (IGR: 18-1)


69225 Diagnostic Performance of a Novel Three-Dimensional Neuroretinal Rim Parameter for Glaucoma Using High-Density Volume Scans
Pandit S
American Journal of Ophthalmology 2016; 169: 168-178 (IGR: 18-1)


69029 Pro-fibrotic pathway activation in trabecular meshwork and lamina cribrosa is the main driving force of glaucoma
Sidransky D
Cell cycle (Georgetown, Tex.) 2016; 15: 1643-1652 (IGR: 18-1)


69210 What is a typical optic nerve head?
Wollstein G
Experimental Eye Research 2016; 149: 40-47 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Hussain RM
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69313 In Vivo Detection of Laminar and Peripapillary Scleral Hypercompliance in Early Monkey Experimental Glaucoma
Burgoyne CF
Investigative Ophthalmology and Visual Science 2016; 57: OCT388-403 (IGR: 18-1)


69221 Retinal Nerve Fiber Layer and Peripapillary Choroidal Thicknesses in Non-Glaucomatous Unilateral Optic Atrophy Compared with Unilateral Advanced Pseudoexfoliative Glaucoma
Ozge G
Current Eye Research 2016; 0: 1-5 (IGR: 18-1)


69314 Comparing Optic Nerve Head Rim Width, Rim Area, and Peripapillary Retinal Nerve Fiber Layer Thickness to Axon Count in Experimental Glaucoma
Burgoyne CF
Investigative Ophthalmology and Visual Science 2016; 57: OCT404-12 (IGR: 18-1)


69386 Structural Change Can Be Detected in Advanced-Glaucoma Eyes
Zangwill LM
Investigative Ophthalmology and Visual Science 2016; 57: OCT511-8 (IGR: 18-1)


69315 Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices
Wollstein G
Investigative Ophthalmology and Visual Science 2016; 57: OCT413-20 (IGR: 18-1)


69155 Comparison of swept-source and enhanced depth imaging spectral-domain optical coherence tomography in quantitative characterisation of the optic nerve head
Turalba AV
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


68924 Optic Nerve Head Blood Flow, as Measured by Laser Speckle Flowgraphy, Is Significantly Reduced in Preperimetric Glaucoma
Omodaka K
Current Eye Research 2016; 0: 1-7 (IGR: 18-1)


69179 Morphometric Optic Nerve Head Analysis in Glaucoma Patients: A Comparison between the Simultaneous Nonmydriatic Stereoscopic Fundus Camera (Kowa Nonmyd WX3D) and the Heidelberg Scanning Laser Ophthalmoscope (HRT III)
Schiefer U
Journal of Ophthalmology 2016; 2016: 4764857 (IGR: 18-1)


69221 Retinal Nerve Fiber Layer and Peripapillary Choroidal Thicknesses in Non-Glaucomatous Unilateral Optic Atrophy Compared with Unilateral Advanced Pseudoexfoliative Glaucoma
Mumcuoglu T
Current Eye Research 2016; 0: 1-5 (IGR: 18-1)


69136 Decreased Lamina Cribrosa Beam Thickness and Pore Diameter Relative to Distance From the Central Retinal Vessel Trunk
Lu C
Investigative Ophthalmology and Visual Science 2016; 57: 3088-3092 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Thieme C
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69353 Optic Disc Hemorrhages and Laminar Disinsertions in Glaucoma
Nicolela MT
Ophthalmology 2016; 123: 1949-1956 (IGR: 18-1)


69225 Diagnostic Performance of a Novel Three-Dimensional Neuroretinal Rim Parameter for Glaucoma Using High-Density Volume Scans
Simavli H
American Journal of Ophthalmology 2016; 169: 168-178 (IGR: 18-1)


69210 What is a typical optic nerve head?
Sigal IA
Experimental Eye Research 2016; 149: 40-47 (IGR: 18-1)


68924 Optic Nerve Head Blood Flow, as Measured by Laser Speckle Flowgraphy, Is Significantly Reduced in Preperimetric Glaucoma
Takahashi H
Current Eye Research 2016; 0: 1-7 (IGR: 18-1)


69179 Morphometric Optic Nerve Head Analysis in Glaucoma Patients: A Comparison between the Simultaneous Nonmydriatic Stereoscopic Fundus Camera (Kowa Nonmyd WX3D) and the Heidelberg Scanning Laser Ophthalmoscope (HRT III)
Voykov B
Journal of Ophthalmology 2016; 2016: 4764857 (IGR: 18-1)


69357 Eyes with Suspicious Appearance of the Optic Disc and Normal Intraocular Pressure: Using Clinical and Epidemiological Characteristics to Differentiate Those with and without Glaucoma
Prata TS
PLoS ONE 2016; 11: e0158983 (IGR: 18-1)


69155 Comparison of swept-source and enhanced depth imaging spectral-domain optical coherence tomography in quantitative characterisation of the optic nerve head
Greenstein SH
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69315 Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices
Hammer DX
Investigative Ophthalmology and Visual Science 2016; 57: OCT413-20 (IGR: 18-1)


69029 Pro-fibrotic pathway activation in trabecular meshwork and lamina cribrosa is the main driving force of glaucoma
West MD; Makarev E
Cell cycle (Georgetown, Tex.) 2016; 15: 1643-1652 (IGR: 18-1)


69179 Morphometric Optic Nerve Head Analysis in Glaucoma Patients: A Comparison between the Simultaneous Nonmydriatic Stereoscopic Fundus Camera (Kowa Nonmyd WX3D) and the Heidelberg Scanning Laser Ophthalmoscope (HRT III)
Januschowski K
Journal of Ophthalmology 2016; 2016: 4764857 (IGR: 18-1)


69221 Retinal Nerve Fiber Layer and Peripapillary Choroidal Thicknesses in Non-Glaucomatous Unilateral Optic Atrophy Compared with Unilateral Advanced Pseudoexfoliative Glaucoma
Yumusak E
Current Eye Research 2016; 0: 1-5 (IGR: 18-1)


69155 Comparison of swept-source and enhanced depth imaging spectral-domain optical coherence tomography in quantitative characterisation of the optic nerve head
Brauner S
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


68924 Optic Nerve Head Blood Flow, as Measured by Laser Speckle Flowgraphy, Is Significantly Reduced in Preperimetric Glaucoma
Yasui T
Current Eye Research 2016; 0: 1-7 (IGR: 18-1)


69353 Optic Disc Hemorrhages and Laminar Disinsertions in Glaucoma
Chauhan BC
Ophthalmology 2016; 123: 1949-1956 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Siesky B
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69225 Diagnostic Performance of a Novel Three-Dimensional Neuroretinal Rim Parameter for Glaucoma Using High-Density Volume Scans
Seevaratnam R
American Journal of Ophthalmology 2016; 169: 168-178 (IGR: 18-1)


69136 Decreased Lamina Cribrosa Beam Thickness and Pore Diameter Relative to Distance From the Central Retinal Vessel Trunk
Liu J
Investigative Ophthalmology and Visual Science 2016; 57: 3088-3092 (IGR: 18-1)


69225 Diagnostic Performance of a Novel Three-Dimensional Neuroretinal Rim Parameter for Glaucoma Using High-Density Volume Scans
Tsikata E
American Journal of Ophthalmology 2016; 169: 168-178 (IGR: 18-1)


69136 Decreased Lamina Cribrosa Beam Thickness and Pore Diameter Relative to Distance From the Central Retinal Vessel Trunk
Grulkowski I
Investigative Ophthalmology and Visual Science 2016; 57: 3088-3092 (IGR: 18-1)


68924 Optic Nerve Head Blood Flow, as Measured by Laser Speckle Flowgraphy, Is Significantly Reduced in Preperimetric Glaucoma
Kato K
Current Eye Research 2016; 0: 1-7 (IGR: 18-1)


69155 Comparison of swept-source and enhanced depth imaging spectral-domain optical coherence tomography in quantitative characterisation of the optic nerve head
Pasquale LR
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69029 Pro-fibrotic pathway activation in trabecular meshwork and lamina cribrosa is the main driving force of glaucoma
Csoka AB
Cell cycle (Georgetown, Tex.) 2016; 15: 1643-1652 (IGR: 18-1)


68924 Optic Nerve Head Blood Flow, as Measured by Laser Speckle Flowgraphy, Is Significantly Reduced in Preperimetric Glaucoma
Iwase A
Current Eye Research 2016; 0: 1-7 (IGR: 18-1)


69155 Comparison of swept-source and enhanced depth imaging spectral-domain optical coherence tomography in quantitative characterisation of the optic nerve head
Shen LQ
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69136 Decreased Lamina Cribrosa Beam Thickness and Pore Diameter Relative to Distance From the Central Retinal Vessel Trunk
Fujimoto JG
Investigative Ophthalmology and Visual Science 2016; 57: 3088-3092 (IGR: 18-1)


69225 Diagnostic Performance of a Novel Three-Dimensional Neuroretinal Rim Parameter for Glaucoma Using High-Density Volume Scans
de Boer J
American Journal of Ophthalmology 2016; 169: 168-178 (IGR: 18-1)


68924 Optic Nerve Head Blood Flow, as Measured by Laser Speckle Flowgraphy, Is Significantly Reduced in Preperimetric Glaucoma
Nakazawa T
Current Eye Research 2016; 0: 1-7 (IGR: 18-1)


69136 Decreased Lamina Cribrosa Beam Thickness and Pore Diameter Relative to Distance From the Central Retinal Vessel Trunk
Ishikawa H
Investigative Ophthalmology and Visual Science 2016; 57: 3088-3092 (IGR: 18-1)


69225 Diagnostic Performance of a Novel Three-Dimensional Neuroretinal Rim Parameter for Glaucoma Using High-Density Volume Scans
Chen TC
American Journal of Ophthalmology 2016; 169: 168-178 (IGR: 18-1)


69136 Decreased Lamina Cribrosa Beam Thickness and Pore Diameter Relative to Distance From the Central Retinal Vessel Trunk
Wollstein G
Investigative Ophthalmology and Visual Science 2016; 57: 3088-3092 (IGR: 18-1)


67346 Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study
Hou R
Brain Research 2016; 1635: 201-208 (IGR: 17-4)


66795 Association between Corneal Deformation Amplitude and Posterior Pole Profiles in Primary Open-Angle Glaucoma
Jung Y
Ophthalmology 2016; 123: 959-964 (IGR: 17-4)


66670 Optic Disc Vascularization in Glaucoma: Value of Spectral-Domain Optical Coherence Tomography Angiography
Lévêque PM
Journal of Ophthalmology 2016; 2016: 6956717 (IGR: 17-4)


67587 Advances of optical coherence tomography in myopia and pathologic myopia
Ng DS
Eye 2016; 30: 901-916 (IGR: 17-4)


66768 Structural characteristics of the optic nerve head influencing human retinal venous pulsations
Lam J
Experimental Eye Research 2016; 145: 341-346 (IGR: 17-4)


67522 Clinical Factors Associated with Lamina Cribrosa Thickness in Patients with Glaucoma, as Measured with Swept Source Optical Coherence Tomography
Omodaka K
PLoS ONE 2016; 11: e0153707 (IGR: 17-4)


67455 Finite Element Analysis Predicts Large Optic Nerve Head Strains During Horizontal Eye Movements
Wang X
Investigative Ophthalmology and Visual Science 2016; 57: 2452-2462 (IGR: 17-4)


67244 In Vivo 3-Dimensional Strain Mapping of the Optic Nerve Head Following Intraocular Pressure Lowering by Trabeculectomy
Girard MJ
Ophthalmology 2016; 123: 1190-1200 (IGR: 17-4)


67187 Comparing Glaucomatous Disc Change Using Stereo Disc Viewing and the MatchedFlicker Software Program in Ophthalmologists-in-Training
Schaefer JL
American Journal of Ophthalmology 2016; 167: 88-95 (IGR: 17-4)


67497 African Descent and Glaucoma Evaluation Study (ADAGES): Racial Differences in Optic Disc Hemorrhage and Beta-Zone Parapapillary Atrophy
Skaat A
Ophthalmology 2016; 123: 1476-1483 (IGR: 17-4)


67502 Quantitative comparison of disc rim color in optic nerve atrophy of compressive optic neuropathy and glaucomatous optic neuropathy
Nakano E
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 1609-1616 (IGR: 17-4)


67495 Neuroretinal rim in non-glaucomatous large optic nerve heads: a comparison of confocal scanning laser tomography and spectral domain optical coherence tomography
Enders P
British Journal of Ophthalmology 2017; 101: 138-142 (IGR: 17-4)


67171 Prelamina and Lamina Cribrosa in Glaucoma Patients With Unilateral Visual Field Loss
Kim DW
Investigative Ophthalmology and Visual Science 2016; 57: 1662-1670 (IGR: 17-4)


67467 Disc-damage Likelihood Scale (DDLS) as a Clinical Indicator of the Presence of a Relative Afferent Pupillary Defect (RAPD)
Zhang AY
Journal of Glaucoma 2016; 25: e910-e916 (IGR: 17-4)


67438 Effects of Peripapillary Scleral Stiffening on the Deformation of the Lamina Cribrosa
Coudrillier B
Investigative Ophthalmology and Visual Science 2016; 57: 2666-2677 (IGR: 17-4)


67220 Posterior displacement of the lamina cribrosa in normal-tension and high-tension glaucoma
Li L
Acta Ophthalmologica 2016; 94: e492-e500 (IGR: 17-4)


66684 In vivo characterization of lamina cribrosa pore morphology in primary open-angle glaucoma
Zwillinger S
Journal Français d'Ophtalmologie 2016; 39: 265-271 (IGR: 17-4)


66823 Comparison of the corneal biomechanical properties, optic nerve head topographic parameters, and retinal nerve fiber layer thickness measurements in diabetic and non-diabetic primary open-angle glaucoma
Akkaya S
International Ophthalmology 2016; 36: 727-736 (IGR: 17-4)


67098 Optic nerve head parameters of high-definition optical coherence tomography and Heidelberg retina tomogram in perimetric and preperimetric glaucoma
Begum VU
Indian Journal of Ophthalmology 2016; 64: 277-284 (IGR: 17-4)


67107 Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography
Chen CL
Quantitative imaging in medicine and surgery 2016; 6: 125-133 (IGR: 17-4)


67613 Lamina Cribrosa Depth is Associated With the Cup-to-Disc Ratio in Eyes With Large Optic Disc Cupping and Cup-to-Disc Ratio Asymmetry
Jung KI
Journal of Glaucoma 2016; 25: e536-e545 (IGR: 17-4)


66713 Effect of Focal Lamina Cribrosa Defect on Disc Hemorrhage Area in Glaucoma
Kim YK
Investigative Ophthalmology and Visual Science 2016; 57: 899-907 (IGR: 17-4)


67301 Comparison of the Deep Optic Nerve Structures in Superior Segmental Optic Nerve Hypoplasia and Primary Open-Angle Glaucoma
Lee EJ
Journal of Glaucoma 2016; 25: 648-656 (IGR: 17-4)


67189 Comparison of the Deep Optic Nerve Head Structure between Normal-Tension Glaucoma and Nonarteritic Anterior Ischemic Optic Neuropathy
Lee EJ
PLoS ONE 2016; 11: e0150242 (IGR: 17-4)


67278 Clinical Assessment of Lamina Cribrosa Curvature in Eyes with Primary Open-Angle Glaucoma
Kim YW
PLoS ONE 2016; 11: e0150260 (IGR: 17-4)


66655 The Relationship of the Clinical Disc Margin and Bruch's Membrane Opening in Normal and Glaucoma Subjects
Amini N
Investigative Ophthalmology and Visual Science 2016; 57: 1468-1475 (IGR: 17-4)


67502 Quantitative comparison of disc rim color in optic nerve atrophy of compressive optic neuropathy and glaucomatous optic neuropathy
Hata M
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 1609-1616 (IGR: 17-4)


67220 Posterior displacement of the lamina cribrosa in normal-tension and high-tension glaucoma
Bian A
Acta Ophthalmologica 2016; 94: e492-e500 (IGR: 17-4)


67098 Optic nerve head parameters of high-definition optical coherence tomography and Heidelberg retina tomogram in perimetric and preperimetric glaucoma
Addepalli UK
Indian Journal of Ophthalmology 2016; 64: 277-284 (IGR: 17-4)


67613 Lamina Cribrosa Depth is Associated With the Cup-to-Disc Ratio in Eyes With Large Optic Disc Cupping and Cup-to-Disc Ratio Asymmetry
Jeon S
Journal of Glaucoma 2016; 25: e536-e545 (IGR: 17-4)


67346 Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study
Zhang Z
Brain Research 2016; 1635: 201-208 (IGR: 17-4)


67189 Comparison of the Deep Optic Nerve Head Structure between Normal-Tension Glaucoma and Nonarteritic Anterior Ischemic Optic Neuropathy
Choi YJ
PLoS ONE 2016; 11: e0150242 (IGR: 17-4)


67467 Disc-damage Likelihood Scale (DDLS) as a Clinical Indicator of the Presence of a Relative Afferent Pupillary Defect (RAPD)
Lu L
Journal of Glaucoma 2016; 25: e910-e916 (IGR: 17-4)


67107 Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography
Bojikian KD
Quantitative imaging in medicine and surgery 2016; 6: 125-133 (IGR: 17-4)


67495 Neuroretinal rim in non-glaucomatous large optic nerve heads: a comparison of confocal scanning laser tomography and spectral domain optical coherence tomography
Schaub F
British Journal of Ophthalmology 2017; 101: 138-142 (IGR: 17-4)


66684 In vivo characterization of lamina cribrosa pore morphology in primary open-angle glaucoma
Paques M
Journal Français d'Ophtalmologie 2016; 39: 265-271 (IGR: 17-4)


67438 Effects of Peripapillary Scleral Stiffening on the Deformation of the Lamina Cribrosa
Campbell IC
Investigative Ophthalmology and Visual Science 2016; 57: 2666-2677 (IGR: 17-4)


67455 Finite Element Analysis Predicts Large Optic Nerve Head Strains During Horizontal Eye Movements
Rumpel H
Investigative Ophthalmology and Visual Science 2016; 57: 2452-2462 (IGR: 17-4)


67278 Clinical Assessment of Lamina Cribrosa Curvature in Eyes with Primary Open-Angle Glaucoma
Jeoung JW
PLoS ONE 2016; 11: e0150260 (IGR: 17-4)


66713 Effect of Focal Lamina Cribrosa Defect on Disc Hemorrhage Area in Glaucoma
Jeoung JW
Investigative Ophthalmology and Visual Science 2016; 57: 899-907 (IGR: 17-4)


67587 Advances of optical coherence tomography in myopia and pathologic myopia
Cheung CY
Eye 2016; 30: 901-916 (IGR: 17-4)


67171 Prelamina and Lamina Cribrosa in Glaucoma Patients With Unilateral Visual Field Loss
Jeoung JW
Investigative Ophthalmology and Visual Science 2016; 57: 1662-1670 (IGR: 17-4)


66823 Comparison of the corneal biomechanical properties, optic nerve head topographic parameters, and retinal nerve fiber layer thickness measurements in diabetic and non-diabetic primary open-angle glaucoma
Can E
International Ophthalmology 2016; 36: 727-736 (IGR: 17-4)


67522 Clinical Factors Associated with Lamina Cribrosa Thickness in Patients with Glaucoma, as Measured with Swept Source Optical Coherence Tomography
Takahashi S
PLoS ONE 2016; 11: e0153707 (IGR: 17-4)


67244 In Vivo 3-Dimensional Strain Mapping of the Optic Nerve Head Following Intraocular Pressure Lowering by Trabeculectomy
Beotra MR
Ophthalmology 2016; 123: 1190-1200 (IGR: 17-4)


67301 Comparison of the Deep Optic Nerve Structures in Superior Segmental Optic Nerve Hypoplasia and Primary Open-Angle Glaucoma
Lee KM
Journal of Glaucoma 2016; 25: 648-656 (IGR: 17-4)


66795 Association between Corneal Deformation Amplitude and Posterior Pole Profiles in Primary Open-Angle Glaucoma
Park HY
Ophthalmology 2016; 123: 959-964 (IGR: 17-4)


67187 Comparing Glaucomatous Disc Change Using Stereo Disc Viewing and the MatchedFlicker Software Program in Ophthalmologists-in-Training
Lukowski ZL
American Journal of Ophthalmology 2016; 167: 88-95 (IGR: 17-4)


66655 The Relationship of the Clinical Disc Margin and Bruch's Membrane Opening in Normal and Glaucoma Subjects
Miraftabi A
Investigative Ophthalmology and Visual Science 2016; 57: 1468-1475 (IGR: 17-4)


67497 African Descent and Glaucoma Evaluation Study (ADAGES): Racial Differences in Optic Disc Hemorrhage and Beta-Zone Parapapillary Atrophy
De Moraes CG
Ophthalmology 2016; 123: 1476-1483 (IGR: 17-4)


66768 Structural characteristics of the optic nerve head influencing human retinal venous pulsations
Chan G
Experimental Eye Research 2016; 145: 341-346 (IGR: 17-4)


66670 Optic Disc Vascularization in Glaucoma: Value of Spectral-Domain Optical Coherence Tomography Angiography
Zéboulon P
Journal of Ophthalmology 2016; 2016: 6956717 (IGR: 17-4)


67107 Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography
Gupta D
Quantitative imaging in medicine and surgery 2016; 6: 125-133 (IGR: 17-4)


66713 Effect of Focal Lamina Cribrosa Defect on Disc Hemorrhage Area in Glaucoma
Park KH
Investigative Ophthalmology and Visual Science 2016; 57: 899-907 (IGR: 17-4)


67301 Comparison of the Deep Optic Nerve Structures in Superior Segmental Optic Nerve Hypoplasia and Primary Open-Angle Glaucoma
Lee SH
Journal of Glaucoma 2016; 25: 648-656 (IGR: 17-4)


67438 Effects of Peripapillary Scleral Stiffening on the Deformation of the Lamina Cribrosa
Read AT
Investigative Ophthalmology and Visual Science 2016; 57: 2666-2677 (IGR: 17-4)


66823 Comparison of the corneal biomechanical properties, optic nerve head topographic parameters, and retinal nerve fiber layer thickness measurements in diabetic and non-diabetic primary open-angle glaucoma
Öztürk F
International Ophthalmology 2016; 36: 727-736 (IGR: 17-4)


67244 In Vivo 3-Dimensional Strain Mapping of the Optic Nerve Head Following Intraocular Pressure Lowering by Trabeculectomy
Chin KS
Ophthalmology 2016; 123: 1190-1200 (IGR: 17-4)


67187 Comparing Glaucomatous Disc Change Using Stereo Disc Viewing and the MatchedFlicker Software Program in Ophthalmologists-in-Training
Meyer AM
American Journal of Ophthalmology 2016; 167: 88-95 (IGR: 17-4)


67495 Neuroretinal rim in non-glaucomatous large optic nerve heads: a comparison of confocal scanning laser tomography and spectral domain optical coherence tomography
Hermann MM
British Journal of Ophthalmology 2017; 101: 138-142 (IGR: 17-4)


67613 Lamina Cribrosa Depth is Associated With the Cup-to-Disc Ratio in Eyes With Large Optic Disc Cupping and Cup-to-Disc Ratio Asymmetry
Park CK
Journal of Glaucoma 2016; 25: e536-e545 (IGR: 17-4)


66795 Association between Corneal Deformation Amplitude and Posterior Pole Profiles in Primary Open-Angle Glaucoma
Park CK
Ophthalmology 2016; 123: 959-964 (IGR: 17-4)


66655 The Relationship of the Clinical Disc Margin and Bruch's Membrane Opening in Normal and Glaucoma Subjects
Henry S
Investigative Ophthalmology and Visual Science 2016; 57: 1468-1475 (IGR: 17-4)


67189 Comparison of the Deep Optic Nerve Head Structure between Normal-Tension Glaucoma and Nonarteritic Anterior Ischemic Optic Neuropathy
Kim TW
PLoS ONE 2016; 11: e0150242 (IGR: 17-4)


67467 Disc-damage Likelihood Scale (DDLS) as a Clinical Indicator of the Presence of a Relative Afferent Pupillary Defect (RAPD)
Ali M
Journal of Glaucoma 2016; 25: e910-e916 (IGR: 17-4)


67587 Advances of optical coherence tomography in myopia and pathologic myopia
Luk FO
Eye 2016; 30: 901-916 (IGR: 17-4)


66768 Structural characteristics of the optic nerve head influencing human retinal venous pulsations
Morgan WH
Experimental Eye Research 2016; 145: 341-346 (IGR: 17-4)


66670 Optic Disc Vascularization in Glaucoma: Value of Spectral-Domain Optical Coherence Tomography Angiography
Brasnu E
Journal of Ophthalmology 2016; 2016: 6956717 (IGR: 17-4)


67455 Finite Element Analysis Predicts Large Optic Nerve Head Strains During Horizontal Eye Movements
Lim WE
Investigative Ophthalmology and Visual Science 2016; 57: 2452-2462 (IGR: 17-4)


67278 Clinical Assessment of Lamina Cribrosa Curvature in Eyes with Primary Open-Angle Glaucoma
Kim DW
PLoS ONE 2016; 11: e0150260 (IGR: 17-4)


67502 Quantitative comparison of disc rim color in optic nerve atrophy of compressive optic neuropathy and glaucomatous optic neuropathy
Oishi A
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 1609-1616 (IGR: 17-4)


67220 Posterior displacement of the lamina cribrosa in normal-tension and high-tension glaucoma
Cheng G
Acta Ophthalmologica 2016; 94: e492-e500 (IGR: 17-4)


67522 Clinical Factors Associated with Lamina Cribrosa Thickness in Patients with Glaucoma, as Measured with Swept Source Optical Coherence Tomography
Matsumoto A
PLoS ONE 2016; 11: e0153707 (IGR: 17-4)


67171 Prelamina and Lamina Cribrosa in Glaucoma Patients With Unilateral Visual Field Loss
Kim YW
Investigative Ophthalmology and Visual Science 2016; 57: 1662-1670 (IGR: 17-4)


67346 Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study
Yang D
Brain Research 2016; 1635: 201-208 (IGR: 17-4)


67098 Optic nerve head parameters of high-definition optical coherence tomography and Heidelberg retina tomogram in perimetric and preperimetric glaucoma
Senthil S
Indian Journal of Ophthalmology 2016; 64: 277-284 (IGR: 17-4)


66684 In vivo characterization of lamina cribrosa pore morphology in primary open-angle glaucoma
Safran B
Journal Français d'Ophtalmologie 2016; 39: 265-271 (IGR: 17-4)


67497 African Descent and Glaucoma Evaluation Study (ADAGES): Racial Differences in Optic Disc Hemorrhage and Beta-Zone Parapapillary Atrophy
Bowd C
Ophthalmology 2016; 123: 1476-1483 (IGR: 17-4)


67455 Finite Element Analysis Predicts Large Optic Nerve Head Strains During Horizontal Eye Movements
Baskaran M
Investigative Ophthalmology and Visual Science 2016; 57: 2452-2462 (IGR: 17-4)


67495 Neuroretinal rim in non-glaucomatous large optic nerve heads: a comparison of confocal scanning laser tomography and spectral domain optical coherence tomography
Cursiefen C
British Journal of Ophthalmology 2017; 101: 138-142 (IGR: 17-4)


66655 The Relationship of the Clinical Disc Margin and Bruch's Membrane Opening in Normal and Glaucoma Subjects
Chung N
Investigative Ophthalmology and Visual Science 2016; 57: 1468-1475 (IGR: 17-4)


67346 Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study
Wang H
Brain Research 2016; 1635: 201-208 (IGR: 17-4)


67502 Quantitative comparison of disc rim color in optic nerve atrophy of compressive optic neuropathy and glaucomatous optic neuropathy
Miyamoto K
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 1609-1616 (IGR: 17-4)


67220 Posterior displacement of the lamina cribrosa in normal-tension and high-tension glaucoma
Zhou Q
Acta Ophthalmologica 2016; 94: e492-e500 (IGR: 17-4)


67098 Optic nerve head parameters of high-definition optical coherence tomography and Heidelberg retina tomogram in perimetric and preperimetric glaucoma
Garudadri CS
Indian Journal of Ophthalmology 2016; 64: 277-284 (IGR: 17-4)


67522 Clinical Factors Associated with Lamina Cribrosa Thickness in Patients with Glaucoma, as Measured with Swept Source Optical Coherence Tomography
Maekawa S
PLoS ONE 2016; 11: e0153707 (IGR: 17-4)


67467 Disc-damage Likelihood Scale (DDLS) as a Clinical Indicator of the Presence of a Relative Afferent Pupillary Defect (RAPD)
Rutnin N
Journal of Glaucoma 2016; 25: e910-e916 (IGR: 17-4)


67301 Comparison of the Deep Optic Nerve Structures in Superior Segmental Optic Nerve Hypoplasia and Primary Open-Angle Glaucoma
Kim TW
Journal of Glaucoma 2016; 25: 648-656 (IGR: 17-4)


67438 Effects of Peripapillary Scleral Stiffening on the Deformation of the Lamina Cribrosa
Geraldes DM
Investigative Ophthalmology and Visual Science 2016; 57: 2666-2677 (IGR: 17-4)


67278 Clinical Assessment of Lamina Cribrosa Curvature in Eyes with Primary Open-Angle Glaucoma
Girard MJ
PLoS ONE 2016; 11: e0150260 (IGR: 17-4)


66684 In vivo characterization of lamina cribrosa pore morphology in primary open-angle glaucoma
Baudouin C
Journal Français d'Ophtalmologie 2016; 39: 265-271 (IGR: 17-4)


67497 African Descent and Glaucoma Evaluation Study (ADAGES): Racial Differences in Optic Disc Hemorrhage and Beta-Zone Parapapillary Atrophy
Sample PA
Ophthalmology 2016; 123: 1476-1483 (IGR: 17-4)


67171 Prelamina and Lamina Cribrosa in Glaucoma Patients With Unilateral Visual Field Loss
Girard MJ
Investigative Ophthalmology and Visual Science 2016; 57: 1662-1670 (IGR: 17-4)


67244 In Vivo 3-Dimensional Strain Mapping of the Optic Nerve Head Following Intraocular Pressure Lowering by Trabeculectomy
Sandhu A
Ophthalmology 2016; 123: 1190-1200 (IGR: 17-4)


67587 Advances of optical coherence tomography in myopia and pathologic myopia
Mohamed S
Eye 2016; 30: 901-916 (IGR: 17-4)


67189 Comparison of the Deep Optic Nerve Head Structure between Normal-Tension Glaucoma and Nonarteritic Anterior Ischemic Optic Neuropathy
Hwang JM
PLoS ONE 2016; 11: e0150242 (IGR: 17-4)


67187 Comparing Glaucomatous Disc Change Using Stereo Disc Viewing and the MatchedFlicker Software Program in Ophthalmologists-in-Training
Leoncavallo AJ
American Journal of Ophthalmology 2016; 167: 88-95 (IGR: 17-4)


66670 Optic Disc Vascularization in Glaucoma: Value of Spectral-Domain Optical Coherence Tomography Angiography
Baudouin C
Journal of Ophthalmology 2016; 2016: 6956717 (IGR: 17-4)


66768 Structural characteristics of the optic nerve head influencing human retinal venous pulsations
Hazelton M
Experimental Eye Research 2016; 145: 341-346 (IGR: 17-4)


67107 Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography
Wen JC
Quantitative imaging in medicine and surgery 2016; 6: 125-133 (IGR: 17-4)


67171 Prelamina and Lamina Cribrosa in Glaucoma Patients With Unilateral Visual Field Loss
Mari JM
Investigative Ophthalmology and Visual Science 2016; 57: 1662-1670 (IGR: 17-4)


67187 Comparing Glaucomatous Disc Change Using Stereo Disc Viewing and the MatchedFlicker Software Program in Ophthalmologists-in-Training
Greer A
American Journal of Ophthalmology 2016; 167: 88-95 (IGR: 17-4)


67502 Quantitative comparison of disc rim color in optic nerve atrophy of compressive optic neuropathy and glaucomatous optic neuropathy
Uji A
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 1609-1616 (IGR: 17-4)


67455 Finite Element Analysis Predicts Large Optic Nerve Head Strains During Horizontal Eye Movements
Perera SA
Investigative Ophthalmology and Visual Science 2016; 57: 2452-2462 (IGR: 17-4)


67278 Clinical Assessment of Lamina Cribrosa Curvature in Eyes with Primary Open-Angle Glaucoma
Mari JM
PLoS ONE 2016; 11: e0150260 (IGR: 17-4)


66655 The Relationship of the Clinical Disc Margin and Bruch's Membrane Opening in Normal and Glaucoma Subjects
Nowroozizadeh S
Investigative Ophthalmology and Visual Science 2016; 57: 1468-1475 (IGR: 17-4)


66670 Optic Disc Vascularization in Glaucoma: Value of Spectral-Domain Optical Coherence Tomography Angiography
Labbé A
Journal of Ophthalmology 2016; 2016: 6956717 (IGR: 17-4)


66768 Structural characteristics of the optic nerve head influencing human retinal venous pulsations
Betz-Stablein B
Experimental Eye Research 2016; 145: 341-346 (IGR: 17-4)


67107 Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography
Zhang Q
Quantitative imaging in medicine and surgery 2016; 6: 125-133 (IGR: 17-4)


67346 Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study
Chen W
Brain Research 2016; 1635: 201-208 (IGR: 17-4)


67098 Optic nerve head parameters of high-definition optical coherence tomography and Heidelberg retina tomogram in perimetric and preperimetric glaucoma
Rao HL
Indian Journal of Ophthalmology 2016; 64: 277-284 (IGR: 17-4)


67497 African Descent and Glaucoma Evaluation Study (ADAGES): Racial Differences in Optic Disc Hemorrhage and Beta-Zone Parapapillary Atrophy
Girkin CA
Ophthalmology 2016; 123: 1476-1483 (IGR: 17-4)


67467 Disc-damage Likelihood Scale (DDLS) as a Clinical Indicator of the Presence of a Relative Afferent Pupillary Defect (RAPD)
Faria BM
Journal of Glaucoma 2016; 25: e910-e916 (IGR: 17-4)


67522 Clinical Factors Associated with Lamina Cribrosa Thickness in Patients with Glaucoma, as Measured with Swept Source Optical Coherence Tomography
Kikawa T
PLoS ONE 2016; 11: e0153707 (IGR: 17-4)


67495 Neuroretinal rim in non-glaucomatous large optic nerve heads: a comparison of confocal scanning laser tomography and spectral domain optical coherence tomography
Heindl LM
British Journal of Ophthalmology 2017; 101: 138-142 (IGR: 17-4)


67587 Advances of optical coherence tomography in myopia and pathologic myopia
Brelen ME
Eye 2016; 30: 901-916 (IGR: 17-4)


67438 Effects of Peripapillary Scleral Stiffening on the Deformation of the Lamina Cribrosa
Vo NT
Investigative Ophthalmology and Visual Science 2016; 57: 2666-2677 (IGR: 17-4)


67244 In Vivo 3-Dimensional Strain Mapping of the Optic Nerve Head Following Intraocular Pressure Lowering by Trabeculectomy
Clemo M
Ophthalmology 2016; 123: 1190-1200 (IGR: 17-4)


66768 Structural characteristics of the optic nerve head influencing human retinal venous pulsations
Cringle SJ
Experimental Eye Research 2016; 145: 341-346 (IGR: 17-4)


67244 In Vivo 3-Dimensional Strain Mapping of the Optic Nerve Head Following Intraocular Pressure Lowering by Trabeculectomy
Nikita E
Ophthalmology 2016; 123: 1190-1200 (IGR: 17-4)


67467 Disc-damage Likelihood Scale (DDLS) as a Clinical Indicator of the Presence of a Relative Afferent Pupillary Defect (RAPD)
Guzel H
Journal of Glaucoma 2016; 25: e910-e916 (IGR: 17-4)


67171 Prelamina and Lamina Cribrosa in Glaucoma Patients With Unilateral Visual Field Loss
Kim YK
Investigative Ophthalmology and Visual Science 2016; 57: 1662-1670 (IGR: 17-4)


67107 Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography
Xin C
Quantitative imaging in medicine and surgery 2016; 6: 125-133 (IGR: 17-4)


67497 African Descent and Glaucoma Evaluation Study (ADAGES): Racial Differences in Optic Disc Hemorrhage and Beta-Zone Parapapillary Atrophy
Medeiros FA
Ophthalmology 2016; 123: 1476-1483 (IGR: 17-4)


66655 The Relationship of the Clinical Disc Margin and Bruch's Membrane Opening in Normal and Glaucoma Subjects
Caprioli J
Investigative Ophthalmology and Visual Science 2016; 57: 1468-1475 (IGR: 17-4)


67187 Comparing Glaucomatous Disc Change Using Stereo Disc Viewing and the MatchedFlicker Software Program in Ophthalmologists-in-Training
Martorana GM
American Journal of Ophthalmology 2016; 167: 88-95 (IGR: 17-4)


67587 Advances of optical coherence tomography in myopia and pathologic myopia
Yam JC
Eye 2016; 30: 901-916 (IGR: 17-4)


67502 Quantitative comparison of disc rim color in optic nerve atrophy of compressive optic neuropathy and glaucomatous optic neuropathy
Fujimoto M
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 1609-1616 (IGR: 17-4)


67346 Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study
Li Z
Brain Research 2016; 1635: 201-208 (IGR: 17-4)


67438 Effects of Peripapillary Scleral Stiffening on the Deformation of the Lamina Cribrosa
Feola A
Investigative Ophthalmology and Visual Science 2016; 57: 2666-2677 (IGR: 17-4)


67278 Clinical Assessment of Lamina Cribrosa Curvature in Eyes with Primary Open-Angle Glaucoma
Park KH
PLoS ONE 2016; 11: e0150260 (IGR: 17-4)


67455 Finite Element Analysis Predicts Large Optic Nerve Head Strains During Horizontal Eye Movements
Nongpiur ME
Investigative Ophthalmology and Visual Science 2016; 57: 2452-2462 (IGR: 17-4)


67522 Clinical Factors Associated with Lamina Cribrosa Thickness in Patients with Glaucoma, as Measured with Swept Source Optical Coherence Tomography
Himori N
PLoS ONE 2016; 11: e0153707 (IGR: 17-4)


67187 Comparing Glaucomatous Disc Change Using Stereo Disc Viewing and the MatchedFlicker Software Program in Ophthalmologists-in-Training
Zou B
American Journal of Ophthalmology 2016; 167: 88-95 (IGR: 17-4)


67522 Clinical Factors Associated with Lamina Cribrosa Thickness in Patients with Glaucoma, as Measured with Swept Source Optical Coherence Tomography
Takahashi H
PLoS ONE 2016; 11: e0153707 (IGR: 17-4)


67278 Clinical Assessment of Lamina Cribrosa Curvature in Eyes with Primary Open-Angle Glaucoma
Kim DM
PLoS ONE 2016; 11: e0150260 (IGR: 17-4)


67438 Effects of Peripapillary Scleral Stiffening on the Deformation of the Lamina Cribrosa
Mulvihill J
Investigative Ophthalmology and Visual Science 2016; 57: 2666-2677 (IGR: 17-4)


67587 Advances of optical coherence tomography in myopia and pathologic myopia
Tsang CW
Eye 2016; 30: 901-916 (IGR: 17-4)


67497 African Descent and Glaucoma Evaluation Study (ADAGES): Racial Differences in Optic Disc Hemorrhage and Beta-Zone Parapapillary Atrophy
Ritch R
Ophthalmology 2016; 123: 1476-1483 (IGR: 17-4)


66768 Structural characteristics of the optic nerve head influencing human retinal venous pulsations
Yu DY
Experimental Eye Research 2016; 145: 341-346 (IGR: 17-4)


67455 Finite Element Analysis Predicts Large Optic Nerve Head Strains During Horizontal Eye Movements
Aung T
Investigative Ophthalmology and Visual Science 2016; 57: 2452-2462 (IGR: 17-4)


67244 In Vivo 3-Dimensional Strain Mapping of the Optic Nerve Head Following Intraocular Pressure Lowering by Trabeculectomy
Kamal DS
Ophthalmology 2016; 123: 1190-1200 (IGR: 17-4)


67107 Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography
Kono R
Quantitative imaging in medicine and surgery 2016; 6: 125-133 (IGR: 17-4)


67346 Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study
Sang J
Brain Research 2016; 1635: 201-208 (IGR: 17-4)


67467 Disc-damage Likelihood Scale (DDLS) as a Clinical Indicator of the Presence of a Relative Afferent Pupillary Defect (RAPD)
Liang L
Journal of Glaucoma 2016; 25: e910-e916 (IGR: 17-4)


66655 The Relationship of the Clinical Disc Margin and Bruch's Membrane Opening in Normal and Glaucoma Subjects
Nouri-Mahdavi K
Investigative Ophthalmology and Visual Science 2016; 57: 1468-1475 (IGR: 17-4)


67171 Prelamina and Lamina Cribrosa in Glaucoma Patients With Unilateral Visual Field Loss
Park KH
Investigative Ophthalmology and Visual Science 2016; 57: 1662-1670 (IGR: 17-4)


67502 Quantitative comparison of disc rim color in optic nerve atrophy of compressive optic neuropathy and glaucomatous optic neuropathy
Miyata M
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 1609-1616 (IGR: 17-4)


67171 Prelamina and Lamina Cribrosa in Glaucoma Patients With Unilateral Visual Field Loss
Kim DM
Investigative Ophthalmology and Visual Science 2016; 57: 1662-1670 (IGR: 17-4)


67346 Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study
Liu S
Brain Research 2016; 1635: 201-208 (IGR: 17-4)


67522 Clinical Factors Associated with Lamina Cribrosa Thickness in Patients with Glaucoma, as Measured with Swept Source Optical Coherence Tomography
Maruyama K
PLoS ONE 2016; 11: e0153707 (IGR: 17-4)


67107 Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography
Mudumbai RC
Quantitative imaging in medicine and surgery 2016; 6: 125-133 (IGR: 17-4)


67455 Finite Element Analysis Predicts Large Optic Nerve Head Strains During Horizontal Eye Movements
Milea D
Investigative Ophthalmology and Visual Science 2016; 57: 2452-2462 (IGR: 17-4)


67497 African Descent and Glaucoma Evaluation Study (ADAGES): Racial Differences in Optic Disc Hemorrhage and Beta-Zone Parapapillary Atrophy
Weinreb RN
Ophthalmology 2016; 123: 1476-1483 (IGR: 17-4)


67438 Effects of Peripapillary Scleral Stiffening on the Deformation of the Lamina Cribrosa
Albon J
Investigative Ophthalmology and Visual Science 2016; 57: 2666-2677 (IGR: 17-4)


67502 Quantitative comparison of disc rim color in optic nerve atrophy of compressive optic neuropathy and glaucomatous optic neuropathy
Yoshimura N
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 1609-1616 (IGR: 17-4)


67244 In Vivo 3-Dimensional Strain Mapping of the Optic Nerve Head Following Intraocular Pressure Lowering by Trabeculectomy
Papadopoulos M
Ophthalmology 2016; 123: 1190-1200 (IGR: 17-4)


67467 Disc-damage Likelihood Scale (DDLS) as a Clinical Indicator of the Presence of a Relative Afferent Pupillary Defect (RAPD)
Martinez P
Journal of Glaucoma 2016; 25: e910-e916 (IGR: 17-4)


67587 Advances of optical coherence tomography in myopia and pathologic myopia
Lai TY
Eye 2016; 30: 901-916 (IGR: 17-4)


67187 Comparing Glaucomatous Disc Change Using Stereo Disc Viewing and the MatchedFlicker Software Program in Ophthalmologists-in-Training
Shuster JJ
American Journal of Ophthalmology 2016; 167: 88-95 (IGR: 17-4)


67438 Effects of Peripapillary Scleral Stiffening on the Deformation of the Lamina Cribrosa
Abel RL
Investigative Ophthalmology and Visual Science 2016; 57: 2666-2677 (IGR: 17-4)


67497 African Descent and Glaucoma Evaluation Study (ADAGES): Racial Differences in Optic Disc Hemorrhage and Beta-Zone Parapapillary Atrophy
Zangwill LM
Ophthalmology 2016; 123: 1476-1483 (IGR: 17-4)


67187 Comparing Glaucomatous Disc Change Using Stereo Disc Viewing and the MatchedFlicker Software Program in Ophthalmologists-in-Training
Sherwood MB
American Journal of Ophthalmology 2016; 167: 88-95 (IGR: 17-4)


67455 Finite Element Analysis Predicts Large Optic Nerve Head Strains During Horizontal Eye Movements
Girard MJ
Investigative Ophthalmology and Visual Science 2016; 57: 2452-2462 (IGR: 17-4)


67522 Clinical Factors Associated with Lamina Cribrosa Thickness in Patients with Glaucoma, as Measured with Swept Source Optical Coherence Tomography
Kunikata H
PLoS ONE 2016; 11: e0153707 (IGR: 17-4)


67244 In Vivo 3-Dimensional Strain Mapping of the Optic Nerve Head Following Intraocular Pressure Lowering by Trabeculectomy
Mari JM
Ophthalmology 2016; 123: 1190-1200 (IGR: 17-4)


67467 Disc-damage Likelihood Scale (DDLS) as a Clinical Indicator of the Presence of a Relative Afferent Pupillary Defect (RAPD)
Tawfik M
Journal of Glaucoma 2016; 25: e910-e916 (IGR: 17-4)


67107 Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography
Johnstone MA
Quantitative imaging in medicine and surgery 2016; 6: 125-133 (IGR: 17-4)


67346 Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study
Cao Y
Brain Research 2016; 1635: 201-208 (IGR: 17-4)


67497 African Descent and Glaucoma Evaluation Study (ADAGES): Racial Differences in Optic Disc Hemorrhage and Beta-Zone Parapapillary Atrophy
Liebmann JM
Ophthalmology 2016; 123: 1476-1483 (IGR: 17-4)


67467 Disc-damage Likelihood Scale (DDLS) as a Clinical Indicator of the Presence of a Relative Afferent Pupillary Defect (RAPD)
Spaeth GL
Journal of Glaucoma 2016; 25: e910-e916 (IGR: 17-4)


67522 Clinical Factors Associated with Lamina Cribrosa Thickness in Patients with Glaucoma, as Measured with Swept Source Optical Coherence Tomography
Akiba M
PLoS ONE 2016; 11: e0153707 (IGR: 17-4)


67107 Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography
Chen PP
Quantitative imaging in medicine and surgery 2016; 6: 125-133 (IGR: 17-4)


67438 Effects of Peripapillary Scleral Stiffening on the Deformation of the Lamina Cribrosa
Ethier CR
Investigative Ophthalmology and Visual Science 2016; 57: 2666-2677 (IGR: 17-4)


67244 In Vivo 3-Dimensional Strain Mapping of the Optic Nerve Head Following Intraocular Pressure Lowering by Trabeculectomy
Aung T
Ophthalmology 2016; 123: 1190-1200 (IGR: 17-4)


67346 Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study
Xie X
Brain Research 2016; 1635: 201-208 (IGR: 17-4)


67497 African Descent and Glaucoma Evaluation Study (ADAGES): Racial Differences in Optic Disc Hemorrhage and Beta-Zone Parapapillary Atrophy

Ophthalmology 2016; 123: 1476-1483 (IGR: 17-4)


67244 In Vivo 3-Dimensional Strain Mapping of the Optic Nerve Head Following Intraocular Pressure Lowering by Trabeculectomy
Strouthidis NG
Ophthalmology 2016; 123: 1190-1200 (IGR: 17-4)


67346 Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study
Ren R
Brain Research 2016; 1635: 201-208 (IGR: 17-4)


67522 Clinical Factors Associated with Lamina Cribrosa Thickness in Patients with Glaucoma, as Measured with Swept Source Optical Coherence Tomography
Nakazawa T
PLoS ONE 2016; 11: e0153707 (IGR: 17-4)


67107 Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography
Wang RK
Quantitative imaging in medicine and surgery 2016; 6: 125-133 (IGR: 17-4)


67346 Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study
Zhang Y; Sabel BA; Wang N
Brain Research 2016; 1635: 201-208 (IGR: 17-4)


65848 Significance of the disc damage likelihood scale objectively measured by a non-mydriatic fundus camera in preperimetric glaucoma
Pahlitzsch M
Clinical Ophthalmology 2015; 9: 2147-2158 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Hammel N
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


66488 The Characteristics of Lamina Cribrosa Defects in Myopic Eyes With and Without Open-Angle Glaucoma
Han JC
Investigative Ophthalmology and Visual Science 2016; 57: 486-494 (IGR: 17-3)


65915 Automated Detection of Glaucoma From Topographic Features of the Optic Nerve Head in Color Fundus Photographs
Chakrabarty L
Journal of Glaucoma 2016; 25: 590-597 (IGR: 17-3)


66255 Diagnostic Accuracy of Glaucoma With Sector-Based and a New Total Profile-Based Analysis of Neuroretinal Rim and Retinal Nerve Fiber Layer Thickness
Danthurebandara VM
Investigative Ophthalmology and Visual Science 2016; 57: 181-187 (IGR: 17-3)


66320 Fast circulation of cerebrospinal fluid: an alternative perspective on the protective role of high intracranial pressure in ocular hypertension
Wostyn P
Clinical and Experimental Optometry 2016; 99: 213-218 (IGR: 17-3)


66289 Translamina Cribrosa Pressure Difference as Potential Element in the Pathogenesis of Glaucomatous Optic Neuropathy
Jonas JB
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2016; 5: 5-10 (IGR: 17-3)


66616 Three-Dimensional Strains in Human Posterior Sclera Using Ultrasound Speckle Tracking
Pavlatos E
Journal of Biomechanical Engineering 2016; 138: (IGR: 17-3)


65845 Phase-contrast Micro-computed Tomography Measurements of the Intraocular Pressure-induced Deformation of the Porcine Lamina Cribrosa
Coudrillier B
IEEE Transactions on Medical Imaging 2016; 35: 988-999 (IGR: 17-3)


66307 Optic nerve head and intraocular pressure in the guinea pig eye
Ostrin LA
Experimental Eye Research 2015; 146: 7-16 (IGR: 17-3)


65998 Lamina cribrosa defects in eyes with glaucomatous disc haemorrhage
Kim YK
Acta Ophthalmologica 2016; 94: e468-e473 (IGR: 17-3)


66233 Estimated Trans-Lamina Cribrosa Pressure Differences in Low-Teen and High-Teen Intraocular Pressure Normal Tension Glaucoma: The Korean National Health and Nutrition Examination Survey
Lee SH
PLoS ONE 2016; 11: e0148412 (IGR: 17-3)


65847 The Connective Tissue Components of Optic Nerve Head Cupping in Monkey Experimental Glaucoma Part 1: Global Change
Yang H
Investigative Ophthalmology and Visual Science 2015; 56: 7661-7678 (IGR: 17-3)


66355 Estimation of the Disc Damage Likelihood Scale in primary open-angle glaucoma: the Glaucoma Stereo Analysis Study
Kitaoka Y
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 523-528 (IGR: 17-3)


65895 Neuroretinal rim area and ocular haemodynamic parameters in patients with normal-tension glaucoma with differing intracranial pressures
Siaudvytyte L
British Journal of Ophthalmology 2016; 100: 1134-1138 (IGR: 17-3)


65909 Structural dissociation of optic disc margin components with optic disc tilting: a spectral domain optical coherence tomography study
Hasegawa T
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 343-349 (IGR: 17-3)


66337 Correlations between corneal and optic nerve head variables in healthy subjects and patients with primary open angle glaucoma
Saenz-Frances F
International Journal of Ophthalmology 2015; 8: 1156-1161 (IGR: 17-3)


66344 The role of lamina cribrosa cells in optic nerve head fibrosis in glaucoma
Wallace DM
Experimental Eye Research 2016; 142: 102-109 (IGR: 17-3)


65908 Influence of optic disc leakage on objective optic nerve head assessment in patients with uveitis
Heinz C
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 361-364 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4
Malik R
American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


66344 The role of lamina cribrosa cells in optic nerve head fibrosis in glaucoma
O'brien CJ
Experimental Eye Research 2016; 142: 102-109 (IGR: 17-3)


66255 Diagnostic Accuracy of Glaucoma With Sector-Based and a New Total Profile-Based Analysis of Neuroretinal Rim and Retinal Nerve Fiber Layer Thickness
Vianna JR
Investigative Ophthalmology and Visual Science 2016; 57: 181-187 (IGR: 17-3)


66289 Translamina Cribrosa Pressure Difference as Potential Element in the Pathogenesis of Glaucomatous Optic Neuropathy
Wang N
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2016; 5: 5-10 (IGR: 17-3)


66616 Three-Dimensional Strains in Human Posterior Sclera Using Ultrasound Speckle Tracking
Perez BC
Journal of Biomechanical Engineering 2016; 138: (IGR: 17-3)


66320 Fast circulation of cerebrospinal fluid: an alternative perspective on the protective role of high intracranial pressure in ocular hypertension
De Groot V
Clinical and Experimental Optometry 2016; 99: 213-218 (IGR: 17-3)


65848 Significance of the disc damage likelihood scale objectively measured by a non-mydriatic fundus camera in preperimetric glaucoma
Torun N
Clinical Ophthalmology 2015; 9: 2147-2158 (IGR: 17-3)


65908 Influence of optic disc leakage on objective optic nerve head assessment in patients with uveitis
Kogelboom K
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 361-364 (IGR: 17-3)


66233 Estimated Trans-Lamina Cribrosa Pressure Differences in Low-Teen and High-Teen Intraocular Pressure Normal Tension Glaucoma: The Korean National Health and Nutrition Examination Survey
Kwak SW
PLoS ONE 2016; 11: e0148412 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4
O'Leary N
American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


66337 Correlations between corneal and optic nerve head variables in healthy subjects and patients with primary open angle glaucoma
Jañez L
International Journal of Ophthalmology 2015; 8: 1156-1161 (IGR: 17-3)


65909 Structural dissociation of optic disc margin components with optic disc tilting: a spectral domain optical coherence tomography study
Akagi T
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 343-349 (IGR: 17-3)


66307 Optic nerve head and intraocular pressure in the guinea pig eye
Wildsoet CF
Experimental Eye Research 2015; 146: 7-16 (IGR: 17-3)


65998 Lamina cribrosa defects in eyes with glaucomatous disc haemorrhage
Park KH
Acta Ophthalmologica 2016; 94: e468-e473 (IGR: 17-3)


65915 Automated Detection of Glaucoma From Topographic Features of the Optic Nerve Head in Color Fundus Photographs
Joshi GD
Journal of Glaucoma 2016; 25: 590-597 (IGR: 17-3)


65845 Phase-contrast Micro-computed Tomography Measurements of the Intraocular Pressure-induced Deformation of the Porcine Lamina Cribrosa
Geraldes D
IEEE Transactions on Medical Imaging 2016; 35: 988-999 (IGR: 17-3)


65847 The Connective Tissue Components of Optic Nerve Head Cupping in Monkey Experimental Glaucoma Part 1: Global Change
Ren R
Investigative Ophthalmology and Visual Science 2015; 56: 7661-7678 (IGR: 17-3)


66355 Estimation of the Disc Damage Likelihood Scale in primary open-angle glaucoma: the Glaucoma Stereo Analysis Study
Tanito M
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 523-528 (IGR: 17-3)


65895 Neuroretinal rim area and ocular haemodynamic parameters in patients with normal-tension glaucoma with differing intracranial pressures
Januleviciene I
British Journal of Ophthalmology 2016; 100: 1134-1138 (IGR: 17-3)


66488 The Characteristics of Lamina Cribrosa Defects in Myopic Eyes With and Without Open-Angle Glaucoma
Cho SH
Investigative Ophthalmology and Visual Science 2016; 57: 486-494 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Belghith A
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


65895 Neuroretinal rim area and ocular haemodynamic parameters in patients with normal-tension glaucoma with differing intracranial pressures
Daveckaite A
British Journal of Ophthalmology 2016; 100: 1134-1138 (IGR: 17-3)


65845 Phase-contrast Micro-computed Tomography Measurements of the Intraocular Pressure-induced Deformation of the Porcine Lamina Cribrosa
Vo N
IEEE Transactions on Medical Imaging 2016; 35: 988-999 (IGR: 17-3)


65909 Structural dissociation of optic disc margin components with optic disc tilting: a spectral domain optical coherence tomography study
Hangai M
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 343-349 (IGR: 17-3)


66337 Correlations between corneal and optic nerve head variables in healthy subjects and patients with primary open angle glaucoma
Borrego-Sanz L
International Journal of Ophthalmology 2015; 8: 1156-1161 (IGR: 17-3)


65908 Influence of optic disc leakage on objective optic nerve head assessment in patients with uveitis
Heiligenhaus A
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 361-364 (IGR: 17-3)


66233 Estimated Trans-Lamina Cribrosa Pressure Differences in Low-Teen and High-Teen Intraocular Pressure Normal Tension Glaucoma: The Korean National Health and Nutrition Examination Survey
Kang EM
PLoS ONE 2016; 11: e0148412 (IGR: 17-3)


66255 Diagnostic Accuracy of Glaucoma With Sector-Based and a New Total Profile-Based Analysis of Neuroretinal Rim and Retinal Nerve Fiber Layer Thickness
Sharpe GP
Investigative Ophthalmology and Visual Science 2016; 57: 181-187 (IGR: 17-3)


66488 The Characteristics of Lamina Cribrosa Defects in Myopic Eyes With and Without Open-Angle Glaucoma
Sohn DY
Investigative Ophthalmology and Visual Science 2016; 57: 486-494 (IGR: 17-3)


66616 Three-Dimensional Strains in Human Posterior Sclera Using Ultrasound Speckle Tracking
Morris HJ
Journal of Biomechanical Engineering 2016; 138: (IGR: 17-3)


65848 Significance of the disc damage likelihood scale objectively measured by a non-mydriatic fundus camera in preperimetric glaucoma
Erb C
Clinical Ophthalmology 2015; 9: 2147-2158 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Bowd C
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


66355 Estimation of the Disc Damage Likelihood Scale in primary open-angle glaucoma: the Glaucoma Stereo Analysis Study
Yokoyama Y
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 523-528 (IGR: 17-3)


66289 Translamina Cribrosa Pressure Difference as Potential Element in the Pathogenesis of Glaucomatous Optic Neuropathy
Yang D
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2016; 5: 5-10 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4
Mikelberg FS
American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


66320 Fast circulation of cerebrospinal fluid: an alternative perspective on the protective role of high intracranial pressure in ocular hypertension
Van Dam D
Clinical and Experimental Optometry 2016; 99: 213-218 (IGR: 17-3)


65847 The Connective Tissue Components of Optic Nerve Head Cupping in Monkey Experimental Glaucoma Part 1: Global Change
Lockwood H
Investigative Ophthalmology and Visual Science 2015; 56: 7661-7678 (IGR: 17-3)


65915 Automated Detection of Glaucoma From Topographic Features of the Optic Nerve Head in Color Fundus Photographs
Chakravarty A; Raman GV
Journal of Glaucoma 2016; 25: 590-597 (IGR: 17-3)


66233 Estimated Trans-Lamina Cribrosa Pressure Differences in Low-Teen and High-Teen Intraocular Pressure Normal Tension Glaucoma: The Korean National Health and Nutrition Examination Survey
Kim GA
PLoS ONE 2016; 11: e0148412 (IGR: 17-3)


65847 The Connective Tissue Components of Optic Nerve Head Cupping in Monkey Experimental Glaucoma Part 1: Global Change
Williams G
Investigative Ophthalmology and Visual Science 2015; 56: 7661-7678 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Medeiros FA
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4
Balazsi AG
American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


66337 Correlations between corneal and optic nerve head variables in healthy subjects and patients with primary open angle glaucoma
Berrozpe-Villabona C
International Journal of Ophthalmology 2015; 8: 1156-1161 (IGR: 17-3)


65895 Neuroretinal rim area and ocular haemodynamic parameters in patients with normal-tension glaucoma with differing intracranial pressures
Ragauskas A
British Journal of Ophthalmology 2016; 100: 1134-1138 (IGR: 17-3)


66616 Three-Dimensional Strains in Human Posterior Sclera Using Ultrasound Speckle Tracking
Chen H
Journal of Biomechanical Engineering 2016; 138: (IGR: 17-3)


66255 Diagnostic Accuracy of Glaucoma With Sector-Based and a New Total Profile-Based Analysis of Neuroretinal Rim and Retinal Nerve Fiber Layer Thickness
Hutchison DM
Investigative Ophthalmology and Visual Science 2016; 57: 181-187 (IGR: 17-3)


66355 Estimation of the Disc Damage Likelihood Scale in primary open-angle glaucoma: the Glaucoma Stereo Analysis Study
Nitta K
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 523-528 (IGR: 17-3)


66488 The Characteristics of Lamina Cribrosa Defects in Myopic Eyes With and Without Open-Angle Glaucoma
Kee C
Investigative Ophthalmology and Visual Science 2016; 57: 486-494 (IGR: 17-3)


65845 Phase-contrast Micro-computed Tomography Measurements of the Intraocular Pressure-induced Deformation of the Porcine Lamina Cribrosa
Atwood R
IEEE Transactions on Medical Imaging 2016; 35: 988-999 (IGR: 17-3)


65848 Significance of the disc damage likelihood scale objectively measured by a non-mydriatic fundus camera in preperimetric glaucoma
Bruenner J
Clinical Ophthalmology 2015; 9: 2147-2158 (IGR: 17-3)


66320 Fast circulation of cerebrospinal fluid: an alternative perspective on the protective role of high intracranial pressure in ocular hypertension
Audenaert K
Clinical and Experimental Optometry 2016; 99: 213-218 (IGR: 17-3)


65909 Structural dissociation of optic disc margin components with optic disc tilting: a spectral domain optical coherence tomography study
Yamada H
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 343-349 (IGR: 17-3)


66355 Estimation of the Disc Damage Likelihood Scale in primary open-angle glaucoma: the Glaucoma Stereo Analysis Study
Katai M
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 523-528 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4
Leblanc RP
American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


66320 Fast circulation of cerebrospinal fluid: an alternative perspective on the protective role of high intracranial pressure in ocular hypertension
Killer HE
Clinical and Experimental Optometry 2016; 99: 213-218 (IGR: 17-3)


65895 Neuroretinal rim area and ocular haemodynamic parameters in patients with normal-tension glaucoma with differing intracranial pressures
Siesky B
British Journal of Ophthalmology 2016; 100: 1134-1138 (IGR: 17-3)


65847 The Connective Tissue Components of Optic Nerve Head Cupping in Monkey Experimental Glaucoma Part 1: Global Change
Libertiaux V
Investigative Ophthalmology and Visual Science 2015; 56: 7661-7678 (IGR: 17-3)


65845 Phase-contrast Micro-computed Tomography Measurements of the Intraocular Pressure-induced Deformation of the Porcine Lamina Cribrosa
Reinhard C
IEEE Transactions on Medical Imaging 2016; 35: 988-999 (IGR: 17-3)


65848 Significance of the disc damage likelihood scale objectively measured by a non-mydriatic fundus camera in preperimetric glaucoma
Maier AK
Clinical Ophthalmology 2015; 9: 2147-2158 (IGR: 17-3)


66233 Estimated Trans-Lamina Cribrosa Pressure Differences in Low-Teen and High-Teen Intraocular Pressure Normal Tension Glaucoma: The Korean National Health and Nutrition Examination Survey
Lee SY
PLoS ONE 2016; 11: e0148412 (IGR: 17-3)


65915 Automated Detection of Glaucoma From Topographic Features of the Optic Nerve Head in Color Fundus Photographs
Krishnadas SR
Journal of Glaucoma 2016; 25: 590-597 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Sharpsten L
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


66337 Correlations between corneal and optic nerve head variables in healthy subjects and patients with primary open angle glaucoma
Martinez-de-la-Casa JM
International Journal of Ophthalmology 2015; 8: 1156-1161 (IGR: 17-3)


65909 Structural dissociation of optic disc margin components with optic disc tilting: a spectral domain optical coherence tomography study
Suda K
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 343-349 (IGR: 17-3)


66255 Diagnostic Accuracy of Glaucoma With Sector-Based and a New Total Profile-Based Analysis of Neuroretinal Rim and Retinal Nerve Fiber Layer Thickness
Belliveau AC
Investigative Ophthalmology and Visual Science 2016; 57: 181-187 (IGR: 17-3)


66616 Three-Dimensional Strains in Human Posterior Sclera Using Ultrasound Speckle Tracking
Palko JR
Journal of Biomechanical Engineering 2016; 138: (IGR: 17-3)


66255 Diagnostic Accuracy of Glaucoma With Sector-Based and a New Total Profile-Based Analysis of Neuroretinal Rim and Retinal Nerve Fiber Layer Thickness
Shuba LM
Investigative Ophthalmology and Visual Science 2016; 57: 181-187 (IGR: 17-3)


66355 Estimation of the Disc Damage Likelihood Scale in primary open-angle glaucoma: the Glaucoma Stereo Analysis Study
Omodaka K
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 523-528 (IGR: 17-3)


65895 Neuroretinal rim area and ocular haemodynamic parameters in patients with normal-tension glaucoma with differing intracranial pressures
Harris A
British Journal of Ophthalmology 2016; 100: 1134-1138 (IGR: 17-3)


66616 Three-Dimensional Strains in Human Posterior Sclera Using Ultrasound Speckle Tracking
Pan X
Journal of Biomechanical Engineering 2016; 138: (IGR: 17-3)


65909 Structural dissociation of optic disc margin components with optic disc tilting: a spectral domain optical coherence tomography study
Kimura Y
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 343-349 (IGR: 17-3)


65847 The Connective Tissue Components of Optic Nerve Head Cupping in Monkey Experimental Glaucoma Part 1: Global Change
Downs C
Investigative Ophthalmology and Visual Science 2015; 56: 7661-7678 (IGR: 17-3)


65915 Automated Detection of Glaucoma From Topographic Features of the Optic Nerve Head in Color Fundus Photographs
Sivaswamy J
Journal of Glaucoma 2016; 25: 590-597 (IGR: 17-3)


66320 Fast circulation of cerebrospinal fluid: an alternative perspective on the protective role of high intracranial pressure in ocular hypertension
De Deyn PP
Clinical and Experimental Optometry 2016; 99: 213-218 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Mendoza N
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4
Lesk MR
American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


66233 Estimated Trans-Lamina Cribrosa Pressure Differences in Low-Teen and High-Teen Intraocular Pressure Normal Tension Glaucoma: The Korean National Health and Nutrition Examination Survey
Bae HW
PLoS ONE 2016; 11: e0148412 (IGR: 17-3)


66337 Correlations between corneal and optic nerve head variables in healthy subjects and patients with primary open angle glaucoma
Morales-Fernandez L
International Journal of Ophthalmology 2015; 8: 1156-1161 (IGR: 17-3)


65848 Significance of the disc damage likelihood scale objectively measured by a non-mydriatic fundus camera in preperimetric glaucoma
Gonnermann J
Clinical Ophthalmology 2015; 9: 2147-2158 (IGR: 17-3)


65845 Phase-contrast Micro-computed Tomography Measurements of the Intraocular Pressure-induced Deformation of the Porcine Lamina Cribrosa
Campbell I
IEEE Transactions on Medical Imaging 2016; 35: 988-999 (IGR: 17-3)


66233 Estimated Trans-Lamina Cribrosa Pressure Differences in Low-Teen and High-Teen Intraocular Pressure Normal Tension Glaucoma: The Korean National Health and Nutrition Examination Survey
Seong GJ
PLoS ONE 2016; 11: e0148412 (IGR: 17-3)


66355 Estimation of the Disc Damage Likelihood Scale in primary open-angle glaucoma: the Glaucoma Stereo Analysis Study
Nakazawa T
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 523-528 (IGR: 17-3)


66616 Three-Dimensional Strains in Human Posterior Sclera Using Ultrasound Speckle Tracking
Weber PA
Journal of Biomechanical Engineering 2016; 138: (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4
Nicolela MT
American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


65909 Structural dissociation of optic disc margin components with optic disc tilting: a spectral domain optical coherence tomography study
Nakanishi H
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 343-349 (IGR: 17-3)


65847 The Connective Tissue Components of Optic Nerve Head Cupping in Monkey Experimental Glaucoma Part 1: Global Change
Gardiner SK
Investigative Ophthalmology and Visual Science 2015; 56: 7661-7678 (IGR: 17-3)


65848 Significance of the disc damage likelihood scale objectively measured by a non-mydriatic fundus camera in preperimetric glaucoma
Bertelmann E
Clinical Ophthalmology 2015; 9: 2147-2158 (IGR: 17-3)


66255 Diagnostic Accuracy of Glaucoma With Sector-Based and a New Total Profile-Based Analysis of Neuroretinal Rim and Retinal Nerve Fiber Layer Thickness
Nicolela MT
Investigative Ophthalmology and Visual Science 2016; 57: 181-187 (IGR: 17-3)


65845 Phase-contrast Micro-computed Tomography Measurements of the Intraocular Pressure-induced Deformation of the Porcine Lamina Cribrosa
Raji Y
IEEE Transactions on Medical Imaging 2016; 35: 988-999 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Tatham AJ
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


66337 Correlations between corneal and optic nerve head variables in healthy subjects and patients with primary open angle glaucoma
Garcia-Sanchez J; Santos-Bueso E
International Journal of Ophthalmology 2015; 8: 1156-1161 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Khachatryan N
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4
Trope GE
American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


65848 Significance of the disc damage likelihood scale objectively measured by a non-mydriatic fundus camera in preperimetric glaucoma
Klamann MK
Clinical Ophthalmology 2015; 9: 2147-2158 (IGR: 17-3)


65845 Phase-contrast Micro-computed Tomography Measurements of the Intraocular Pressure-induced Deformation of the Porcine Lamina Cribrosa
Albon J
IEEE Transactions on Medical Imaging 2016; 35: 988-999 (IGR: 17-3)


66616 Three-Dimensional Strains in Human Posterior Sclera Using Ultrasound Speckle Tracking
Hart RT
Journal of Biomechanical Engineering 2016; 138: (IGR: 17-3)


66233 Estimated Trans-Lamina Cribrosa Pressure Differences in Low-Teen and High-Teen Intraocular Pressure Normal Tension Glaucoma: The Korean National Health and Nutrition Examination Survey
Kim CY
PLoS ONE 2016; 11: e0148412 (IGR: 17-3)


65847 The Connective Tissue Components of Optic Nerve Head Cupping in Monkey Experimental Glaucoma Part 1: Global Change
Burgoyne CF
Investigative Ophthalmology and Visual Science 2015; 56: 7661-7678 (IGR: 17-3)


65909 Structural dissociation of optic disc margin components with optic disc tilting: a spectral domain optical coherence tomography study
Ikeda HO
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 343-349 (IGR: 17-3)


66255 Diagnostic Accuracy of Glaucoma With Sector-Based and a New Total Profile-Based Analysis of Neuroretinal Rim and Retinal Nerve Fiber Layer Thickness
Chauhan BC
Investigative Ophthalmology and Visual Science 2016; 57: 181-187 (IGR: 17-3)


66616 Three-Dimensional Strains in Human Posterior Sclera Using Ultrasound Speckle Tracking
Liu J
Journal of Biomechanical Engineering 2016; 138: (IGR: 17-3)


65909 Structural dissociation of optic disc margin components with optic disc tilting: a spectral domain optical coherence tomography study
Yoshimura N
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 343-349 (IGR: 17-3)


66337 Correlations between corneal and optic nerve head variables in healthy subjects and patients with primary open angle glaucoma
Garcia-Feijoo J
International Journal of Ophthalmology 2015; 8: 1156-1161 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Liebmann JM
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


65845 Phase-contrast Micro-computed Tomography Measurements of the Intraocular Pressure-induced Deformation of the Porcine Lamina Cribrosa
Abel R
IEEE Transactions on Medical Imaging 2016; 35: 988-999 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4
Chauhan BC
American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


65845 Phase-contrast Micro-computed Tomography Measurements of the Intraocular Pressure-induced Deformation of the Porcine Lamina Cribrosa
Ethier R
IEEE Transactions on Medical Imaging 2016; 35: 988-999 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Girkin CA
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4

American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Weinreb RN; Zangwill LM
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


61525 Age-Related Changes in Ocular Blood Velocity in Suspects with Glaucomatous Optic Disc Appearance. Comparison with Healthy Subjects and Glaucoma Patients
Asejczyk-Widlicka M
PLoS ONE 2015; 10: e0134357 (IGR: 17-1)


61170 Disc hemorrhages and their risk factors in an urban South Korean population
Park HS
Optometry and Vision Science 2015; 92: 700-706 (IGR: 17-1)


61045 Effect of age and disc size on rim order rules by Heidelberg Retina Tomograph
Nayak NV
Journal of Glaucoma 2015; 24: 377-382 (IGR: 17-1)


61626 Retinal Nerve Fiber Layer Converges More Convexly on Normal Smaller Optic Nerve Head
Jung KI
Journal of Glaucoma 2015; 24: 448-454 (IGR: 17-1)


61079 Morphological characteristics of the optic nerve evaluated by confocal laser tomography (HRT3) and laser polarimetry (GDx-VCC) in a normal population from the city of Barcelona
Fallon M
Archivos de la Sociedad Española de Oftalmologia 2015; 90: 507-516 (IGR: 17-1)


61183 Quantitative analysis of three-dimensional fibrillar collagen microstructure within the normal, aged and glaucomatous human optic nerve head
Jones HJ
Journal of the Royal Society, Interface / the Royal Society 2015; 12: (IGR: 17-1)


60890 Optic nerve head changes after short-term intraocular pressure elevation in acute primary angle-closure suspects
Jiang R
Ophthalmology 2015; 122: 730-737 (IGR: 17-1)


61505 In Vivo Changes in Lamina Cribrosa Microarchitecture and Optic Nerve Head Structure in Early Experimental Glaucoma
Ivers KM
PLoS ONE 2015; 10: e0134223 (IGR: 17-1)


61685 Structure-Function Relationship Between Bruch's Membrane Opening-Based Optic Nerve Head Parameters and Visual Field Defects in Glaucoma
Muth DR
Investigative Ophthalmology and Visual Science 2015; 56: 3320-3328 (IGR: 17-1)


61554 Bruch's Membrane Opening Minimum Rim Width and Retinal Nerve Fiber Layer Thickness in a Normal White Population: A Multicenter Study
Chauhan BC
Ophthalmology 2015; 122: 1786-1794 (IGR: 17-1)


61131 Optic Nerve Head Deformation in Glaucoma: A Prospective Analysis of Optic Nerve Head Surface and Lamina Cribrosa Surface Displacement
Wu Z
Ophthalmology 2015; 122: 1317-1329 (IGR: 17-1)


61077 Pigment dispersion syndrome associated with optic nerve melanocytoma
Asorey-García A
Archivos de la Sociedad Española de Oftalmologia 2015; 90: 484-486 (IGR: 17-1)


61606 Optic Disc Change during Childhood Myopic Shift: Comparison between Eyes with an Enlarged Cup-To-Disc Ratio and Childhood Glaucoma Compared to Normal Myopic Eyes
Park HY
PLoS ONE 2015; 10: e0131781 (IGR: 17-1)


61788 High spatial resolution imaging mass spectrometry of human optic nerve lipids and proteins
Anderson DM
Journal of the American Society for Mass Spectrometry 2015; 26: 940-947 (IGR: 17-1)


61036 A Global Shape Index to Characterize Anterior Lamina Cribrosa Morphology and Its Determinants in Healthy Indian Eyes
Thakku SG
Investigative Ophthalmology and Visual Science 2015; 56: 3604-3614 (IGR: 17-1)


61063 Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes
Pazos M
Experimental Eye Research 2015; 139: 1-12 (IGR: 17-1)


60978 Corneal Segmentation Analysis Increases Glaucoma Diagnostic Ability of Optic Nerve Head Examination, Heidelberg Retina Tomograph's Moorfield's Regression Analysis, and Glaucoma Probability Score
Saenz-Frances F
Journal of Ophthalmology 2015; 2015: 215951 (IGR: 17-1)


61275 Stereo Photo Measured ONH Shape Predicts Development of POAG in Subjects With Ocular Hypertension
Christopher M
Investigative Ophthalmology and Visual Science 2015; 56: 4470-4479 (IGR: 17-1)


61266 Disc Torsion and Vertical Disc Tilt Are Related to Subfoveal Scleral Thickness in Open-Angle Glaucoma Patients With Myopia
Park HY
Investigative Ophthalmology and Visual Science 2015; 56: 4927-4935 (IGR: 17-1)


61737 Sensitivity and Specificity of the Nerve Fibre Imaging Using Scanning Laser Ophthalmoscopy and of Optic Nerve Analysis Using Heidelberg Retina Tomography in Glaucoma
Hirsch T
Klinische Monatsblätter für Augenheilkunde 2015; 232: 1279-1283 (IGR: 17-1)


61806 Cerebrospinal fluid pressure and the eye
Morgan WH
British Journal of Ophthalmology 2016; 100: 71-77 (IGR: 17-1)


61718 Structural Differences in the Optic Nerve Head of Glaucoma Patients With and Without Disc Hemorrhages
Chin YC
Journal of Glaucoma 2016; 25: e76-e81 (IGR: 17-1)


61034 Lamina Cribrosa in Glaucoma: Diagnosis and Monitoring
Abe RY
Current ophthalmology reports 2015; 3: 74-84 (IGR: 17-1)


61106 Central retinal venous pressure in eyes of normal-tension glaucoma patients with optic disc hemorrhage
Kim KE
PLoS ONE 2015; 10: e0127920 (IGR: 17-1)


61035 Prevalence of Optic Disc Hemorrhage in Korea: The Korea National Health and Nutrition Examination Survey
Kim DW
Investigative Ophthalmology and Visual Science 2015; 56: 3666-3672 (IGR: 17-1)


61568 Literature review and meta-analysis of translaminar pressure difference in open-angle glaucoma
Siaudvytyte L
Eye 2015; 29: 1242-1250 (IGR: 17-1)


61056 Expression of glucose transporters in the prelaminar region of the optic-nerve head of the pig as determined by immunolabeling and tissue culture
Carreras FJ
PLoS ONE 2015; 10: e0128516 (IGR: 17-1)


61700 Optic disc detection and boundary extraction in retinal images
Basit A
Applied Optics 2015; 54: 3440-3447 (IGR: 17-1)


61034 Lamina Cribrosa in Glaucoma: Diagnosis and Monitoring
Gracitelli CP
Current ophthalmology reports 2015; 3: 74-84 (IGR: 17-1)


61806 Cerebrospinal fluid pressure and the eye
Balaratnasingam C
British Journal of Ophthalmology 2016; 100: 71-77 (IGR: 17-1)


61036 A Global Shape Index to Characterize Anterior Lamina Cribrosa Morphology and Its Determinants in Healthy Indian Eyes
Tham YC
Investigative Ophthalmology and Visual Science 2015; 56: 3604-3614 (IGR: 17-1)


61568 Literature review and meta-analysis of translaminar pressure difference in open-angle glaucoma
Januleviciene I
Eye 2015; 29: 1242-1250 (IGR: 17-1)


61056 Expression of glucose transporters in the prelaminar region of the optic-nerve head of the pig as determined by immunolabeling and tissue culture
Aranda CJ
PLoS ONE 2015; 10: e0128516 (IGR: 17-1)


61718 Structural Differences in the Optic Nerve Head of Glaucoma Patients With and Without Disc Hemorrhages
Perera SA
Journal of Glaucoma 2016; 25: e76-e81 (IGR: 17-1)


61079 Morphological characteristics of the optic nerve evaluated by confocal laser tomography (HRT3) and laser polarimetry (GDx-VCC) in a normal population from the city of Barcelona
Pazos M
Archivos de la Sociedad Española de Oftalmologia 2015; 90: 507-516 (IGR: 17-1)


61035 Prevalence of Optic Disc Hemorrhage in Korea: The Korea National Health and Nutrition Examination Survey
Kim YK
Investigative Ophthalmology and Visual Science 2015; 56: 3666-3672 (IGR: 17-1)


61045 Effect of age and disc size on rim order rules by Heidelberg Retina Tomograph
Berezina TL
Journal of Glaucoma 2015; 24: 377-382 (IGR: 17-1)


61183 Quantitative analysis of three-dimensional fibrillar collagen microstructure within the normal, aged and glaucomatous human optic nerve head
Girard MJ
Journal of the Royal Society, Interface / the Royal Society 2015; 12: (IGR: 17-1)


61685 Structure-Function Relationship Between Bruch's Membrane Opening-Based Optic Nerve Head Parameters and Visual Field Defects in Glaucoma
Hirneiß CW
Investigative Ophthalmology and Visual Science 2015; 56: 3320-3328 (IGR: 17-1)


61063 Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes
Yang H
Experimental Eye Research 2015; 139: 1-12 (IGR: 17-1)


61106 Central retinal venous pressure in eyes of normal-tension glaucoma patients with optic disc hemorrhage
Kim DM
PLoS ONE 2015; 10: e0127920 (IGR: 17-1)


61131 Optic Nerve Head Deformation in Glaucoma: A Prospective Analysis of Optic Nerve Head Surface and Lamina Cribrosa Surface Displacement
Xu G
Ophthalmology 2015; 122: 1317-1329 (IGR: 17-1)


61700 Optic disc detection and boundary extraction in retinal images
Fraz MM
Applied Optics 2015; 54: 3440-3447 (IGR: 17-1)


61077 Pigment dispersion syndrome associated with optic nerve melanocytoma
Méndez-Hernández CD
Archivos de la Sociedad Española de Oftalmologia 2015; 90: 484-486 (IGR: 17-1)


60978 Corneal Segmentation Analysis Increases Glaucoma Diagnostic Ability of Optic Nerve Head Examination, Heidelberg Retina Tomograph's Moorfield's Regression Analysis, and Glaucoma Probability Score
Jañez L
Journal of Ophthalmology 2015; 2015: 215951 (IGR: 17-1)


61525 Age-Related Changes in Ocular Blood Velocity in Suspects with Glaucomatous Optic Disc Appearance. Comparison with Healthy Subjects and Glaucoma Patients
Krzyzanowska-Berkowska P
PLoS ONE 2015; 10: e0134357 (IGR: 17-1)


61626 Retinal Nerve Fiber Layer Converges More Convexly on Normal Smaller Optic Nerve Head
Shin JA
Journal of Glaucoma 2015; 24: 448-454 (IGR: 17-1)


61266 Disc Torsion and Vertical Disc Tilt Are Related to Subfoveal Scleral Thickness in Open-Angle Glaucoma Patients With Myopia
Choi SI
Investigative Ophthalmology and Visual Science 2015; 56: 4927-4935 (IGR: 17-1)


61275 Stereo Photo Measured ONH Shape Predicts Development of POAG in Subjects With Ocular Hypertension
Abràmoff MD
Investigative Ophthalmology and Visual Science 2015; 56: 4470-4479 (IGR: 17-1)


61606 Optic Disc Change during Childhood Myopic Shift: Comparison between Eyes with an Enlarged Cup-To-Disc Ratio and Childhood Glaucoma Compared to Normal Myopic Eyes
Kim SE
PLoS ONE 2015; 10: e0131781 (IGR: 17-1)


61737 Sensitivity and Specificity of the Nerve Fibre Imaging Using Scanning Laser Ophthalmoscopy and of Optic Nerve Analysis Using Heidelberg Retina Tomography in Glaucoma
Hirsch F
Klinische Monatsblätter für Augenheilkunde 2015; 232: 1279-1283 (IGR: 17-1)


61505 In Vivo Changes in Lamina Cribrosa Microarchitecture and Optic Nerve Head Structure in Early Experimental Glaucoma
Sredar N
PLoS ONE 2015; 10: e0134223 (IGR: 17-1)


61788 High spatial resolution imaging mass spectrometry of human optic nerve lipids and proteins
Spraggins JM
Journal of the American Society for Mass Spectrometry 2015; 26: 940-947 (IGR: 17-1)


61554 Bruch's Membrane Opening Minimum Rim Width and Retinal Nerve Fiber Layer Thickness in a Normal White Population: A Multicenter Study
Danthurebandara VM
Ophthalmology 2015; 122: 1786-1794 (IGR: 17-1)


61170 Disc hemorrhages and their risk factors in an urban South Korean population
Yoo C
Optometry and Vision Science 2015; 92: 700-706 (IGR: 17-1)


60890 Optic nerve head changes after short-term intraocular pressure elevation in acute primary angle-closure suspects
Xu L
Ophthalmology 2015; 122: 730-737 (IGR: 17-1)


61718 Structural Differences in the Optic Nerve Head of Glaucoma Patients With and Without Disc Hemorrhages
Tun TA
Journal of Glaucoma 2016; 25: e76-e81 (IGR: 17-1)


61170 Disc hemorrhages and their risk factors in an urban South Korean population
Kim JM
Optometry and Vision Science 2015; 92: 700-706 (IGR: 17-1)


61266 Disc Torsion and Vertical Disc Tilt Are Related to Subfoveal Scleral Thickness in Open-Angle Glaucoma Patients With Myopia
Choi JA
Investigative Ophthalmology and Visual Science 2015; 56: 4927-4935 (IGR: 17-1)


61606 Optic Disc Change during Childhood Myopic Shift: Comparison between Eyes with an Enlarged Cup-To-Disc Ratio and Childhood Glaucoma Compared to Normal Myopic Eyes
Park CK
PLoS ONE 2015; 10: e0131781 (IGR: 17-1)


61035 Prevalence of Optic Disc Hemorrhage in Korea: The Korea National Health and Nutrition Examination Survey
Jeoung JW
Investigative Ophthalmology and Visual Science 2015; 56: 3666-3672 (IGR: 17-1)


61788 High spatial resolution imaging mass spectrometry of human optic nerve lipids and proteins
Rose KL
Journal of the American Society for Mass Spectrometry 2015; 26: 940-947 (IGR: 17-1)


61525 Age-Related Changes in Ocular Blood Velocity in Suspects with Glaucomatous Optic Disc Appearance. Comparison with Healthy Subjects and Glaucoma Patients
Sander BP
PLoS ONE 2015; 10: e0134357 (IGR: 17-1)


61131 Optic Nerve Head Deformation in Glaucoma: A Prospective Analysis of Optic Nerve Head Surface and Lamina Cribrosa Surface Displacement
Weinreb RN
Ophthalmology 2015; 122: 1317-1329 (IGR: 17-1)


61806 Cerebrospinal fluid pressure and the eye
Lind CR
British Journal of Ophthalmology 2016; 100: 71-77 (IGR: 17-1)


61554 Bruch's Membrane Opening Minimum Rim Width and Retinal Nerve Fiber Layer Thickness in a Normal White Population: A Multicenter Study
Sharpe GP
Ophthalmology 2015; 122: 1786-1794 (IGR: 17-1)


61045 Effect of age and disc size on rim order rules by Heidelberg Retina Tomograph
Fechtner RD
Journal of Glaucoma 2015; 24: 377-382 (IGR: 17-1)


61077 Pigment dispersion syndrome associated with optic nerve melanocytoma
Santos-Bueso E
Archivos de la Sociedad Española de Oftalmologia 2015; 90: 484-486 (IGR: 17-1)


61063 Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes
Gardiner SK
Experimental Eye Research 2015; 139: 1-12 (IGR: 17-1)


61737 Sensitivity and Specificity of the Nerve Fibre Imaging Using Scanning Laser Ophthalmoscopy and of Optic Nerve Analysis Using Heidelberg Retina Tomography in Glaucoma
Koch EC
Klinische Monatsblätter für Augenheilkunde 2015; 232: 1279-1283 (IGR: 17-1)


61106 Central retinal venous pressure in eyes of normal-tension glaucoma patients with optic disc hemorrhage
Flammer J
PLoS ONE 2015; 10: e0127920 (IGR: 17-1)


61275 Stereo Photo Measured ONH Shape Predicts Development of POAG in Subjects With Ocular Hypertension
Tang L
Investigative Ophthalmology and Visual Science 2015; 56: 4470-4479 (IGR: 17-1)


60978 Corneal Segmentation Analysis Increases Glaucoma Diagnostic Ability of Optic Nerve Head Examination, Heidelberg Retina Tomograph's Moorfield's Regression Analysis, and Glaucoma Probability Score
Berrozpe-Villabona C
Journal of Ophthalmology 2015; 2015: 215951 (IGR: 17-1)


61505 In Vivo Changes in Lamina Cribrosa Microarchitecture and Optic Nerve Head Structure in Early Experimental Glaucoma
Patel NB
PLoS ONE 2015; 10: e0134223 (IGR: 17-1)


61034 Lamina Cribrosa in Glaucoma: Diagnosis and Monitoring
Diniz-Filho A
Current ophthalmology reports 2015; 3: 74-84 (IGR: 17-1)


61056 Expression of glucose transporters in the prelaminar region of the optic-nerve head of the pig as determined by immunolabeling and tissue culture
Porcel D
PLoS ONE 2015; 10: e0128516 (IGR: 17-1)


61626 Retinal Nerve Fiber Layer Converges More Convexly on Normal Smaller Optic Nerve Head
Park HY
Journal of Glaucoma 2015; 24: 448-454 (IGR: 17-1)


60890 Optic nerve head changes after short-term intraocular pressure elevation in acute primary angle-closure suspects
Liu X
Ophthalmology 2015; 122: 730-737 (IGR: 17-1)


61079 Morphological characteristics of the optic nerve evaluated by confocal laser tomography (HRT3) and laser polarimetry (GDx-VCC) in a normal population from the city of Barcelona
Morilla A
Archivos de la Sociedad Española de Oftalmologia 2015; 90: 507-516 (IGR: 17-1)


61183 Quantitative analysis of three-dimensional fibrillar collagen microstructure within the normal, aged and glaucomatous human optic nerve head
White N
Journal of the Royal Society, Interface / the Royal Society 2015; 12: (IGR: 17-1)


61036 A Global Shape Index to Characterize Anterior Lamina Cribrosa Morphology and Its Determinants in Healthy Indian Eyes
Baskaran M
Investigative Ophthalmology and Visual Science 2015; 56: 3604-3614 (IGR: 17-1)


61568 Literature review and meta-analysis of translaminar pressure difference in open-angle glaucoma
Daveckaite A
Eye 2015; 29: 1242-1250 (IGR: 17-1)


61737 Sensitivity and Specificity of the Nerve Fibre Imaging Using Scanning Laser Ophthalmoscopy and of Optic Nerve Analysis Using Heidelberg Retina Tomography in Glaucoma
Fuest M
Klinische Monatsblätter für Augenheilkunde 2015; 232: 1279-1283 (IGR: 17-1)


61106 Central retinal venous pressure in eyes of normal-tension glaucoma patients with optic disc hemorrhage
Kim KN
PLoS ONE 2015; 10: e0127920 (IGR: 17-1)


60978 Corneal Segmentation Analysis Increases Glaucoma Diagnostic Ability of Optic Nerve Head Examination, Heidelberg Retina Tomograph's Moorfield's Regression Analysis, and Glaucoma Probability Score
Borrego-Sanz L
Journal of Ophthalmology 2015; 2015: 215951 (IGR: 17-1)


61034 Lamina Cribrosa in Glaucoma: Diagnosis and Monitoring
Tatham AJ
Current ophthalmology reports 2015; 3: 74-84 (IGR: 17-1)


61626 Retinal Nerve Fiber Layer Converges More Convexly on Normal Smaller Optic Nerve Head
Park CK
Journal of Glaucoma 2015; 24: 448-454 (IGR: 17-1)


61266 Disc Torsion and Vertical Disc Tilt Are Related to Subfoveal Scleral Thickness in Open-Angle Glaucoma Patients With Myopia
Park CK
Investigative Ophthalmology and Visual Science 2015; 56: 4927-4935 (IGR: 17-1)


61505 In Vivo Changes in Lamina Cribrosa Microarchitecture and Optic Nerve Head Structure in Early Experimental Glaucoma
Rajagopalan L
PLoS ONE 2015; 10: e0134223 (IGR: 17-1)


61718 Structural Differences in the Optic Nerve Head of Glaucoma Patients With and Without Disc Hemorrhages
Teh GH
Journal of Glaucoma 2016; 25: e76-e81 (IGR: 17-1)


61079 Morphological characteristics of the optic nerve evaluated by confocal laser tomography (HRT3) and laser polarimetry (GDx-VCC) in a normal population from the city of Barcelona
Sebastián MA
Archivos de la Sociedad Española de Oftalmologia 2015; 90: 507-516 (IGR: 17-1)


61525 Age-Related Changes in Ocular Blood Velocity in Suspects with Glaucomatous Optic Disc Appearance. Comparison with Healthy Subjects and Glaucoma Patients
Iskander DR
PLoS ONE 2015; 10: e0134357 (IGR: 17-1)


61568 Literature review and meta-analysis of translaminar pressure difference in open-angle glaucoma
Ragauskas A
Eye 2015; 29: 1242-1250 (IGR: 17-1)


61045 Effect of age and disc size on rim order rules by Heidelberg Retina Tomograph
Sinai MJ
Journal of Glaucoma 2015; 24: 377-382 (IGR: 17-1)


61275 Stereo Photo Measured ONH Shape Predicts Development of POAG in Subjects With Ocular Hypertension
Gordon MO
Investigative Ophthalmology and Visual Science 2015; 56: 4470-4479 (IGR: 17-1)


61056 Expression of glucose transporters in the prelaminar region of the optic-nerve head of the pig as determined by immunolabeling and tissue culture
Rodriguez-Hurtado F
PLoS ONE 2015; 10: e0128516 (IGR: 17-1)


61788 High spatial resolution imaging mass spectrometry of human optic nerve lipids and proteins
Schey KL
Journal of the American Society for Mass Spectrometry 2015; 26: 940-947 (IGR: 17-1)


61554 Bruch's Membrane Opening Minimum Rim Width and Retinal Nerve Fiber Layer Thickness in a Normal White Population: A Multicenter Study
Demirel S
Ophthalmology 2015; 122: 1786-1794 (IGR: 17-1)


61036 A Global Shape Index to Characterize Anterior Lamina Cribrosa Morphology and Its Determinants in Healthy Indian Eyes
Mari JM
Investigative Ophthalmology and Visual Science 2015; 56: 3604-3614 (IGR: 17-1)


61063 Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes
Cepurna WO
Experimental Eye Research 2015; 139: 1-12 (IGR: 17-1)


61170 Disc hemorrhages and their risk factors in an urban South Korean population
Sung KC
Optometry and Vision Science 2015; 92: 700-706 (IGR: 17-1)


60890 Optic nerve head changes after short-term intraocular pressure elevation in acute primary angle-closure suspects
Chen JD
Ophthalmology 2015; 122: 730-737 (IGR: 17-1)


61035 Prevalence of Optic Disc Hemorrhage in Korea: The Korea National Health and Nutrition Examination Survey
Kim DM
Investigative Ophthalmology and Visual Science 2015; 56: 3666-3672 (IGR: 17-1)


61131 Optic Nerve Head Deformation in Glaucoma: A Prospective Analysis of Optic Nerve Head Surface and Lamina Cribrosa Surface Displacement
Yu M
Ophthalmology 2015; 122: 1317-1329 (IGR: 17-1)


61806 Cerebrospinal fluid pressure and the eye
Colley S
British Journal of Ophthalmology 2016; 100: 71-77 (IGR: 17-1)


61077 Pigment dispersion syndrome associated with optic nerve melanocytoma
García-Feijoo J
Archivos de la Sociedad Española de Oftalmologia 2015; 90: 484-486 (IGR: 17-1)


61183 Quantitative analysis of three-dimensional fibrillar collagen microstructure within the normal, aged and glaucomatous human optic nerve head
Fautsch MP
Journal of the Royal Society, Interface / the Royal Society 2015; 12: (IGR: 17-1)


61063 Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes
Johnson EC
Experimental Eye Research 2015; 139: 1-12 (IGR: 17-1)


61737 Sensitivity and Specificity of the Nerve Fibre Imaging Using Scanning Laser Ophthalmoscopy and of Optic Nerve Analysis Using Heidelberg Retina Tomography in Glaucoma
Plange N
Klinische Monatsblätter für Augenheilkunde 2015; 232: 1279-1283 (IGR: 17-1)


61036 A Global Shape Index to Characterize Anterior Lamina Cribrosa Morphology and Its Determinants in Healthy Indian Eyes
Strouthidis NG
Investigative Ophthalmology and Visual Science 2015; 56: 3604-3614 (IGR: 17-1)


61568 Literature review and meta-analysis of translaminar pressure difference in open-angle glaucoma
Bartusis L
Eye 2015; 29: 1242-1250 (IGR: 17-1)


61183 Quantitative analysis of three-dimensional fibrillar collagen microstructure within the normal, aged and glaucomatous human optic nerve head
Morgan JE
Journal of the Royal Society, Interface / the Royal Society 2015; 12: (IGR: 17-1)


60890 Optic nerve head changes after short-term intraocular pressure elevation in acute primary angle-closure suspects
Jonas JB
Ophthalmology 2015; 122: 730-737 (IGR: 17-1)


61170 Disc hemorrhages and their risk factors in an urban South Korean population
Shim SH
Optometry and Vision Science 2015; 92: 700-706 (IGR: 17-1)


61131 Optic Nerve Head Deformation in Glaucoma: A Prospective Analysis of Optic Nerve Head Surface and Lamina Cribrosa Surface Displacement
Leung CK
Ophthalmology 2015; 122: 1317-1329 (IGR: 17-1)


61806 Cerebrospinal fluid pressure and the eye
Kang MH
British Journal of Ophthalmology 2016; 100: 71-77 (IGR: 17-1)


61718 Structural Differences in the Optic Nerve Head of Glaucoma Patients With and Without Disc Hemorrhages
Cheung CY
Journal of Glaucoma 2016; 25: e76-e81 (IGR: 17-1)


61034 Lamina Cribrosa in Glaucoma: Diagnosis and Monitoring
Medeiros FA
Current ophthalmology reports 2015; 3: 74-84 (IGR: 17-1)


61505 In Vivo Changes in Lamina Cribrosa Microarchitecture and Optic Nerve Head Structure in Early Experimental Glaucoma
Queener HM
PLoS ONE 2015; 10: e0134223 (IGR: 17-1)


61035 Prevalence of Optic Disc Hemorrhage in Korea: The Korea National Health and Nutrition Examination Survey
Park KH
Investigative Ophthalmology and Visual Science 2015; 56: 3666-3672 (IGR: 17-1)


61554 Bruch's Membrane Opening Minimum Rim Width and Retinal Nerve Fiber Layer Thickness in a Normal White Population: A Multicenter Study
Girkin CA
Ophthalmology 2015; 122: 1786-1794 (IGR: 17-1)


60978 Corneal Segmentation Analysis Increases Glaucoma Diagnostic Ability of Optic Nerve Head Examination, Heidelberg Retina Tomograph's Moorfield's Regression Analysis, and Glaucoma Probability Score
Morales-Fernández L
Journal of Ophthalmology 2015; 2015: 215951 (IGR: 17-1)


61079 Morphological characteristics of the optic nerve evaluated by confocal laser tomography (HRT3) and laser polarimetry (GDx-VCC) in a normal population from the city of Barcelona
Xancó R
Archivos de la Sociedad Española de Oftalmologia 2015; 90: 507-516 (IGR: 17-1)


61045 Effect of age and disc size on rim order rules by Heidelberg Retina Tomograph
Khouri AS
Journal of Glaucoma 2015; 24: 377-382 (IGR: 17-1)


61275 Stereo Photo Measured ONH Shape Predicts Development of POAG in Subjects With Ocular Hypertension
Kass MA
Investigative Ophthalmology and Visual Science 2015; 56: 4470-4479 (IGR: 17-1)


61056 Expression of glucose transporters in the prelaminar region of the optic-nerve head of the pig as determined by immunolabeling and tissue culture
Martínez-Agustin O
PLoS ONE 2015; 10: e0128516 (IGR: 17-1)


61505 In Vivo Changes in Lamina Cribrosa Microarchitecture and Optic Nerve Head Structure in Early Experimental Glaucoma
Twa MD
PLoS ONE 2015; 10: e0134223 (IGR: 17-1)


61035 Prevalence of Optic Disc Hemorrhage in Korea: The Korea National Health and Nutrition Examination Survey

Investigative Ophthalmology and Visual Science 2015; 56: 3666-3672 (IGR: 17-1)


61554 Bruch's Membrane Opening Minimum Rim Width and Retinal Nerve Fiber Layer Thickness in a Normal White Population: A Multicenter Study
Mardin CY
Ophthalmology 2015; 122: 1786-1794 (IGR: 17-1)


60978 Corneal Segmentation Analysis Increases Glaucoma Diagnostic Ability of Optic Nerve Head Examination, Heidelberg Retina Tomograph's Moorfield's Regression Analysis, and Glaucoma Probability Score
Acebal-Montero A
Journal of Ophthalmology 2015; 2015: 215951 (IGR: 17-1)


61170 Disc hemorrhages and their risk factors in an urban South Korean population
Bae JH
Optometry and Vision Science 2015; 92: 700-706 (IGR: 17-1)


61718 Structural Differences in the Optic Nerve Head of Glaucoma Patients With and Without Disc Hemorrhages
Aung T
Journal of Glaucoma 2016; 25: e76-e81 (IGR: 17-1)


61056 Expression of glucose transporters in the prelaminar region of the optic-nerve head of the pig as determined by immunolabeling and tissue culture
Zarzuelo A
PLoS ONE 2015; 10: e0128516 (IGR: 17-1)


60890 Optic nerve head changes after short-term intraocular pressure elevation in acute primary angle-closure suspects
Wang YX
Ophthalmology 2015; 122: 730-737 (IGR: 17-1)


61036 A Global Shape Index to Characterize Anterior Lamina Cribrosa Morphology and Its Determinants in Healthy Indian Eyes
Aung T
Investigative Ophthalmology and Visual Science 2015; 56: 3604-3614 (IGR: 17-1)


61275 Stereo Photo Measured ONH Shape Predicts Development of POAG in Subjects With Ocular Hypertension
Budenz DL
Investigative Ophthalmology and Visual Science 2015; 56: 4470-4479 (IGR: 17-1)


61183 Quantitative analysis of three-dimensional fibrillar collagen microstructure within the normal, aged and glaucomatous human optic nerve head
Ethier CR
Journal of the Royal Society, Interface / the Royal Society 2015; 12: (IGR: 17-1)


61568 Literature review and meta-analysis of translaminar pressure difference in open-angle glaucoma
Kucinoviene J
Eye 2015; 29: 1242-1250 (IGR: 17-1)


61079 Morphological characteristics of the optic nerve evaluated by confocal laser tomography (HRT3) and laser polarimetry (GDx-VCC) in a normal population from the city of Barcelona
Mora C
Archivos de la Sociedad Española de Oftalmologia 2015; 90: 507-516 (IGR: 17-1)


61806 Cerebrospinal fluid pressure and the eye
House PH
British Journal of Ophthalmology 2016; 100: 71-77 (IGR: 17-1)


61063 Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes
Morrison JC
Experimental Eye Research 2015; 139: 1-12 (IGR: 17-1)


61079 Morphological characteristics of the optic nerve evaluated by confocal laser tomography (HRT3) and laser polarimetry (GDx-VCC) in a normal population from the city of Barcelona
Calderón B
Archivos de la Sociedad Española de Oftalmologia 2015; 90: 507-516 (IGR: 17-1)


61718 Structural Differences in the Optic Nerve Head of Glaucoma Patients With and Without Disc Hemorrhages
Wong TY
Journal of Glaucoma 2016; 25: e76-e81 (IGR: 17-1)


61063 Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes
Burgoyne CF
Experimental Eye Research 2015; 139: 1-12 (IGR: 17-1)


61275 Stereo Photo Measured ONH Shape Predicts Development of POAG in Subjects With Ocular Hypertension
Fingert JH
Investigative Ophthalmology and Visual Science 2015; 56: 4470-4479 (IGR: 17-1)


61505 In Vivo Changes in Lamina Cribrosa Microarchitecture and Optic Nerve Head Structure in Early Experimental Glaucoma
Harwerth RS
PLoS ONE 2015; 10: e0134223 (IGR: 17-1)


61806 Cerebrospinal fluid pressure and the eye
Yu DY
British Journal of Ophthalmology 2016; 100: 71-77 (IGR: 17-1)


61568 Literature review and meta-analysis of translaminar pressure difference in open-angle glaucoma
Siesky B
Eye 2015; 29: 1242-1250 (IGR: 17-1)


61554 Bruch's Membrane Opening Minimum Rim Width and Retinal Nerve Fiber Layer Thickness in a Normal White Population: A Multicenter Study
Scheuerle AF
Ophthalmology 2015; 122: 1786-1794 (IGR: 17-1)


61036 A Global Shape Index to Characterize Anterior Lamina Cribrosa Morphology and Its Determinants in Healthy Indian Eyes
Cheng CY
Investigative Ophthalmology and Visual Science 2015; 56: 3604-3614 (IGR: 17-1)


61170 Disc hemorrhages and their risk factors in an urban South Korean population
Choi CY
Optometry and Vision Science 2015; 92: 700-706 (IGR: 17-1)


61183 Quantitative analysis of three-dimensional fibrillar collagen microstructure within the normal, aged and glaucomatous human optic nerve head
Albon J
Journal of the Royal Society, Interface / the Royal Society 2015; 12: (IGR: 17-1)


60978 Corneal Segmentation Analysis Increases Glaucoma Diagnostic Ability of Optic Nerve Head Examination, Heidelberg Retina Tomograph's Moorfield's Regression Analysis, and Glaucoma Probability Score
Mendez-Hernandez CD
Journal of Ophthalmology 2015; 2015: 215951 (IGR: 17-1)


61275 Stereo Photo Measured ONH Shape Predicts Development of POAG in Subjects With Ocular Hypertension
Scheetz TE
Investigative Ophthalmology and Visual Science 2015; 56: 4470-4479 (IGR: 17-1)


61079 Morphological characteristics of the optic nerve evaluated by confocal laser tomography (HRT3) and laser polarimetry (GDx-VCC) in a normal population from the city of Barcelona
Vega Z
Archivos de la Sociedad Española de Oftalmologia 2015; 90: 507-516 (IGR: 17-1)


61036 A Global Shape Index to Characterize Anterior Lamina Cribrosa Morphology and Its Determinants in Healthy Indian Eyes
Girard MJ
Investigative Ophthalmology and Visual Science 2015; 56: 3604-3614 (IGR: 17-1)


61170 Disc hemorrhages and their risk factors in an urban South Korean population
Kim CY
Optometry and Vision Science 2015; 92: 700-706 (IGR: 17-1)


60978 Corneal Segmentation Analysis Increases Glaucoma Diagnostic Ability of Optic Nerve Head Examination, Heidelberg Retina Tomograph's Moorfield's Regression Analysis, and Glaucoma Probability Score
Martinez-de-la-Casa JM
Journal of Ophthalmology 2015; 2015: 215951 (IGR: 17-1)


61568 Literature review and meta-analysis of translaminar pressure difference in open-angle glaucoma
Harris A
Eye 2015; 29: 1242-1250 (IGR: 17-1)


61505 In Vivo Changes in Lamina Cribrosa Microarchitecture and Optic Nerve Head Structure in Early Experimental Glaucoma
Porter J
PLoS ONE 2015; 10: e0134223 (IGR: 17-1)


61718 Structural Differences in the Optic Nerve Head of Glaucoma Patients With and Without Disc Hemorrhages
Baskaran M
Journal of Glaucoma 2016; 25: e76-e81 (IGR: 17-1)


61554 Bruch's Membrane Opening Minimum Rim Width and Retinal Nerve Fiber Layer Thickness in a Normal White Population: A Multicenter Study
Burgoyne CF
Ophthalmology 2015; 122: 1786-1794 (IGR: 17-1)


61079 Morphological characteristics of the optic nerve evaluated by confocal laser tomography (HRT3) and laser polarimetry (GDx-VCC) in a normal population from the city of Barcelona
Antón A
Archivos de la Sociedad Española de Oftalmologia 2015; 90: 507-516 (IGR: 17-1)


61170 Disc hemorrhages and their risk factors in an urban South Korean population
Park KH
Optometry and Vision Science 2015; 92: 700-706 (IGR: 17-1)


60978 Corneal Segmentation Analysis Increases Glaucoma Diagnostic Ability of Optic Nerve Head Examination, Heidelberg Retina Tomograph's Moorfield's Regression Analysis, and Glaucoma Probability Score
Santos-Bueso E; Garcia-Sanchez J; Garcia-Feijoo J
Journal of Ophthalmology 2015; 2015: 215951 (IGR: 17-1)


60410 Lamina cribrosa microarchitecture in normal monkey eyes part 1: methods and initial results
Lockwood H
Investigative Ophthalmology and Visual Science 2015; 56: 1618-1637 (IGR: 16-4)


60694 An energy theory of glaucoma
Li Y
GLIA 2015; 63: 1537-1552 (IGR: 16-4)


60358 Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology
Springelkamp H
Genetic epidemiology 2015; 39: 207-216 (IGR: 16-4)


60116 Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement
Danthurebandara VM
Investigative Ophthalmology and Visual Science 2015; 56: 98-105 (IGR: 16-4)


60008 Lipofuscin accumulation and autophagy in glaucomatous human lamina cribrosa cells
McElnea EM
BMC Ophthalmology 2014; 14: 153 (IGR: 16-4)


60206 Correlation between lamina cribrosa tilt angles, myopia and glaucoma using OCT with a wide bandwidth femtosecond mode-locked laser
Shoji T
PLoS ONE 2014; 9: e116305 (IGR: 16-4)


60736 Cup-to-Disc Ratio From Heidelberg Retina Tomograph 3 and High-Definition Optical Coherence Tomography Agrees Poorly With Clinical Assessment
Perera SA
Journal of Glaucoma 2016; 25: 198-202 (IGR: 16-4)


60504 Structural alterations during the course of glaucoma disease
Mardin CY
Ophthalmologe 2015; 112: 410-417 (IGR: 16-4)


60794 Optic disc hemorrhage is related to various hemodynamic findings by disc angiography
Park HY
PLoS ONE 2015; 10: e0120000 (IGR: 16-4)


60153 Anterior lamina cribrosa insertion in primary open-angle glaucoma patients and healthy subjects
Lee KM
PLoS ONE 2014; 9: e114935 (IGR: 16-4)


59842 Novel screening method for glaucomatous eyes with myopic tilted discs: the crescent moon sign
Kim MJ
JAMA ophthalmology 2014; 132: 1407-1413 (IGR: 16-4)


60266 Sparse dissimilarity-constrained coding for glaucoma screening
Cheng J
IEEE Transactions on Bio-Medical Engineering 2015; 62: 1395-1403 (IGR: 16-4)


60152 Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia
Kimura Y
PLoS ONE 2014; 9: e115313 (IGR: 16-4)


60187 Differential subcellular Ca2+ signaling in a highly specialized subpopulation of astrocytes
Kaja S
Experimental Neurology 2015; 265: 59-68 (IGR: 16-4)


60782 Nailfold capillaroscopy assessment in patients with glaucoma with a current optic disc hemorrhage
Patel HY
Canadian Journal of Ophthalmology 2015; 50: 155-158 (IGR: 16-4)


60680 Calcium channel blockade reduces mechanical strain-induced extracellular matrix gene response in lamina cribrosa cells
Quill B
British Journal of Ophthalmology 2015; 99: 1009-1014 (IGR: 16-4)


60586 Collagen microstructural factors influencing optic nerve head biomechanics
Zhang L
Investigative Ophthalmology and Visual Science 2015; 56: 2031-2042 (IGR: 16-4)


60274 Automated segmentation of the lamina cribrosa using Frangi's filter: a novel approach for rapid identification of tissue volume fraction and beam orientation in a trabeculated structure in the eye
Campbell IC
Journal of the Royal Society, Interface / the Royal Society 2015; 12: 20141009 (IGR: 16-4)


60568 Optic nerve head characteristics in eyes with papillomacular bundle defects in glaucoma
Rao A
International Ophthalmology 2015; 35: 819-826 (IGR: 16-4)


60256 Is Myopic Optic Disc Appearance a Risk Factor for Rapid Progression in Medically Treated Glaucomatous Eyes With Confirmed Visual Field Progression?
Lee JR
Journal of Glaucoma 2016; 25: 330-337 (IGR: 16-4)


60657 Refractive Error and Ocular Parameters: Comparison of Two SD-OCT Systems
Ostrin LA
Optometry and Vision Science 2015; 0: (IGR: 16-4)


60779 Optic disc segmentation by balloon snake with texture from color fundus image
Sun J
International journal of biomedical imaging 2015; 2015: 528626 (IGR: 16-4)


60567 Comparison of visual field progression between temporally tilted disc and nontilted disc, in patients with normal tension glaucoma
Choy YJ
Eye 2015; 29: 1308-1314 (IGR: 16-4)


60714 Optic nerve head biomechanics in aging and disease
Downs JC
Experimental Eye Research 2015; 133: 19-29 (IGR: 16-4)


60681 Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier-domain optical coherence tomography
Loewen NA
British Journal of Ophthalmology 2015; 99: 1224-1229 (IGR: 16-4)


60668 Fractal Dimension as a New Tool to Analyze Optic Nerve Head Vasculature in Primary Open Angle Glaucoma
Ciancaglini M
In vivo (Athens, Greece) 2015; 29: 273-279 (IGR: 16-4)


60476 Evaluation of subjects with a moderate cup to disc ratio using optical coherence tomography and Heidelberg retina tomograph 3: impact of the disc area
Ulas F
Indian Journal of Ophthalmology 2015; 63: 3-8 (IGR: 16-4)


60528 A Novel Mgp-Cre Knock-in Mouse Reveals an Anti-calcification/anti-stiffness Candidate Gene in the Trabecular Meshwork and Scleral Peripapillary Region
Borras T
Investigative Ophthalmology and Visual Science 2015; 56: 2203-2214 (IGR: 16-4)


60790 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma
Omodaka K
PLoS ONE 2015; 10: e0122347 (IGR: 16-4)


60536 Depth-dependent changes in collagen organization in the human peripapillary sclera
Pijanka JK
PLoS ONE 2015; 10: e0118648 (IGR: 16-4)


60244 New neuroretinal rim analysis with spectral domain optical coherence tomography, Spectralis (Heidelberg Engineering, Germany). Preliminary study
El Chehab H
Journal Français d'Ophtalmologie 2015; 38: 46-52 (IGR: 16-4)


60376 Prevalence of disc cupping in non-glaucomatous eyes
Chiappe JP
Medicina 2015; 75: 6-10 (IGR: 16-4)


59663 Presence of an optic disc notch and glaucoma
Healey PR
Journal of Glaucoma 2015; 24: 262-266 (IGR: 16-4)


60282 Lamina cribrosa visibility using optical coherence tomography: comparison of devices and effects of image enhancement techniques
Girard MJ
Investigative Ophthalmology and Visual Science 2015; 56: 865-874 (IGR: 16-4)


60179 Spectral domain optical coherence tomography cross-sectional image of optic nerve head during intraocular pressure elevation
Lee JY
International Journal of Ophthalmology 2014; 7: 1022-1029 (IGR: 16-4)


60685 Morphological features and important parameters of large optic discs for diagnosing glaucoma
Okimoto S
PLoS ONE 2015; 10: e0118920 (IGR: 16-4)


60572 Lamina cribrosa depth in different stages of glaucoma
Park SC
Investigative Ophthalmology and Visual Science 2015; 56: 2059-2064 (IGR: 16-4)


60332 Facts and myths of cerebrospinal fluid pressure for the physiology of the eye
Jonas JB
Progress in Retinal and Eye Research 2015; 46: 67-83 (IGR: 16-4)


60672 Comparison of Prelaminar Thickness between Primary Open Angle Glaucoma and Normal Tension Glaucoma Patients
Jung YH
PLoS ONE 2015; 10: e0120634 (IGR: 16-4)


60106 Three-dimensional optic nerve head images using optical coherence tomography with a broad bandwidth, femtosecond, and mode-locked laser
Shoji T
Graefe's Archive for Clinical and Experimental Ophthalmology 2015; 253: 313-321 (IGR: 16-4)


60179 Spectral domain optical coherence tomography cross-sectional image of optic nerve head during intraocular pressure elevation
Lee YK
International Journal of Ophthalmology 2014; 7: 1022-1029 (IGR: 16-4)


60668 Fractal Dimension as a New Tool to Analyze Optic Nerve Head Vasculature in Primary Open Angle Glaucoma
Guerra G
In vivo (Athens, Greece) 2015; 29: 273-279 (IGR: 16-4)


60504 Structural alterations during the course of glaucoma disease
Schlötzer-Schrehardt U
Ophthalmologe 2015; 112: 410-417 (IGR: 16-4)


59663 Presence of an optic disc notch and glaucoma
Mitchell P
Journal of Glaucoma 2015; 24: 262-266 (IGR: 16-4)


60567 Comparison of visual field progression between temporally tilted disc and nontilted disc, in patients with normal tension glaucoma
Kwun Y
Eye 2015; 29: 1308-1314 (IGR: 16-4)


60266 Sparse dissimilarity-constrained coding for glaucoma screening
Yin F
IEEE Transactions on Bio-Medical Engineering 2015; 62: 1395-1403 (IGR: 16-4)


60187 Differential subcellular Ca2+ signaling in a highly specialized subpopulation of astrocytes
Payne AJ
Experimental Neurology 2015; 265: 59-68 (IGR: 16-4)


60528 A Novel Mgp-Cre Knock-in Mouse Reveals an Anti-calcification/anti-stiffness Candidate Gene in the Trabecular Meshwork and Scleral Peripapillary Region
Smith MH
Investigative Ophthalmology and Visual Science 2015; 56: 2203-2214 (IGR: 16-4)


60536 Depth-dependent changes in collagen organization in the human peripapillary sclera
Spang MT
PLoS ONE 2015; 10: e0118648 (IGR: 16-4)


60376 Prevalence of disc cupping in non-glaucomatous eyes
Nahum P
Medicina 2015; 75: 6-10 (IGR: 16-4)


60153 Anterior lamina cribrosa insertion in primary open-angle glaucoma patients and healthy subjects
Kim TW
PLoS ONE 2014; 9: e114935 (IGR: 16-4)


60685 Morphological features and important parameters of large optic discs for diagnosing glaucoma
Yamashita K
PLoS ONE 2015; 10: e0118920 (IGR: 16-4)


60572 Lamina cribrosa depth in different stages of glaucoma
Brumm J
Investigative Ophthalmology and Visual Science 2015; 56: 2059-2064 (IGR: 16-4)


60152 Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia
Akagi T
PLoS ONE 2014; 9: e115313 (IGR: 16-4)


60657 Refractive Error and Ocular Parameters: Comparison of Two SD-OCT Systems
Yuzuriha J
Optometry and Vision Science 2015; 0: (IGR: 16-4)


60282 Lamina cribrosa visibility using optical coherence tomography: comparison of devices and effects of image enhancement techniques
Tun TA
Investigative Ophthalmology and Visual Science 2015; 56: 865-874 (IGR: 16-4)


60008 Lipofuscin accumulation and autophagy in glaucomatous human lamina cribrosa cells
Hughes E
BMC Ophthalmology 2014; 14: 153 (IGR: 16-4)


60779 Optic disc segmentation by balloon snake with texture from color fundus image
Luan F
International journal of biomedical imaging 2015; 2015: 528626 (IGR: 16-4)


60332 Facts and myths of cerebrospinal fluid pressure for the physiology of the eye
Wang N
Progress in Retinal and Eye Research 2015; 46: 67-83 (IGR: 16-4)


60106 Three-dimensional optic nerve head images using optical coherence tomography with a broad bandwidth, femtosecond, and mode-locked laser
Kuroda H
Graefe's Archive for Clinical and Experimental Ophthalmology 2015; 253: 313-321 (IGR: 16-4)


60681 Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier-domain optical coherence tomography
Zhang X
British Journal of Ophthalmology 2015; 99: 1224-1229 (IGR: 16-4)


60244 New neuroretinal rim analysis with spectral domain optical coherence tomography, Spectralis (Heidelberg Engineering, Germany). Preliminary study
Delbarre M
Journal Français d'Ophtalmologie 2015; 38: 46-52 (IGR: 16-4)


59842 Novel screening method for glaucomatous eyes with myopic tilted discs: the crescent moon sign
Kim SH
JAMA ophthalmology 2014; 132: 1407-1413 (IGR: 16-4)


60794 Optic disc hemorrhage is related to various hemodynamic findings by disc angiography
Jeong HJ
PLoS ONE 2015; 10: e0120000 (IGR: 16-4)


60206 Correlation between lamina cribrosa tilt angles, myopia and glaucoma using OCT with a wide bandwidth femtosecond mode-locked laser
Kuroda H
PLoS ONE 2014; 9: e116305 (IGR: 16-4)


60116 Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement
Sharpe GP
Investigative Ophthalmology and Visual Science 2015; 56: 98-105 (IGR: 16-4)


60358 Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology
Mishra A
Genetic epidemiology 2015; 39: 207-216 (IGR: 16-4)


60736 Cup-to-Disc Ratio From Heidelberg Retina Tomograph 3 and High-Definition Optical Coherence Tomography Agrees Poorly With Clinical Assessment
Foo LL
Journal of Glaucoma 2016; 25: 198-202 (IGR: 16-4)


60782 Nailfold capillaroscopy assessment in patients with glaucoma with a current optic disc hemorrhage
Buys YM
Canadian Journal of Ophthalmology 2015; 50: 155-158 (IGR: 16-4)


60672 Comparison of Prelaminar Thickness between Primary Open Angle Glaucoma and Normal Tension Glaucoma Patients
Park HY
PLoS ONE 2015; 10: e0120634 (IGR: 16-4)


60680 Calcium channel blockade reduces mechanical strain-induced extracellular matrix gene response in lamina cribrosa cells
Irnaten M
British Journal of Ophthalmology 2015; 99: 1009-1014 (IGR: 16-4)


60694 An energy theory of glaucoma
Li D
GLIA 2015; 63: 1537-1552 (IGR: 16-4)


60274 Automated segmentation of the lamina cribrosa using Frangi's filter: a novel approach for rapid identification of tissue volume fraction and beam orientation in a trabeculated structure in the eye
Coudrillier B
Journal of the Royal Society, Interface / the Royal Society 2015; 12: 20141009 (IGR: 16-4)


60568 Optic nerve head characteristics in eyes with papillomacular bundle defects in glaucoma
Mukherjee S
International Ophthalmology 2015; 35: 819-826 (IGR: 16-4)


60256 Is Myopic Optic Disc Appearance a Risk Factor for Rapid Progression in Medically Treated Glaucomatous Eyes With Confirmed Visual Field Progression?
Kim S
Journal of Glaucoma 2016; 25: 330-337 (IGR: 16-4)


60410 Lamina cribrosa microarchitecture in normal monkey eyes part 1: methods and initial results
Reynaud J
Investigative Ophthalmology and Visual Science 2015; 56: 1618-1637 (IGR: 16-4)


60476 Evaluation of subjects with a moderate cup to disc ratio using optical coherence tomography and Heidelberg retina tomograph 3: impact of the disc area
Dogan Ü
Indian Journal of Ophthalmology 2015; 63: 3-8 (IGR: 16-4)


60790 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma
Horii T
PLoS ONE 2015; 10: e0122347 (IGR: 16-4)


60586 Collagen microstructural factors influencing optic nerve head biomechanics
Albon J
Investigative Ophthalmology and Visual Science 2015; 56: 2031-2042 (IGR: 16-4)


60008 Lipofuscin accumulation and autophagy in glaucomatous human lamina cribrosa cells
McGoldrick A
BMC Ophthalmology 2014; 14: 153 (IGR: 16-4)


60782 Nailfold capillaroscopy assessment in patients with glaucoma with a current optic disc hemorrhage
Trope GE
Canadian Journal of Ophthalmology 2015; 50: 155-158 (IGR: 16-4)


60790 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma
Takahashi S
PLoS ONE 2015; 10: e0122347 (IGR: 16-4)


60376 Prevalence of disc cupping in non-glaucomatous eyes
Casiraghi JF
Medicina 2015; 75: 6-10 (IGR: 16-4)


60274 Automated segmentation of the lamina cribrosa using Frangi's filter: a novel approach for rapid identification of tissue volume fraction and beam orientation in a trabeculated structure in the eye
Mensah J
Journal of the Royal Society, Interface / the Royal Society 2015; 12: 20141009 (IGR: 16-4)


60256 Is Myopic Optic Disc Appearance a Risk Factor for Rapid Progression in Medically Treated Glaucomatous Eyes With Confirmed Visual Field Progression?
Lee JY
Journal of Glaucoma 2016; 25: 330-337 (IGR: 16-4)


59842 Novel screening method for glaucomatous eyes with myopic tilted discs: the crescent moon sign
Hwang YH
JAMA ophthalmology 2014; 132: 1407-1413 (IGR: 16-4)


60672 Comparison of Prelaminar Thickness between Primary Open Angle Glaucoma and Normal Tension Glaucoma Patients
Jung KI
PLoS ONE 2015; 10: e0120634 (IGR: 16-4)


60680 Calcium channel blockade reduces mechanical strain-induced extracellular matrix gene response in lamina cribrosa cells
Docherty NG
British Journal of Ophthalmology 2015; 99: 1009-1014 (IGR: 16-4)


60568 Optic nerve head characteristics in eyes with papillomacular bundle defects in glaucoma
Padhy D
International Ophthalmology 2015; 35: 819-826 (IGR: 16-4)


60152 Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia
Hangai M
PLoS ONE 2014; 9: e115313 (IGR: 16-4)


60567 Comparison of visual field progression between temporally tilted disc and nontilted disc, in patients with normal tension glaucoma
Han JC
Eye 2015; 29: 1308-1314 (IGR: 16-4)


60586 Collagen microstructural factors influencing optic nerve head biomechanics
Jones H
Investigative Ophthalmology and Visual Science 2015; 56: 2031-2042 (IGR: 16-4)


60668 Fractal Dimension as a New Tool to Analyze Optic Nerve Head Vasculature in Primary Open Angle Glaucoma
Agnifili L
In vivo (Athens, Greece) 2015; 29: 273-279 (IGR: 16-4)


60528 A Novel Mgp-Cre Knock-in Mouse Reveals an Anti-calcification/anti-stiffness Candidate Gene in the Trabecular Meshwork and Scleral Peripapillary Region
Buie LK
Investigative Ophthalmology and Visual Science 2015; 56: 2203-2214 (IGR: 16-4)


60106 Three-dimensional optic nerve head images using optical coherence tomography with a broad bandwidth, femtosecond, and mode-locked laser
Suzuki M
Graefe's Archive for Clinical and Experimental Ophthalmology 2015; 253: 313-321 (IGR: 16-4)


60536 Depth-dependent changes in collagen organization in the human peripapillary sclera
Sorensen T
PLoS ONE 2015; 10: e0118648 (IGR: 16-4)


60153 Anterior lamina cribrosa insertion in primary open-angle glaucoma patients and healthy subjects
Weinreb RN
PLoS ONE 2014; 9: e114935 (IGR: 16-4)


60685 Morphological features and important parameters of large optic discs for diagnosing glaucoma
Shibata T
PLoS ONE 2015; 10: e0118920 (IGR: 16-4)


60572 Lamina cribrosa depth in different stages of glaucoma
Furlanetto RL
Investigative Ophthalmology and Visual Science 2015; 56: 2059-2064 (IGR: 16-4)


60736 Cup-to-Disc Ratio From Heidelberg Retina Tomograph 3 and High-Definition Optical Coherence Tomography Agrees Poorly With Clinical Assessment
Cheung CY
Journal of Glaucoma 2016; 25: 198-202 (IGR: 16-4)


60410 Lamina cribrosa microarchitecture in normal monkey eyes part 1: methods and initial results
Gardiner S
Investigative Ophthalmology and Visual Science 2015; 56: 1618-1637 (IGR: 16-4)


60179 Spectral domain optical coherence tomography cross-sectional image of optic nerve head during intraocular pressure elevation
Moon JI
International Journal of Ophthalmology 2014; 7: 1022-1029 (IGR: 16-4)


60476 Evaluation of subjects with a moderate cup to disc ratio using optical coherence tomography and Heidelberg retina tomograph 3: impact of the disc area
Kaymaz A
Indian Journal of Ophthalmology 2015; 63: 3-8 (IGR: 16-4)


60187 Differential subcellular Ca2+ signaling in a highly specialized subpopulation of astrocytes
Patel KR
Experimental Neurology 2015; 265: 59-68 (IGR: 16-4)


60282 Lamina cribrosa visibility using optical coherence tomography: comparison of devices and effects of image enhancement techniques
Husain R
Investigative Ophthalmology and Visual Science 2015; 56: 865-874 (IGR: 16-4)


60332 Facts and myths of cerebrospinal fluid pressure for the physiology of the eye
Yang D
Progress in Retinal and Eye Research 2015; 46: 67-83 (IGR: 16-4)


60206 Correlation between lamina cribrosa tilt angles, myopia and glaucoma using OCT with a wide bandwidth femtosecond mode-locked laser
Suzuki M
PLoS ONE 2014; 9: e116305 (IGR: 16-4)


60358 Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology
Hysi PG
Genetic epidemiology 2015; 39: 207-216 (IGR: 16-4)


60794 Optic disc hemorrhage is related to various hemodynamic findings by disc angiography
Kim YH
PLoS ONE 2015; 10: e0120000 (IGR: 16-4)


60266 Sparse dissimilarity-constrained coding for glaucoma screening
Wong DW
IEEE Transactions on Bio-Medical Engineering 2015; 62: 1395-1403 (IGR: 16-4)


60657 Refractive Error and Ocular Parameters: Comparison of Two SD-OCT Systems
Wildsoet CF
Optometry and Vision Science 2015; 0: (IGR: 16-4)


60779 Optic disc segmentation by balloon snake with texture from color fundus image
Wu H
International journal of biomedical imaging 2015; 2015: 528626 (IGR: 16-4)


60244 New neuroretinal rim analysis with spectral domain optical coherence tomography, Spectralis (Heidelberg Engineering, Germany). Preliminary study
Maréchal M
Journal Français d'Ophtalmologie 2015; 38: 46-52 (IGR: 16-4)


60116 Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement
Hutchison DM
Investigative Ophthalmology and Visual Science 2015; 56: 98-105 (IGR: 16-4)


60694 An energy theory of glaucoma
Ying X
GLIA 2015; 63: 1537-1552 (IGR: 16-4)


60681 Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier-domain optical coherence tomography
Tan O
British Journal of Ophthalmology 2015; 99: 1224-1229 (IGR: 16-4)


60736 Cup-to-Disc Ratio From Heidelberg Retina Tomograph 3 and High-Definition Optical Coherence Tomography Agrees Poorly With Clinical Assessment
Allen JC
Journal of Glaucoma 2016; 25: 198-202 (IGR: 16-4)


60244 New neuroretinal rim analysis with spectral domain optical coherence tomography, Spectralis (Heidelberg Engineering, Germany). Preliminary study
Rosenberg R
Journal Français d'Ophtalmologie 2015; 38: 46-52 (IGR: 16-4)


60572 Lamina cribrosa depth in different stages of glaucoma
Netto C
Investigative Ophthalmology and Visual Science 2015; 56: 2059-2064 (IGR: 16-4)


60152 Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia
Takayama K
PLoS ONE 2014; 9: e115313 (IGR: 16-4)


60794 Optic disc hemorrhage is related to various hemodynamic findings by disc angiography
Park CK
PLoS ONE 2015; 10: e0120000 (IGR: 16-4)


60586 Collagen microstructural factors influencing optic nerve head biomechanics
Gouget CL
Investigative Ophthalmology and Visual Science 2015; 56: 2031-2042 (IGR: 16-4)


60410 Lamina cribrosa microarchitecture in normal monkey eyes part 1: methods and initial results
Grimm J
Investigative Ophthalmology and Visual Science 2015; 56: 1618-1637 (IGR: 16-4)


60685 Morphological features and important parameters of large optic discs for diagnosing glaucoma
Kiuchi Y
PLoS ONE 2015; 10: e0118920 (IGR: 16-4)


60476 Evaluation of subjects with a moderate cup to disc ratio using optical coherence tomography and Heidelberg retina tomograph 3: impact of the disc area
Çelik F
Indian Journal of Ophthalmology 2015; 63: 3-8 (IGR: 16-4)


60282 Lamina cribrosa visibility using optical coherence tomography: comparison of devices and effects of image enhancement techniques
Acharyya S
Investigative Ophthalmology and Visual Science 2015; 56: 865-874 (IGR: 16-4)


60274 Automated segmentation of the lamina cribrosa using Frangi's filter: a novel approach for rapid identification of tissue volume fraction and beam orientation in a trabeculated structure in the eye
Abel RL
Journal of the Royal Society, Interface / the Royal Society 2015; 12: 20141009 (IGR: 16-4)


60179 Spectral domain optical coherence tomography cross-sectional image of optic nerve head during intraocular pressure elevation
Park MH
International Journal of Ophthalmology 2014; 7: 1022-1029 (IGR: 16-4)


60008 Lipofuscin accumulation and autophagy in glaucomatous human lamina cribrosa cells
McCann A
BMC Ophthalmology 2014; 14: 153 (IGR: 16-4)


60116 Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement
Denniss J
Investigative Ophthalmology and Visual Science 2015; 56: 98-105 (IGR: 16-4)


60672 Comparison of Prelaminar Thickness between Primary Open Angle Glaucoma and Normal Tension Glaucoma Patients
Park CK
PLoS ONE 2015; 10: e0120634 (IGR: 16-4)


60694 An energy theory of glaucoma
Khaw PT
GLIA 2015; 63: 1537-1552 (IGR: 16-4)


60376 Prevalence of disc cupping in non-glaucomatous eyes
Iribarren R
Medicina 2015; 75: 6-10 (IGR: 16-4)


60266 Sparse dissimilarity-constrained coding for glaucoma screening
Tao D
IEEE Transactions on Bio-Medical Engineering 2015; 62: 1395-1403 (IGR: 16-4)


60332 Facts and myths of cerebrospinal fluid pressure for the physiology of the eye
Ritch R
Progress in Retinal and Eye Research 2015; 46: 67-83 (IGR: 16-4)


60536 Depth-dependent changes in collagen organization in the human peripapillary sclera
Liu J
PLoS ONE 2015; 10: e0118648 (IGR: 16-4)


60106 Three-dimensional optic nerve head images using optical coherence tomography with a broad bandwidth, femtosecond, and mode-locked laser
Baba M
Graefe's Archive for Clinical and Experimental Ophthalmology 2015; 253: 313-321 (IGR: 16-4)


60790 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma
Kikawa T
PLoS ONE 2015; 10: e0122347 (IGR: 16-4)


60681 Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier-domain optical coherence tomography
Francis BA
British Journal of Ophthalmology 2015; 99: 1224-1229 (IGR: 16-4)


60668 Fractal Dimension as a New Tool to Analyze Optic Nerve Head Vasculature in Primary Open Angle Glaucoma
Mastropasqua R
In vivo (Athens, Greece) 2015; 29: 273-279 (IGR: 16-4)


60187 Differential subcellular Ca2+ signaling in a highly specialized subpopulation of astrocytes
Naumchuk Y
Experimental Neurology 2015; 265: 59-68 (IGR: 16-4)


60206 Correlation between lamina cribrosa tilt angles, myopia and glaucoma using OCT with a wide bandwidth femtosecond mode-locked laser
Baba M
PLoS ONE 2014; 9: e116305 (IGR: 16-4)


60680 Calcium channel blockade reduces mechanical strain-induced extracellular matrix gene response in lamina cribrosa cells
McElnea EM
British Journal of Ophthalmology 2015; 99: 1009-1014 (IGR: 16-4)


60567 Comparison of visual field progression between temporally tilted disc and nontilted disc, in patients with normal tension glaucoma
Kee C
Eye 2015; 29: 1308-1314 (IGR: 16-4)


60153 Anterior lamina cribrosa insertion in primary open-angle glaucoma patients and healthy subjects
Lee EJ
PLoS ONE 2014; 9: e114935 (IGR: 16-4)


59842 Novel screening method for glaucomatous eyes with myopic tilted discs: the crescent moon sign
Park KH
JAMA ophthalmology 2014; 132: 1407-1413 (IGR: 16-4)


60358 Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology
Gharahkhani P
Genetic epidemiology 2015; 39: 207-216 (IGR: 16-4)


60256 Is Myopic Optic Disc Appearance a Risk Factor for Rapid Progression in Medically Treated Glaucomatous Eyes With Confirmed Visual Field Progression?
Back S
Journal of Glaucoma 2016; 25: 330-337 (IGR: 16-4)


60332 Facts and myths of cerebrospinal fluid pressure for the physiology of the eye
Panda-Jonas S
Progress in Retinal and Eye Research 2015; 46: 67-83 (IGR: 16-4)


60680 Calcium channel blockade reduces mechanical strain-induced extracellular matrix gene response in lamina cribrosa cells
Wallace DM
British Journal of Ophthalmology 2015; 99: 1009-1014 (IGR: 16-4)


60736 Cup-to-Disc Ratio From Heidelberg Retina Tomograph 3 and High-Definition Optical Coherence Tomography Agrees Poorly With Clinical Assessment
Chua D
Journal of Glaucoma 2016; 25: 198-202 (IGR: 16-4)


60668 Fractal Dimension as a New Tool to Analyze Optic Nerve Head Vasculature in Primary Open Angle Glaucoma
Fasanella V
In vivo (Athens, Greece) 2015; 29: 273-279 (IGR: 16-4)


60116 Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement
Nicolela MT
Investigative Ophthalmology and Visual Science 2015; 56: 98-105 (IGR: 16-4)


60694 An energy theory of glaucoma
Raisman G
GLIA 2015; 63: 1537-1552 (IGR: 16-4)


60256 Is Myopic Optic Disc Appearance a Risk Factor for Rapid Progression in Medically Treated Glaucomatous Eyes With Confirmed Visual Field Progression?
Lee KS
Journal of Glaucoma 2016; 25: 330-337 (IGR: 16-4)


60274 Automated segmentation of the lamina cribrosa using Frangi's filter: a novel approach for rapid identification of tissue volume fraction and beam orientation in a trabeculated structure in the eye
Ethier CR
Journal of the Royal Society, Interface / the Royal Society 2015; 12: 20141009 (IGR: 16-4)


60410 Lamina cribrosa microarchitecture in normal monkey eyes part 1: methods and initial results
Libertiaux V
Investigative Ophthalmology and Visual Science 2015; 56: 1618-1637 (IGR: 16-4)


60206 Correlation between lamina cribrosa tilt angles, myopia and glaucoma using OCT with a wide bandwidth femtosecond mode-locked laser
Hangai M
PLoS ONE 2014; 9: e116305 (IGR: 16-4)


60536 Depth-dependent changes in collagen organization in the human peripapillary sclera
Nguyen TD
PLoS ONE 2015; 10: e0118648 (IGR: 16-4)


60476 Evaluation of subjects with a moderate cup to disc ratio using optical coherence tomography and Heidelberg retina tomograph 3: impact of the disc area
Çelebi S
Indian Journal of Ophthalmology 2015; 63: 3-8 (IGR: 16-4)


60008 Lipofuscin accumulation and autophagy in glaucomatous human lamina cribrosa cells
Quill B
BMC Ophthalmology 2014; 14: 153 (IGR: 16-4)


60152 Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia
Hasegawa T
PLoS ONE 2014; 9: e115313 (IGR: 16-4)


60790 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma
Matsumoto A
PLoS ONE 2015; 10: e0122347 (IGR: 16-4)


60244 New neuroretinal rim analysis with spectral domain optical coherence tomography, Spectralis (Heidelberg Engineering, Germany). Preliminary study
Marill AF
Journal Français d'Ophtalmologie 2015; 38: 46-52 (IGR: 16-4)


60153 Anterior lamina cribrosa insertion in primary open-angle glaucoma patients and healthy subjects
Girard MJ
PLoS ONE 2014; 9: e114935 (IGR: 16-4)


59842 Novel screening method for glaucomatous eyes with myopic tilted discs: the crescent moon sign
Kim TW
JAMA ophthalmology 2014; 132: 1407-1413 (IGR: 16-4)


60572 Lamina cribrosa depth in different stages of glaucoma
Liu Y
Investigative Ophthalmology and Visual Science 2015; 56: 2059-2064 (IGR: 16-4)


60266 Sparse dissimilarity-constrained coding for glaucoma screening
Liu J
IEEE Transactions on Bio-Medical Engineering 2015; 62: 1395-1403 (IGR: 16-4)


60282 Lamina cribrosa visibility using optical coherence tomography: comparison of devices and effects of image enhancement techniques
Haaland BA
Investigative Ophthalmology and Visual Science 2015; 56: 865-874 (IGR: 16-4)


60187 Differential subcellular Ca2+ signaling in a highly specialized subpopulation of astrocytes
Koulen P
Experimental Neurology 2015; 265: 59-68 (IGR: 16-4)


60106 Three-dimensional optic nerve head images using optical coherence tomography with a broad bandwidth, femtosecond, and mode-locked laser
Araie M
Graefe's Archive for Clinical and Experimental Ophthalmology 2015; 253: 313-321 (IGR: 16-4)


60586 Collagen microstructural factors influencing optic nerve head biomechanics
Ethier CR
Investigative Ophthalmology and Visual Science 2015; 56: 2031-2042 (IGR: 16-4)


60681 Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier-domain optical coherence tomography
Greenfield DS
British Journal of Ophthalmology 2015; 99: 1224-1229 (IGR: 16-4)


60358 Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology
Höhn R
Genetic epidemiology 2015; 39: 207-216 (IGR: 16-4)


60282 Lamina cribrosa visibility using optical coherence tomography: comparison of devices and effects of image enhancement techniques
Wei X
Investigative Ophthalmology and Visual Science 2015; 56: 865-874 (IGR: 16-4)


60206 Correlation between lamina cribrosa tilt angles, myopia and glaucoma using OCT with a wide bandwidth femtosecond mode-locked laser
Araie M
PLoS ONE 2014; 9: e116305 (IGR: 16-4)


60116 Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement
McKendrick AM
Investigative Ophthalmology and Visual Science 2015; 56: 98-105 (IGR: 16-4)


60681 Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier-domain optical coherence tomography
Schuman JS
British Journal of Ophthalmology 2015; 99: 1224-1229 (IGR: 16-4)


60153 Anterior lamina cribrosa insertion in primary open-angle glaucoma patients and healthy subjects
Mari JM
PLoS ONE 2014; 9: e114935 (IGR: 16-4)


60572 Lamina cribrosa depth in different stages of glaucoma
Tello C
Investigative Ophthalmology and Visual Science 2015; 56: 2059-2064 (IGR: 16-4)


60106 Three-dimensional optic nerve head images using optical coherence tomography with a broad bandwidth, femtosecond, and mode-locked laser
Yoneya S
Graefe's Archive for Clinical and Experimental Ophthalmology 2015; 253: 313-321 (IGR: 16-4)


60244 New neuroretinal rim analysis with spectral domain optical coherence tomography, Spectralis (Heidelberg Engineering, Germany). Preliminary study
Fénolland JR
Journal Français d'Ophtalmologie 2015; 38: 46-52 (IGR: 16-4)


60586 Collagen microstructural factors influencing optic nerve head biomechanics
Goh JC
Investigative Ophthalmology and Visual Science 2015; 56: 2031-2042 (IGR: 16-4)


59842 Novel screening method for glaucomatous eyes with myopic tilted discs: the crescent moon sign
Kim DM
JAMA ophthalmology 2014; 132: 1407-1413 (IGR: 16-4)


60668 Fractal Dimension as a New Tool to Analyze Optic Nerve Head Vasculature in Primary Open Angle Glaucoma
Cinelli M
In vivo (Athens, Greece) 2015; 29: 273-279 (IGR: 16-4)


60256 Is Myopic Optic Disc Appearance a Risk Factor for Rapid Progression in Medically Treated Glaucomatous Eyes With Confirmed Visual Field Progression?
Kook MS
Journal of Glaucoma 2016; 25: 330-337 (IGR: 16-4)


60736 Cup-to-Disc Ratio From Heidelberg Retina Tomograph 3 and High-Definition Optical Coherence Tomography Agrees Poorly With Clinical Assessment
Tham YC
Journal of Glaucoma 2016; 25: 198-202 (IGR: 16-4)


60790 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma
Shiga Y
PLoS ONE 2015; 10: e0122347 (IGR: 16-4)


60680 Calcium channel blockade reduces mechanical strain-induced extracellular matrix gene response in lamina cribrosa cells
Clark AF
British Journal of Ophthalmology 2015; 99: 1009-1014 (IGR: 16-4)


60410 Lamina cribrosa microarchitecture in normal monkey eyes part 1: methods and initial results
Downs JC
Investigative Ophthalmology and Visual Science 2015; 56: 1618-1637 (IGR: 16-4)


60152 Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia
Suda K
PLoS ONE 2014; 9: e115313 (IGR: 16-4)


60008 Lipofuscin accumulation and autophagy in glaucomatous human lamina cribrosa cells
Docherty N
BMC Ophthalmology 2014; 14: 153 (IGR: 16-4)


60536 Depth-dependent changes in collagen organization in the human peripapillary sclera
Quigley HA
PLoS ONE 2015; 10: e0118648 (IGR: 16-4)


60358 Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology
Khor CC
Genetic epidemiology 2015; 39: 207-216 (IGR: 16-4)


60668 Fractal Dimension as a New Tool to Analyze Optic Nerve Head Vasculature in Primary Open Angle Glaucoma
Costagliola C
In vivo (Athens, Greece) 2015; 29: 273-279 (IGR: 16-4)


60536 Depth-dependent changes in collagen organization in the human peripapillary sclera
Boote C
PLoS ONE 2015; 10: e0118648 (IGR: 16-4)


60790 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma
Maruyama K
PLoS ONE 2015; 10: e0122347 (IGR: 16-4)


60680 Calcium channel blockade reduces mechanical strain-induced extracellular matrix gene response in lamina cribrosa cells
O'brien CJ
British Journal of Ophthalmology 2015; 99: 1009-1014 (IGR: 16-4)


60244 New neuroretinal rim analysis with spectral domain optical coherence tomography, Spectralis (Heidelberg Engineering, Germany). Preliminary study
Renard JP
Journal Français d'Ophtalmologie 2015; 38: 46-52 (IGR: 16-4)


60410 Lamina cribrosa microarchitecture in normal monkey eyes part 1: methods and initial results
Yang H
Investigative Ophthalmology and Visual Science 2015; 56: 1618-1637 (IGR: 16-4)


60572 Lamina cribrosa depth in different stages of glaucoma
Liebmann JM
Investigative Ophthalmology and Visual Science 2015; 56: 2059-2064 (IGR: 16-4)


60282 Lamina cribrosa visibility using optical coherence tomography: comparison of devices and effects of image enhancement techniques
Mari JM
Investigative Ophthalmology and Visual Science 2015; 56: 865-874 (IGR: 16-4)


60206 Correlation between lamina cribrosa tilt angles, myopia and glaucoma using OCT with a wide bandwidth femtosecond mode-locked laser
Yoneya S
PLoS ONE 2014; 9: e116305 (IGR: 16-4)


60116 Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement
Turpin A
Investigative Ophthalmology and Visual Science 2015; 56: 98-105 (IGR: 16-4)


60681 Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier-domain optical coherence tomography
Varma R
British Journal of Ophthalmology 2015; 99: 1224-1229 (IGR: 16-4)


60358 Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology
Cooke Bailey JN
Genetic epidemiology 2015; 39: 207-216 (IGR: 16-4)


60586 Collagen microstructural factors influencing optic nerve head biomechanics
Girard MJ
Investigative Ophthalmology and Visual Science 2015; 56: 2031-2042 (IGR: 16-4)


60008 Lipofuscin accumulation and autophagy in glaucomatous human lamina cribrosa cells
Irnaten M
BMC Ophthalmology 2014; 14: 153 (IGR: 16-4)


60152 Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia
Yoshikawa M
PLoS ONE 2014; 9: e115313 (IGR: 16-4)


60736 Cup-to-Disc Ratio From Heidelberg Retina Tomograph 3 and High-Definition Optical Coherence Tomography Agrees Poorly With Clinical Assessment
Loon SC; Wong TY
Journal of Glaucoma 2016; 25: 198-202 (IGR: 16-4)


60681 Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier-domain optical coherence tomography
Huang D
British Journal of Ophthalmology 2015; 99: 1224-1229 (IGR: 16-4)


60790 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma
Yuasa T
PLoS ONE 2015; 10: e0122347 (IGR: 16-4)


60282 Lamina cribrosa visibility using optical coherence tomography: comparison of devices and effects of image enhancement techniques
Perera SA
Investigative Ophthalmology and Visual Science 2015; 56: 865-874 (IGR: 16-4)


60668 Fractal Dimension as a New Tool to Analyze Optic Nerve Head Vasculature in Primary Open Angle Glaucoma
Ambrosone L
In vivo (Athens, Greece) 2015; 29: 273-279 (IGR: 16-4)


60008 Lipofuscin accumulation and autophagy in glaucomatous human lamina cribrosa cells
Farrell M
BMC Ophthalmology 2014; 14: 153 (IGR: 16-4)


60358 Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology
Luo X
Genetic epidemiology 2015; 39: 207-216 (IGR: 16-4)


60116 Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement
Chauhan BC
Investigative Ophthalmology and Visual Science 2015; 56: 98-105 (IGR: 16-4)


60152 Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia
Yamada H
PLoS ONE 2014; 9: e115313 (IGR: 16-4)


60410 Lamina cribrosa microarchitecture in normal monkey eyes part 1: methods and initial results
Burgoyne CF
Investigative Ophthalmology and Visual Science 2015; 56: 1618-1637 (IGR: 16-4)


60572 Lamina cribrosa depth in different stages of glaucoma
Ritch R
Investigative Ophthalmology and Visual Science 2015; 56: 2059-2064 (IGR: 16-4)


60152 Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia
Nakanishi H
PLoS ONE 2014; 9: e115313 (IGR: 16-4)


60282 Lamina cribrosa visibility using optical coherence tomography: comparison of devices and effects of image enhancement techniques
Baskaran M
Investigative Ophthalmology and Visual Science 2015; 56: 865-874 (IGR: 16-4)


60790 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma
Akiba M
PLoS ONE 2015; 10: e0122347 (IGR: 16-4)


60358 Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology
Ramdas WD
Genetic epidemiology 2015; 39: 207-216 (IGR: 16-4)


60736 Cup-to-Disc Ratio From Heidelberg Retina Tomograph 3 and High-Definition Optical Coherence Tomography Agrees Poorly With Clinical Assessment
Aung T
Journal of Glaucoma 2016; 25: 198-202 (IGR: 16-4)


60681 Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier-domain optical coherence tomography

British Journal of Ophthalmology 2015; 99: 1224-1229 (IGR: 16-4)


60008 Lipofuscin accumulation and autophagy in glaucomatous human lamina cribrosa cells
Clark AF
BMC Ophthalmology 2014; 14: 153 (IGR: 16-4)


60358 Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology
Vithana E
Genetic epidemiology 2015; 39: 207-216 (IGR: 16-4)


60008 Lipofuscin accumulation and autophagy in glaucomatous human lamina cribrosa cells
O'brien CJ
BMC Ophthalmology 2014; 14: 153 (IGR: 16-4)


60152 Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia
Unoki N
PLoS ONE 2014; 9: e115313 (IGR: 16-4)


60790 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma
Nakazawa T
PLoS ONE 2015; 10: e0122347 (IGR: 16-4)


60282 Lamina cribrosa visibility using optical coherence tomography: comparison of devices and effects of image enhancement techniques
Aung T
Investigative Ophthalmology and Visual Science 2015; 56: 865-874 (IGR: 16-4)


60008 Lipofuscin accumulation and autophagy in glaucomatous human lamina cribrosa cells
Wallace DM
BMC Ophthalmology 2014; 14: 153 (IGR: 16-4)


60282 Lamina cribrosa visibility using optical coherence tomography: comparison of devices and effects of image enhancement techniques
Strouthidis NG
Investigative Ophthalmology and Visual Science 2015; 56: 865-874 (IGR: 16-4)


60358 Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology
Koh V
Genetic epidemiology 2015; 39: 207-216 (IGR: 16-4)


60152 Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia
Ikeda HO
PLoS ONE 2014; 9: e115313 (IGR: 16-4)


60358 Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology
Yazar S
Genetic epidemiology 2015; 39: 207-216 (IGR: 16-4)


60152 Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia
Yoshimura N
PLoS ONE 2014; 9: e115313 (IGR: 16-4)


60358 Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology
Xu L; Forward H; Kearns LS; Amin N; Iglesias AI; Sim KS; van Leeuwen EM; Demirkan A; van der Lee S; Loon SC; Rivadeneira
Genetic epidemiology 2015; 39: 207-216 (IGR: 16-4)


59055 New insights into blindness; mechanical fatigue of optic nerve head in glaucomatous optic neuropathy
Norouzpour A; Mehdizadeh A
Journal of Medical Engineering and Technology 2014; 38: 367-371 (IGR: 16-3)


59223 Correlation between central corneal thickness and visual field defect, cup to disc ratio and retinal nerve fiber layer thickness in primary open-angle glaucoma patients
Wangsupadilok B; Orapiriyakul L
Journal of the Medical Association of Thailand 2014; 97: 751-757 (IGR: 16-3)


59044 Correlation between the ganglion cell complex and structural measures of the optic disc and retinal nerve fiber layer in glaucoma
Bresciani-Battilana E; Teixeira IC; Barbosa DT; Caixeta-Umbelino C; Paolera MD; Kasahara N
International Ophthalmology 2015; 35: 645-650 (IGR: 16-3)


59475 Relationship Between Optic Nerve Appearance and Retinal Nerve Fiber Layer Thickness as Explored with Spectral Domain Optical Coherence Tomography
Aleman TS; Huang J; Garrity ST; Carter SB; Aleman WD; Ying GS; Tamhankar MA
Translational vision science & technology 2014; 3: 4 (IGR: 16-3)


59557 Serous detachment of the macula associated with advanced glaucomatous cupping
Spaide RF
Ophthalmic surgery, lasers & imaging retina 2014; 45: 598-600 (IGR: 16-3)


59467 Factors affecting plastic lamina cribrosa displacement in glaucoma patients
Jung KI; Jung Y; Park KT; Park CK
Investigative Ophthalmology and Visual Science 2014; 55: 7709-7715 (IGR: 16-3)


58783 Microstructure of the optic disc pit in open-angle glaucoma
Choi YJ; Lee EJ; Kim BH; Kim TW
Ophthalmology 2014; 121: 2098-2106.e2 (IGR: 16-3)


58790 Update in intracranial pressure evaluation methods and translaminar pressure gradient role in glaucoma
Siaudvytyte L; Januleviciene I; Ragauskas A; Bartusis L; Siesky B; Harris A
Acta Ophthalmologica 2015; 93: 9-15 (IGR: 16-3)


59315 Sectoral variations in the distribution of axonal cytoskeleton proteins in the human optic nerve head
Kang MH; Law-Davis S; Balaratnasingam C; Yu DY
Experimental Eye Research 2014; 128: 141-150 (IGR: 16-3)


59137 In vivo three-dimensional characterization of the healthy human lamina cribrosa with adaptive optics spectral-domain optical coherence tomography
Nadler Z; Wang B; Schuman JS; Ferguson RD; Patel A; Hammer DX; Bilonick RA; Ishikawa H; Kagemann L; Sigal IA; Wollstein G
Investigative Ophthalmology and Visual Science 2014; 55: 6459-6466 (IGR: 16-3)


59594 Correlating cup-to-disc ratios measured by HRT-III, SD-OCT and the new color imaging Laguna ONhE procedure
Rodríguez Uña I; Méndez Hernández CD; Sáenz-Francés F; García Feijóo J
Archivos de la Sociedad Española de Oftalmologia 2015; 90: 212-219 (IGR: 16-3)


58918 Optic Nerve Head Deformation in Glaucoma: The Temporal Relationship between Optic Nerve Head Surface Depression and Retinal Nerve Fiber Layer Thinning
Xu G; Weinreb RN; Leung CK
Ophthalmology 2014; 121: 2362-2370 (IGR: 16-3)


59061 Application of Elliptic Fourier analysis to describe the lamina cribrosa shape with age and intraocular pressure
Sanfilippo PG; Grimm JL; Flanagan JG; Lathrop KL; Sigal IA
Experimental Eye Research 2014; 128: 1-7 (IGR: 16-3)


59160 Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process
Springelkamp H; Höhn R; Mishra A; Hysi PG; Khor CC; Loomis SJ; Bailey JN; Gibson J; Thorleifsson G; Janssen SF; Luo X; Ramdas WD; Vithana E; Nongpiur ME; Montgomery GW; Xu L; Mountain JE; Gharahkhani P; Lu Y; Amin N; Karssen LC; Sim KS; van Leeuwen E
Nature communications 2014; 5: 4883 (IGR: 16-3)


59175 The relationship between retinal nerve fiber layer thickness and optic nerve head neuroretinal rim tissue in glaucoma
Patel NB; Sullivan-Mee M; Harwerth RS
Investigative Ophthalmology and Visual Science 2014; 55: 6802-6816 (IGR: 16-3)


59611 The effects of glycosaminoglycan degradation on the mechanical behavior of the posterior porcine sclera
Murienne BJ; Jefferys JL; Quigley HA; Nguyen TD
Acta biomaterialia 2015; 12: 195-206 (IGR: 16-3)


58853 Comparison of the clinical disc margin seen in stereo disc photographs with neural canal opening seen in optical coherence tomography images
Young M; Lee S; Rateb M; Beg MF; Sarunic MV; Mackenzie PJ
Journal of Glaucoma 2014; 23: 360-367 (IGR: 16-3)


59311 Influence of the Disc-Fovea Angle on Limits of RNFL Variability and Glaucoma Discrimination
Amini N; Nowroozizadeh S; Cirineo N; Henry S; Chang T; Chou T; Coleman AL; Caprioli J; Nouri-Mahdavi K
Investigative Ophthalmology and Visual Science 2014; 55: 7332-7342 (IGR: 16-3)


58984 Comparison of Optic Nerve Head Topographic Parameters in Patients With Primary Open-Angle Glaucoma With and Without Diabetes Mellitus
Akkaya S; Can E; Oztürk F
Journal of Glaucoma 2016; 25: 49-53 (IGR: 16-3)


59285 Confocal scanning laser tomography of the optic nerve head on the patients with Alzheimer's disease compared to glaucoma and control
Kurna SA; Akar G; Altun A; Agirman Y; Gozke E; Sengor T
International Ophthalmology 2014; 34: 1203-1211 (IGR: 16-3)


58922 Assessment of the optic disc morphology using spectral-domain optical coherence tomography and scanning laser ophthalmoscopy
Calvo P; Ferreras A; Abadia B; Ara M; Figus M; Pablo LE; Frezzotti P
BioMed research international 2014; 2014: 275654 (IGR: 16-3)


59621 Robust multi-scale superpixel classification for optic cup localization
Tan NM; Xu Y; Goh WB; Liu J
Computerized Medical Imaging and Graphics 2015; 40: 182-193 (IGR: 16-3)


58990 A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head
Causin P; Guidoboni G; Harris A; Prada D; Sacco R; Terragni S
Mathematical biosciences 2014; 257: 33-41 (IGR: 16-3)


59432 Reproducibility of Optic Nerve Head Hemoglobin Measures
Mendez-Hernandez C; Garcia-Feijoo J; Arribas-Pardo P; Saenz-Frances F; Rodriguez-Uña I; Fernandez-Perez C; de la Rosa MG
Journal of Glaucoma 2016; 25: 348-354 (IGR: 16-3)


59221 Segmentation of the blood vessels and optic disk in retinal images
Salazar-Gonzalez A; Kaba D; Li Y; Liu X
IEEE journal of biomedical and health informatics 2014; 18: 1874-1886 (IGR: 16-3)


59178 Correlation between structure/function and optic disc microcirculation in myopic glaucoma, measured with laser speckle flowgraphy
Aizawa N; Kunikata H; Shiga Y; Yokoyama Y; Omodaka K; Nakazawa T
BMC Ophthalmology 2014; 14: 113 (IGR: 16-3)


58818 Structural glaucomatous progression before and after occurrence of an optic disc haemorrhage
Chung E; Demetriades AM; Christos PJ; Radcliffe NM
British Journal of Ophthalmology 2015; 99: 21-25 (IGR: 16-3)


58999 Estimated rates of retinal ganglion cell loss in glaucomatous eyes with and without optic disc hemorrhages
Gracitelli CP; Tatham AJ; Zangwill LM; Weinreb RN; Liu T; Medeiros FA
PLoS ONE 2014; 9: e105611 (IGR: 16-3)


59578 Influence of Lamina Cribrosa Thickness and Depth on the Rate of Progressive Retinal Nerve Fiber Layer Thinning
Lee EJ; Kim TW; Kim M; Kim H
Ophthalmology 2015; 122: 721-729 (IGR: 16-3)


58887 The effect of myopic optic disc tilt on measurement of spectral-domain optical coherence tomography parameters
Shin HY; Park HY; Park CK
British Journal of Ophthalmology 2015; 99: 69-74 (IGR: 16-3)


58842 Cupping reversal in pediatric glaucoma-evaluation of the retinal nerve fiber layer and visual field
Ely AL; El-Dairi MA; Freedman SF
American Journal of Ophthalmology 2014; 158: 905-915.e1 (IGR: 16-3)


59563 Torsion of the Optic Nerve Head is a Prominent Feature of Normal Tension Glaucoma
Park HY; Lee KI; Lee K; Shin HY; Park CK
Investigative Ophthalmology and Visual Science 2014; 0: (IGR: 16-3)


59580 Comparison of the Thickness of the Lamina Cribrosa and Vascular Factors in Early Normal-tension Glaucoma with Low and High Intraocular Pressures
Kim JH; Lee TY; Lee JW; Lee KW
Korean Journal of Ophthalmology 2014; 28: 473-478 (IGR: 16-3)


59478 Posterior staphyloma is related to optic disc morphology and the location of visual field defect in normal tension glaucoma patients with myopia
Park HY; Jung Y; Park CK
Eye 2015; 29: 333-341 (IGR: 16-3)


58728 Disc haemorrhage is associated with the fast component, but not the slow component, of visual field decay rate in glaucoma
Kim JM; Kyung H; Azarbod P; Lee JM; Caprioli J
British Journal of Ophthalmology 2014; 98: 1555-1559 (IGR: 16-3)


59477 Comparison of Optic Disc Morphology of Optic Nerve Atrophy between Compressive Optic Neuropathy and Glaucomatous Optic Neuropathy
Hata M; Miyamoto K; Oishi A; Makiyama Y; Gotoh N; Kimura Y; Akagi T; Yoshimura N
PLoS ONE 2014; 9: e112403 (IGR: 16-3)


59039 Megalopapilla in children: a spectral domain optical coherence tomography analysis
Lee HS; Park SW; Heo H
Acta Ophthalmologica 2015; 93: e301-e305 (IGR: 16-3)


57167 Shear behavior of bovine scleral tissue
Argento A; Kim W; Rozsa FW; DeBolt KL; Zikanova S; Richards JR
Journal of Biomechanical Engineering 2014; 136: (IGR: 16-2)


57320 Relationship between the lamina cribrosa, outer retina, and choroidal thickness as assessed using spectral domain optical coherence tomography
Chung HS; Sung KR; Lee KS; Lee JR; Kim S
Korean Journal of Ophthalmology 2014; 28: 234-240 (IGR: 16-2)


57521 Detecting abnormality in optic nerve head images using a feature extraction analysis
Zhu H; Poostchi A; Vernon SA; Crabb DP
Biomedical optics express 2014; 5: 2215-2230 (IGR: 16-2)


57020 Optic nerve head assessment: comparison of Cirrus optic coherence tomography and Heidelberg Retinal Tomograph 3
Kratz A; Lim R; Goldberg I
Clinical and Experimental Ophthalmology 2014; 42: 734-744 (IGR: 16-2)


57503 Analytic Methods in Assessment of Optic Nerve Cupping
Jindra LF; Kuběna T; Gaudino RN
?eska a Slovenska Oftalmologie 2014; 70: 79-88 (IGR: 16-2)


56995 Glaucomatous optic neuropathy evaluation project: factors associated with underestimation of glaucoma likelihood
O'Neill EC; Gurria LU; Pandav SS; Kong YX; Brennan JF; Xie J; Coote MA; Crowston JG
JAMA ophthalmology 2014; 132: 560-566 (IGR: 16-2)


56909 Characterization of the gelatinase system of the laminar human optic nerve, and surrounding annulus of Bruch's membrane, choroid, and sclera
Hussain AA; Lee Y; Zhang JJ; Marshall J
Investigative Ophthalmology and Visual Science 2014; 55: 2358-2364 (IGR: 16-2)


57483 Optic disc tilt direction determines the location of initial glaucomatous damage
Choi JA; Park HY; Shin HY; Park CK
Investigative Ophthalmology and Visual Science 2014; 55: 4991-4998 (IGR: 16-2)


57264 Optic nerve gray crescent can confound neuroretinal rim interpretation: review of the literature
Arora S; Rayat J; Damji KF
Canadian Journal of Ophthalmology 2014; 49: 238-242 (IGR: 16-2)


56948 Assessment of optic nerve head drusen using enhanced depth imaging and swept source optical coherence tomography
Silverman AL; Tatham AJ; Medeiros FA; Weinreb RN
Journal of Neuro-Ophthalmology 2014; 34: 198-205 (IGR: 16-2)


57054 Myocilin is involved in NgR1/Lingo-1-mediated oligodendrocyte differentiation and myelination of the optic nerve
Kwon HS; Nakaya N; Abu-Asab M; Kim HS; Tomarev SI
Journal of Neuroscience 2014; 34: 5539-5551 (IGR: 16-2)


57033 The role of matricellular proteins in glaucoma
Wallace DM; Murphy-Ullrich JE; Downs JC; O'brien CJ
Matrix Biology 2014; 37: 174-182 (IGR: 16-2)


57232 Evaluation of the "IS" Rule to Differentiate Glaucomatous Eyes From Normal
Law SK; Kornmann HL; Nilforushan N; Moghimi S; Caprioli J
Journal of Glaucoma 2016; 25: 27-32 (IGR: 16-2)


56992 Spontaneous retinal venous pulsation and disc hemorrhage in open-angle glaucoma
Kim M; Kim TW; Weinreb RN; Lee EJ; Seo JH
Investigative Ophthalmology and Visual Science 2014; 55: 2822-2826 (IGR: 16-2)


57265 Can an inexperienced observer accurately plot disc contours using Heidelberg retinal Tomograph?
Koh V; Wee S; Lim M; Wong WL; Wong TY; Aung T; Loon SC
Canadian Journal of Ophthalmology 2014; 49: 249-255 (IGR: 16-2)


57227 Comparison of Laser Scanning Diagnostic Devices for Early Glaucoma Detection
Schulze A; Lamparter J; Pfeiffer N; Berisha F; Schmidtmann I; Hoffmann EM
Journal of Glaucoma 2015; 24: 442-447 (IGR: 16-2)


57410 Glaucoma Diagnostic Accuracy of Optical Coherence Tomography Parameters in Early Glaucoma with Different Types of Optic Disc Damage
Shin HY; Park HY; Jung Y; Choi JA; Park CK
Ophthalmology 2014; 121: 1990-1997 (IGR: 16-2)


57409 Recent advances in OCT imaging of the lamina cribrosa
Sigal IA; Wang B; Strouthidis NG; Akagi T; Girard MJ
British Journal of Ophthalmology 2014; 98: ii34-9 (IGR: 16-2)


57498 Correlation between optic nerve head structural parameters and glaucomatous visual field indices
Mizumoto K; Gosho M; Zako M
Clinical Ophthalmology 2014; 8: 1203-1208 (IGR: 16-2)


57392 Optic Disc Characteristics in Patients With Glaucoma and Combined Superior and Inferior Retinal Nerve Fiber Layer Defects
Choi JA; Park HY; Shin HY; Park CK
JAMA ophthalmology 2014; 132: 1068-1075 (IGR: 16-2)


57176 Topographical Analysis of Non-Glaucomatous Myopic Optic Discs Using a Confocal Scanning Laser Ophthalmoscope (TopSS)
Oh SH; Chung SK; Lee NY
Seminars in Ophthalmology 2015; 0: 13-jan (IGR: 16-2)


56961 Recent structural alteration of the peripheral lamina cribrosa near the location of disc hemorrhage in glaucoma
Lee EJ; Kim TW; Kim M; Girard MJ; Mari JM; Weinreb RN
Investigative Ophthalmology and Visual Science 2014; 55: 2805-2815 (IGR: 16-2)


56821 Baseline prognostic factors predict rapid visual field deterioration in glaucoma
Lee JM; Caprioli J; Nouri-Mahdavi K; Afifi AA; Morales E; Ramanathan M; Yu F; Coleman AL
Investigative Ophthalmology and Visual Science 2014; 55: 2228-2236 (IGR: 16-2)


56252 Effect of intraocular pressure on glaucomatous damage to the optic nerve
Jonas JB; Yang D; Wang N
Ophthalmologe 2014; 111: 181-188; quiz 189-90 (IGR: 16-1)


56124 Measurement of scleral thickness using swept-source optical coherence tomography in patients with open-angle glaucoma and myopia
Lopilly Park HY; Lee NY; Choi JA; Park CK
American Journal of Ophthalmology 2014; 157: 876-884 (IGR: 16-1)


56385 Variation of the axial location of Bruch's membrane opening with age, choroidal thickness, and race
Johnstone J; Fazio M; Rojananuangnit K; Smith B; Clark M; Downs C; Owsley C; Girard MJ; Mari JM; Girkin CA
Investigative Ophthalmology and Visual Science 2014; 55: 2004-2009 (IGR: 16-1)


56503 Distribution and associated factors of optic disc diameter and cup-to-disc ratio in an elderly Chinese population
Kuang TM; Liu CJ; Ko YC; Lee SM; Cheng CY; Chou P
Journal of the Chinese Medical Association 2014; 77: 203-208 (IGR: 16-1)


56036 Eye-specific IOP-induced displacements and deformations of human lamina cribrosa
Sigal IA; Grimm JL; Jan NJ; Reid K; Minckler DS; Brown DJ
Investigative Ophthalmology and Visual Science 2014; 55: 1-15 (IGR: 16-1)


56658 The difference in translaminar pressure gradient and neuroretinal rim area in glaucoma and healthy subjects
Siaudvytyte L; Januleviciene I; Ragauskas A; Bartusis L; Meiliuniene I; Siesky B; Harris A
Journal of Ophthalmology 2014; 2014: 937360 (IGR: 16-1)


56194 Clinical features and glaucoma according to optic disc size in a South Korean population: the Namil study
Kang NH; Jun RM; Choi KR;
Japanese Journal of Ophthalmology 2014; 58: 205-211 (IGR: 16-1)


56094 Alterations in the neural and connective tissue components of glaucomatous cupping after glaucoma surgery using swept-source optical coherence tomography
Yoshikawa M; Akagi T; Hangai M; Ohashi-Ikeda H; Takayama K; Morooka S; Kimura Y; Nakano N; Yoshimura N
Investigative Ophthalmology and Visual Science 2014; 55: 477-484 (IGR: 16-1)


56202 Anterior lamina cribrosa surface depth, age, and visual field sensitivity in the Portland Progression Project
Ren R; Yang H; Gardiner SK; Fortune B; Hardin C; Demirel S; Burgoyne CF
Investigative Ophthalmology and Visual Science 2014; 55: 1531-1539 (IGR: 16-1)


56037 Topographic characteristics of optic disc hemorrhage in primary open-angle glaucoma
Kim YK; Park KH; Yoo BW; Kim HC
Investigative Ophthalmology and Visual Science 2014; 55: 169-176 (IGR: 16-1)


56175 Clarifying the role of ATOH7 in glaucoma endophenotypes
Venturini C; Nag A; Hysi PG; Wang JJ; Wong TY; Healey PR; Mitchell P; Hammond CJ; Viswanathan AC;
British Journal of Ophthalmology 2014; 98: 562-566 (IGR: 16-1)


55981 Longitudinal detection of optic nerve head changes by spectral domain optical coherence tomography in early experimental glaucoma
He L; Yang H; Gardiner SK; Williams G; Hardin C; Strouthidis NG; Fortune B; Burgoyne CF
Investigative Ophthalmology and Visual Science 2014; 55: 574-586 (IGR: 16-1)


56249 Glaucomatous optic neuropathy evaluation (GONE) project: the effect of monoscopic versus stereoscopic viewing conditions on optic nerve evaluation
Chan HH; Ong DN; Kong YX; O'Neill EC; Pandav SS; Coote MA; Crowston JG
American Journal of Ophthalmology 2014; 157: 936-944 (IGR: 16-1)


56671 Stereoscopic analysis of optic nerve head parameters in primary open angle glaucoma: the glaucoma stereo analysis study
Yokoyama Y; Tanito M; Nitta K; Katai M; Kitaoka Y; Omodaka K; Tsuda S; Nakagawa T; Nakazawa T
PLoS ONE 2014; 9: e99138 (IGR: 16-1)


56290 Application of vascular bundle displacement in the optic disc for glaucoma detection using fundus images
Fuente-Arriaga JA; Felipe-Riverón EM; Garduño-Calderón E
Computers in Biology and Medicine 2014; 47: 27-35 (IGR: 16-1)


56614 Characteristics of optic disc parameters and its association in normal Chinese population: the Handan Eye Study
Zhang Q; Li S; Liang Y; Wang F; Chen W; Wang N
Chinese Medical Journal 2014; 127: 1702-1709 (IGR: 16-1)


56477 Comparing Optic Nerve Head Analysis Between Confocal Scanning Laser Ophthalmoscopy and Spectral Domain Optical Coherence Tomography
Roberti G; Centofanti M; Oddone F; Tanga L; Michelessi M; Manni G
Current Eye Research 2014; 39: 1026-1032 (IGR: 16-1)


56576 Repeatability of in vivo 3D lamina cribrosa microarchitecture using adaptive optics spectral domain optical coherence tomography
Nadler Z; Wang B; Wollstein G; Nevins JE; Ishikawa H; Bilonick R; Kagemann L; Sigal IA; Ferguson RD; Patel A; Hammer DX; Schuman JS
Biomedical optics express 2014; 5: 1114-1123 (IGR: 16-1)


56677 Correlation between retinal nerve fiber layer and disc parameters in glaucoma suspected eyes
Kasumovic SS; Pavljasevic S; Cabric E; Mavija M; Dacic-Lepara S; Jankov M
Medicinski arhiv 2014; 68: 113-116 (IGR: 16-1)


56531 A method to estimate biomechanics and mechanical properties of optic nerve head tissues from parameters measurable using optical coherence tomography
Sigal IA; Grimm JL; Schuman JS; Kagemann L; Ishikawa H; Wollstein G
IEEE Transactions on Medical Imaging 2014; 33: 1381-1389 (IGR: 16-1)


56148 Static blood flow autoregulation in the optic nerve head in normal and experimental glaucoma
Wang L; Burgoyne CF; Cull G; Thompson S; Fortune B
Investigative Ophthalmology and Visual Science 2014; 55: 873-880 (IGR: 16-1)


56439 Optical Coherence Tomography Angiography of Optic Disc Perfusion in Glaucoma
Jia Y; Wei E; Wang X; Zhang X; Morrison JC; Parikh M; Lombardi LH; Gattey DM; Armour RL; Edmunds B; Kraus MF; Fujimoto JG; Huang D
Ophthalmology 2014; 121: 1322-1332 (IGR: 16-1)


56539 Effect of Focal Lamina Cribrosa Defect on Glaucomatous Visual Field Progression
Faridi OS; Park SC; Kabadi R; Su D; De Moraes CG; Liebmann JM; Ritch R
Ophthalmology 2014; 121: 1524-1530 (IGR: 16-1)


56192 Characteristics of undiagnosed primary open-angle glaucoma: the Tajimi Study
Iwase A; Suzuki Y; Araie M;
Ophthalmic Epidemiology 2014; 21: 39-44 (IGR: 16-1)


56260 Risk factors for optic disc hemorrhage in the low-pressure glaucoma treatment study
Furlanetto RL; De Moraes CG; Teng CC; Liebmann JM; Greenfield DS; Gardiner SK; Ritch R; Krupin T;
American Journal of Ophthalmology 2014; 157: 945-952 (IGR: 16-1)


55960 Changes in the lamina and prelamina after intraocular pressure reduction in patients with primary open-angle glaucoma and acute primary angle-closure
Park HY; Shin HY; Jung KI; Park CK
Investigative Ophthalmology and Visual Science 2014; 55: 233-239 (IGR: 16-1)


56589 Do optic nerve head and visual field parameters in patients with obstructive sleep apnea syndrome differ from those in control individuals?
Salzgeber R; Iliev ME; Mathis J
Klinische Monatsblätter für Augenheilkunde 2014; 231: 340-343 (IGR: 16-1)


56340 Comparative quantitative study of astrocytes and capillary distribution in optic nerve laminar regions
Balaratnasingam C; Kang MH; Yu P; Chan G; Morgan WH; Cringle SJ; Yu DY
Experimental Eye Research 2014; 121: 11-22 (IGR: 16-1)


55538 Biomechanics of the posterior eye: A critical role in health and disease
Campbell IC; Coudrillier B; Ethier CR
Journal of Biomechanical Engineering 2014; 136: 021005 (IGR: 15-4)


55398 Factors associated with focal lamina cribrosa defects in glaucoma
Park SC; Hsu AT; Su D; Simonson JL; Al-Jumayli M; Liu Y; Liebmann JM; Ritch R
Investigative Ophthalmology and Visual Science 2013; 54: 8401-8407 (IGR: 15-4)


55315 Anti-connective tissue growth factor antibody treatment reduces extracellular matrix production in trabecular meshwork and lamina cribrosa cells
Wallace DM; Clark AF; Lipson KE; Andrews D; Crean JK; O'brien CJ
Investigative Ophthalmology and Visual Science 2013; 54: 7836-7848 (IGR: 15-4)


55213 The locations of circumpapillary glaucomatous defects seen on frequency-domain OCT scans
Hood DC; Wang DL; Raza AS; De Moraes CG; Liebmann JM; Ritch R
Investigative Ophthalmology and Visual Science 2013; 54: 7338-7343 (IGR: 15-4)


55199 Relationship between ganglion cell-inner plexiform layer and optic disc/retinal nerve fibre layer parameters in non-glaucomatous eyes
Tham YC; Cheung CY; Koh VT; Cheng CY; Sidhartha E; Strouthidis NG; Wong TY; Aung T
British Journal of Ophthalmology 2013; 97: 1592-1597 (IGR: 15-4)


55234 Defects of the lamina cribrosa in eyes with localized retinal nerve fiber layer loss
Tatham AJ; Miki A; Weinreb RN; Zangwill LM; Medeiros FA
Ophthalmology 2014; 121: 110-118 (IGR: 15-4)


55238 Optic Nerve Head and Retinal Nerve Fiber Layer Differences Between Caribbean Black and African American Patients as Measured by Spectral Domain OCT
Rao R; Dhrami-Gavazi E; Al-Aswad L; Ciarleglio A; Cioffi GA; Blumberg DM
Journal of Glaucoma 2015; 24: e43-e46 (IGR: 15-4)


55401 Optic nerve cupping and the neuro-ophthalmologist
Fraser CL; White AJ; Plant GT; Martin KR
Journal of Neuro-Ophthalmology 2013; 33: 377-389 (IGR: 15-4)


55454 Parapapillary gamma zone hole
Dai Y; Jonas JB; Ling Z; Sun X
Journal of Glaucoma 2013; 22: e33-e35 (IGR: 15-4)


55456 In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography
Wang B; Nevins JE; Nadler Z; Wollstein G; Ishikawa H; Bilonick RA; Kagemann L; Sigal IA; Grulkowski I; Liu JJ; Kraus M; Lu CD; Hornegger J; Fujimoto JG; Schuman JS
Investigative Ophthalmology and Visual Science 2013; 54: 8270-8274 (IGR: 15-4)


55163 Inhibition of oxidative stress by coenzyme Q10 increases mitochondrial mass and improves bioenergetic function in optic nerve head astrocytes
Noh YH; Kim KY; Shim MS; Choi SH; Choi S; Ellisman MH; Weinreb RN; Perkins GA; Ju WK
Cell Death and Disease 2013; 4: e820 (IGR: 15-4)


55682 Peripapillary retinoschisis in glaucomatous eyes
Lee EJ; Kim TW; Kim M; Choi YJ
PLoS ONE 2014; 9: e90129 (IGR: 15-4)


55375 Application of the ISNT Rule to Neuroretinal Rim Thickness Determined Using Cirrus HD Optical Coherence Tomography
Hwang YH; Kim YY
Journal of Glaucoma 2015; 24: 503-507 (IGR: 15-4)


55696 Influence of automated disc margin determination on Stratus OCT optic nerve head measurements
Soares de Camargo A; Melo LA; Hirai FE; Tavares IM
Clinical Ophthalmology 2014; 8: 493-497 (IGR: 15-4)


55459 Cerebrospinal fluid pressure and glaucoma: regulation of trans-lamina cribrosa pressure
Marek B; Harris A; Kanakamedala P; Lee E; Amireskandari A; Carichino L; Guidoboni G; Tobe LA; Siesky B
British Journal of Ophthalmology 2014; 98: 721-725 (IGR: 15-4)


55341 Peripapillary arterial circle of Zinn-Haller: location and spatial relationships with myopia
Jonas JB; Holbach L; Panda-Jonas S
PLoS ONE 2013; 8: e78867 (IGR: 15-4)


55349 Structural diagnostics of course observation for glaucoma
Mardin CY
Ophthalmologe 2013; 110: 1036-1044 (IGR: 15-4)


55570 Peripapillary ring: histology and correlations
Jonas JB; Holbach L; Panda-Jonas S
Acta Ophthalmologica 2014; 92: e273-e279 (IGR: 15-4)


55506 Sequential-Digital Image Correlation for Mapping Human Posterior Sclera and Optic Nerve Head Deformation
Vande Geest J; Pyne JD; Genovese K; Casaletto L
Journal of Biomechanical Engineering 2014; 136: 021002 (IGR: 15-4)


55482 Trans-lamina cribrosa pressure difference and open-angle glaucoma. The central India eye and medical study
Jonas JB; Nangia V; Wang N; Bhate K; Nangia P; Yang D; Xie X; Panda-Jonas S
PLoS ONE 2013; 8: e82284 (IGR: 15-4)


55271 Glaucoma in an eye with situs inversus of the optic disc
Han SY; Hwang YH
Seminars in Ophthalmology 2014; 29: 172-174 (IGR: 15-4)


55258 Exome sequencing and functional analyses suggest that SIX6 is a gene involved in an altered proliferation-differentiation balance early in life and optic nerve degeneration at old age
Iglesias AI; Springelkamp H; van der Linde H; Severijnen LA; Amin N; Oostra B; Kockx CE; van den Hout MC; van Ijcken WF; Hofman A; Uitterlinden AG; Verdijk RM; Klaver CC; Willemsen R; Van Duijn CM
Human Molecular Genetics 2014; 23: 1320-1332 (IGR: 15-4)


55741 Osteopontin Is Induced by TGF-β2 and Regulates Metabolic Cell Activity in Cultured Human Optic Nerve Head Astrocytes
Neumann C; Garreis F; Paulsen F; Hammer CM; Birke MT; Scholz M
PLoS ONE 2014; 9: e92762 (IGR: 15-4)


55121 Delta-opioid receptors attenuate TNF-α-induced MMP-2 secretion from human ONH astrocytes
Akhter N; Nix M; Abdul Y; Singh S; Husain S
Investigative Ophthalmology and Visual Science 2013; 54: 6605-6611 (IGR: 15-4)


55319 Does optic nerve head surface topography change prior to loss of retinal nerve fiber layer thickness: a test of the site of injury hypothesis in experimental glaucoma
Fortune B; Reynaud J; Wang L; Burgoyne CF
PLoS ONE 2013; 8: e77831 (IGR: 15-4)


55774 Correlation between Optic Nerve Parameters Obtained Using 3D Nonmydriatic Retinal Camera and Optical Coherence Tomography: Interobserver Agreement on the Disc Damage Likelihood Scale
Han JW; Cho SY; Kang KD
Journal of Ophthalmology 2014; 2014: 931738 (IGR: 15-4)


55176 Intraobserver and interobserver agreement of computer software-assisted optic nerve head photoplanimetry
Tanito M; Sagara T; Takamatsu M; Kiuchi Y; Nakagawa T; Fujita Y; Ohira A
Japanese Journal of Ophthalmology 2014; 58: 56-61 (IGR: 15-4)


55722 Clinical significance of optic disc progression by topographic change analysis maps in glaucoma: an 8-year follow-up study
Kourkoutas D; Buys YM; Flanagan JG; Karamaounas N; Georgopoulos G; Iliakis E; Moschos MM; Trope GE
Journal of Ophthalmology 2014; 2014: 987389 (IGR: 15-4)


55626 Glaucoma-induced optic disc morphometric changes and glaucoma diagnostic ability of Heidelberg Retina Tomograph II in highly myopic eyes
Mayama C; Tsutsumi T; Saito H; Asaoka R; Tomidokoro A; Iwase A; Otani S; Miyata K; Araie M
PLoS ONE 2014; 9: e86417 (IGR: 15-4)


55372 A Comparison of Optic Nerve Head Topographic Measurements by Stratus OCT in Patients With Macrodiscs and Normal-sized Healthy Discs
Onmez FE; Satana B; Altan C; Basarir B; Demirok A
Journal of Glaucoma 2014; 23: e152-e156 (IGR: 15-4)


55367 A method to estimate the amount of neuroretinal rim tissue in glaucoma: comparison with current methods for measuring rim area
Gardiner SK; Ren R; Yang H; Fortune B; Burgoyne CF; Demirel S
American Journal of Ophthalmology 2014; 157: 540-9.e1-2 (IGR: 15-4)


55710 Anatomic vs. acquired image frame discordance in spectral domain optical coherence tomography minimum rim measurements
He L; Ren R; Yang H; Hardin C; Reyes L; Reynaud J; Gardiner SK; Fortune B; Demirel S; Burgoyne CF
PLoS ONE 2014; 9: e92225 (IGR: 15-4)


55329 Influence of disc area on retinal nerve fiber layer thickness measurement by spectral domain optical coherence tomography
Mansoori T; Balakrishna N; Viswanath K
Indian Journal of Ophthalmology 2013; 0: (IGR: 15-4)


55752 Reproducibility of In-Vivo OCT Measured Three-Dimensional Human Lamina Cribrosa Microarchitecture
Wang B; Nevins JE; Nadler Z; Wollstein G; Ishikawa H; Bilonick RA; Kagemann L; Sigal IA; Grulkowski I; Liu JJ; Kraus M; Lu CD; Hornegger J; Fujimoto JG; Schuman JS
PLoS ONE 2014; 9: e95526 (IGR: 15-4)


55554 Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT
Barella KA; Costa VP; Gonçalves Vidotti V; Silva FR; Dias M; Gomi ES
Journal of Ophthalmology 2013; 2013: 789129 (IGR: 15-4)


55210 Comparison of enhanced depth imaging and high-penetration optical coherence tomography for imaging deep optic nerve head and parapapillary structures
Miki A; Ikuno Y; Jo Y; Nishida K
Clinical Ophthalmology 2013; 7: 1995-2001 (IGR: 15-4)


55507 A comparison of false positives in retinal nerve fiber layer, optic nerve head and macular ganglion cell-inner plexiform layer from two spectral-domain optical coherence tomography devices
Leal-Fonseca M; Rebolleda G; Oblanca N; Moreno-Montañes J; Muñoz-Negrete FJ
Graefe's Archive for Clinical and Experimental Ophthalmology 2014; 252: 321-330 (IGR: 15-4)


55513 Detecting an event of progression using glaucoma probability score and the stereometric parameters of Heidelberg Retina Tomograph 3
Saarela V; Falck A; Tuulonen A
European Journal of Ophthalmology 2013; 0: 0 (IGR: 15-4)


55666 Assessment of the optic nerve head parameters using Heidelberg retinal tomography III in preterm children
Alshaarawi S; Shatriah I; Zunaina E; Wan Hitam WH
PLoS ONE 2014; 9: e88056 (IGR: 15-4)


55362 Retinal nerve fibre layer cross-sectional area, neuroretinal rim area and body mass index
Jonas JB; Nangia V; Gupta R; Agarwal S; Matin A; Khare A; Bhate K; Sinha A; Bhojwani K; Kulkarni M; Panda-Jonas S
Acta Ophthalmologica 2014; 92: e194-e199 (IGR: 15-4)


55686 Anatomical attributes of the optic nerve head in eyes with parafoveal scotoma in normal tension glaucoma
Rao A; Mukherjee S
PLoS ONE 2014; 9: e90554 (IGR: 15-4)


55496 Comparison of normal- and high-tension glaucoma: nerve fiber layer and optic nerve head damage
Häntzschel J; Terai N; Furashova O; Pillunat K; Pillunat LE
Ophthalmologica 2014; 231: 160-165 (IGR: 15-4)


55276 Correlation Between Optic Nerve Head Parameters, RNFL, and CCT in Patients with Bilateral Pseudoexfoliation Using HRT-III
Vergados A; Papaconstantinou D; Diagourtas A; Theodossiadis PG; Vergados I; Georgalas I
Seminars in Ophthalmology 2015; 30: 44-52 (IGR: 15-4)


55259 Pathogenesis and clinical implications of optic disk hemorrhage in glaucoma
Suh MH; Park KH
Survey of Ophthalmology 2014; 59: 19-29 (IGR: 15-4)


55353 Changes in lamina cribrosa and prelaminar tissue after deep sclerectomy
Barrancos C; Rebolleda G; Oblanca N; Cabarga C; Muñoz-Negrete FJ
Eye 2014; 28: 58-65 (IGR: 15-4)


55744 Optic disc hemorrhage after phacoemulsification in patients with glaucoma
Bojikian KD; Moore DB; Chen PP; Slabaugh MA
ISRN ophthalmology 2014; 2014: 574054 (IGR: 15-4)


54489 The influence of intersubject variability in ocular anatomical variables on the mapping of retinal locations to the retinal nerve fiber layer and optic nerve head
Lamparter J; Russell RA; Zhu H; Asaoka R; Yamashita T; Ho T; Garway-Heath DF
Investigative Ophthalmology and Visual Science 2013; 54: 6074-6082 (IGR: 15-3)


54809 Prevalence of optic disc hemorrhages in rural central India. The Central Indian Eye and Medical Study
Jonas JB; Nangia V; Khare A; Kulkarni M; Matin A; Sinha A; Bhojwani K; Nangia P; Panda-Jonas S
PLoS ONE 2013; 8: e76154 (IGR: 15-3)


54739 Peripapillary Retinal Nerve Fiber Layer and Optic Nerve Head Characteristics in Eyes With Situs Inversus of the Optic Disc
Kang S; Jin S; Roh KH; Hwang YH
Journal of Glaucoma 2015; 24: 306-310 (IGR: 15-3)


54578 Evaluation of Progressive Neuroretinal Rim Loss as a Surrogate End Point for Development of Visual Field Loss in Glaucoma
Medeiros FA; Lisboa R; Zangwill LM; Liebmann JM; Girkin CA; Bowd C; Weinreb RN
Ophthalmology 2014; 121: 100-109 (IGR: 15-3)


54422 Variation of lamina cribrosa depth following trabeculectomy
Lee EJ; Kim TW; Weinreb RN
Investigative Ophthalmology and Visual Science 2013; 54: 5392-5399 (IGR: 15-3)


54633 The relationship between vertical cup-disc ratio and body mass index in Port Harcourt, Nigeria
Pedro-Egbe CN; Awoyesuku EA
Nigerian journal of clinical practice 2013; 16: 517-520 (IGR: 15-3)


54500 Measurement of the optic disc vertical tilt angle with spectral-domain optical coherence tomography and influencing factors
Hosseini H; Nassiri N; Azarbod P; Giaconi J; Chou T; Caprioli J; Nouri-Mahdavi K
American Journal of Ophthalmology 2013; 156: 737-744 (IGR: 15-3)


54490 In vivo optic nerve head biomechanics: performance testing of a three-dimensional tracking algorithm
Girard MJ; Strouthidis NG; Desjardins A; Mari JM; Ethier CR
Journal of the Royal Society, Interface / the Royal Society 2013; 10: 20130459 (IGR: 15-3)


54335 Three-dimensional imaging of lamina cribrosa defects in glaucoma using swept-source optical coherence tomography
Takayama K; Hangai M; Kimura Y; Morooka S; Nukada M; Akagi T; Ikeda HO; Matsumoto A; Yoshimura N
Investigative Ophthalmology and Visual Science 2013; 54: 4798-4807 (IGR: 15-3)


54423 Ethnic variation in optic disc size by fundus photography
Lee RY; Kao AA; Kasuga T; Vo BN; Cui QN; Chiu CS; Weinreb RN; Lin SC
Current Eye Research 2013; 38: 1142-1147 (IGR: 15-3)


54334 Posterior displacement of the lamina cribrosa in glaucoma: in vivo interindividual and intereye comparisons
Furlanetto RL; Park SC; Damle UJ; Sieminski SF; Kung Y; Siegal N; Liebmann JM; Ritch R
Investigative Ophthalmology and Visual Science 2013; 54: 4836-4842 (IGR: 15-3)


54820 Self-assessment for optic disc segmentation
Cheng J; Liu J; Yin F; Lee BH; Wong DW; Aung T; Cheng CY; Wong TY
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2013; 2013: 5861-5864 (IGR: 15-3)


54518 Elevated maxi-K(+) ion channel current in glaucomatous lamina cribrosa cells
Irnaten M; Barry RC; Wallace DM; Docherty NG; Quill B; Clark AF; O'brien CJ
Experimental Eye Research 2013; 115: 224-229 (IGR: 15-3)


54667 Collagen: a potential factor involved in the pathogenesis of glaucoma
Huang W; Fan Q; Wang W; Zhou M; Laties AM; Zhang X
Medical science monitor basic research 2013; 19: 237-240 (IGR: 15-3)


54866 Studies on glial isomeration of lamina cribrosa in rat
Dai C; Li DQ; Li Y; Raisman G; Yin ZQ
Chinese Journal of Ophthalmology 2013; 49: 723-728 (IGR: 15-3)


54742 Diagnostic Performance of the ISNT Rule for Glaucoma Based on the Heidelberg Retinal Tomograph
Chan EW; Liao J; Wong R; Loon SC; Aung T; Wong TY; Cheng CY
Translational vision science & technology 2013; 2: 2 (IGR: 15-3)


54521 The ability of macular parameters and circumpapillary retinal nerve fiber layer by three SD-OCT instruments to diagnose highly myopic glaucoma
Akashi A; Kanamori A; Nakamura M; Fujihara M; Yamada Y; Negi A
Investigative Ophthalmology and Visual Science 2013; 54: 6025-6032 (IGR: 15-3)


54520 The comparison of manual vs automated disc margin delineation using spectral-domain optical coherence tomography
Iverson SM; Sehi M
Eye 2013; 27: 1180-1187 (IGR: 15-3)


54767 Combination of optic disc rim area and retinal nerve fiber layer thickness for early glaucoma detection by using spectral domain OCT
Suh MH; Kim SK; Park KH; Kim DM; Kim SH; Kim HC
Graefe's Archive for Clinical and Experimental Ophthalmology 2013; 251: 2617-2625 (IGR: 15-3)


54558 Comparison of optic nerve morphology in eyes with glaucoma and eyes with non-arteritic anterior ischemic optic neuropathy by Fourier domain optical coherence tomography
Yang Y; Zhang H; Yan Y; Gui Y; Zhu T
Experimental and therapeutic medicine 2013; 6: 268-274 (IGR: 15-3)


54818 Changes in retinal nerve fiber layer and optic disc algorithms by optical coherence tomography in glaucomatous Arab subjects
Zeried FM; Osuagwu UL
Clinical Ophthalmology 2013; 7: 1941-1949 (IGR: 15-3)


54838 Optic disc topography of normal tension glaucoma patients in Malaysia
Adlina AR; Shatriah I; Liza Sharmini AT; Ahmad MS
Medical Journal of Malaysia 2013; 68: 338-342 (IGR: 15-3)


54761 Effects of optic disc size on progression of visual field defects in normal-tension glaucoma
Hayamizu F; Yamazaki Y
Nippon Ganka Gakkai Zasshi 2013; 117: 609-615 (IGR: 15-3)


54076 Association of the optic disc structure with the use of antihypertensive medications: the thessaloniki eye study
Harris A; Topouzis F; Wilson MR; Founti P; Kheradiya NS; Anastasopoulos E; Gong G; Yu F; Jonescu-Cuypers CP; Pappas T; Koskosas A; Coleman AL
Journal of Glaucoma 2013; 22: 526-531 (IGR: 15-3)


54871 Differentiation of concomitant glaucomatous optic neuropathy in optic disc drusen

Vestnik Oftalmologii 2013; 129: 68-72 (IGR: 15-3)


54778 Topographic optic disc changes after successful trabeculectomy evaluated using spectral domain optical coherence tomography
Russo A; Katsanos A; Riva I; Floriani I; Biagioli E; Quaranta L
Journal of Ocular Pharmacology and Therapeutics 2013; 29: 870-875 (IGR: 15-3)


53689 RETINAL INNER NUCLEAR LAYER MICROCYSTIC CHANGES IN OPTIC NERVE ATROPHY: A Novel Spectral-Domain OCT Finding
Wolff B; Basdekidou C; Vasseur V; Mauget-Faÿsse M; Sahel JA; Vignal C
Retina (Philadelphia, Pa.) 2013; 33: 2133-2138 (IGR: 15-2)


53513 The relationship between cup-to-disc ratio and estimated number of retinal ganglion cells
Tatham AJ; Weinreb RN; Zangwill LM; Liebmann JM; Girkin CA; Medeiros FA
Investigative Ophthalmology and Visual Science 2013; 54: 3205-3214 (IGR: 15-2)


53911 Imaging of the Lamina Cribrosa in Glaucoma: Perspectives of Pathogenesis and Clinical Applications
Kim TW; Kagemann L; Girard MJ; Strouthidis NG; Sung KR; Leung CK; Schuman JS; Wollstein G
Current Eye Research 2013; 38: 903-909 (IGR: 15-2)


53531 Lipofuscin in human glaucomatous optic nerves
Fernandez de Castro JP; Mullins RF; Manea AM; Hernandez J; Wallen T; Kuehn MH
Experimental Eye Research 2013; 111: 61-66 (IGR: 15-2)


53634 Glaucomatous Cupping and Raised IOP: Sine qua Non for Glaucoma?
Rao A; Kesarwani S; Jena S; Mandal S
Seminars in Ophthalmology 2013; 28: 203-205 (IGR: 15-2)


54048 3D modeling to characterize lamina cribrosa surface and pore geometries using in vivo images from normal and glaucomatous eyes
Sredar N; Ivers KM; Queener HM; Zouridakis G; Porter J
Biomedical optics express 2013; 4: 1153-1165 (IGR: 15-2)


53843 In vivo evaluation of lamina cribrosa deformation in glaucoma
Park SC
Journal of Glaucoma 2013; 22: S29-31 (IGR: 15-2)


53913 From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change
Chauhan BC; Burgoyne CF
American Journal of Ophthalmology 2013; 156: 218-227.e2 (IGR: 15-2)


53698 Reversible reactivity by optic nerve astrocytes
Sun D; Qu J; Jakobs TC
GLIA 2013; 61: 1218-1235 (IGR: 15-2)


53708 Idebenone prevents human optic nerve head astrocytes from oxidative stress, apoptosis, and senescence by stabilizing BAX/Bcl-2 ratio
Kernt M; Arend N; Buerger A; Mann T; Haritoglou C; Ulbig MW; Kampik A; Hirneiss C
Journal of Glaucoma 2013; 22: 404-412 (IGR: 15-2)


53668 Assessment of optic disc photographs for glaucoma by UK optometrists: the Moorfields Optic Disc Assessment Study (MODAS)
Hadwin SE; Redmond T; Garway-Heath DF; Lemij HG; Reus NJ; Ward G; Anderson RS
Ophthalmic and Physiological Optics 2013; 33: 618-624 (IGR: 15-2)


54038 Comparison of reliability of the eye optic disc cup and pallor areas in glaucoma diagnostics
Pluhácek F; Wagner J
Collegium Antropologicum 2013; 37: 59-63 (IGR: 15-2)


53791 The Heidelberg retina tomograph ancillary study to the European glaucoma prevention study: study design and baseline factors
Hoffmann EM; Miglior S; Zeyen T; Torri V; Rulli E; Aliyeva S; Floriani I; Cunha-Vaz J; Pfeiffer N
Acta Ophthalmologica 2013; 91: e612-e619 (IGR: 15-2)


53270 Comparison of optic nerve head parameter measurements obtained by time-domain and spectral-domain optical coherence tomography
Savini G; Barboni P; Carbonelli M; Sbreglia A; Deluigi G; Parisi V
Journal of Glaucoma 2013; 22: 384-389 (IGR: 15-2)


53854 Longitudinal hemodynamic changes within the optic nerve head in experimental glaucoma
Cull G; Burgoyne CF; Fortune B; Wang L
Investigative Ophthalmology and Visual Science 2013; 54: 4271-4277 (IGR: 15-2)


53508 Effect of topical tafluprost on optic nerve head blood flow in patients with myopic disc type
Tsuda S; Yokoyama Y; Chiba N; Aizawa N; Shiga Y; Yasuda M; Yokokura S; Otomo T; Fuse N; Nakazawa T
Journal of Glaucoma 2013; 22: 398-403 (IGR: 15-2)


53802 Features of optic disc progression in patients with ocular hypertension and early glaucoma
Lloyd MJ; Mansberger SL; Fortune BA; Nguyen H; Torres R; Demirel S; Gardiner SK; Johnson CA; Cioffi GA
Journal of Glaucoma 2013; 22: 343-348 (IGR: 15-2)


53654 Optic Nerve Diffusion Tensor Imaging Parameters and Their Correlation With Optic Disc Topography and Disease Severity in Adult Glaucoma Patients and Controls
Chang ST; Xu J; Trinkaus K; Pekmezci M; Arthur SN; Song SK; Barnett EM
Journal of Glaucoma 2014; 23: 513-520 (IGR: 15-2)


53499 Paradoxical thinning of the retinal nerve fiber layer after reversal of cupping: A case report of primary infantile glaucoma
Chang TC; Grajewski AL
Indian Journal of Ophthalmology 2013; 0: (IGR: 15-2)


53623 Evaluation of Lamina Cribrosa in Pseudoexfoliation Syndrome Using Spectral-Domain Optical Coherence Tomography Enhanced Depth Imaging
Kim S; Sung KR; Lee JR; Lee KS
Ophthalmology 2013; 120: 1798-1803 (IGR: 15-2)


53650 Evaluation of the Effect of Pan Retinal Photocoagulation on Optic Nerve Head Parameters Using HRT3
Singh H; Garg S; Sharma R; Venkatesh P; Saxena R; Dada T
Journal of Glaucoma 2014; 23: 467-470 (IGR: 15-2)


53678 Choice of statistical method influences apparent association between structure and function in glaucoma
Marín-Franch I; Malik R; Crabb DP; Swanson WH
Investigative Ophthalmology and Visual Science 2013; 54: 4189-4196 (IGR: 15-2)


52699 Relationship between corneal hysteresis and optic nerve parameters measured with spectral domain optical coherence tomography
Vu DM; Silva FQ; Haseltine SJ; Ehrlich JR; Radcliffe NM
Graefe's Archive for Clinical and Experimental Ophthalmology 2013; 251: 1777-1783 (IGR: 15-1)


52382 Development of diagnostic and treatment strategies for glaucoma through understanding and modification of scleral and lamina cribrosa connective tissue
Quigley HA; Cone FE
Cell and Tissue Research 2013; 353: 231-244 (IGR: 15-1)


52937 Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation
Mookiah MR; Acharya UR; Chua CK; Min LC; Ng EY; Mushrif MM; Laude A
Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine 2013; 227: 37-49 (IGR: 15-1)


52719 New insights into the study of optic nerve diseases
Negi A
Nippon Ganka Gakkai Zasshi 2013; 117: 187-210 (IGR: 15-1)


52884 Focal lamina cribrosa defects associated with glaucomatous rim thinning and acquired pits
You JY; Park SC; Su D; Teng CC; Liebmann JM; Ritch R
JAMA ophthalmology 2013; 131: 314-320 (IGR: 15-1)


52742 Integrins in trabecular meshwork and optic nerve head: possible association with the pathogenesis of glaucoma
Zhong Y; Wang J; Luo X
BioMed research international 2013; 2013: 202905 (IGR: 15-1)


53131 Expression Profiling in Glaucomatous Human Lamina Cribrosa Cells Based on Graph-clustering Approach
Luo D; Liu K; Zhu B; Xu X
Current Eye Research 2013; 38: 767-773 (IGR: 15-1)


53219 Agreement of flicker chronoscopy for structural glaucomatous progression detection and factors associated with progression
Chee RI; Silva FQ; Ehrlich JR; Radcliffe NM
American Journal of Ophthalmology 2013; 155: 983-990.e1 (IGR: 15-1)


53213 The rate of structural change: the confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study
Zangwill LM; Jain S; Dirkes K; He F; Medeiros FA; Trick GL; Brandt JD; Cioffi GA; Coleman AL; Liebmann JM; Piltz-Seymour JR; Gordon MO; Kass MA; Weinreb RN;
American Journal of Ophthalmology 2013; 155: 971-982 (IGR: 15-1)


52768 Enhancement of lamina cribrosa visibility in optical coherence tomography images using adaptive compensation
Mari JM; Strouthidis NG; Park SC; Girard MJ
Investigative Ophthalmology and Visual Science 2013; 54: 2238-2247 (IGR: 15-1)


52505 Superpixel classification based optic disc and optic cup segmentation for glaucoma screening
Cheng J; Liu J; Xu Y; Yin F; Wong DW; Tan NM; Tao D; Cheng CY; Aung T; Wong TY
IEEE Transactions on Medical Imaging 2013; 32: 1019-1032 (IGR: 15-1)


52994 Measuring hemoglobin levels in the optic nerve head: comparisons with other structural and functional parameters of glaucoma
Gonzalez de la Rosa M; Gonzalez-Hernandez M; Sigut J; Alayon S; Radcliffe N; Mendez-Hernandez C; García-Feijoo J; Fuertes-Lazaro I; Perez-Olivan S; Ferreras A
Investigative Ophthalmology and Visual Science 2013; 54: 482-489 (IGR: 15-1)


52451 Optic nerve head morphology in young patients after antiglaucomatous filtering surgery
Panda-Jonas S; Xu L; Yang H; Wang YX; Jonas SB; Jonas JB
Acta Ophthalmologica 2014; 92: 59-64 (IGR: 15-1)


52457 Morphological and functional differences between normal-tension and high-tension glaucoma
Häntzschel J; Terai N; Sorgenfrei F; Haustein M; Pillunat K; Pillunat LE
Acta Ophthalmologica 2013; 91: e386-e391 (IGR: 15-1)


53173 Comparison of clinical characteristics between Korean and Western normal-tension glaucoma patients
Kim JM; Jeoung JW; Bitrian E; Supawavej C; Mock D; Park KH; Caprioli J
American Journal of Ophthalmology 2013; 155: 852-857 (IGR: 15-1)


53150 Optic disc size and progression of visual field damage in patients with normal-tension glaucoma
Hayamizu F; Yamazaki Y; Nakagami T; Mizuki K
Clinical Ophthalmology 2013; 7: 807-813 (IGR: 15-1)


53188 Membrane tissue on the optic disc may cause macular schisis associated with a glaucomatous optic disc without optic disc pits
Takashina S; Saito W; Noda K; Katai M; Ishida S
Clinical Ophthalmology 2013; 7: 883-887 (IGR: 15-1)


52431 Optic Disc and Retinal Nerve Fiber Layer Thickness Descriptive Analysis in Megalopapilla
da Costa AM; Cronemberger S
Journal of Glaucoma 2014; 23: 368-371 (IGR: 15-1)


51918 Reversal of Lamina Cribrosa Displacement after Intraocular Pressure Reduction in Open-Angle Glaucoma
Lee EJ; Kim TW; Weinreb RN; Kim H
Ophthalmology 2013; 120: 553-559 (IGR: 14-4)


52047 A characteristic optic disc appearance associated with myopia in subjects with Graves' ophthalmopathy and in subjects with primary open-angle glaucoma
Yamazaki S; Inoue R; Tsuboi T; Kozaki A; Inoue T; Inoue Y
Clinical Ophthalmology 2013; 7: 47-53 (IGR: 14-4)


51784 Position of the central retinal vessel trunk and pattern of remaining visual field in advanced glaucoma
Huang H; Jonas JB; Dai Y; Hong J; Wang M; Chen J; Wu J; Sun X
British Journal of Ophthalmology 2013; 97: 96-100 (IGR: 14-4)


51661 HIF-1 expression in retinal ganglion cells and optic nerve axons in glaucoma
Reszeć J; Zalewska R; Bernaczyk P; Chyczewski L
Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society 2012; 50: 456-459 (IGR: 14-4)


51848 Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method
Wang L; Cull GA; Piper C; Burgoyne CF; Fortune B
Investigative Ophthalmology and Visual Science 2012; 53: 8303-8309 (IGR: 14-4)


51394 Automated alternation flicker for the detection of optic disc haemorrhages
Syed ZA; Radcliffe NM; De Moraes CG; Smith SD; Liebmann JM; Ritch R
Acta Ophthalmologica 2012; 90: 645-650 (IGR: 14-4)


51711 Improved reproducibility in measuring the laminar thickness on enhanced depth imaging SD-OCT images using maximum intensity projection
Lee EJ; Kim TW; Weinreb RN
Investigative Ophthalmology and Visual Science 2012; 53: 7576-7582 (IGR: 14-4)


51993 Enhanced Detection of Open-angle Glaucoma with an Anatomically Accurate Optical Coherence Tomography-Derived Neuroretinal Rim Parameter
Chauhan BC; O'Leary N; Almobarak FA; Reis AS; Yang H; Sharpe GP; Hutchison DM; Nicolela MT; Burgoyne CF
Ophthalmology 2013; 120: 535-543 (IGR: 14-4)


51954 Clinicopathologic correlation of disc and peripapillary region using SD-OCT
Sigler EJ; Mascarenhas KG; Tsai JC; Loewen NA
Optometry and Vision Science 2013; 90: 84-93 (IGR: 14-4)


51988 Diagnostic Capability of Lamina Cribrosa Thickness by Enhanced Depth Imaging and Factors Affecting Thickness in Patients with Glaucoma
Park HY; Park CK
Ophthalmology 2013; 120: 745-752 (IGR: 14-4)


52042 Prospective evaluation of optic nerve head by confocal scanning laser ophthalmoscopy after intraocular pressure control in adult glaucoma
Rao A; Sihota R; Srinivasan G; Gupta V; Gupta A; Sharma A
Seminars in Ophthalmology 2013; 28: 13-18 (IGR: 14-4)


51748 Pulsatile movement of the optic nerve head and the peripapillary retina in normal subjects and in glaucoma
Singh K; Dion C; Godin AG; Lorghaba F; Descovich D; Wajszilber M; Ozaki T; Costantino S; Lesk MR
Investigative Ophthalmology and Visual Science 2012; 53: 7819-7824 (IGR: 14-4)


51967 Quantitative OCT angiography of optic nerve head blood flow
Jia Y; Morrison JC; Tokayer J; Tan O; Lombardi L; Baumann B; Lu CD; Choi W; Fujimoto JG; Huang D
Biomedical optics express 2012; 3: 3127-3137 (IGR: 14-4)


51931 Diagnostic Specificities of Retinal Nerve Fiber Layer, Optic Nerve Head, and Macular Ganglion Cell-Inner Plexiform Layer Measurements in Myopic Eyes
Aref AA; Sayyad FE; Mwanza JC; Feuer WJ; Budenz DL
Journal of Glaucoma 2014; 23: 487-493 (IGR: 14-4)


52081 Morphometric characteristics of optic disc in patients with myopia and primary open-angle glaucoma
Gvozdenović R; Risović D; Marjanović I; Vuković D; Stanković B
Vojnosanitetski pregled. Military-medical and pharmaceutical review 2013; 70: 51-56 (IGR: 14-4)


51775 Superior segmental optic nerve hypoplasia accompanied by progressive normal-tension glaucoma
Yamazaki Y; Hayamizu F
Clinical Ophthalmology 2012; 6: 1713-1716 (IGR: 14-4)


51869 Optic disc rim area to retinal nerve fiber layer thickness correlation: comparison of diabetic and normal tension glaucoma eyes
Suh MH; Kim SH; Park KH; Yu HG; Huh JW; Kim DM
Japanese Journal of Ophthalmology 2013; 57: 156-165 (IGR: 14-4)


51737 Differentiation by imaging of superior segmental optic hypoplasia and normal-tension glaucoma with inferior visual field defects only
Yamada M; Ohkubo S; Higashide T; Nitta K; Takeda H; Sugiyama K
Japanese Journal of Ophthalmology 2013; 57: 25-33 (IGR: 14-4)


51992 A classic temporal optic disc pit showing progression in the corresponding optic nerve fiber and visual field defects
Tawara A; Miyamoto R; Tou N; Ishibashi S; Kondo H
Japanese Journal of Ophthalmology 2013; 57: 263-267 (IGR: 14-4)


51223 Human lamina cribrosa insertion and age
Sigal IA; Flanagan JG; Lathrop KL; Tertinegg I; Bilonick R
Investigative Ophthalmology and Visual Science 2012; 53: 6870-6879 (IGR: 14-3)


51041 Genetic investigation into the endophenotypic status of central corneal thickness and optic disc parameters in relation to open-angle glaucoma
Dimasi DP; Burdon KP; Hewitt AW; Fitzgerald J; Wang JJ; Healey PR; Mitchell P; Mackey DA; Craig JE
American Journal of Ophthalmology 2012; 154: 833-842.e2 (IGR: 14-3)


51246 Distribution of damage to the entire retinal ganglion cell pathway: quantified using spectral-domain optical coherence tomography analysis in patients with glaucoma
Lee K; Kwon YH; Garvin MK; Niemeijer M; Sonka M; Abràmoff MD
Archives of Ophthalmology 2012; 130: 1118-1126 (IGR: 14-3)


51190 Evaluation of Optic Nerve Head Using a Newly Developed Stereo Retinal Imaging Technique by Glaucoma Specialist and Non-Expert-Certified Orthoptist
Asakawa K; Kato S; Shoji N; Morita T; Shimizu K
Journal of Glaucoma 2013; 22: 698-706 (IGR: 14-3)


50821 Measurement of optic disc size and rim area with spectral-domain OCT and scanning laser ophthalmoscopy
Moghimi S; Hosseini H; Riddle J; Lee GY; Bitrian E; Giaconi J; Caprioli J; Nouri-Mahdavi K
Investigative Ophthalmology and Visual Science 2012; 53: 4519-4530 (IGR: 14-3)


50685 Glaucoma diagnostic capabilities of optic nerve head parameters as determined by Cirrus HD optical coherence tomography
Sung KR; Na JH; Lee Y
Journal of Glaucoma 2012; 21: 498-504 (IGR: 14-3)


51170 Comparison of Spectral-Domain Optical Coherence Tomography and Heidelberg Retina Tomograph III Optic Nerve Head Parameters in Glaucoma
Seymenoğlu G; Başer E; Oztürk B
Ophthalmologica 2013; 229: 101-105 (IGR: 14-3)


50925 Does optic nerve head size variation affect circumpapillary retinal nerve fiber layer thickness measurement by optical coherence tomography?
Huang D; Chopra V; Lu AT; Tan O; Francis B; Varma R;
Investigative Ophthalmology and Visual Science 2012; 53: 4990-4997 (IGR: 14-3)


50982 Laminar displacement and prelaminar tissue thickness change after glaucoma surgery imaged with optical coherence tomography
Reis AS; O'Leary N; Stanfield MJ; Shuba LM; Nicolela MT; Chauhan BC
Investigative Ophthalmology and Visual Science 2012; 53: 5819-5826 (IGR: 14-3)


50970 Juvenile glaucoma and optic disc pit with macular detachment in Klinefelter's syndrome
Muniesa Royo MJ; Sánchez Pérez C; Jurjo Campo C
Archivos de la Sociedad Española de Oftalmologia 2012; 87: 256-259 (IGR: 14-3)


50684 Glaucoma progression after the first-detected optic disc hemorrhage by optical coherence tomography
Suh MH; Park KH; Kim H; Kim TW; Kim SW; Kim SY; Kim DM
Journal of Glaucoma 2012; 21: 358-366 (IGR: 14-3)


50263 Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy
Nickells RW; Howell GR; Soto I; John SW
Annual review of neuroscience 2012; 35: 153-179 (IGR: 14-2)


50304 Pupil Ruff Atrophy Correlations with Intraocular Pressure and Cup-to-Disc Ratio in a Glaucoma Clinic Population
Ang GS; Wong T; Nicholas S; Wells AP
Ophthalmology 2012; 119: 1546-1551 (IGR: 14-2)


50569 Quantification of retrograde axonal transport in the rat optic nerve by fluorogold spectrometry
van Oterendorp C; Sgouris S; Bach M; Martin G; Biermann J; Jordan JF; Lagrè,ze WA
PLoS ONE 2012; 7: e38820 (IGR: 14-2)


50567 Changes in optic nerve head circulation in response to vasoactive agents: inter-eye comparison in monkeys with experimental unilateral glaucoma
Mayama C; Ishii K; Ota T; Tomidokoro A; Araie M
Investigative Ophthalmology and Visual Science 2012; 53: 5771-5778 (IGR: 14-2)


50485 In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy
Akagi T; Hangai M; Takayama K; Nonaka A; Ooto S; Yoshimura N
Investigative Ophthalmology and Visual Science 2012; 53: 4111-4119 (IGR: 14-2)


50355 Differences between Proximal versus Distal Intraorbital Optic Nerve Diffusion Tensor Magnetic Resonance Imaging Properties in Glaucoma Patients
Bolacchi F; Garaci FG; Martucci A; Meschini A; Fornari M; Marziali S; Mancino R; Squillaci E; Floris R; Cerulli L; Simonetti G; Nucci C
Investigative Ophthalmology and Visual Science 2012; 53: 4191-4196 (IGR: 14-2)


50400 Optic Disc Torsion Direction Predicts the Location of Glaucomatous Damage in Normal-Tension Glaucoma Patients with Myopia
Park HY; Lee K; Park CK
Ophthalmology 2012; 119: 1844-1851 (IGR: 14-2)


50205 Evaluation of lamina cribrosa and peripapillary sclera stiffness in pseudoexfoliation and normal eyes by atomic force microscopy
Braunsmann C; Hammer CM; Rheinlaender J; Kruse FE; Schä,ffer TE; Schlö,tzer-Schrehardt U
Investigative Ophthalmology and Visual Science 2012; 53: 2960-2967 (IGR: 14-2)


50444 LOXL1 Deficiency in the Lamina Cribrosa as Candidate Susceptibility Factor for a Pseudoexfoliation-Specific Risk of Glaucoma
Schlö,tzer-Schrehardt U; Hammer CM; Krysta AW; Hofmann-Rummelt C; Pasutto F; Sasaki T; Kruse FE; Zenkel M
Ophthalmology 2012; 119: 1832-1843 (IGR: 14-2)


50357 Glaucomatous optic nerve head alterations in patients with chronic heart failure
Meira-Freitas D; Melo LA; Almeida-Freitas DB; Paranhos A
Clinical Ophthalmology 2012; 6: 623-629 (IGR: 14-2)


50572 Effect of trabeculectomy on RNFL thickness and optic disc parameters using optical coherence tomography
Raghu N; Pandav SS; Kaushik S; Ichhpujani P; Gupta A
Eye 2012; 26: 1131-1137 (IGR: 14-2)


49235 The Optic Nerve Head As A Robust Biomechanical System
Sigal IA; Bilonick RA; Kagemann L; Wollstein G; Ishikawa H; Schuman JS; Grimm JL
Investigative Ophthalmology and Visual Science 2012; 53: 2658-2667 (IGR: 14-1)


48940 Horizontal central ridge of the lamina cribrosa and regional differences in laminar insertion in healthy subjects
Park SC; Kiumehr S; Teng CC; Tello C; Liebmann JM; Ritch R
Investigative Ophthalmology and Visual Science 2012; 53: 1610-166 (IGR: 14-1)


49155 Comparison of optic nerve head parameters using Heidelberg retinal tomography 3 and spectral-domain optical coherence tomography
Sato S; Hirooka K; Baba T; Shiraga F
Clinical and Experimental Ophthalmology 2012; 40: 721-726 (IGR: 14-1)


48919 Neuroretinal rim area and body mass index
Xu L; Wang YX; Wang S; Jonas JB
PLoS ONE 2012; 7: e30104 (IGR: 14-1)


48867 Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography
Reis AS; Sharpe GP; Yang H; Nicolela MT; Burgoyne CF; Chauhan BC
Ophthalmology 2012; 119: 738-747 (IGR: 14-1)


48881 In Vivo Evaluation of Focal Lamina Cribrosa Defects in Glaucoma
Kiumehr S; Park SC; Dorairaj S; Teng CC; Tello C; Liebmann JM; Ritch R
Archives of Ophthalmology 2012; 130: 552-559 (IGR: 14-1)


49147 Lamina Cribrosa Thickening in Early Glaucoma Predicted by a Microstructure Motivated Growth and Remodeling Approach
Grytz R; Sigal IA; Ruberti JW; Meschke G; Downs JC
Mechanics of Materials: an International Journal 2012; 44: 99-109 (IGR: 14-1)


49301 Glial cell and glaucomatous optic neuropathy
Ling ZH; Sun XH
Chinese Journal of Ophthalmology 2012; 48: 85-88 (IGR: 14-1)


48763 Diabetes mellitus affects biomechanical properties of the optic nerve head in the rat
Terai N; Spoerl E; Haustein M; Hornykewycz K; Haentzschel J; Pillunat LE
Ophthalmic Research 2012; 47: 189-194 (IGR: 14-1)


48875 Ischaemia in the Zinn-Haller circle and glaucomatous optic neuropathy in macaque monkeys
Hiraoka M; Inoue K; Ninomiya T; Takada M
British Journal of Ophthalmology 2012; 96: 597-603 (IGR: 14-1)


48661 Morphology of retinal vessels in the optic disk in a Göttingen minipig experimental glaucoma model
Galdos M; Bayó,n A; Rodriguez FD; Micó C; Sharma SC; Vecino E
Veterinary Ophthalmology 2012; 15: 36-46 (IGR: 14-1)


49049 Integrity/demyelination of the optic radiation, morphology of the papilla, and contrast sensitivity in glaucoma patients
Michelson G; Wä,rntges S; Engelhorn T; El-Rafei A; Hornegger J; Dö,rfler A
Klinische Monatsblätter für Augenheilkunde 2012; 229: 143-148 (IGR: 14-1)


48985 Planimetrically determined vertical cup/disc and rim width/disc diameter ratios and related factors
Tsutsumi T; Tomidokoro A; Araie M; Iwase A; Sakai H; Sawaguchi S
Investigative Ophthalmology and Visual Science 2012; 53: 1332-1340 (IGR: 14-1)


49107 The accuracy of the inferior>superior>nasal>temporal neuroretinal rim area rule for diagnosing glaucomatous optic disc damage
Morgan JE; Bourtsoukli I; Rajkumar KN; Ansari E; Cunliffe IA; North RV; Wild JM
Ophthalmology 2012; 119: 723-730 (IGR: 14-1)


49105 Glaucoma Diagnostic Accuracy of Ganglion Cell-Inner Plexiform Layer Thickness: Comparison with Nerve Fiber Layer and Optic Nerve Head
Mwanza JC; Durbin MK; Budenz DL; Sayyad FE; Chang RT; Neelakantan A; Godfrey DG; Carter R; Crandall AS
Ophthalmology 2012; 119: 1151-1158 (IGR: 14-1)


49197 Glaucoma Diagnostic Ability of Quadrant and Clock-Hour Neuroretinal Rim Assessment Using Cirrus HD Optical Coherence Tomography
Hwang YH; Kim YY
Investigative Ophthalmology and Visual Science 2012; 53: 2226-2234 (IGR: 14-1)


49207 Effect of race, age, and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD-OCT
Knight OJ; Girkin CA; Budenz DL; Durbin MK; Feuer WJ;
Archives of Ophthalmology 2012; 130: 312-318 (IGR: 14-1)


49198 Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation
Reis AS; O',Leary N; Yang H; Sharpe GP; Nicolela MT; Burgoyne CF; Chauhan BC
Investigative Ophthalmology and Visual Science 2012; 53: 1852-1860 (IGR: 14-1)


48852 Significant correlations between optic nerve head microcirculation and visual field defects and nerve fiber layer loss in glaucoma patients with myopic glaucomatous disk
Yokoyama Y; Aizawa N; Chiba N; Omodaka K; Nakamura M; Otomo T; Yokokura S; Fuse N; Nakazawa T
Clinical Ophthalmology 2011; 5: 1721-1727 (IGR: 14-1)


49240 Rates of visual field progression in distinct optic disc phenotypes
Schor KS; De Moraes CG; Teng CC; Tello C; Liebmann JM; Ritch R
Clinical and Experimental Ophthalmology 2012; 40: 706-712 (IGR: 14-1)


48548 Comparison of newly diagnosed ocular hypertension and open-angle glaucoma: ocular variables, risk factors, and disease severity
Buys YM; Harasymowycz P; Gaspo R; Kwok K; Hutnik CM; Blondeau P; Birt CM; Piemontesi RL; Gould LF; Lesk MR; Ahmed IK
Journal of Ophthalmology 2012; 2012: 757106 (IGR: 14-1)


48824 The Influence of Surgical and Medical Interventions upon Optic Disc Structure in Patients with Primary Open Angle Glaucoma
Xiao H; Liu X; Zhong YM; Mao Z
Eye Science 2011; 26: 185-192 (IGR: 14-1)


49279 Reversal of Lamina Cribrosa Displacement and Thickness after Trabeculectomy in Glaucoma
Lee EJ; Kim TW; Weinreb RN
Ophthalmology 2012; 119: 1359-1366 (IGR: 14-1)


47722 Structural basis of glaucoma: The fortified astrocytes of the optic nerve head are the target of raised intraocular pressure
Dai C; Khaw PT; Yin ZQ; Li D; Raisman G; Li Y
GLIA 2012; 60: 13-28 (IGR: 13-4)


47929 The effect of education on the assessment of optic nerve head photographs for the glaucoma diagnosis
Andersson S; Heijl A; Boehm AG; Bengtsson B
BMC Ophthalmology 2011; 11: 12 (IGR: 13-4)


48135 IOP-Induced Lamina Cribrosa Deformation and Scleral Canal Expansion: Independent or Related?
Sigal IA; Yang H; Roberts MD; Grimm JL; Burgoyne CF; Demirel S; Downs JC
Investigative Ophthalmology and Visual Science 2011; 52: 9023-9032 (IGR: 13-4)


47583 The first signs of glaucomatous cupping in the optic nerve
Anderson DR
Klinika Oczna 2011; 113: 82-90 (IGR: 13-4)


47999 The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach
Grytz R; Meschke G; Jonas JB
Biomechanics and modeling in mechanobiology 2011; 10: 371-382 (IGR: 13-4)


47574 Exploring the development of the mouse lamina cribrosa
Hart ML; Tochlin A; Taylor JSH
Journal of Anatomy 2011; 218: 356-357 (IGR: 13-4)


47968 Deformation of the rodent optic nerve head and peripapillary structures during acute intraocular pressure elevation
Fortune B; Choe TE; Reynaud J; Hardin C; Cull GA; Burgoyne CF; Wang L
Investigative ophthalmology & visual science 2011; 52: 6651-6661 (IGR: 13-4)


47507 Corneal Hysteresis and Beta-Zone Parapapillary Atrophy
Hayes DD; Teng CC; De Moraes CG; Tello C; Liebmann JM; Ritch R
American Journal of Ophthalmology 2011; (IGR: 13-4)


47731 Optic disc dimensions and cup-disc ratios among healthy South Indians: The Chennai glaucoma study
Arvind H; George R; Raju P; Ve RS; Mani B; Kannan P; Vijaya L
Ophthalmic Epidemiology 2011; 18: 189-197 (IGR: 13-4)


47860 Topographic differences between large and normal optic discs: A confocal scanning laser ophthalmoscopy study
Cankaya AB; Simsek T
European Journal of Ophthalmology 2011; 22: 63-69 (IGR: 13-4)


48386 Optic disc classification by the Heidelberg Retina Tomograph and by physicians with varying experience of glaucoma
Andersson S; Heijl A; Bengtsson B
Eye 2011; 25: 1401-1407 (IGR: 13-4)


48064 Comparison of different methods of inter-eye asymmetry of rim area and disc area analysis
Fansi AA; Boisjoly H; Chagnon M; Harasymowycz PJ
Eye 2011; 25: 1590-1597 (IGR: 13-4)


48353 The optic nerve head assessed with HRT in 5-16-year-old normal children: normal values, repeatability and interocular difference
Larsson E; Nuija E; Alm A
Acta Ophthalmologica 2011; 89: 755-758 (IGR: 13-4)


47628 Enhanced Depth Imaging Optical Coherence Tomography of Deep Optic Nerve Complex Structures in Glaucoma
Park SC; De Moraes CGV; Teng CC; Tello C; Liebmann JM; Ritch R
Ophthalmology 2011; (IGR: 13-4)


47617 Enhanced Depth Imaging Detects Lamina Cribrosa Thickness Differences in Normal Tension Glaucoma and Primary Open-Angle Glaucoma
Park H-YL; Jeon SH; Park CK
Ophthalmology 2011; (IGR: 13-4)


47870 Influence of optic disc size on the diagnostic performance of macular ganglion cell complex and peripapillary retinal nerve fiber layer analyses in glaucoma
Cordeiro DV; Lima VC; Castro DP; Castro LC; Pacheco MA; Lee JM; Dimantas MI; Prata TS
Clinical Ophthalmology 2011; 5: 1333-1337 (IGR: 13-4)


48052 The Effect of Acute Intraocular Pressure Elevation on the Monkey Optic Nerve Head As Detected by Spectral Domain Optical Coherence Tomography
Strouthidis NG; Fortune B; Yang H; Sigal IA; Burgoyne CF
Investigative Ophthalmology and Visual Science 2011; 52: 9431-9437 (IGR: 13-4)


48107 Correct calculation circle location of optical coherence tomography in measuring retinal nerve fiber layer thickness in eyes with myopic tilted discs
Chung JK; Yoo YC
Investigative Ophthalmology and Visual Science 2011; 52: 7894-7900 (IGR: 13-4)


47687 Significance of optic disc topography and retinal nerve fiber layer thickness measurement by spectral-domain OCT in diagnosis of glaucoma
Wang X-Z; Li S-N; Wu G-W; Mu D-P; Wang N-L
Chinese Journal of Ophthalmology 2010; 46: 702-707 (IGR: 13-4)


48316 Myopia-related optic disc and retinal changes in adolescent children from Singapore
Samarawickrama C; Mitchell P; Tong L; Gazzard G; Lim L; Wong TY; Saw SM
Ophthalmology 2011; 118: 2050-2057 (IGR: 13-4)


47913 Clock-hour laminar displacement and age in primary open-angle glaucoma and normal tension glaucoma
Rho CR; Park H-YL; Lee NY; Park CK
Clinical and Experimental Ophthalmology 2011; (IGR: 13-4)


47676 Clinical characteristics of eyes with unilateral disc hemorrhage in normal tension glaucoma patients
Li M; Cai Y; Pan YZ; Qiao RH; Fang Y; Liu LN; Wang J
Zhonghua Yi Xue Za Zhi 2011; 91: 445-450 (IGR: 13-4)


47013 Energy as a cause of nerve damage in Glaucoma: A theory on some mechanisms
Hetland JG
Techniques in Ophthalmology 2011; 9: 50-53 (IGR: 13-3)


46364 Combining rim area to disc area asymmetry ratio and Moorfields regression analysis of confocal scanning laser ophthalmoscopy for glaucoma screening
Kamdeu Fansi AA; Boisjoly H; Chagnon M; Harasymowycz PJ
Canadian Journal of Ophthalmology 2011; 46: 261-266 (IGR: 13-3)


46538 An study on central corneal thickness and optic disc size in patients with primary open angle glaucoma
Bandyopadhyay AK; Bhattacharya A; Dan AK; Banerjee B; Biswas I; Das SK; Bhaduri G
Journal of the Indian Medical Association 2011; 109: 465-468 (IGR: 13-3)


46411 Glaucomatous cupping of the lamina cribrosa: A review of the evidence for active progressive remodeling as a mechanism
Crawford Downs J; Roberts MD; Sigal IA
Experimental Eye Research 2011; 93: 133-140 (IGR: 13-3)


46814 The "iSN'T rule" in healthy participant optic nerve head by confocal scanning laser ophthalmoscopy
Iester M; Bertolotto M; Recupero SM; Perdicchi A
Journal of Glaucoma 2011; 20: 350-354 (IGR: 13-3)


46429 Posterior (Outward) Migration of the Lamina Cribrosa and Early Cupping in Monkey Experimental Glaucoma
Yang H; Williams G; Downs JC; Sigal IA; Roberts MD; Thompson H; Burgoyne CF
Investigative Ophthalmology and Visual Science 2011; (IGR: 13-3)


47088 Thickness of the lamina cribrosa and peripapillary sclera in Rhesus monkeys with nonglaucomatous or glaucomatous optic neuropathy
Jonas JB; Hayreh SS; Yong T
Acta Ophthalmologica 2011; 89: 423-427 (IGR: 13-3)


46391 A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma
Burgoyne CF
Experimental Eye Research 2011; 93: 120-132 (IGR: 13-3)


47075 The relationship between central corneal thickness and optic disc size in patients with primary open-angle glaucoma in a hospital-based population
Terai N; Spoerl E; Pillunat LE; Kuhlisch E; Schmidt E; Boehm AG
Acta Ophthalmologica 2011; 89: 556-559 (IGR: 13-3)


46384 The pathogenic role of transforming growth factor-?2 in glaucomatous damage to the optic nerve head
Fuchshofer R
Experimental Eye Research 2011; 93: 165-169 (IGR: 13-3)


46855 Transforming growth factor-(beta)2 increases extracellular matrix proteins in optic nerve head cells via activation of the smad signaling pathway
Zode GS; Sethi A; Brun-Zinkernagel A-M; Chang I; Clark AF; Wordinger RJ
Molecular Vision 2011; 17: 1745-1758 (IGR: 13-3)


47071 Myelination transition zone astrocytes: A novel cell type in the optic nerve with a putative role in glaucoma
Prasanna G; Pang L-H
Expert Review of Ophthalmology 2011; 6: 291-294 (IGR: 13-3)


46412 Pathophysiology of human glaucomatous optic nerve damage: Insights from rodent models of glaucoma
Morrison JC; Cepurna WO; Guo Y; Johnson EC
Experimental Eye Research 2011; 93: 156-164 (IGR: 13-3)


46417 The impact of acutely elevated intraocular pressure on the porcine optic nerve head
Fatehee N; Yu PK; Morgan WH; Cringle SJ; Yu DY
Investigative Ophthalmology and Visual Science 2011; 52: 6192-6198 (IGR: 13-3)


46828 Comparing stereometric parameters between heidelberg retinal tomography 2 and 3 in Asian eyes: The Singapore Malay eye study
Koh V; Loon SC; Wong W-L; Wong TY; Aung T
Journal of Glaucoma 2011; (IGR: 13-3)


46359 Influence of refractive error on optic disc topographic parameters: the Singapore malay eye study
Wu RY; Wong TY; Zheng YF; Cheung CY; Perera SA; Saw SM; Aung T
American Journal of Ophthalmology 2011; 152: 81-86 (IGR: 13-3)


46385 Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging
Ivers KM; Li C; Patel N; Sredar N; Luo X; Queener H; Harwerth RS; Porter J
Investigative Ophthalmology and Visual Science 2011; 52: 5473-5480 (IGR: 13-3)


47054 End-to-end pipeline for spectral domain optical coherence tomography and morphometric analysis of human optic nerve head
Lee S; Young M; Sarunic MV; Beg MF
Journal of Medical and Biological Engineering 2011; 31: 111-119 (IGR: 13-3)


46826 Optic disc size and other parameters from optical coherence tomography in Vietnamese-Americans
Peng P-H; Fu S; Nguyen N; Porco T; Lin SC
Journal of Glaucoma 2011; 20: 355-360 (IGR: 13-3)


46459 Visualization of the lamina cribrosa using enhanced depth imaging spectral-domain optical coherence tomography
Lee EJ; Kim T-W; Weinreb RN; Park KH; Kim SH; Kim DM
American Journal of Ophthalmology 2011; 152: 87-95 (IGR: 13-3)


46476 Structure-function relationship in glaucoma using spectral-domain optical coherence tomography
Rao HL; Zangwill LM; Weinreb RN; Leite MT; Sample PA; Medeiros FA
Archives of Ophthalmology 2011; 129: 864-871 (IGR: 13-3)


46675 Longitudinal study of optic cup progression in children
Park H-J; Hampp C; Demer JL
Journal of Pediatric Ophthalmology & Strabismus 2011; 48: 151-156 (IGR: 13-3)


46654 Shrinkage of the Scleral Canal During Cupping Reversal in Children
Mochizuki H; Lesley AG; Brandt JD
Ophthalmology 2011; (IGR: 13-3)


46602 Abnormalities of the optic disc
Sadun AA; Wang MY
Handbook of Clinical Neurology 2011; 102: 117-157 (IGR: 13-3)


46769 Short-term changes in the optic nerve head and visual field after trabeculectomy
Figus M; Lazzeri S; Nardi M; Bartolomei MP; Ferreras A; Fogagnolo P
Eye 2011; 25: 1057-1063 (IGR: 13-3)


46445 An applet to estimate the IOP-induced stress and strain within the optic nerve head
Sigal IA
Investigative Ophthalmology and Visual Science 2011; 52: 5497-5506 (IGR: 13-3)


46709 An hypothesis on pressure transmission from anterior chamber to optic nerve
Gerometta R; Escobar D; Candia OA
Medical Hypotheses 2011; (IGR: 13-3)


45876 Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma
Ren R; Wang N; Zhang X; Cui T; Jonas JB
Graefe's Archive for Clinical and Experimental Ophthalmology 2011; 249: 1057-1063 (IGR: 13-2)


45638 Finite element modeling of the human sclera: Influence on optic nerve head biomechanics and connections with glaucoma
Norman RE; Flanagan JG; Sigal IA; Rausch SMK; Tertinegg I; Ethier CR
Experimental Eye Research 2011; 93: 4-12 (IGR: 13-2)


45516 Glaucomatous eye macular ganglion cell complex thickness and its relation to temporal circumpapillary retinal nerve fiber layer thickness
Kita Y; Kita R; Nitta A; Nishimura C; Tomita G
Japanese Journal of Ophthalmology 2011; 55: 228-234 (IGR: 13-2)


45978 Angle assessment by eyecam, goniophotography, and gonioscopy
Baskaran M; Perera SA; Nongpiur ME; Tun TA; Park J; Kumar RS; Friedman DS; Aung T
Journal of Glaucoma 2011; (IGR: 13-2)


46195 Discus: investigating subjective judgment of optic disc damage
Denniss J; Echendu D; Henson DB; Artes PH
Optometry and Vision Science 2011; 88: 93-101 (IGR: 13-2)


45925 Genome-wide association studies in Asians confirm the involvement of ATOH7 and TGFBR3, and further identify CARD10 as a novel locus influencing optic discarea
Khor CC; Ramdas WD; Vithana EN; Cornes BK; Sim X; Tay W-T; Saw S-M; Lavanya YZ; Wu R; Wang JJ
Human Molecular Genetics 2011; 20: 1864-1872 (IGR: 13-2)


45719 The effect of graded cyclic stretching on extracellular matrix-related gene expression profiles in cultured primary human lamina cribrosa cells
Quill B; Docherty NG; Clark AF; O'brien CJ
Investigative Ophthalmology and Visual Science 2011; 52: 1908-1915 (IGR: 13-2)


46205 The 97.5th and 99.5th percentile of vertical cup disc ratio in the United States
Swanson MW
Optometry and Vision Science 2011; 88: 86-92 (IGR: 13-2)


45717 Genetic variants associated with optic nerve vertical cup-to-disc ratio are risk factors for primary open angle glaucoma in a US Caucasian population
Fan BJ; Wang DY; Pasquale LR; Haines JL; Wiggs JL
Investigative Ophthalmology and Visual Science 2011; 52: 1788-1792 (IGR: 13-2)


46204 Modeling the patterns of visual field loss in glaucoma
Carreras FJ; Rica R; Delgado AV
Optometry and Vision Science 2011; 88: 63-79 (IGR: 13-2)


45998 Longitudinal changes in anterior chamber configuration in eyes with open-angle glaucoma and associated factors
Pan Z; Furuya T; Kashiwagi K
Journal of Glaucoma 2011; (IGR: 13-2)


45696 Appraisal of optic disc stereo photos pre- and post-training session
Callewaert S; Fieuws S; Stalmans I; Zeyen T
Bulletin de la Société Belge d'Ophtalmologie 2010; 316: 27-32 (IGR: 13-2)


45759 Optic disc evaluation in optic neuropathies: The optic disc assessment project
O'Neill EC; Danesh-Meyer HV; Kong GXY; Hewitt AW; Coote MA; Mackey DA; Crowston JG
Ophthalmology 2011; 118: 964-970 (IGR: 13-2)


45988 Effect of optic disc size and disease severity on the diagnostic capability of glaucoma imaging technologies in an Indian population
Garudadri CS; Rao HL; Parikh RS; Jonnadula GB; Selvaraj P; Nutheti R; Thomas R
Journal of Glaucoma 2011; (IGR: 13-2)


45508 Change in optic nerve head topography in healthy volunteers: an 11-year follow-up
Harju M; Kurvinen L; Saari J; Vesti E
British Journal of Ophthalmology 2011; 95: 818-821 (IGR: 13-2)


45770 Influence of Disc Size on Optic Nerve Head versus Retinal Nerve Fiber Layer Assessment for Diagnosing Glaucoma
Oddone F; Centofanti M; Tanga L; Parravano M; Michelessi M; Schiavone M; Villani CM; Fogagnolo P; Manni G
Ophthalmology 2011; 118: 1340-1347 (IGR: 13-2)


45524 Accuracy of the RTVue-100 Fourier-domain optical coherence tomograph in an optic neuropathy screening trial
Garas A; Kóthy P; Holló G
International Ophthalmology 2011; 31: 175-182 (IGR: 13-2)


45845 Optic disc topography in normal Indian eyes using spectral domain optical coherence tomography
Mansoori T; Viswanath K; Balakrishna N
Indian Journal of Ophthalmology 2011; 59: 23-27 (IGR: 13-2)


45989 Optic disc parameters from optovue optical coherence tomography: Comparison of manual versus automated disc rim determination
Mesiwala NK; Pekmezci M; Porco TC; Lin SC
Journal of Glaucoma 2011; (IGR: 13-2)


45777 Comparison of Automated Analysis of Cirrus HD OCT Spectral-Domain Optical Coherence Tomography with Stereo Photographs of the Optic Disc
Sharma A; Oakley JD; Schiffman JC; Budenz DL; Anderson DR
Ophthalmology 2011; 118: 1348-1357 (IGR: 13-2)


46235 Mixture model-based approach for optic cup segmentation
Tan NM; Liu J; Wong DK; Yin F; Lim JH; Wong TY
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2010; 2010: 4817-4820 (IGR: 13-2)


45549 Disruption of gap junctions may be involved in impairment of autoregulation in optic nerve head blood flow of diabetic rabbits
Shibata M; Oku H; Sugiyama T; Kobayashi T; Tsujimoto M; Okuno T; Ikeda T
Investigative Ophthalmology and Visual Science 2011; 52: 2153-2159 (IGR: 13-2)


46038 Myopic optic disc tilt and the characteristics of peripapillary retinal nerve fiber layer thickness measured by spectral-domain optical coherence tomography
Hwang YH; Yoo C; Kim YY
Journal of Glaucoma 2011; (IGR: 13-2)


45594 Optic nerve sheath diameter in normal-tension glaucoma patients
Jaggi GP; Miller NR; Flammer J; Weinreb RN; Remonda L; Killer HE
British Journal of Ophthalmology 2011; (IGR: 13-2)


46144 Period prevalence and incidence of optic disc haemorrhage in normal tension glaucoma and primary open-angle glaucoma
Suh MH; Park KH
Clinical and Experimental Ophthalmology 2011; 39: 513-519 (IGR: 13-2)


45440 Glaucomatous optic neuropathy evaluation project: a standardized internet system for assessing skills in optic disc examination
Kong YX; Coote MA; O'Neill EC; Gurria LU; Xie J; Garway-Heath D; Medeiros FA; Crowston JG
Clinical and Experimental Ophthalmology 2011; 39: 308-317 (IGR: 13-2)


45992 Development of a resident training module for systematic optic disc evaluation in glaucoma
Law SK; Tamboli DA; Ou Y; Giaconi JAA; Caprioli J
Journal of Glaucoma 2011; (IGR: 13-2)


45449 Gaze Behavior among Experts and Trainees during Optic Disc Examination: Does How We Look Affect What We See?
O'Neill EC; Kong YX; Connell PP; Ong DN; Haymes SA; Coote MA; Crowston JG
Investigative Ophthalmology and Visual Science 2011; 52: 3976-3983 (IGR: 13-2)


27727 Heritability of optic disc diameters: a twin study
Drobnjak D; Taarnhøj NC; Mitchell P; Wang JJ; Tan A; Kessel L; Hougaard JL ; Sørensen TI; Larsen M
Acta Ophthalmologica 2011; 89: 193-198 (IGR: 13-1)


27822 Cup-to-disc ratio asymmetry in adolescents
De Campos MEJ; Garcia DM; Rodrigues MDLV
Arquivos Brasileiros de Oftalmologia 2010; 73: 231-234 (IGR: 13-1)


27747 Relationship of Central Corneal Thickness with Optic Disc Parameters: The Singapore Malay Eye Study
Wu R-Y; Zheng Y-F; Wong T-Y; Cheung CY-L; Loon S-C; Chauhan BC; Aung T
Investigative Ophthalmology and Visual Science 2011; 52: 1320-1324 (IGR: 13-1)


27716 Visual field results and optic disc morphology in patients treated with allogeneic stem-cell transplantation in childhood
Törnquist AL; Olsson M; Martin L; Winiarski J; Fahnehjelm KT
Acta Ophthalmologica 2011; 89: 62-69 (IGR: 13-1)


27875 Early microglia activation in a mouse model of chronic glaucoma
Bosco A; Steele MR; Vetter ML
Journal of Comparative Neurology 2011; 519: 599-620 (IGR: 13-1)


27767 Retinal Ganglion Cell Loss in a Rat Ocular Hypertension Model Is Sectorial and Involves Early Optic Nerve Axon Loss
Soto I; Pease ME; Son JL; Shi X; Quigley HA; Marsh-Armstrong N
Investigative Ophthalmology and Visual Science 2011; 52: 434-441 (IGR: 13-1)


27734 Deformation of the Early Glaucomatous Monkey Optic Nerve Head Connective Tissue after Acute IOP Elevation in 3-D Histomorphometric Reconstructions
Yang H; Thompson H; Roberts MD; Sigal IA; Downs JC; Burgoyne CF
Investigative Ophthalmology and Visual Science 2011; 52: 345-363 (IGR: 13-1)


28080 The association between diurnal variation of optic nerve head topography and intraocular pressure and ocular perfusion pressure in untreated primary open-angle glaucoma
Sehi M; Flanagan JG; Zeng L; Cook RJ; Trope GE
Journal of Glaucoma 2011; 20: 44-50 (IGR: 13-1)


27942 Automated segmentation of optic disc region on retinal fundus photographs: Comparison of contour modeling and pixel classification methods
Muramatsu C; Nakagawa T; Sawada A; Hatanaka Y; Hara T; Yamamoto T; Fujita H
Computer Methods and Programs in Biomedicine 2011; 101: 23-32 (IGR: 13-1)


27698 Assessment of optic disc parameters among healthy adult Malays by Heidelberg Retinal Tomograph II
Jusoh S; Shaharuddin B; Wan Hitam WH
Clinical and Experimental Ophthalmology 2011; 39: 15-22 (IGR: 13-1)


28239 Heidelberg Retina Tomography analysis in optic disks with anatomic particularities
Dascalu AM; Alexandrescu C; Pascu R; Ilinca R; Popescu V; Ciuluvica R; Voinea L; Celea C
Journal of medicine and life 2010; 3: 359-364 (IGR: 13-1)


27756 Predictors of Normal Optic Nerve Head, Retinal Nerve Fiber Layer, and Macular Parameters Measured by Spectral Domain Optical Coherence Tomography
Rao HL; Kumar AU; Babu JG; Kumar A; Senthil S; Garudadri CS
Investigative Ophthalmology and Visual Science 2011; 52: 1103-1110 (IGR: 13-1)


27761 Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma
Strouthidis NG; Fortune B; Yang H; Sigal IA; Burgoyne CF
Investigative Ophthalmology and Visual Science 2011; 52: 1206-1219 (IGR: 13-1)


28087 Diagnostic power of optic disc morphology, peripapillary retinal nerve fiber layer thickness, and macular inner retinal layer thickness in glaucoma diagnosis with fourier-domain optical coherence tomography
Huang J-Y; Pekmezci M; Mesiwala N; Kao A; Lin S
Journal of Glaucoma 2011; 20: 87-94 (IGR: 13-1)


27770 Effect of Disease Severity and Optic Disc Size on Diagnostic Accuracy of RTVue Spectral Domain Optical Coherence Tomograph in Glaucoma
Rao HL; Leite MT; Weinreb RN; Zangwill LM; Alencar LM; Sample PA; Medeiros FA
Investigative Ophthalmology and Visual Science 2011; 52: 1290-1296 (IGR: 13-1)


27998 Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography
Schulze A; Lamparter J; Pfeiffer N; Berisha F; Schmidtmann I; Hoffmann EM
Graefe's Archive for Clinical and Experimental Ophthalmology 2011; 1-7 (IGR: 13-1)


28028 Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma
Garas A; Vargha P; Hollo G
Eye 2011; 25: 57-65 (IGR: 13-1)


28032 Factors associated with topographic changes of the optic nerve head induced by acute intraocular pressure reduction in glaucoma patients
Prata TS; Lima VC; De Moraes CGV; Guedes LM; Magalhes FP; Teixeira SH; Ritch R; Paranhos Jr A
Eye 2011; 25: 201-207 (IGR: 13-1)


27930 Laminar and prelaminar tissue displacement during intraocular pressure elevation in glaucoma patients and healthy controls
Agoumi Y; Sharpe GP; Hutchison DM; Nicolela MT; Artes PH; Chauhan BC
Ophthalmology 2011; 118: 52-59 (IGR: 13-1)


27685 Acute primary angle closure attack does not cause an increased cup-to-disc ratio
Chew SS; Vasudevan S; Patel HY; Gurria LU; Kerr NM; Gamble G; Crowston JG; Danesh-Meyer HV
Ophthalmology 2011; 118: 254-159 (IGR: 13-1)


27673 Impact of Panretinal Photocoagulation on Optic Nerve Head Parameters
Cankaya AB; Ozdamar Y; Ozalp S; Ozkan SS
Ophthalmologica 2011; 225: 193-199 (IGR: 13-1)


27210 Characteristics of cup/disc ratios in a population of northern Togo aged 20-40 years
Ayena KD; Agbo ADR; Attaya ABM; Djagnikpo AP; Kondi GM; Dzidzinyo KB; Amedome KM; Nononsaa KB; Banla M; Balo KP
Journal Français d'Ophtalmologie 2010; 33: 408-413 (IGR: 12-4)


27495 Minocycline is cytoprotective in human trabecular meshwork cells and optic nerve head astrocytes by increasing expression of XIAP, survivin, and Bcl-2
Kernt M; Neubauer AS; Eibl KH; Wolf A; Ulbig MW; Kampik A; Hirneiss C
Clinical Ophthalmology 2010; 4: 591-604 (IGR: 12-4)


26977 Automated quantification of inherited phenotypes from color images: a twin study of the variability of optic nerve head shape.
Tang L; Scheetz TE; Mackey DA; Hewitt AW; Fingert JH; Kwon YH; Quellec G; Reinhardt JM; Abràmoff MD
Investigative Ophthalmology and Visual Science 2010; 51: 5870-5877 (IGR: 12-4)


26961 Changes in the biomechanical response of the optic nerve head in early experimental glaucoma.
Roberts MD; Sigal IA; Liang Y; Burgoyne CF; Downs JC
Investigative Ophthalmology and Visual Science 2010; 51: 5675-5684 (IGR: 12-4)


26944 Optic disc area and correlation with central corneal thickness, corneal hysteresis and ocular pulse amplitude in glaucoma patients and controls.
E Insull; S Nicholas; GS Ang; A Poostchi; K Chan; A Wells
Clinical and Experimental Ophthalmology 2010; 38: 839-844 (IGR: 12-4)


27576 Qualitative and quantitative morphologic changes in the vasculature and extracellular matrix of the prelaminar optic nerve head in eyes with POAG
Tektas OY; Lutjen-Drecoll E; Scholz M
Investigative ophthalmology & visual science 2010; 51: 5083-5091 (IGR: 12-4)


27532 Fenestrations and preferential flow routes in the prelaminar optic nerve through wet scanning electron microscope and perfusion of tracers
Carreras FJ; Porcel D; Guerra-Tschuschke I; Carreras I
Clinical and Experimental Ophthalmology 2010; 38: 705-717 (IGR: 12-4)


27115 Cross-linked actin networks (CLANs) are present in lamina cribrosa cells
Job R; Raja V; Grierson I; Currie L; O'Reilly S; Pollock N; Knight E; Clark AF
British Journal of Ophthalmology 2010; 94: 1388-1392 (IGR: 12-4)


27447 Peptidylarginine deiminase type 2 is over expressed in the glaucomatous optic nerve
Cafaro TA; Santo S; Robles LA; Crim N; Urrets-Zavalia JA; Serra HM
Molecular Vision 2010; 16: 654-1658 (IGR: 12-4)


27580 A genome-wide association study of optic disc parameters
Ramdas WD; van Koolwijk LM; Ikram MK; Jansonius NM; De Jong PT; Bergen AA; Isaacs A; Amin N; Aulchenko YS; Wolfs RC
PLoS Genetics 2010; 6: e1000978 (IGR: 12-4)


27336 The relationship between the cornea and the optic disc
Kim JM; Park KH; Kim SH; Kang JH; Cho SW
Eye 2010; 24: 1653-1657 (IGR: 12-4)


27499 Correlation between morphology of optic disc determined by heidelberg retina tomograph ii and visual function in eyes with open-angle glaucoma
Omodaka K; Nakazawa T; Otomo T; Nakamura M; Fuse N; Nishida K
Clinical Ophthalmology 2010; 4: 765-772 (IGR: 12-4)


27429 Optic nerve head morphology assessed by laser scanning tomography in normal Japanese subjects
Sawada Y; Ishikawa M; Sato N; Yoshitomi T
Journal of Glaucoma 2010; (IGR: 12-4)


27117 Change in optic nerve head topography in healthy volunteers: An 11-year follow-up
Harju M; Kurvinen L; Saari J; Vesti E
British Journal of Ophthalmology 2010; (IGR: 12-4)


27273 Reproducibility of RTVue retinal nerve fiber layer thickness and optic nerve head measurements in normal and glaucoma eyes
Li J-P; Wang X-Z; Fu J; Li S-N; Wang N-L
Chinese Medical Journal 2010; 123: 1898-1903 (IGR: 12-4)


27241 Optic nerve hypoplasia and optical coherence tomography
Fujimoto N
Neuro-Ophthalmology Japan 2010; 27: 254-260 (IGR: 12-4)


26976 Automated segmentation of neural canal opening and optic cup in 3D spectral optical coherence tomography volumes of the optic nerve head.
Hu Z; Abràmoff MD; Kwon YH; Lee K; Garvin MK
Investigative Ophthalmology and Visual Science 2010; 51: 5708-5717 (IGR: 12-4)


26957 Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes.
Mwanza JC; Chang RT; Budenz DL; Durbin MK; Gendy MG; Shi W; Feuer WJ
Investigative Ophthalmology and Visual Science 2010; 51: 5724-5730 (IGR: 12-4)


26994 Correlation between peripapillary retinal nerve fiber layer thickness and optic nerve head parameters using spectral domain optical coherence tomography.
Mansoori T; Viswanath K; Balakrishna N
Journal of Glaucoma 2010; 19: 604-608 (IGR: 12-4)


27049 Histomorphometry of the circular peripapillary arterial ring of Zinn-Haller in normal eyes and eyes with secondary angle-closure glaucoma.
Jonas JB; Jonas SB
Acta Ophthalmologica 2010; 88: 317-322 (IGR: 12-4)


27634 Optic disc hemorrhages and progression in glaucoma
Niyadurupola N; Broadway DC
Expert Review of Ophthalmology 2010; 5: 637-643 (IGR: 12-4)


27524 Cup to disc ratio by optical coherence tomography is abnormal inmultiple sclerosis
Syc SB; Warner CV; Farrell SK; Balcer LJ; Frohman EM; Calabresi PA
Multiple Sclerosis 2010; 16: 1012 (IGR: 12-4)


26774 Effects of scleral stiffness properties on optic nerve head biomechanics
Eilaghi A; Flanagan JG; Simmons CA; Ethier CR
Annals of Biomedical Engineering 2010; 38: 1586-1592 (IGR: 12-3)


26452 Different types of optic disc shape in patients with advanced open-angle glaucoma
Nakazawa T; Fuse N; Omodaka K; Aizawa N; Kuwahara S; Nishida K
Japanese Journal of Ophthalmology 2010; 54: 291-295 (IGR: 12-3)


26357 Optic disc damage staging system
Brusini P; Zeppieri M; Tosoni C; Parisi L; Salvetat ML
Journal of Glaucoma 2010; 19: 442-449 (IGR: 12-3)


26393 The role of endothelin-1 and its receptors in optic nerve head astrocyte proliferation
Murphy JA; Archibald ML; Chauhan BC
British Journal of Ophthalmology 2010; 94: 1233-1238 (IGR: 12-3)


26453 Localized retinal nerve fiber layer defects associated with cotton wool spots
Koh JW; Park KH; Kim MS; Kim JM
Japanese Journal of Ophthalmology 2010; 54: 296-299 (IGR: 12-3)


26486 Tilted optic disks
Witmer MT; Margo CE; Drucker M
Survey of Ophthalmology 2010; 55: 403-428 (IGR: 12-3)


26443 A geometric morphometric assessment of the optic cup in glaucoma
Sanfilippo PG; Cardini A; Sigal IA; Ruddle JB; Chua BE; Hewitt AW; Mackey DA
Experimental Eye Research 2010; 91: 405-414 (IGR: 12-3)


26655 Presence of an optic disc notch and glaucoma
Healey PR; Mitchell P
Journal of Glaucoma 2010; (IGR: 12-3)


26808 A genome-wide association study of optic disc parameters
Ramdas WD; van Koolwijk LME; Ikram MK; Jansonius NM; de Jong PTVM; Bergen AAB; Isaacs A; Amin N; Aulchenko YS; Wolfs RCW
PLoS Genetics 2010; 6: 1-12 (IGR: 12-3)


26625 Genome-wide association identifies ATOH7 as a major gene determining human optic disc size
Macgregor S; Hewitt AW; Hysi PG; Ruddle JB; Medland SE; Henders AK; Gordon SD; Andrew T; McEvoy B; Sanfilippo PG
Human Molecular Genetics 2010; 19: 2716-2724 (IGR: 12-3)


26565 Disc photography and heidelberg retinal tomography documentation of reversal of cupping following trabeculectomy
Yuen D; Buys YM
Graefe's Archive for Clinical and Experimental Ophthalmology 2010; 248: 1671-1673 (IGR: 12-3)


26327 Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis
Rao HL; Zangwill LM; Weinreb RN; Sample PA; Alencar LM; Medeiros FA
Ophthalmology 2010; 117: 1692-1699 (IGR: 12-3)


26854 Correlation of disc damage likelihood scale with the structural and functional change in optic nerve with primary open-angle glaucoma
Cui M; Chen X-M; Huang Y-Z
International Journal of Ophthalmology 2010; 10: 1140-1142 (IGR: 12-3)


26325 Predicting the onset of glaucoma the confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study
Weinreb RN; Zangwill LM; Jain S; Becerra LM; Dirkes K; Piltz-Seymour JR; Cioffi GA; Trick GL; Coleman AL; Brandt JD
Ophthalmology 2010; 117: 1674-1683 (IGR: 12-3)


26479 Correlation between disc damage likelihood scale and optical coherence tomography in the diagnosis of glaucoma
Abdul Majid ASB; Kwag JH; Jung SH; Yim HB; Kim YD; Kang KD
Ophthalmologica 2010; 224: 274-282 (IGR: 12-3)


26576 Altered temporal peripapillary retinal flow in patients with disc hemorrhages
Kurvinen L; Harju M; Saari J; Vesti E
Graefe's Archive for Clinical and Experimental Ophthalmology 2010; 248: 1771-1775 (IGR: 12-3)


26806 Relationship of retinal vascular tortuosity with the neuroretinal rim: the singapore malay eye study
Koh V; Cheung CY; Zheng Y; Wong TY; Wong W; Aung T
Investigative Ophthalmology and Visual Science 2010; 51: 3736-3741 (IGR: 12-3)


26698 Optic nerve abnormalities in children: A practical approach
Capo H; Repka MX; Edmond JC; Drack AV; Blumenfeld LC; Siatkowski RM
Journal of AAPOS 2010; 14: 32 (IGR: 12-3)


26376 Clinical Characteristics and Prognostic Significance of Disc Hemorrhage in Open-angle and Angle-closure Glaucoma
Hsieh JW; Lan YW; Wang IJ; Sun FJ
Journal of Glaucoma 2010; 19: 483-487 (IGR: 12-3)


26347 Optic nerve regeneration
Benowitz LI; Yin Y
Archives of Ophthalmology 2010; 128: 1059-1064 (IGR: 12-3)


26214 African Descent and Glaucoma Evaluation Study (ADAGES): II. Ancestry differences in optic disc, retinal nerve fiber layer, and macular structure in healthy subjects
Girkin CA; Sample PA; Liebmann JM; Jain S; Bowd C; Becerra LM; Medeiros FA; Racette L; Dirkes KA; Weinreb RN
Archives of Ophthalmology 2010; 128: 541-550 (IGR: 12-2)


25745 Central corneal thickness, lamina cribrosa and peripapillary scleral histomorphometry in non-glaucomatous chinese eyes
Ren R; Li B; Gao F; Li L; Xu X; Wang N; Jonas JB
Graefe's Archive for Clinical and Experimental Ophthalmology 2010; 248: 1579-1585 (IGR: 12-2)


25701 Metabolic vulnerability disposes retinal ganglion cell axons to dysfunction in a model of glaucomatous degeneration
Baltan S; Inman DM; Danilov CA; Morrison RS; Calkins DJ; Horner PJ
Journal of Neuroscience 2010; 30: 5644-5652 (IGR: 12-2)


26099 Optic disc morphology in open-angle glaucoma compared with anterior ischemic optic neuropathies
Danesh-Meyer HV; Boland MV; Savino PJ; Miller NR; Subramanian PS; Girkin CA; Quigley HA
Investigative Ophthalmology and Visual Science 2010; 51: 2003-2010 (IGR: 12-2)


25974 A computer algorithm to quantitatively assess quality of digital optic disc images
Moscaritolo M; Jampel H; Zimmer-Galler I; Knezevich F; Zeimer R
Ophthalmic Surgery Lasers and Imaging 2010; 41: 279-284 (IGR: 12-2)


26159 Optic disc diameter increases during acute elevations of intraocular pressure
Poostchi A; Wong T; Chan KC; Kedzlie L; Sachdev N; Nicholas S; Garway-Heath DF; Wells AP
Investigative Ophthalmology and Visual Science 2010; 51: 2313-2316 (IGR: 12-2)


26221 Influence of optic-disc size on parameters of retinal nerve fibre analysis as measured using GDx VCC and ECC in healthy subjects
Resch H; Deak G; Vass C
British Journal of Ophthalmology 2010; 94: 424-427 (IGR: 12-2)


26142 Do Optic Discs get "Thinner" or "Narrower?"
Spaeth GL; Jatla KK; Ichhpujani P
Journal of Glaucoma 2010; 19: 288-292 (IGR: 12-2)


26001 Intelligent fusion of cup-to-disc ratio determination methods for glaucoma detection in ARGALI
Wong DW; Liu J; Lim JH; Tan NM; Zhang Z; Lu S; Li H; Teo MH; Chan KL; Wong TY
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2009; 2009: 5777-5780 (IGR: 12-2)


26000 Convex hull based neuro-retinal optic cup ellipse optimization in glaucoma diagnosis
Zhang Z; Liu J; Cherian NS; Sun Y; Lim JH; Wong WK; Tan NM; Lu S; Li H; Wong TY
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2009; 2009: 1441-1444 (IGR: 12-2)


26104 Hydrostatic pressure-induced release of stored calcium in cultured rat opticnerve head astrocytes
Mandal A; Shahidullah M; Delamere NA
Investigative Ophthalmology and Visual Science 2010; 51: 3129-3138 (IGR: 12-2)


25932 Glaucoma risk index: Automated glaucoma detection from color fundus images
Bock R; Meier J; Nyul LG; Hornegger J; Michelson G
Medical Image Analysis 2010; 14: 471-481 (IGR: 12-2)


26087 Long-term follow-ups of patients with glaucoma with digital planimetry
Raum C; Viestenz A; Mardin CY
Klinische Monatsblätter für Augenheilkunde 2010; 227: 215-220 (IGR: 12-2)


26133 Clinical assessment of stereoscopic optic disc photographs for glaucoma: the European Optic Disc Assessment Trial
Reus NJ; Lemij HG; Garway-Heath DF; Airaksinen PJ; Anton A; Bron AM; Faschinger C; Holló G; Iester M; Jonas JB
Ophthalmology 2010; 117: 717-723 (IGR: 12-2)


25988 Spectral domain optical coherence tomography in glaucoma: Qualitative and quantitative analysis of the optic nerve head and retinal nerve fiber layer (an AOS thesis)
Chen TC
Transactions of the American Ophthalmological Society 2009; 107: 254-281 (IGR: 12-2)


26004 Segmentation of the optic disc in 3-D OCT scans of the optic nerve head
Lee K; Niemeijer M; Garvin MK; Kwon YH; Sonka M; Abramoff MD
IEEE Transactions on Medical Imaging 2010; 29: 159-168 (IGR: 12-2)


26138 Optic Nerve Head (ONH) Topographic Analysis by Stratus OCT in Normal Subjects: Correlation to Disc Size, Age, and Ethnicity
Marsh BC; Cantor LB; WuDunn D; Hoop J; Lipyanik J; Patella VM; Budenz DL; Greenfield DS; Savell J; Schuman JS
Journal of Glaucoma 2010; 19: 310-318 (IGR: 12-2)


26226 Diagnostic ability of a linear discriminant function for optic nerve head parameters measured with optical coherence tomography for perimetric glaucoma
Pablo LE; Ferreras A; Pajarín AB; Fogagnolo P
Eye 2010; 24: 1051-1057 (IGR: 12-2)


26002 Multiscale finite element modeling of the lamina cribrosa microarchitecture in the eye
Downs JC; Roberts MD; Burgoyne CF; Hart RT
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2009; 2009: 4277-4280 (IGR: 12-2)


26111 Influence of height, weight, and body mass index on optic disc parameters
Zheng Y; Cheung CY; Wong TY; Mitchell P; Aung T
Investigative Ophthalmology and Visual Science 2010; 51: 2998-3002 (IGR: 12-2)


25368 Elevated hydrostatic pressure activates sodium-hydrogen exchanger-1 in rat optic nerve head astrocytes
Mandal A; Shahidullah M; Delamere N A; Teran M A
FASEB Journal 2009; 297: C111-1120 (IGR: 12-1)


25346 High resolution three-dimensional reconstruction of the collagenous matrix of the human optic nerve head
Winkler M; Jester B; Nien-Shy C; Massei S; Minckler D S; Jester J V; Brown D J
Brain Research Bulletin 2010; 81: 339-348 (IGR: 12-1)


25027 The presence and distribution of elastin in the posterior and retrobulbar regions of the mouse eye
Gelman S; Cone FE; Pease ME; Nguyen TD; Myers K; Quigley HA
Experimental Eye Research 2010; 90: 210-215 (IGR: 12-1)


25147 Correlation between local stress and strain and lamina cribrosa connective tissue volume fraction in normal monkey eyes
Roberts MD; Liang Y; Sigal IA; Grimm J; Reynaud J; Bellezza A; Burgoyne CF; Downs JC
Investigative Ophthalmology and Visual Science 2010; 51: 295-307 (IGR: 12-1)


25570 Experimental study about the effect of qingguangan suspel on the structure and function of lamina cribrosa in rabbit eye with chronic hypertension
Li X -J; Peng Q -H; Zeng Z -C; Li J -C
International Journal of Ophthalmology 2009; 9: 2310-2314 (IGR: 12-1)


25035 Violation of the ISNT rule in Nonglaucomatous pediatric optic disc cupping
Pogrebniak AE; Wehrung B; Pogrebniak KL; Shetty RK; Crawford P
Investigative Ophthalmology and Visual Science 2010; 51: 890-895 (IGR: 12-1)


25009 Optic nerve head changes in early glaucoma: a comparison between stereophotography and Heidelberg retina tomography
Pablo LE; Ferreras A; Fogagnolo P; Figus M; Pajarin AB
Eye 2010; 24: 123-130 (IGR: 12-1)


25019 Evaluation of optic nerve head and retinal nerve fiber layer in early and advance glaucoma using frequency-domain optical coherence tomography
Li S; Wang X; Wu G; Wang N
Graefe's Archive for Clinical and Experimental Ophthalmology 2010; 248: 429-434 (IGR: 12-1)


24971 Comparing specific disc findings of a European and a bantu population
Krueger H; Schittkowski MP; Kilangalanga N; Hopkins A; Guthoff R
Klinische Monatsblätter für Augenheilkunde 2009; 226: 844-848 (IGR: 11-4)


24944 Subtilisin-like proprotein convertase expression, localization, and activity in the human retina and optic nerve head
Fuller JA; Brun-Zinkernagel AM; Clark AF; Wordinger RJ
Investigative Ophthalmology and Visual Science 2009; 50: 5759-5768 (IGR: 11-4)


24537 The morphology and spatial arrangement of astrocytes in the optic nerve head of the mouse
Sun D; Lye-Barthel M; Masland RH; Jakobs TC
Journal of Comparative Neurology 2009; 516: 1-19 (IGR: 11-4)


24969 Cell-cell adhesion in the prelaminar region of the optic nerve head: a possible target for ionic stress
Carreras FJ; Porcel D; Alaminos M; Garzón I
Ophthalmic Research 2009; 2: 106-111 (IGR: 11-4)


24641 Hydrostatic pressure-dependent changes in cyclic AMP signaling in optic nerve head astrocytes from Caucasian and African American donors
Chen L; Lukas TJ; Hernandez MR
Molecular Vision 2009; 15: 1664-1672 (IGR: 11-4)


24926 Deformation of the normal monkey optic nerve head connective tissue after acute IOP elevation within 3-D histomorphometric reconstructions
Yang H; Downs JC; Sigal IA; Roberts MD; Thompson H; Burgoyne CF
Investigative Ophthalmology and Visual Science 2009; 50: 5785-5799 (IGR: 11-4)


24691 Concordance of flicker comparison versus side-by-side comparison in glaucoma
Cymbor M; Lear L; Mastrine M
Optometry 2009; 80: 437-441 (IGR: 11-4)


24574 Assessment of optic nerve cup-to-disk ratio changes in patients receiving multiple intravitreal injections of antivascular endothelial growth factor agents
Seth RK; Salim S; Shields MB; Adelman RA
Retina (Philadelphia, Pa.) 2009; 29: 956-959 (IGR: 11-4)


24834 Measurement of optic nerve head parameters: comparison of optical coherence tomography with digital planimetry
Samarawickrama C; Pai A; Huynh SC; Burlutsky G; Jonas JB; Mitchell P
Journal of Glaucoma 2009; 18: 571-575 (IGR: 11-4)


24604 Optic disc photography and retinal nerve fiber layer photography
Hoffmann EM
Ophthalmologe 2009; 106: 683-686 (IGR: 11-4)


24814 Optic disk size variability between African, Asian, white, Hispanic, and Filipino Americans using Heidelberg retinal tomography
Seider MI; Lee RY; Wang D; Pekmezci M; Porco TC; Lin SC
Journal of Glaucoma 2009; 18: 595-600 (IGR: 11-4)


24780 The effect of contour line position on optic nerve head analysis by Heidelberg Retina Tomograph
Iester M; Mariotti V; Lanza F; Calabria G
European Journal of Ophthalmology 2009; 19: 942-948 (IGR: 11-4)


24943 Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head
Abràmoff MD; Lee K; Niemeijer M; Alward WL; Greenlee EC; Garvin MK; Sonka M; Kwon YH
Investigative Ophthalmology and Visual Science 2009; 50: 5778-5784 (IGR: 11-4)


24992 Changes in optic nerve head blood flow induced by the combined therapy of latanoprost and beta blockers
Sugiyama T; Kojima S; Ishida O; Ikeda T
Acta Ophthalmologica 2009; 87: 797-800 (IGR: 11-4)


24963 Twelve-hour reproducibility of retinal and optic nerve blood flow parameters in healthy individuals
Luksch A; Lasta M; Polak K; Fuchsjäger-Mayr G; Polska E; Garhöfer G; Schmetterer L
Acta Ophthalmologica 2009; 87: 875-880 (IGR: 11-4)


24965 Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma
Chauhan BC; Nicolela MT; Artes PH
Ophthalmology 2009; 116: 2110-2118 (IGR: 11-4)


24799 Correlation between optical coherence tomography and glaucomatous optic nerve head damage in children
El-Dairi MA; Holgado S; Asrani SG; Enyedi LB; Freedman SF
British Journal of Ophthalmology 2009; 93: 1325-1330 (IGR: 11-4)


24229 Peripapillary and posterior scleral mechanics--part II: experimental and inverse finite element characterization
Girard MJ; Downs JC; Bottlang M; Burgoyne CF; Suh JK
Journal of Biomechanical Engineering 2009; 131: 051012 (IGR: 11-3)


24228 Peripapillary and posterior scleral mechanics--part I: development of an anisotropic hyperelastic constitutive model
Girard MJ; Downs JC; Burgoyne CF; Suh JK
Journal of Biomechanical Engineering 2009; 131: 051011 (IGR: 11-3)


24026 Population prevalence of tilted and torted optic discs among an adult Chinese population in Singapore: the Tanjong Pagar Study
How AC; Tan GS; Chan YH; Wong TT; Seah SK; Foster PJ; Aung T
Archives of Ophthalmology 2009; 127: 894-899 (IGR: 11-3)


24233 Glaucoma and drusen of the optic nerve head
Kawa P; Nowomiejska K; Bialek M; Haszcz D; Czop D; Krukowski J; Mankowska A; Zagorski Z; Zarnowski T
Neuro-Ophthalmology 2009; 33: 77-83 (IGR: 11-3)


24301 The segmentation of zones with increased autofluorescence in the junctional zone of parapapillary atrophy
Kolar R; Laemmer R; Jan J; Mardin CY
Physiological Measurement 2009; 30: 505-516 (IGR: 11-3)


24041 Tilted disc syndrome: an OCT and mfERG study
Moschos MM; Triglianos A; Rotsos T; Papadimitriou S; Margetis I; Minogiannis P; Moschos M
Documenta Ophthalmologica 2009; 119: 23-28 (IGR: 11-3)


24085 Optic disc morphology--rethinking shape
Sanfilippo PG; Cardini A; Hewitt AW; Crowston JG; Mackey DA
Progress in Retinal and Eye Research 2009; 28: 227-248 (IGR: 11-3)


24425 Modeling individual-specific human optic nerve head biomechanics. Part II: influence of material properties
Sigal IA; Flanagan JG; Tertinegg I; Ethier CR
Biomechanics and modeling in mechanobiology 2009; 8: 99-109 (IGR: 11-3)


24424 Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry
Sigal IA; Flanagan JG; Tertinegg I; Ethier CR
Biomechanics and modeling in mechanobiology 2009; 8: 85-98 (IGR: 11-3)


24010 The spatial pattern of neuroretinal rim loss in ocular hypertension
Strouthidis NG; Gardiner SK; Sinapis C; Burgoyne CF; Garway-Heath DF
Investigative Ophthalmology and Visual Science 2009; 50: 3737-3742 (IGR: 11-3)


24460 Association between optic disc hemorrhages and the position of central retinal vessels
Teixeira SH; Mello PA; Paranhos Junior A
Arquivos Brasileiros de Oftalmologia 2008; 71: 559-563 (IGR: 11-3)


24178 Optic nerve head morphologic characteristics in chronic angle-closure glaucoma and normal-tension glaucoma
Zhao L; Wu L; Wang X
Journal of Glaucoma 2009; 18: 460-463 (IGR: 11-3)


24351 Increased isolevuglandin-modified proteins in glaucomatous astrocytes
Govindarajan B; Junk A; Algeciras M; Salomon RG; Bhattacharya SK
Molecular Vision 2009; 15: 1079-1091 (IGR: 11-3)


24012 Intracellular flow in optic nerve axons: a mechanism for cell death in glaucoma
Band LR; Hall CL; Richardson G; Jensen OE; Siggers JH; Foss AJ
Investigative Ophthalmology and Visual Science 2009; 50: 3750-3758 (IGR: 11-3)


24496 Glaucoma: an area of darkness
Hitchings RA
Eye 2009; 23: 1764-1774 (IGR: 11-3)


24296 Measurement of the Disc Area by Indirect Ophthalmoscopy
Haustein M; Schmidt E; Sporl E; Pillunat LE; Bohm AG
Ophthalmologe 2009; 106: 141-148 (IGR: 11-3)


24441 Morphological characteristics of neuroretinal rim loss in the course of primary open angle glaucoma and its clinical significance
Dai J; Wang H-G
International Journal of Ophthalmology 2009; 9: 1099-1100 (IGR: 11-3)


24455 Topographic changes at the optic disc in 33 patients with primary open angle glaucoma
Marjanovic I; Kontic D; Hentova-Sencanic P; Markovic V; Bozic M; Milic N
International Journal of Ophthalmology 2009; 9: 1026-1029 (IGR: 11-3)


24031 Fixed-diameter scan protocol preferable for retinal nerve fibre layer measurement by optical coherence tomography in all sizes of optic discs
Kaushik S; Pandav SS; Ichhpujani P; Gupta A
British Journal of Ophthalmology 2009; 93: 895-900 (IGR: 11-3)


24405 Bilateral developmental glaucoma associated with optic disc pit and uveal effusion
Ichhpujani P; Ramasubramanian A; Pandav S; Kaushik S
Ophthalmic Surgery Lasers and Imaging 2009; 40: 290-292 (IGR: 11-3)


24052 Optic nerve head topography in nonglaucomatous, normotensive patients with unilateral exfoliation syndrome
Puska P; Harju M
Graefe's Archive for Clinical and Experimental Ophthalmology 2009; 247: 1111-1117 (IGR: 11-3)


23917 Evaluating a new disc staging scale for glaucomatous damage: the ability to detect change over time
Henderer J; Wang Y; Bayer A; Altangerel U; Schwartz L; Schmidt C
European Journal of Ophthalmology 2009; 19: 404-410 (IGR: 11-2)


23948 Reactivation of optic nerve head astrocytes by TGF-beta2 and H2O2 is accompanied by increased Hsp32 and Hsp47 expression
Yu AL; Moriniere J; Birke M; Neumann C; Fuchshofer R; Kampik A; Bloemendal H; Welge-Lussen U
Investigative Ophthalmology and Visual Science 2009; 50: 1707-1717 (IGR: 11-2)


23719 Biomechanics of the optic nerve head
Sigal IA; Ethier CR
Experimental Eye Research 2009; 88: 799-807 (IGR: 11-2)


23938 Comparison of clinical and three-dimensional histomorphometric optic disc margin anatomy
Strouthidis NG; Yang H; Downs JC; Burgoyne CF
Investigative Ophthalmology and Visual Science 2009; 50: 2165-2174 (IGR: 11-2)


23995 Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography
Yi K; Mujat M; Sun W; Burnes D; Latina MA; Lin DT; Deschler DG; Rubin PA; Park BH; de Boer JF
Journal of Glaucoma 2009; 18: 373-378 (IGR: 11-2)


23898 Population-based prevalence of optic disc haemorrhages in elderly Japanese
Tomidokoro A; Iwase A; Araie M; Yamamoto T; Kitazawa Y
Eye 2009; 23: 1032-1037 (IGR: 11-2)


23875 The disc damage likelihood scale (DDLS): interobserver agreement of a new grading system to assess glaucomatous optic disc damage
Bochmann F; Howell JP; Meier C; Becht C; Thiel MA
Klinische Monatsblätter für Augenheilkunde 2009; 226: 280-283 (IGR: 11-2)


23929 Lamina cribrosa and peripapillary sclera histomorphometry in normal and advanced glaucomatous Chinese eyes with various axial length
Ren R; Wang N; Li B; Li L; Gao F; Xu X; Jonas JB
Investigative Ophthalmology and Visual Science 2009; 50: 2175-2184 (IGR: 11-2)


23892 Interactions between geometry and mechanical properties on the optic nerve head
Sigal IA
Investigative Ophthalmology and Visual Science 2009; 50: 2785-2795 (IGR: 11-2)


23974 Friend or foe? Resolving the impact of glial responses in glaucoma
Johnson EC; Morrison JC
Journal of Glaucoma 2009; 18: 341-353 (IGR: 11-2)


23936 Impact of systemic blood pressure on the relationship between intraocular pressure and blood flow in the optic nerve head of nonhuman primates
Liang Y; Downs JC; Fortune B; Cull G; Cioffi GA; Wang L
Investigative Ophthalmology and Visual Science 2009; 50: 2154-2160 (IGR: 11-2)


23602 Level-set based automatic cup-to-disc ratio determination using retinal fundus images in ARGALI
Wong DK; Liu J; Lim JH; Jia X; Yin F; Li H; Wong TY
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2008; 2266-2269 (IGR: 11-2)


23520 Quantitative depth analysis of optic nerve head using stereo retinal fundus image pair
Nakagawa T; Suzuki T; Hayashi Y; Mizukusa Y; Hatanaka Y; Ishida K; Hara T; Fujita H; Yamamoto T
Journal of biomedical Optics 2008; 13: 064026 (IGR: 11-2)


23977 Optic nerve head analysis using the confocal scanning laser ophthalmoscope (CSLO) of big cups versus normal cups
Ouertani A; Tounsi L; Khammari C; Bouden J; Mili-Boussen I
Journal Français d'Ophtalmologie 2009; 32: 50-55 (IGR: 11-2)


23871 Rates of neuroretinal rim and peripapillary atrophy area change: a comparative study of glaucoma patients and normal controls
See JL; Nicolela MT; Chauhan BC
Ophthalmology 2009; 116: 840-847 (IGR: 11-2)


23955 Optic disc progression in glaucoma: comparison of confocal scanning laser tomography to optic disc photographs in a prospective study
Chauhan BC; Hutchison DM; Artes PH; Caprioli J; Jonas JB; Leblanc RP; Nicolela MT
Investigative Ophthalmology and Visual Science 2009; 50: 1682-1691 (IGR: 11-2)


23861 Sector-based analysis with the Heidelberg Retinal Tomograph 3 across disc sizes and glaucoma stages: a multicenter study
Oddone F; Centofanti M; Iester M; Rossetti L; Fogagnolo P; Michelessi M; Capris E; Manni G
Ophthalmology 2009; 116: 1106-1111 (IGR: 11-2)


23855 Effects of age on optical coherence tomography measurements of healthy retinal nerve fiber layer, macula, and optic nerve head
Sung KR; Wollstein G; Bilonick RA; Townsend KA; Ishikawa H; Kagemann L; Noecker RJ; Fujimoto JG; Schuman JS
Ophthalmology 2009; 116: 1119-1124 (IGR: 11-2)


23925 Hyperfluorescence of the optic disc with indocyanine green angiography
Maaijwee K; van den Biesen PR; van Meurs JC
Eye 2009; 23: 819-821 (IGR: 11-2)


23809 The association between retinal vein ophthalmodynamometric force change and optic disc excavation
Morgan WH; Hazelton ML; Balaratnasingamm C; Chan H; House PH; Barry CJ; Cringle SJ; Yu DY
British Journal of Ophthalmology 2009; 93: 594-596 (IGR: 11-2)


23787 Quantitative assessment of optic nerve head morphology and retinal nerve fibre layer in non-arteritic anterior ischaemic optic neuropathy with optical coherence tomography and confocal scanning laser ophthalmoloscopy
Chan CK; Cheng AC; Leung CK; Cheung CY; Yung AY; Gong B; Lam DS
British Journal of Ophthalmology 2009; 93: 731-735 (IGR: 11-2)


23880 Birth weight and optic nerve head parameters
Samarawickrama C; Huynh SC; Liew G; Burlutsky G; Mitchell P
Ophthalmology 2009; 116: 1112-1118 (IGR: 11-2)


22537 Remodeling of the connective tissue microarchitecture of the lamina cribrosa in early experimental glaucoma
Roberts MD; Grau V; Grimm J; Reynaud J; Bellezza AJ; Burgoyne CF; Downs JC
Investigative Ophthalmology and Visual Science 2009; 50: 681-690 (IGR: 11-1)


22718 Activation of stretch-activated channels and maxi-K+ channels by membrane stress of human lamina cribrosa cells
Irnaten M; Barry RC; Quill B; Clark AF; Harvey BJ; O'brien CJ
Investigative Ophthalmology and Visual Science 2009; 50: 194-202 (IGR: 11-1)


22508 The relationship between central corneal thickness and the optic disc in an elderly population: the Bridlington Eye Assessment Project
Hawker MJ; Edmunds MR; Vernon SA; Hillman JG; Macnab HK
Eye 2009; 23: 56-62 (IGR: 11-1)


22711 Physiologic intereye differences in monkey optic nerve head architecture and their relation to changes in early experimental glaucoma
Yang H; Downs JC; Burgoyne CF
Investigative Ophthalmology and Visual Science 2009; 50: 224-234 (IGR: 11-1)


22926 Differential global and extra-cellular matrix focused gene expression patterns between normal and glaucomatous human lamina cribrosa cells
Kirwan RP; Wordinger RJ; Clark AF; O'brien CJ
Molecular Vision 2009; 15: 76-88 (IGR: 11-1)


22615 Mechanical stretching elevates peptidyl arginine deiminase 2 expression in astrocytes
Algeciras ME; Takahara H; Bhattacharya SK
Current Eye Research 2008; 33: 994-1001 (IGR: 11-1)


22690 Elevated intraocular pressure, optic nerve atrophy, and impaired retinal development in ODAG transgenic mice
Sasaki T; Watanabe W; Muranishi Y; Kanamoto T; Aihara M; Miyazaki K; Tamura H; Saeki T; Oda H; Souchelnytskyi N
Investigative Ophthalmology and Visual Science 2009; 50: 242-248 (IGR: 11-1)


22514 Assessment of cup-to-disc ratio with slit-lamp funduscopy, Heidelberg Retina Tomography II, and stereoscopic photos
Durmus M; Karadag R; Erdurmus M; Totan Y; Feyzi Hepsen I
European Journal of Ophthalmology 2009; 19: 55-60 (IGR: 11-1)


22626 Association of optic disc configuration and clustered visual field sensitivity in glaucomatous eyes with hemifield visual field defects
Nagai-Kusuhara A; Nakamura M; Kanamori A; Negi A
Journal of Glaucoma 2009; 18: 62-68 (IGR: 11-1)


23399 Artifacts on the optic nerve head analysis of the optical coherence tomography in glaucomatous and nonglaucomatous eyes
Ortega Jde L; Kakati B; Girkin CA
Journal of Glaucoma 2009; 18: 186-191 (IGR: 11-1)


22656 Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma
Inoue R; Hangai M; Kotera Y; Nakanishi H; Mori S; Morishita S; Yoshimura N
Ophthalmology 2009; 116: 214-222 (IGR: 11-1)


22810 Role of active and passive modulations of ocular microcirculation in altering the morphometric parameters of the optic disk in primary glaucoma
Bakshinskii PP; Kuroedov AV; Shamshinova AM
Vestnik Oftalmologii 2008; 124: 35-39 (IGR: 11-1)


22688 Effect of systemic nitric oxide synthase inhibition on optic disc oxygen partial pressure in normoxia and in hypercapnia
Petropoulos IK; Pournaras JA; Stangos AN; Pournaras CJ
Investigative Ophthalmology and Visual Science 2009; 50: 378-384 (IGR: 11-1)


21767 Neural rim characteristics of healthy South Indians: The Chennai Glaucoma Study
Arvind H; George R; Raju P; Ve RS; Mani B; Kannan P; Vijaya L
Investigative Ophthalmology and Visual Science 2008; 49: 3457-3464 (IGR: 10-3)


21774 Prevalence of crowded optic discs in adult Chinese: The Beijing Eye Study
You QS; Xu L; Jonas JB
Graefe's Archive for Clinical and Experimental Ophthalmology 2008; 246: 1291-1293 (IGR: 10-3)


21753 Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients
Wells AP; Garway-Heath DF; Poostchi A; Wong T; Chan KC; Sachdev N
Investigative Ophthalmology and Visual Science 2008; 49: 3262-3268 (IGR: 10-3)


21854 Determinants of the optic cup to disc ratio in an Asian population: The Singapore Malay Eye Study (SiMES)
Amerasinghe N; Wong TY; Wong WL; Mitchell P; Shen SY; Loon SC; Saw SM; Foster PJ; Aung T; SiMES Study Group
Archives of Ophthalmology 2008; 126: 1101-1108 (IGR: 10-3)


21595 Assessment of stereoscopic optic disc images using an autostereoscopic screen - Experimental study
Habib MS; Lowell JA; Holliman NS; Hunter A; Vaideanu D; Hildreth A; Steel DHW
BMC Ophthalmology 2008; 8: 13 (IGR: 10-3)


21809 Reversal of optic disc cupping in glaucoma
Harju M; Saari J; Kurvinen L; Vesti E
British Journal of Ophthalmology 2008; 92: 901-905 (IGR: 10-3)


21797 Tilted disc syndrome may mimic false visual field deterioration
Vuori ML; Mäntyjärvi M
Acta Ophthalmologica 2008; 86: 622-625 (IGR: 10-3)


21621 Human optic nerve head astrocytes culture in vitro: I. The primary culture and passage
Dai W-J; Culp-Stewwart S; Cheng A; Flanagan J; Ethier CR
International Journal of Ophthalmology 2008; 8: 1311-1314 (IGR: 10-3)


21500 Identification of the optic nerve head with genetic algorithms
Carmona EJ; Rincon M; Garcia-Feijoo J; Martinez-de-la-Casa JM
Artificial Intelligence in Medicine 2008; 43: 243-259 (IGR: 10-3)


21707 Characteristics of disc hemorrhage in primary angle-closure glaucoma
Lan YW; Wang IJ; Hsiao YC; Sun FJ; Hsieh JW
Ophthalmology 2008; 115: 1328-1333 (IGR: 10-3)


21643 Analysis of causes for hemorrhage at the edge of optic disc
Jin Q-X
International Journal of Ophthalmology 2008; 8: 1264-1265 (IGR: 10-3)


21828 Optic disc and peripapillary morphology in unilateral nonarteritic anterior ischemic optic neuropathy and age- and refraction-matched normals
Saito H; Tomidokoro A; Tomita G; Araie M; Wakakura M
Ophthalmology 2008; 115: 1585-1590 (IGR: 10-3)


20928 Lower corneal hysteresis in glaucoma patients with acquired pit of the optic nerve (APON)
Bochmann F; Ang GS; Azuara-Blanco A
Graefe's Archive for Clinical and Experimental Ophthalmology 2008; 246: 735-738 (IGR: 10-2)


20887 Central corneal thickness in adult Chinese. Association with ocular and general parameters. The Beijing Eye Study
Zhang H; Xu L; Chen C; Jonas JB
Graefe's Archive for Clinical and Experimental Ophthalmology 2008; 246: 587-592 (IGR: 10-2)


21372 Relationships of retinal vessel diameters with optic disc, macular and retinal nerve fiber layer parameters in 6-year-old children
Cheung N; Huynh S; Wang JJ; Taylor B; Islam FM; Saw SM; Wong TY; Mitchell P
Investigative Ophthalmology and Visual Science 2008; 49: 2403-2408 (IGR: 10-2)


21360 3D vs 2D qualitative and semiquantitative evaluation of the glaucomatous optic disc atrophy using computer-assisted stereophotography
Lehmann MV; Mardin CY; Martus P; Bergua A
Eye 2008; 22: 628-635 (IGR: 10-2)


21351 Endothelin-1 mediated regulation of extracellular matrix collagens in cells of human lamina cribrosa
Rao VR; Krishnamoorthy RR; Yorio T
Experimental Eye Research 2008; 86: 886-894 (IGR: 10-2)


21344 Vascular anatomy of the optic nerve head
Mackenzie PJ; Cioffi GA
Canadian Journal of Ophthalmology 2008; 43: 308-312 (IGR: 10-2)


21033 Heritability of optic disc and cup measured by the Heidelberg retinal tomography in Chinese: The Guangzhou Twin Eye Study
He M; Liu B; Huang W; Zhang J; Yin Q; Zheng Y; Wang D; Ge J
Investigative Ophthalmology and Visual Science 2008; 49: 1350-1355 (IGR: 10-2)


20899 Agreement between slit lamp examination and optical coherence tomography in estimating cup-disc ratios
Martinez-de-la-Casa JM; Saenz-Frances F; Fernandez-Vidal AM; Mendez-Hernandez CD; Pablo-Julvez L; Garcia-Sanchez J; Garcia-Feijoo J
European Journal of Ophthalmology 2008; 18: 423-428 (IGR: 10-2)


21148 Disc hemorrhages in patients with both normal tension glaucoma and branch retinal vein occlusion in different eyes
Yoo YC; Park KH
Korean Journal of Ophthalmology 2007; 21: 222-227 (IGR: 10-2)


21109 Importance of assessing optic disc size for accurate diagnosis of glaucoma
Wakakura M
Neuro-Ophthalmology Japan 2007; 24: 405-413 (IGR: 10-2)


21262 Analysis of 120 cases with primary open angle glaucoma in 6-year follow-up
Ai F-R; Li Y; Zhang X; Zhao J-L
International Journal of Ophthalmology 2008; 8: 753-755 (IGR: 10-2)


21356 Is the ISNT rule violated in early primary open-angle glaucoma - a scanning laser tomography study
Sihota R; Srinivasan G; Dada T; Gupta V; Ghate D; Sharma A
Eye 2008; 22: 819-824 (IGR: 10-2)


21396 Evaluation of the optic nerve head with the Heidelberg retina tomograph in diabetes mellitus
Tekeli O; Turaçli ME; Atmaca LS; Elhan AH
Ophthalmologica 2008; 22: 168-172 (IGR: 10-2)


21235 Segmentation of optic nerve head using warping and RANSAC
Kim SK; Kong HJ; Seo JM; Cho BJ; Park KH; Hwang JM; Kim DM; Chung H; Kim HC
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2007; 2007: 900-903 (IGR: 10-2)


21213 Software-assisted optic nerve assessment for glaucoma telescreening
Khouri AS; Szirth BC; Shahid KS; Fechtner RD
Telemedicine Journal and E-Health: the Official Journal of the American Telemedicine Association 2008; 14: 261-265 (IGR: 10-2)


21188 DICOM transmission of simultaneous stereoscopic images of the optic nerve in patients with glaucoma
Khouri AS; Szirth BC; Salti HI; Fechtner RD
Journal of Telemedicine and Telecare 2007; 13: 337-340 (IGR: 10-2)


21345 What can we learn from the disc appearance about the risk factors in glaucoma?
Drance SM
Canadian Journal of Ophthalmology 2008; 43: 322-327 (IGR: 10-2)


21110 Study of MR imaging of optic nerve in the case with complication of disc anomaly and normal tension glaucoma
Nakao Y
Neuro-Ophthalmology Japan 2007; 24: 397-404 (IGR: 10-2)


21271 Analysis of optic disc parameters by HRT-II in the patients with chronic angle-closure glaucoma
Xue M-H; Zhang L; Tang G-T; Li B; Zhao J-W; Wang M-H
International Journal of Ophthalmology 2008; 8: 299-300 (IGR: 10-2)


20961 Unilateral papilledema after trabeculectomy in a patient with intracranial hypertension
Abegg M; Fleischhauer J; Landau K
Klinische Monatsblätter für Augenheilkunde 2008; 225: 441-442 (IGR: 10-2)


21363 Tilted optic discs: The Beijing Eye Study
You QS; Xu L; Jonas JB
Eye 2008; 22: 728-729 (IGR: 10-2)


21140 Effects of unoprostone on phosphorylated extracellular signal-regulated kinase expression in endothelin-1-induced retinal and optic nerve damage
Munemasa Y; Kitaoka Y; Hayashi Y; Takeda H; Fujino H; Ohtani-Kaneko R; Hirata K; Ueno S
Visual Neuroscience 2008; 25: 197-208 (IGR: 10-2)


20319 Relationship between central corneal thickness and parameters of optic nerve head topography in healthy subjects
Cankaya AB; Elgin U; Batman A; Acaroglu G
European Journal of Ophthalmology 2008; 18: 32-38 (IGR: 10-1)


20318 Peripapillary atrophy in elderly Chinese in rural and urban Beijing
Wang Y; Xu L; Zhang L; Yang H; Ma Y; Jonas JB
Eye 2008; 22: 261-266 (IGR: 10-1)


20354 Association of retinal nerve fibre layer thickness measured by confocal scanning laser ophthalmoscopy and optical coherence tomography with disc size and axial length
Nagai-Kusuhara A; Nakamura M; Fujioka M; Tatsumi Y; Negi A
British Journal of Ophthalmology 2008; 92: 186-90 (IGR: 10-1)


20548 The effect of swimming goggles on intraocular pressure and blood flow within the optic nerve head
Ma KT; Chung WS; Seo KY; Seong GJ; Kim CY
Yonsei Medical Journal 2007; 48: 807-809 (IGR: 10-1)


20750 Optic disc hemorrhages in glaucoma and ocular hypertension: implications and recommendations
Uhler TA; Piltz-Seymour J
Current Opinions in Ophthalmology 2008; 19: 89-94 (IGR: 10-1)


20761 The morphology of the optic nerve head in the Singaporean Chinese population (the Tanjong Pagar study): part 1--Optic nerve head morphology
Bourne RR; Foster PJ; Bunce C; Peto T; Hitchings RA; Khaw PT; Seah SK; Garway-Heath DF
British Journal of Ophthalmology 2008; 92: 303-309 (IGR: 10-1)


20450 The Prevalence of Optic Disc Pits and Their Relationship to Glaucoma
Healey PR; Mitchell P
Journal of Glaucoma 2008; 17: 11-14 (IGR: 10-1)


20776 The morphology of the optic nerve head in the Singaporean Chinese population (the Tanjong Pagar study): part 2--Biometric and systemic associations
Bourne RR; Foster PJ; Bunce C; Peto T; Hitchings RA; Khaw PT; Seah SK; Garway-Heath DF
British Journal of Ophthalmology 2008; 92: 310-314 (IGR: 10-1)


20436 The heritability of optic disc parameters: a classic twin study
Healey P; Carbonaro F; Taylor B; Spector TD; Mitchell P; Hammond CJ
Investigative Ophthalmology and Visual Science 2008; 49: 77-80 (IGR: 10-1)


20346 Optic disc size in a population-based study in central India: the Central India Eye and Medical Study (CIEMS)
Nangia V; Matin A; Bhojwani K; Kulkarni M; Yadav M; Jonas JB
Acta Ophthalmologica Scandinavica 2008; 86: 103-104 (IGR: 10-1)


20700 Optic disc asymmetry: Normal tension glaucoma or a space-occupying lesion?
Gupta A; Rahman I; Mohan M
Annals of ophthalmology (Skokie, Ill.) 2007; 39: 246-248 (IGR: 10-1)


20853 Optic Nerve Head Drusen and Visual Field Loss in Normotensive and Hypertensive Eyes
Grippo TM; Shihadeh WA; Schargus M; Gramer E; Tello C; Liebmann JM; Ritch R
Journal of Glaucoma 2008; 17: 100-104 (IGR: 10-1)


20576 Correlation of visual changes with disc morphology
Garway-Heath DF
Eye 2007; 21: S29-S33 (IGR: 10-1)


20332 Diagnostic ability of the heidelberg retina tomograph 3 for glaucoma
Ferreras A; Pablo LE; Pajarín AB; Larrosa JM; Polo V; Pueyo V
American Journal of Ophthalmology 2008; 145: 354-359 (IGR: 10-1)


20562 Detection of glaucomatous change based on vessel shape analysis
Matsopoulos GK; Asvestas PA; Delibasis KK; Mouravliansky NA; Zeyen TG
Computerized Medical Imaging and Graphics 2008; 32: 183-192 (IGR: 10-1)


20696 Detection of glaucoma-like optic discs in a diabetes teleretinal program
Pasquale LR; Asefzadeh B; Dunphy RW; Fisch BM; Conlin PR
Optometry 2007; 78: 657-663 (IGR: 10-1)


20625 Optic neuropathy after Epi-LASIK
Montezuma SR; Lesseil S; Pineda R
Journal of Refractive Surgery 2008; 24: 204-208 (IGR: 10-1)


20588 Aloe-emodin suppressed NMDA-induced apoptosis of retinal ganglion cells through regulation of ERK phosphorylation
Lin H-J; Chao P-DL; Huang S-Y; Wan L; Wu C-J; Tsai F-J
Phytotherapy Research 2007; 21: 1007-1014 (IGR: 10-1)


20040 Optic nerve head and retinal nerve fiber layer analysis: a report by the American Academy of Ophthalmology
Lin SC; Singh K; Jampel HD; Hodapp EA; Smith SD; Francis BA; Dueker DK; Fechtner RD; Samples JS; Schuman JS
Ophthalmology 2007; 114: 1937-1949 (IGR: 9-4)


20108 Upregulation of EphB2 and ephrin-B2 at the optic nerve head of DBA/2J glaucomatous mice coincides with axon loss
Du J; Tran T; Fu C; Sretavan DW
Investigative Ophthalmology and Visual Science 2007; 48: 5567-5581 (IGR: 9-4)


19686 Ethnic differences in the parameters of the head of the optic nerve: data of optical coherent tomography
Dzhumataeva ZA
Vestnik Oftalmologii 2007; 123: 29-30 (IGR: 9-4)


20028 Does the blood-brain barrier play a role in glaucoma?
Grieshaber MC; Flammer J
Survey of Ophthalmology 2007; 52: S115-121 (IGR: 9-4)


19862 Clinical key points. Optic disk
Sellem E
Journal Français d'Ophtalmologie 2007; 30: 5 Pt 2 3S47-51 (IGR: 9-4)


19889 Size of the neuroretinal rim and optic cup and their correlations with ocular and general parameters in adult Chinese: The Beijing Eye Study
Xu L; Wang Y; Yang H; Zhang L; Jonas JB
British Journal of Ophthalmology 2007; 91: 1616-1619 (IGR: 9-4)


20101 Activation of the BMP canonical signaling pathway in human optic nerve head tissue and isolated optic nerve head astrocytes and lamina cribrosa cells
Zode GS; Clark AF; Wordinger RJ
Investigative Ophthalmology and Visual Science 2007; 48: 5058-5067 (IGR: 9-4)


19962 Role of immune system in glaucomatous optic nerve degeneration
Zhang Y; Zhao JL
Zhonghua Yan Ke Za Zhi 2007; 43: 858-861 (IGR: 9-4)


20100 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: prelaminar neural tissues and cupping
Yang H; Downs JC; Bellezza A; Thompson H; Burgoyne CF
Investigative Ophthalmology and Visual Science 2007; 48: 5068-5084 (IGR: 9-4)


20090 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness
Yang H; Downs JC; Girkin C; Sakata L; Bellezza A; Thompson H; Burgoyne CF
Investigative Ophthalmology and Visual Science 2007; 48: 4597-4607 (IGR: 9-4)


20104 Relationship of retinal vascular caliber with optic disc diameter in children
Cheung N; Tong L; Tikellis G; Saw SM; Mitchell P; Wang JJ; Wong TY
Investigative Ophthalmology and Visual Science 2007; 48: 4945-4948 (IGR: 9-4)


19759 Diagnosis of open-angle glaucoma by Moorfields regression analysis and multivariate discriminate analysis
Liu C; Hu Y; Xu C; Zhu Z
Chinese Ophthalmic Research 2007; 25: 778-781 (IGR: 9-4)


19741 Optic disc melanocytoma and glaucoma
Rai S; Medeiros FA; Levi L; Weinreb RN
Seminars in Ophthalmology 2007; 22: 147-150 (IGR: 9-4)


19866 Recognizing the pitfalls. Non-glaucomatous optic disc cupping
Milea D
Journal Français d'Ophtalmologie 2007; 30: 5 Pt 2 3S31-34 (IGR: 9-4)


19522 Expression of ephrinB1 and its receptor in glaucomatous optic neuropathy
Schmidt JF; Agapova OA; Yang P; Kaufman PL; Hernandez MR
British Journal of Ophthalmology 2007; 91: 1219-1224 (IGR: 9-3)


19647 Axonal transport and cytoskeletal changes in the laminar regions after elevated intraocular pressure
Balaratnasingam C; Morgan WH; Bass L; Matich G; Cringle SJ; Yu DY
Investigative Ophthalmology and Visual Science 2007; 48: 3632-3644 (IGR: 9-3)


19640 Endothelin-1-mediated signaling in the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in astrocytes
He S; Prasanna G; Yorio T
Investigative Ophthalmology and Visual Science 2007; 48: 3737-3745 (IGR: 9-3)


19558 Gray optic disc crescent: Influence of ethnicity in a glaucoma population
Higginbotham L; Shafranov G; Shields MB
Journal of Glaucoma 2007; 16: 572-576 (IGR: 9-3)


19560 Quantification of neuroretinal rim loss using digital planimetry in long-term follow-up of normals and patients with ocular hypertension
Laemmer R; Schroeder S; Martus P; Viestenz A; Mardin CY
Journal of Glaucoma 2007; 16: 430-436 (IGR: 9-3)


19320 Pressure induces loss of gap junction communication and redistribution of connexin 43 in astrocytes
Malone P; Miao H; Parker A; Juarez S; Hernandez MR
GLIA 2007; 55: 1085-1098 (IGR: 9-3)


19555 The acute morphologic changes that occur at the optic nerve head induced by medical reduction of intraocular pressure
Meredith SP; Swift L; Eke T; Broadway DC
Journal of Glaucoma 2007; 16: 556-561 (IGR: 9-3)


19340 Research progress in biomechanics of optic disc
Qian D
Chinese Ophthalmic Research 2007; 25: 551-553 (IGR: 9-3)


19502 Effects of refraction and axial length on childhood optic disk parameters measured by optical coherence tomography
Samarawickrama C; Wang XY; Huynh SC; Burlutsky G; Stapleton F; Mitchell P
American Journal of Ophthalmology 2007; 144: 459-461 (IGR: 9-3)


19485 Predicted extension, compression and shearing of optic nerve head tissues
Sigal IA; Flanagan JG; Tertinegg I; Ethier CR
Experimental Eye Research 2007; 85: 312-322 (IGR: 9-3)


19649 Population differences in elastin maturation in optic nerve head tissue and astrocytes
Urban Z; Agapova O; Hucthagowder V; Yang P; Starcher BC; Hernandez MR
Investigative Ophthalmology and Visual Science 2007; 48: 3209-3215 (IGR: 9-3)


19500 Shape of the neuroretinal rim and its correlations with ocular and general parameters in adult chinese: the beijing eye study
Wang Y; Xu L; Jonas JB
American Journal of Ophthalmology 2007; 144: 462-464 (IGR: 9-3)


19656 Three-dimensional histomorphometry of the normal and early glaucomatous monkey optic nerve head: neural canal and subarachnoid space architecture
Downs JC; Yang H; Girkin C; Sakata L; Bellezza A; Thompson H; Burgoyne CF
Investigative Ophthalmology and Visual Science 2007; 48: 3195-208 (IGR: 9-3)


19552 Interocular differences in optic nerve head topography of the subjects with unilateral peripapillary myelinated nerve fibers
Unal M; Yücel I; Duman O; Ylmaz A; Akar Y
Journal of Glaucoma 2007; 16: 539-542 (IGR: 9-3)


19360 Application of second harmonic imaging microscopy to assess structural changes in optic nerve head structure ex vivo
Brown DJ; Morishige N; Neekhra A; Minckler DS; Jester JV
Journal of biomedical Optics 2007; 12: 24-29 (IGR: 9-3)


19623 Optic disc measurements in myopia with optical coherence tomography and confocal scanning laser ophthalmoscopy
Leung CK; Cheng AC; Chong KK; Leung KS; Mohamed S; Lau CS; Cheung CY; Chu GC; Lai RY; Pang CC
Investigative Ophthalmology and Visual Science 2007; 48: 3178-3183 (IGR: 9-3)


19511 Tilted disc syndrome and colour vision
Vuori ML; Mäntyjärvi M
Acta Ophthalmologica Scandinavica 2007; 85: 648-652 (IGR: 9-3)


19452 Effect of statin drugs and aspirin on progression in open-angle glaucoma suspects using confocal scanning laser ophthalmoscopy
De Castro DK; Punjabi OS; Bostrom AG; Stamper RL; Lietman TM; Ray K; Lin SC
Clinical and Experimental Ophthalmology 2007; 35: 506-513 (IGR: 9-3)


18171 American Chinese glaucoma imaging study: A comparison of the optic disc and retinal nerve fiber layer in detecting glaucomatous damage
Leung CK; Medeiros FA; Zangwill LM; Sample PA; Bowd C; Ng D; Cheung CY; Lam DS; Weinreb RN
Investigative Ophthalmology and Visual Science 2007; 48: 2644-2652 (IGR: 9-2)


17642 Optic disc imaging in perimetrically normal eyes of glaucoma patients with unilateral field loss
Caprioli J; Nouri-Mahdavi K; Law SK; Badala F
Transactions of the American Ophthalmological Society 2006; 104: 202-210 (IGR: 9-2)


18185 Heritable features of the optic disc: a novel twin method for determining genetic significance
Hewitt AW; Poulsen JP; Alward WL; Bennett SL; Budde WM; Cooper RL; Craig JE; Fingert JH; Foster PJ; Garway-Heath DF
Investigative Ophthalmology and Visual Science 2007; 48: 2469-2475 (IGR: 9-2)


18138 Non-glaucomatous optic disc cupping
Milea D
Journal Français d'Ophtalmologie 2007; 30: 3S31-3S35 (IGR: 9-2)


18133 Optic disk
Sellem E
Journal Français d'Ophtalmologie 2007; 30: 3S47-3S52 (IGR: 9-2)


17989 Hypoxia/reoxygenation and TGF-β increase αB-crystallin expression in human optic nerve head astrocytes
Yu AL; Fuchshofer R; Birke M; Priglinger SG; Eibl KH; Kampik A; Bloemendal H; Welge-Lussen U
Experimental Eye Research 2007; 84: 694-706 (IGR: 9-2)


18191 New agreement in assessing vertical cup: disc ratio using a 78D lens with slit-lamp eyepiece measuring graticule
Zheng Y; He M
Eye Science 2007; 23: 53-57 (IGR: 9-2)


18225 Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features
Abràmoff MD; Alward WL; Greenlee EC; Shuba L; Kim CY; Fingert JH; Kwon YH
Investigative Ophthalmology and Visual Science 2007; 48: 1665-1673 (IGR: 9-2)


17552 Retinal nerve fiber layer thickness evaluation using optical coherence tomography in eyes with optic disc hemorrhage
Choi F; Park KH; Kim DM; Kim TW
Ophthalmic Surgery Lasers and Imaging 2007; 38: 118-125 (IGR: 9-2)


18122 The 'cup-to-disc ratio': A comparison of TopSS, HRT II and subjective findings
Hitzl W; Hornykewycz K; Grabner G; Reitsamer HA
Klinische Monatsblätter für Augenheilkunde 2007; 224: 391-395 (IGR: 9-2)


18001 Detection of glaucomatous optic nerve head by using Heidelberg topographic maps
Iester M; Zanini M; Vittone P; Calabria G
Eye 2007; 21: 609-613 (IGR: 9-2)


17450 Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa
Vilupuru AS; Rangaswamy NV; Frishman LJ; Smith 3rd EL; Harwerth RS; Roorda A
Journal of the Optical Society of America. A, Optics, Image Science, and Vision 2007; 24: 1417-1425 (IGR: 9-2)


18178 Correlation between optic disc area and retinal nerve fiber layer thickness: A study on scanning laser polarimetry with variable corneal compensation
Da Pozzo S; Iacono P; Michelone L; Paoloni M; Ravalico G
Graefe's Archive for Clinical and Experimental Ophthalmology 2007; 245: 511-515 (IGR: 9-2)


17550 Relationship of changes in visual functions and optic disk in patients with glaucoma concurrent with myopia
Makashova NV; Eliseeva EG
Vestnik Oftalmologii 2007; 123: 9-12 (IGR: 9-2)


18043 Familial cavitary optic disk anomalies: identification of a novel genetic locus
Fingert JH; Honkanen RA; Shankar SP; Affatigato LM; Ehlinger MA; Moore MD; Jampol LM; Sheffield VC; Stone EM; Alward WL
American Journal of Ophthalmology 2007; 143: 795-800 (IGR: 9-2)


18035 Familial cavitary optic disk anomalies: Clinical features of a large family with examples of progressive optic nerve head cupping
Honkanen RA; Jampol LM; Fingert JH; Moore MD; Taylor CM; Stone EM; Alward WL
American Journal of Ophthalmology 2007; 143: 788-794 (IGR: 9-2)


18077 Assessment of the optic disc to measure neuroprotection
Mikelberg FS
Canadian Journal of Ophthalmology 2007; 42: 421-424 (IGR: 9-2)


17088 A cellular solid model of the lamina cribrosa: Mechanical dependence on morphology
Sander EA; Downs JC; Hart RT; Burgoyne CF; Nauman EA
Journal of Biomechanical Engineering 2006; 128: 879-889 (IGR: 9-1)


17045 Optic disc tomography and perimetry in controls, glaucoma suspects, and early and established glaucomas
de la Rosa MG; Gonzalez-Hernandez M; Lozano-Lopez V; Mendez MS; De La Vega RR
Optometry and Vision Science 2007; 84: 33-41 (IGR: 9-1)


17023 The optic nerve head in myocilin glaucoma
Hewitt AW; Bennett SL; Fingert JH; Cooper RL; Stone EM; Craig JE; Mackey DA
Investigative Ophthalmology and Visual Science 2007; 48: 238-243 (IGR: 9-1)


17016 Optic disk size and glaucoma
Hoffmann EM; Zangwill LM; Crowston JG; Weinreb RN
Survey of Ophthalmology 2007; 52: 32-49 (IGR: 9-1)


17178 Correlation between the shape of optic nerve head and retinal nerve fiber layer defect
Koike I; Hiroishi G; Koike N; Ikeda Y; Yoshida S; Fujisawa K; Ishibashi T
Japanese Journal of Clinical Ophthalmology 2006; 60: 1925-1929 (IGR: 9-1)


17020 Association of retinal vessel caliber to optic disc and cup diameters
Lee KE; Klein BE; Klein R; Meuer SM
Investigative Ophthalmology and Visual Science 2007; 48: 63-67 (IGR: 9-1)


17021 Measurement of retinal vascular caliber: issues and alternatives to using the arteriole to venule ratio
Liew G; Sharrett AR; Kronmal R; Klein R; Wong TY; Mitchell P; Kifley A; Wang JJ
Investigative Ophthalmology and Visual Science 2007; 48: 52-57 (IGR: 9-1)


16819 4-Hydroxynonenal, a product of oxidative stress, leads to an antioxidant response in optic nerve head astrocytes
Malone PE; Hernandez MR
Experimental Eye Research 2007; 84: 444-454 (IGR: 9-1)


16822 Does treated systemic hypertension affect progression of optic nerve damage in glaucoma suspects?
Punjabi OS; Stamper RL; Bostrom AG; Lin SC
Current Eye Research 2007; 32: 153-160 (IGR: 9-1)


17022 The mutant human ND4 subunit of complex I induces optic neuropathy in the mouse
Qi X; Sun L; Lewin AS; Hauswirth WW; Guy J
Investigative Ophthalmology and Visual Science 2007; 48: 1-10 (IGR: 9-1)


16765 New findings in the evaluation of the optic disc in glaucoma diagnosis
Susanna R Jr; Vessani RM
Current Opinions in Ophthalmology 2007; 18: 122-128 (IGR: 9-1)


16959 Accelerated aging in glaucoma: immunohistochemical assessment of advanced glycation end products in the human retina and optic nerve head
Tezel G; Luo C; Yang X
Investigative Ophthalmology and Visual Science 2007; 48: 1201-1211 (IGR: 9-1)


17008 Mechanisms of immune system activation in glaucoma: oxidative stress-stimulated antigen presentation by the retina and optic nerve head glia
Tezel G; Yang X; Luo C; Peng Y; Sun SL; Sun D
Investigative Ophthalmology and Visual Science 2007; 48: 705-714 (IGR: 9-1)


16923 Usefulness of optical coherence tomography parameters of the optic disc and the retinal nerve fiber layer to differentiate glaucomatous, ocular hypertensive, and normal eyes
Anton A; Moreno-Montanes J; Blazquez F; Alvarez A; Martin B; Molina B
Journal of Glaucoma 2007; 16: 1-8 (IGR: 9-1)


16980 Interobserver variability in confocal optic nerve analysis (HRT)
Hermann MM; Garway-Heath DF; Jonescu-Cuypers CP; Burk RO; Jonas JB; Mardin CY; Funk J; Diestelhorst M
International Ophthalmology 2005; 26: 143-149 (IGR: 9-1)


16875 Agreement between stereophotographic and confocal scanning laser ophthalmoscopy measurements of cup/disc ratio: Effect on a predictive model for glaucoma development
Medeiros FA; Zangwill LM; Bowd C; Vasile C; Sample PA; Weinreb RN
Journal of Glaucoma 2007; 16: 209-214 (IGR: 9-1)


16829 Sensitivity and specificity of Heidelberg Retinal Tomography II parameters in detecting early and moderate glaucomatous damage: effect of disc size
Uysal Y; Bayer A; Erdurman C; Kilic S
Clinical and Experimental Ophthalmology 2007; 35: 113-118 (IGR: 9-1)


16977 Comparison of the GDx VCC scanning laser polarimeter and the Stratus optical coherence tomograph in the detection of band atrophy of the optic nerve
Monteiro ML; Moura FC
Eye 2007; Epub ahead of print (IGR: 9-1)


16844 Oxygen saturation in optic nerve head structures by hyperspectral image analysis
Beach J; Ning J; Khoobehi B
Current Eye Research 2007; 32: 161-170 (IGR: 9-1)


16924 Nonprogressive glaucomatous cupping and visual field abnormalities in young Chinese males
Doshi A; Kreidl KO; Lombardi L; Sakamoto DK; Singh K
Ophthalmology 2007; 114: 472-479 (IGR: 9-1)


16925 High myopia and glaucoma susceptibility the Beijing Eye Study
Xu L; Wang S; Wang Y; Jonas JB
Ophthalmology 2007; 114: 216-220 (IGR: 9-1)


16922 Predictive factors for open-angle glaucoma among patients with ocular hypertension in the European Glaucoma Prevention Study
European Glaucoma Prevention Study (EGPS) Group; Miglior S; Pfeiffer N; Torri V; Zeyen T; Cunha-Vaz J; Adamsons I
Ophthalmology 2007; 114: 3-9 (IGR: 9-1)


15206 Relationship between central corneal thickness and changes of optic nerve head topography and blood flow after intraocular pressure reduction in open-angle glaucoma and ocular hypertension
Lesk MR; Hafez AS; Descovich D
Archives of Ophthalmology 2006; 124: 1568-1572 (IGR: 8-4)


15072 Optic nerve head parameters of an indigenous population living within Central Australia
Landers JA; Henderson TR; Craig JE
Clinical and Experimental Ophthalmology 2006; 34: 852-856 (IGR: 8-4)


14671 Mathematical modeling of the biomechanics of the lamina cribrosa under elevated intraocular pressures
Newson T; El Sheikh A
Journal of Biomechanical Engineering 2006; 128: 496-504 (IGR: 8-4)


14835 Neurosensory detachment arising from a fractured inner-limiting membrane secondary to chronically elevated intraocular pressure
Pilon A; Newman T; Messner LV
Optometry and Vision Science 2006; 83: 415-420 (IGR: 8-4)


14473 Nitric oxide synthase in retina and optic nerve head of rat with increased intraocular pressure and effect of timolol
Vidal L; Diaz F; Villena A; Moreno M; Campos JG; Vargas IPd
Brain Research Bulletin 2006; 70: 406-413 (IGR: 8-4)


14534 Auto-adjusted 3-D optic disk viewing from low-resolution stereo fundus image
Xu J; Chutatape O
Computers in Biology and Medicine 2006; 36: 921-940 (IGR: 8-4)


14944 Cup-to-disc ratios of Aboriginal and non-Aboriginal youths
Gerry P; Johnson K
Clinical and Experimental Optometry 2006; 89: 306-309 (IGR: 8-4)


14560 Proper patterning of the optic fissure requires the sequential activity of BMP7 and SHH
Morcillo J; Martinez Morales JR; Trousse F; Fermin Y; Sowden JC; Bovolenta P
Development 2006; 133: 3179-3190 (IGR: 8-4)


15077 How to assess the stability of glaucoma? Optic nerve
Renard J-P
Journal Français d'Ophtalmologie 2006; 29: 27-31 (IGR: 8-4)


14745 Scleral edge, not optic disc or retina, is the primary site of injury in chronic glaucoma
Hasnain SS
Medical Hypotheses 2006; 67: 1320-1325 (IGR: 8-4)


15141 Thermal injury induces heat shock protein in the optic nerve head in vivo
Kim JM; Park KH; Kim YJ; Park HJ; Kim DM
Investigative Ophthalmology and Visual Science 2006; 47: 4888-4894 (IGR: 8-4)


15093 Structure and function in glaucoma: The relationship between a functional visual field map and an anatomic retinal map
Strouthidis NG; Vinciotti V; Tucker AJ; Gardiner SK; Crabb DP; Garway-Heath DF
Investigative Ophthalmology and Visual Science 2006; 47: 5356-5362 (IGR: 8-4)


15170 Detection and prognostic significance of optic disc hemorrhages during the Ocular Hypertension Treatment Study
Budenz DL; Anderson DR; Feuer WJ; Beiser JA; Schiffman J; Parrish RK 2nd; Piltz-Seymour JR; Gordon MO; Kass MA; Ocular Hypertension Treatment Study Group
Ophthalmology 2006; 113: 2137-2143 (IGR: 8-4)


15208 The ISNT rule and differentiation of normal from glaucomatous eyes
Harizman N; Oliveira C; Chiang A; Tello C; Marmor M; Ritch R; Liebmann JM
Archives of Ophthalmology 2006; 124: 1579-1583 (IGR: 8-4)


15111 Time-multiplexing stereophotography: 2D and 3D qualitative and semiquantitative evaluation of glaucomatous optic disc atrophy
Lehmann MV; Mardin CY; Lausen B; Reulbach U; Bergua A
Journal Français d'Ophtalmologie 2006; 29: 916-923 (IGR: 8-4)


14934 Abnormal cupping of the optic disc: clinical screening before performing a neuroimaging examination
Collignon NJ
Bulletin de la Société Belge d'Ophtalmologie 2006; 300: 21-23 (IGR: 8-4)


15098 Automated analysis of heidelberg retina tomograph optic disc images by glaucoma probability score
Coops A; Henson DB; Kwartz AJ; Artes PH
Investigative Ophthalmology and Visual Science 2006; 47: 5348-5355 (IGR: 8-4)


15172 Comparison of the Moorfields classification using confocal scanning laser ophthalmoscopy and subjective optic disc classification in detecting glaucoma in blacks and whites
Girkin CA; Deleon-Ortega JE; Xie A; McGwin G; Arthur SN; Monheit BE
Ophthalmology 2006; 113: 2144-2149 (IGR: 8-4)


15260 Morphometric assessment of normal, suspect and glaucomatous optic discs with Stratus OCT and HRT II
Iliev ME; Meyenberg A; Garweg JG
Eye 2006; 20: 1288-1299 (IGR: 8-4)


15101 Measurement variability in heidelberg retina tomograph imaging of neuroretinal rim area
Owen VM; Strouthidis NG; Garway-Heath DF; Crabb DP
Investigative Ophthalmology and Visual Science 2006; 47: 5322-5330 (IGR: 8-4)


14961 Automatic recovery of the optic nervehead geometry in optical coherence tomography
Boyer KL; Herzog A; Roberts C
IEEE Transactions on Medical Imaging 2006; 25: 553-570 (IGR: 8-4)


14913 Reproducibility of optic nerve head and retinal nerve fiber layer thickness measurements using optical coherence tomography
Pueyo V; Polo V; Larrosa JM; Mayoral F; Ferreras A; Honrubia FM
Archivos de la Sociedad Española de Oftalmologia 2006; 81: 205-211 (IGR: 8-4)


15249 Comparison of optic disk and retinal nerve fiber layer thickness in nonglaucomatous and glaucomatous patients with high myopia
Melo GB; Libera RD; Barbosa AS; Pereira LM; Doi LM; Melo LA Jr
American Journal of Ophthalmology 2006; 142: 858-860 (IGR: 8-4)


13960 Measurements of optic disk size with HRT II, Stratus OCT, and funduscopy are not interchangeable
Barkana Y; Harizman N; Gerber Y; Liebmann JM; Ritch R
American Journal of Ophthalmology 2006; 142: 375-380 (IGR: 8-3)


14175 Segmentation of trabeculated structures using an anisotropic Markov random field: application to the study of the optic nerve head in glaucoma
Grau V; Downs JC; Burgoyne CF
IEEE Transactions on Medical Imaging 2006; 25: 245-255 (IGR: 8-3)


14306 Study of comparison of optic nerve between big cupped disc and early glaucoma
Guo J; Wu L-L; Xiao G-G
Ophthalmology in China 2006; 15: 119-121 (IGR: 8-3)


14118 Iris colour, optic disc dimensions, degree and progression of glaucomatous optic nerve damage
Jonas JB; Budde WM; Stroux A; Oberacher-Velten IM
Clinical and Experimental Ophthalmology 2006; 34: 654-660 (IGR: 8-3)


13971 Optic disk size in chronic glaucoma: the Beijing eye study
Jonas JB; Xu L; Zhang L; Wang Y
American Journal of Ophthalmology 2006; 142: 168-170 (IGR: 8-3)


14010 Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma
Martin KR; Quigley HA; Valenta D; Kielczewski J; Pease ME
Experimental Eye Research 2006; 83: 255-262 (IGR: 8-3)


13947 Systems for staging the amount of optic nerve damage in glaucoma: a critical review and new material
Spaeth GL; Lopes JF; Junk AK; Grigorian AP; Henderer J
Survey of Ophthalmology 2006; 51: 293-315 (IGR: 8-3)


13781 Keratometry, optic disc dimensions, and degree and progression of glaucomatous optic nerve damage
Jonas JB; Stroux A; Martus P; Budde W
Journal of Glaucoma 2006; 15: 206-212 (IGR: 8-2)


13761 Androgen receptor and NFkB expression in human normal and glaucomatous optic nerve head astrocytes in vitro and in experimental glaucoma
Agapova OA; Kaufman PL; Hernandez MR
Experimental Eye Research 2006; 82: 1053-1059 (IGR: 8-2)


13792 Comparison of disc damage likelihood scale, cup to disc ratio, and Heidelberg retina tomograph in the diagnosis of glaucoma
Danesh-Meyer HV; Gaskin BJ; Jayusundera T; Donaldson M; Gamble GD
British Journal of Ophthalmology 2006; 90: 437-441 (IGR: 8-2)


13793 Regional correlation of structure and function in glaucoma, using the Disc Damage Likelihood Scale, Heidelberg Retina Tomograph, and visual fields
Danesh-Meyer HV; Ku JY; Papchenko TL; Jayasundera T; Hsiang JC; Gamble GD
Ophthalmology 2006; 113: 603-611 (IGR: 8-2)


13797 Comparability of cup and disk diameters measured from nonstereoscopic digital and stereoscopic film images
Ewen A; Lee KE; Klein BE; Klein R
American Journal of Ophthalmology 2006; 141: 1126-1128 (IGR: 8-2)


13612 Long-term changes in the shape of glaucomatous optic disc
Hiroishi G; Koike I; Ikeda Y; Yoshida S; Fujisawa K; Kubota T; Ishibashi T
Japanese Journal of Clinical Ophthalmology 2006; 60: 329-333 (IGR: 8-2)


13799 Healthy optic discs with large cups - a diagnostic challenge in glaucoma
Mardin CY; Horn F; Viestenz A; Lammer R; Junemann A
Klinische Monatsblätter für Augenheilkunde 2006; 223: 308-314 (IGR: 8-2)


13585 Genetic propensity of physiologic large cups
Zhang Y-Y; Sun X-H; Zuo J; Ji X-C; Ye W
Fudan University Journal of Medical Sciences 2006; 33: 60-62 (IGR: 8-2)


13575 Three essential lements of glaucomatous optic nerve damage and discrimination of optic nerve rim loss
Xu L
Chinese Journal of Ophthalmology 2006; 42: 196-198 (IGR: 8-2)


13568 Immunofluorescence-histochemical changes of the astrocytes in cribriform plate due to high intraocular pressure in rats
Xie L; He XG; Ma JZ; Long ZY; Wu YM; Wang YT
Chinese Journal of Clinical Rehabilitation 2005; 9: 37-39 (IGR: 8-2)


13449 Optic disc size in a population based study in northern China: the Beijing Eye Study
Wang Y; Xu L; Zhang L; Yang H; Ma Y; Jonas JB
British Journal of Ophthalmology 2006; 90: 353-356 (IGR: 8-1)


13297 Visual impairment and disc cupping among newly diagnosed patients with glaucoma
Ling CL; Bin OL; Tet CM; Vengadasalam SR; Leong NG; Tajudin L-SA
Asian Journal of Ophthalmology 2005; 7: 140-145 (IGR: 8-1)


13383 Quantitative correlation of optic nerve pathology with ocular pressure and corneal thickness in the DBA/2 mouse model of glaucoma
Inman DM; Sappington RM; Horner PJ; Calkins DJ
Investigative Ophthalmology and Visual Science 2006; 47: 986-996 (IGR: 8-1)


13265 Five rules to evaluate the optic disc and retinal nerve fiber layer for glaucoma
Fingeret M; Medeiros FA; Susanna R Jr; Weinreb RN
Optometry 2005; 76: 661-668 (IGR: 8-1)


13522 Semiquantitative optic nerve grading scheme for determining axonal loss in experimental optic neuropathy
Chauhan BC; Levatte TL; Garnier KL; Tremblay F; Pang IH; Clark AF; Archibald ML
Investigative Ophthalmology and Visual Science 2006; 47: 634-640 (IGR: 8-1)


13369 Pathological optic-disc cupping
Piette SD; Sergott RC
Current Opinions in Ophthalmology 2006; 17: 1-6 (IGR: 8-1)


12675 Diffusion tensor imaging of the human optic nerve using a non-CPMG fast spin echo sequence
Chabert S; Molko N; Cointepas Y; Le Roux P; Le Bihan D
Journal of Magnetic Resonance Imaging 2005; 22: 307-310 (IGR: 7-3)


13050 Assessment of optic disc cupping with digital fundus photographs
Constantinou M; Ferraro JG; Lamoureux EL; Taylor HR
American Journal of Ophthalmology 2005; 140: 529-31 (IGR: 7-3)


12673 The re-engineering of a software system for glaucoma analysis
Fraser RG; Armarego J; Yogesan K
Computer Methods and Programs in Biomedicine 2005; 79: 97-109 (IGR: 7-3)


13012 Pathophysiologic changes in the optic nerves of eyes with primary open angle and pseudoexfoliation glaucoma
Gottanka J; Kuhlmann A; Scholz M; Johnson DH; Lutjen-Drecoll E
Investigative Ophthalmology and Visual Science 2005; 46: 4170-4181 (IGR: 7-3)


12676 Clinical variables associated with glaucomatous injury in eyes with large optic disc cupping
Greenfield DS; Bagga H
Ophthalmic Surgery Lasers and Imaging 2005; 36: 401-409 (IGR: 7-3)


13199 Asymmetry in optic disc morphometry as measured by heidelberg retina tomography in a normal elderly population: the Bridlington Eye Assessment Project
Hawker MJ; Vernon SA; Ainsworth G; Hillman JG; Macnab HK; Dua HS
Investigative Ophthalmology and Visual Science 2005; 46: 4153-4158 (IGR: 7-3)


12553 Influence of cyclical mechanical strain on extracellular matrix gene expression in human lamina cribrosa cells in vitro
Kirwan RP; Fenerty CH; Crean J; Wordinger RJ; Clark AF; O'brien CJ
Molecular Vision 2005; 11: 798-810 (IGR: 7-3)


12569 Transforming growth factor-β-regulated gene transcription and protein expression in human GFAP-negative lamina cribrosa cells
Kirwan RP; Leonard MO; Murphy M; Clark AF; O’Brien CJ
GLIA 2005; 52: 309-324 (IGR: 7-3)


13153 Age effect on retina and optic disc normal values
Neubauer AS; Chryssafis C; Thiel M; Tsinopoulos I; Hirneiss C; Kampik A
Ophthalmic Research 2005; 37: 243-249 (IGR: 7-3)


13036 The influence of pharmacological mydriasis on biomicroscopic evaluation of the glaucomatous optic nerve head
O'Brien PD; Bogdan AJ; Fitzpatrick P; Beatty S
Eye 2005; 19: 1194-1199 (IGR: 7-3)


13056 Test-retest reproducibility of optic disk deterioration detected from stereophotographs by masked graders
Parrish RK 2nd; Schiffman JC; Feuer WJ; Anderson DR; Budenz DL; Wells-Albornoz MC; Vandenbroucke R; Kass MA; Gordon MO; Ocular Hypertension Treatment Study Group
American Journal of Ophthalmology 2005; 140: 762-764 (IGR: 7-3)


13181 Effect of carbogen breathing and acetazolamide on optic disc PO2.
Petropoulos IK; Pournaras JA; Munoz JL; Pournaras CJ
Investigative Ophthalmology and Visual Science 2005; 46: 4139-4146 (IGR: 7-3)


13014 Factors influencing optic nerve head biomechanics
Sigal IA; Flanagan JG; Ethier CR
Investigative Ophthalmology and Visual Science 2005; 46: 4189-4199 (IGR: 7-3)


13089 Improving the repeatability of Heidelberg retina tomograph and Heidelberg retina tomograph II rim area measurements
Strouthidis NG; White ET; Owen VM; Ho TA; Garway-Heath DF
British Journal of Ophthalmology 2005; 89: 1433-1437 (IGR: 7-3)


13088 Factors affecting the test-retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements
Strouthidis NG; White ET; Owen VM; Ho TA; Hammond CJ; Garway-Heath DF
British Journal of Ophthalmology 2005; 89: 1427-1432 (IGR: 7-3)


13077 Enhanced corneal compensation for scanning laser polarimetry on eyes with atypical polarisation pattern
Toth M; Hollo G
British Journal of Ophthalmology 2005; 89: 1139-1142 (IGR: 7-3)


13122 Intraobserver and interobserver reliability indices for drawing scanning laser ophthalmoscope optic disc contour lines with and without the aid of optic disc photographs
Watkins RJ; Broadway DC
Journal of Glaucoma 2005; 14: 351-357 (IGR: 7-3)


13095 Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study
Zangwill LM; Weinreb RN; Beiser JA; Berry CC; Cioffi GA; Coleman AL; Trick G; Liebmann JM; Brandt JD; Piltz-Seymour JR
Archives of Ophthalmology 2005; 123: 1188-1197 (IGR: 7-3)


12700 Factors of optic nerve regeneration
Jiang WM; Tang LS
International Journal of Ophthalmology 2005; 5: 543-546 (IGR: 7-3)


12674 Optic disc characteristics assessed by evaluation of clinical optic disc photographs in glaucoma patients
Ohguro I; Ohguro H; Ohkuro H; Nakazawa M
Hirosaki Medical Journal 2005; 57: 27-34 (IGR: 7-3)


12678 Influrence of age, gender, refraction, keratometry and disc area on the topographic parameters of the optic nerve head
Skorkovska K; Skorkovska S; Michalek J; Koci J
?eska a Slovenska Oftalmologie 2005; 61: 245-252 (IGR: 7-3)


13155 Linkage to 10q22 for maximum intraocular pressure and 1p32 for maximum cup-to-disc ratio in an extended primary open-angle glaucoma pedigree
Charlesworth JC; Dyer TD; Stankovich JM; Blangero J; Mackey DA; Craig JE; Green CM; Foote SJ; Baird PN; Sale MM
Investigative Ophthalmology and Visual Science 2005; 46: 3723-3729 (IGR: 7-3)


12548 Long-term activation of c-Fos and c-Jun in optic nerve head astrocytes in experimental ocular hypertension in monkeys and after exposure to elevated pressure in vitro
Hashimoto K; Parker A; Malone P; Gabelt BT; Rasmussen C; Kaufman PS; Hernandez MR
Brain Research 2005; 1054: 103-115 (IGR: 7-3)


12457 Determinants and heritability of intraocular pressure and cup-to-disc ratio in a defined older population
Chang TC; Congdon NG; Wojciechowski R; Munoz B; Gilbert D; Chen P; Friedman DS; West SK
Ophthalmology 2005; 112: 1186-1191 (IGR: 7-2)


12372 Microvessels of the human optic nerve head: ultrastructural and radioreceptorial changes in eyes with increased IOP
Feher J; Pescosolido N; Leali FM; Cavallotti C
Canadian Journal of Ophthalmology 2005; 40: 492-498 (IGR: 7-2)


12460 Discrimination of glaucomatous optic neuropathy by digital stereoscopic analysis
Morgan JE; Sheen NJ; North RV; Goyal R; Morgan S; Ansari E; Wild JM
Ophthalmology 2005; 112: 855-862 (IGR: 7-2)


12278 Relationship of disk area and RNFL thickness in patients with large cup
Shao Y; Yan Y
Chinese Ophthalmic Research 2005; 23: 311-313 (IGR: 7-2)


12377 Use of progressive glaucomatous optic disk change as the reference standard for evaluation of diagnostic tests in glaucoma
Medeiros FA; Zangwill LM; Bowd C; Sample PA; Weinreb RN
American Journal of Ophthalmology 2005; 139: 1010-1018 (IGR: 7-2)


11739 Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes
Downs JC; Suh JK; Thomas KA; Bellezza AJ; Hart RT; Burgoyne CF
Investigative Ophthalmology and Visual Science 2005; 46: 540-546 (IGR: 7-1)


11757 Transforming growth factor-beta 2 modulated extracellular matrix component expression in cultured human optic nerve head astrocytes
Fuchshofer R; Birke M; Welge-Lussen U; Kook D; Lutjen-Drecoll E
Investigative Ophthalmology and Visual Science 2005; 46: 568-578 (IGR: 7-1)


11796 Relationship between corneal thickness and optic disc damage in glaucoma
Hewitt AW; Cooper RL
Clinical and Experimental Ophthalmology 2005; 33: 158-163 (IGR: 7-1)


11819 Central corneal thickness and thickness of the lamina cribrosa in human eyes
Jonas JB; Holbach L
Investigative Ophthalmology and Visual Science 2005; 46: 1275-1279 (IGR: 7-1)


11711 The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage
Burgoyne CF; Downs JC; Bellezza AJ; Suh JK; Hart RT
Progress in Retinal and Eye Research 2005; 24: 39-73 (IGR: 7-1)


11767 Differences in optic disc topography between black and white normal subjects
Girkin CA; McGwin G Jr; Xie A; Deleon-Ortega J
Ophthalmology 2005; 112: 33-39 (IGR: 7-1)


11822 Optic disk size correlated with refractive error
Jonas JB
American Journal of Ophthalmology 2005; 139: 346-348 (IGR: 7-1)


11978 Glaucoma without cupping
Sherman J; Bass SJ; Slotnick S
Optometry 2004; 75: 677-708 (IGR: 7-1)


11995 Optic nerve oxygenation
Stefansson E; Pedersen DB; Jensen PK; la Cour M; Kiilgaard JF; Bang K; Eysteinsson T
Progress in Retinal and Eye Research 2005; 24: 307-332 (IGR: 7-1)


12003 Optic disk ovality as an index of tilt and its relationship to myopia and perimetry
Tay E; Seah SK; Chan SP; Lim AT; Chew SJ; Foster PJ; Aung T
American Journal of Ophthalmology 2005; 139: 247-252 (IGR: 7-1)


11278 Three-dimensional reconstruction of normal and early glaucoma monkey optic nerve head connective tissues
Burgoyne CF; Downs JC; Bellezza AJ; Hart RT
Investigative Ophthalmology and Visual Science 2004; 45: 4388-4399 (IGR: 6-3)


11245 Visibility of lamina cribrosa pores and open-angle glaucoma
Healey PR; Mitchell P
American Journal of Ophthalmology 2004; 138: 871-872 (IGR: 6-3)


11276 Regional optic nerve damage in experimental mouse glaucoma
Mabuchi F; Aihara M; Mackey MR; Lindsey JD; Weinreb RN
Investigative Ophthalmology and Visual Science 2004; 45: 4352-4358 (IGR: 6-3)


11246 Ethnic variability of the vasculature of the optic disc in normal and glaucomatous eyes
Nagasubramanian S; Weale RA
European Journal of Ophthalmology 2004; 14: 501-507 (IGR: 6-3)


11525 Comparison of the optic nerve rim tissue between healthy Caucasian and Hispanic populations using the HRT II
Sendrowski DP; Kostura II MR; Kostura SK
Clinical and Refractive Optometry 2004; 15: 142-148 (IGR: 6-3)


11244 Digital stereoscopic analysis of the optic disc: evaluation of a teaching program
Sheen NJ; Morgan JE; Poulsen JL; North RV
Ophthalmology 2004; 111: 1873-1879 (IGR: 6-3)


11275 Finite element modeling of optic nerve head biomechanics
Sigal IA; Flanagan JG; Tertinegg I; Ethier CR
Investigative Ophthalmology and Visual Science 2004; 45: 4378-4387 (IGR: 6-3)


11500 Role of eIF5A in TNF-α-mediated apoptosis of lamina cribrosa cells
Taylor CA; Senchyna M; Flanagan J; Joyce EM; Cliche DO; Boone AN; Culp-Stewart S; Thompson JE
Investigative Ophthalmology and Visual Science 2004; 45: 3568-3576 (IGR: 6-3)


11273 Hypoxia-inducible factor 1alpha in the glaucomatous retina and optic nerve head
Tezel G; Wax MB
Archives of Ophthalmology 2004; 122: 1348-1356 (IGR: 6-3)


10573 Functional and structural analysis of the visual system in the rhesus monkey model of optic nerve head ischemia
Brooks DE; Kallberg ME; Cannon RL; Komaromy AM; Ollivier FJ; Malakhova OE; Dawson WW; Sherwood MB; Kuekuerichkina EE; Lambrou GN
Investigative Ophthalmology and Visual Science 2004; 45: 1830-40 (IGR: 6-2)


10600 The effect of optic disc diameter on vertical cup to disc ratio percentiles in a population based cohort: the Blue Mountains Eye Study
Crowston JG; Hopley CR; Healey PR; Lee A; Mitchell P; Blue Mountains Eye Study Group
British Journal of Ophthalmology 2004; 88: 766-70 (IGR: 6-2)


10648 Digital analysis of the optic disc with fundus camera: a study of variability
Gili Manzanaro P; Carrasco Font C; Martin Rodrigo JC; Yanguela Rodilla J; Arias Puente A
Archivos de la Sociedad Española de Oftalmologia 2004; 79: 125-30 (IGR: 6-2)


10686 Lamina Cribrosa Thickness and Spatial Relationships between Intraocular Space and Cerebrospinal Fluid Space in Highly Myopic Eyes
Jonas JB; Berenshtein E; Holbach L
Investigative Ophthalmology and Visual Science 2004; 45: 2660-5 (IGR: 6-2)


10687 Predictive factors of the optic nerve head for development or progression of glaucomatous visual field loss
Jonas JB; Martus P; Horn FK; Junemann A; Korth M; Budde WM
Investigative Ophthalmology and Visual Science 2004; 45: 2613-8 (IGR: 6-2)


10706 Effect of cyclical mechanical stretch and exogenous transforming growth factor-β1 on matrix metalloproteinase-2 activity in lamina cribrosa cells from the human optic nerve head
Kirwan RP; Crean JK; Fenerty CH; Clark AF; O'brien CJ
Journal of Glaucoma 2004; 13: 327-34 (IGR: 6-2)


10736 Optic nerve head segmentation
Lowell J; Hunter A; Steel D; Basu A; Ryder R; Fletcher E; Kennedy L
IEEE Transactions on Medical Imaging 2004; 23: 256-64 (IGR: 6-2)


10787 Digital planimetry for long-term follow-up of glaucomatous optic disk injuries in patients with normal pressure glaucoma
Nguyen NX; Meindl C; Horn FK; Dzialach M; Langenbucher A; Junemann A; Mardin CY
Ophthalmologe 2004; 101: 589-94 (IGR: 6-2)


10723 Optic disk appearance in advanced age-related macular degeneration
Law SK; Sohn YH; Hoffman D; Small K; Coleman AL; Caprioli J
American Journal of Ophthalmology 2004; 138: 38-45 (IGR: 6-2)


10249 Ganglion cell axon pathfinding in the retina and optic nerve
Oster SF; Deiner M; Birgbauer E; Sretavan DW
Seminars in Cell and Developmental Biology 2004; 15: 125-136 (IGR: 6-1)


10307 Effect of scan repetition on the reproducibility of optic nerve head topographic measurements with the Top SS
Akar Y; Bozkurt B; Grkec M; Orhan M; Karaagaoglu E
Clinical and Experimental Ophthalmology 2004; 32: 142-146 (IGR: 6-1)


10254 Major determinants of optic nerve head topographic characteristics in a normal Turkish population
Akar Y; Orhan M; Irkec M; Karaagaoglu E
Clinical and Experimental Ophthalmology 2004; 32: 9-13 (IGR: 6-1)


10308 The distribution of cup disc ratios in a general population of Southern Togo aged 40 years and over
Balo KP; Anika A; Banla M; Agla K; Djagnikpo PA; Koffi Gue KB
Journal Français d'Ophtalmologie 2004; 27: 250-255 (IGR: 6-1)


10253 The distributions of mitochondria and sodium channels reflect the specific energy requirements and conduction properties of the human optic nerve head
Barron MJ; Griffiths P; Turnbull DM; Bates D; Nichols P
British Journal of Ophthalmology 2004; 88: 286-290 (IGR: 6-1)


10256 The optic disc hemifield test
Jonas JB; Budde WM; Martus P
Journal of Glaucoma 2004; 13: 108-113 (IGR: 6-1)


10484 Correlations between retinal thickness analyzer (RTA) and confocal scanning laser tomography (HRT) in optic disc analysis
Martinez De La Casa JM; Garcia Feijoo J; Castillo Gomez A; Garcia Sanchez J
Archivos de la Sociedad Española de Oftalmologia 2004; 79: 21-25 (IGR: 6-1)


10262 Identifying early glaucoma with optical coherence tomography
Nouri-Mahdavi K; Hoffman D; Tannenbaum DP; Law SK; Caprioli J
American Journal of Ophthalmology 2004; 137: 228-235 (IGR: 6-1)


10454 Responses and signaling pathways in human optic nerve head astrocytes exposed to hydrostatic pressure in vitro
Salvador-Silva M; Aoi S; Parker A; Yang P; Pecen P; Hernandez MR
GLIA 2004; 45: 364-377 (IGR: 6-1)


10255 Magnification changes in scanning laser tomography
Tan JC; Poinoosawmy D; Fitzke FW; Hitchings RA
Journal of Glaucoma 2004; 13: 137-141 (IGR: 6-1)


10263 Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes
Tezel G; Trinkaus K; Wax MB
British Journal of Ophthalmology 2004; 88: 251-256 (IGR: 6-1)


10455 DNA microarray analysis of gene expression in human optic nerve head astrocytes in response to hydrostatic pressure
Yang P; Agapova O; Parker A; Shannon W; Pecen P; Duncan J; Salvador-Silva M; Hernandez MR
Physiol Genomics 2004; 17:157-69 (IGR: 6-1)


10257 Racial differences in optic disc topography: baseline results from the confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study
Zangwill LM; Weinreb RN; Berry CC; Smith AR; Dirkes KA; Coleman AL; Piltz-Seymour JR; Liebmann JM; Cioffi GA; Trick G
Archives of Ophthalmology 2004; 122: 22-28 (IGR: 6-1)


10261 The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study: study design and baseline factors
Zangwill LM; Weinreb RN; Berry CC; Smith AR; Dirkes KA; Liebmann JM; Brandt JD; Trick G; Cioffi GA; Coleman AL
American Journal of Ophthalmology 2004; 137: 219-227 (IGR: 6-1)


10259 Influence of ciliary-retinal arteries on functional damage in open-angle glaucoma
Budde WM; Jonas JB
Ophthalmologe 2003; 100: 1067-1070 (IGR: 6-1)


10258 Serial topographic changes at the optic disc in normal-tension glaucoma viewed with scanning laser tomography
Kato A; Sugiyama K; Kono Y; Uchida H; Tomita G; Yamamoto T
Nippon Ganka Gakkai Zasshi 2003; 107): 597-601 (IGR: 6-1)


10478 Tracking the optic nervehead in OCT video using dual eigenspaces and an adaptive vascular distribution model
Koozekanani D; Boyer KL; Roberts C
IEEE Transactions on Medical Imaging 2003; 22: 1519-1536 (IGR: 6-1)


9698 Altered expression of 3α-hydroxysteroid dehydrogenases in human glaucomatous optic nerve head astrocytes
Agapova OA; Yang P; Wang WH; Lane DA; Clark AF; Weinstein BI; Hernandez MR
Neurobiology of Disease 2003; 14: 63-73 (IGR: 5-3)


9699 Clinical agreement among glaucoma experts in the detection of glaucomatous changes of the optic disc using simultaneous stereoscopic photographs
Azuara-Blanco A; Katz LJ; Spaeth GL; Vernon SA; Spencer F; Lanzl IM
American Journal of Ophthalmology 2003; 136: 949-950 (IGR: 5-3)


9691 Anterior scleral canal geometry in pressurised (IOP 10) and non-pressurised (IOP 0) normal monkey eyes
Bellezza AJ; Rintalan CJ; Thompson HW; Downs JC; Hart RT; Burgoyne CF
British Journal of Ophthalmology 2003; 87: 1284-1290 (IGR: 5-3)


9702 A comparison of visual field and optic disc appearance depending on the peak intraocular pressure in patients with normal-tension glaucoma
Ishikawa K; Tanino T; Ohtake Y; Kimura I; Miyata H; Mashima Y
Nippon Ganka Gakkai Zasshi 2003; 107: 433-439 (IGR: 5-3)


9692 Rate of optic disc cup progression in treated primary open-angle glaucoma
Kwon YH; Kim YI; Pereira ML; Montague PR; Zimmerman MB; Alward WL
Journal of Glaucoma 2003; 12: 409-416 (IGR: 5-3)


10031 Study of agreement of optic nerve parameters
Liang Y; Liu X; Ling Y; Huang J
Chinese Journal of Ophthalmology 2003; 39: 471-475 (IGR: 5-3)


9694 Glaucomatous optic neuropathy: when glia misbehave
Neufeld AH; Liu B
Neuroscientist 2003; 9: 485-495 (IGR: 5-3)


9693 Visual field and optic disc progression in patients with different types of optic disc damage
Nicolela MT; McCormick TA; Drance SM; Ferrier SN; Leblanc RP; Chauhan BC
Ophthalmology 2003; 110: 2178-2184 (IGR: 5-3)


9700 The disc damage likelihood scale: reproducibility of a new method of estimating the amount of optic nerve damage caused by glaucoma
Spaeth GL; Henderer J; Liu C; Kesen M; Altangerel U; Bayer A; Katz LJ; Myers J; Rhee D; Steinmann W
Transactions of the American Ophthalmological Society 2002; 100: 181-186 (IGR: 5-3)


9697 Characteristics of optic disc changes in Taiwanese patients with primary angle-closure glaucoma
Yang CH; Hung PT; Lin LLK; Hsieh JW; Wang TH; Wang IJ
Journal of the Formosan Medical Association 2003; 102: 183-188 (IGR: 5-3)


9696 Purification of astrocytes from adult human optic nerve heads by immunopanning
Yang P; Hernandez MR
Brain Research Protocols 2003; 12: 67-76 (IGR: 5-3)


8919 Glaucoma-screening with the Heidelberg Retina Tomograph II
Kóthy P; Vargha P; Holló G
Klinische Monatsblätter für Augenheilkunde 2003; 540-544 (IGR: 5-2)


9098 Optical coherence tomography assessment of retinal nerve fiber layer thickness changes after glaucoma surgery
Aydin A; Wollstein G; Price LL; Fujimoto JG; Schuman JS
Ophthalmology 2003; 110: 1506-1511 (IGR: 5-2)


9100 Digital stereo image analyzer for generating automated 3-D measures of optic disc deformation in glaucoma
Corona E; Mitra S; Wilson M; Krile T; Kwon YH; Soliz P
IEEE Transactions on Medical Imaging 2002; 21: 1244-1253 (IGR: 5-2)


9097 Comparison of optic nerve head assessment with a digital stereoscopic camera (discam), scanning laser ophthalmoscopy, and stereophotography
Correnti AJ; Wollstein G; Price LL; Schuman JS
Ophthalmology 2003; 110: 1499-1505 (IGR: 5-2)


9094 Comparison of data analysis tools for detection of glaucoma with the Heidelberg Retina Tomograph
Ford BA; Artes PH; McCormick TA; Nicolela MT; Leblanc RP; Chauhan BC
Ophthalmology 2003; 110: 1145-1150 (IGR: 5-2)


9095 Racial differences in the association between optic disc topography and early glaucoma
Girkin CA; McGwin Jr G; McNeal SF; Deleon-Ortega J
Investigative Ophthalmology and Visual Science 2003; 44: 3382-3387 (IGR: 5-2)


9105 A comparison of optic disc topographic parameters in patients with primary open angle glaucoma, normal tension glaucoma, and ocular hypertension
Kiriyama N; Ando A; Fukui C; Nambu H; Nishikawa M; Terauchi H; Kuwahara A; Matsumura M
Graefe's Archive for Clinical and Experimental Ophthalmology 2003; 241: 541-545 (IGR: 5-2)


9102 Picture archiving and fundus imaging in a glaucoma clinic
Lamminen H
Journal of Telemedicine and Telecare 2003; 9: 114-116 (IGR: 5-2)


8892 Activation of epidermal growth factor receptor signals induction of nitric oxide synthase-2 in human optic nerve head astrocytes in glaucomatous optic neuropathy
Liu B; Neufeld AH
Neurobiology of Disease 2003; 13: 109-123 (IGR: 5-2)


9096 New glaucoma classification method based on standard Heidelberg Retina Tomograph parameters by bagging classification trees
Mardin CY; Hothorn T; Peters A; Jünemann AG; Nguyen NX; Lausen B
Journal of Glaucoma 2003; 12: 340-346 (IGR: 5-2)


8867 The optic nerve head region of the aged rat: an immunohistochemical investigation
May CA
Current Eye Research 2003; 26: 347-354 (IGR: 5-2)


9090 Detection of glaucomatous visual field changes using the Moorfields regression analysis of the Heidelberg retina tomograph
Miglior S; Guareschi M; Albe E; Gomarasca S; Vavassori M; Orzalesi N
American Journal of Ophthalmology 2003; 136: 26-33 (IGR: 5-2)


9106 The evaluation of retinal nerve fiber layer in pigment dispersion syndrome and pigmentary glaucoma using scanning laser polarimetry
Mocan MC; Bozkurt B; Irkeç M; Orhan M; Karabulut E
European Journal of Ophthalmology 2003; 13: 377-382 (IGR: 5-2)


9091 A new fundus camera technique to help calculate eye-camera magnification: a rapid means to measure disc size
Quigley MG; Dube P
Archives of Ophthalmology 2003; 121: 707-709 (IGR: 5-2)


9092 Variability across the optic nerve head in scanning laser tomography
Tan JC; Garway-Heath DF; Hitchings RA
British Journal of Ophthalmology 2003; 87: 557-559 (IGR: 5-2)


9093 Approach for identifying glaucomatous optic nerve progression by scanning laser tomography
Tan JC; Hitchings RA
Investigative Ophthalmology and Visual Science 2003; 44: 2621-2626 (IGR: 5-2)


9099 Vertical cup to disc ratio: Agreement between direct ophthalmoscopic estimation, fundus biomicroscopic estimation, and scanning laser ophthalmoscopic measurement
Watkins R; Panchal L; Uddin J; Gunvant P
Optometry and Vision Science 2003; 80: 454-459 (IGR: 5-2)


8891 Cells of the human optic nerve head express glial cell line-derived neurotrophic factor (GDNF) and the GDNF receptor complex
Wordinger RJ; Lambert W; Agarwal R; Liu X; Clark AF
Molecular Vision 2003; 9: 249-256 (IGR: 5-2)


8389 Influence of cilioretinal arteries on neuroretinal rim and parapapillary atrophy in glaucoma
Budde WM; Jonas JB
Investigative Ophthalmology and Visual Science 2003; 44: 170-174 (IGR: 5-1)


8591 Scanning laser polarimetry of edematous and atrophic optic nerve heads
Banks MC; Robe-Collignon NJ; Rizzo JF 3rd; Pasquale LR
Archives of Ophthalmology 2003; 121: 484-490 (IGR: 5-1)


8811 Correlation between confocal scanning laser ophthalmoscopy and scanning laser polarimetry in open angle glaucoma
Sihota A; Gulati V; Saxena R; Agarwal HC; Sharma AK
European Journal of Ophthalmology 2003; 13: 266-275 (IGR: 5-1)


8571 Differential expression of matrix metalloproteinases in monkey eyes with experimental glaucoma or optic nerve transection
Agapova OA; Kaufman PL; Lucarelli MJ; Gabelt B'AT; Hernandez MR
Brain Research 2003; 967: 132-143 (IGR: 5-1)


8578 Reproducibility of the measurements of the optic nerve head topographic variables with a confocal scanning laser ophthalmoscope
Akar Y; Orhan M; Murat I
Japanese Journal of Ophthalmology 2003; 47: 173-177 (IGR: 5-1)


8404 Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma
Bellezza AJ; Rintalan CJ; Thompson HW; Downs JC; Hart RT; Burgoyne CF
Investigative Ophthalmology and Visual Science 2003; 44: 623-637 (IGR: 5-1)


8602 Determination of optic cup depth by confocal scanning laser tomography
Budde WM; Jonas JB; Hayler JK; Mardin CY
European Journal of Ophthalmology 2003; 13: 42-48 (IGR: 5-1)


8400 Reliability of the disc damage likelihood scale
Henderer JD; Liu C; Kesen M; Altangerel U; Bayer A; Steinmann WC; Spaeth GL
American Journal of Ophthalmology 2003; 135: 44-48 (IGR: 5-1)


8672 Bagging tree classifiers for laser scanning images: a data- and simulation-based strategy
Hothorn T; Lausen B
Artificial Intelligence in Medicine 2003; 27: 65-79 (IGR: 5-1)


8679 Comparison of optic disc topography measured by Retinal Thickness Analyzer with measurement by Heidelberg Retina Tomograph II
Itai N; Tanito M; Chihara E
Japanese Journal of Ophthalmology 2003; 47: 214-220 (IGR: 5-1)


8408 Structure and function evaluation (SAFE): II. Comparison of optic disc and visual field characteristics
Johnson CA; Sample PA; Zangwill LM; Vasile CG; Cioffi GA; Liebmann JR; Weinreb RN
American Journal of Ophthalmology 2003; 135: 148-154 (IGR: 5-1)


8401 Optic disc morphology in south India: the Vellore Eye Study
Jonas JB; Thomas R; George R; Berenshtein E; Muliyil J
British Journal of Ophthalmology 2003; 87: 189-196 (IGR: 5-1)


8405 Increase in dephosphorylation of the heavy neurofilament subunit in the monkey chronic glaucoma model
Kashiwagi K; Ou B; Nakamura S; Tanaka Y; Suzuki M; Tsukahara S
Investigative Ophthalmology and Visual Science 2003; 44: 154-159 (IGR: 5-1)


8772 Evaluation of nitric oxide synthesis in the optic nerve head in vivo using microdialysis and high-performance liquid chromatography and its interaction with endothelin-1
Okuno T; Oku H; Sugiyama T; Goto W; Ikeda T
Ophthalmic Research 2003; 35: 78-83 (IGR: 5-1)


8784 The construction of a model eye for investigation of laser-tissue interactions in scanning laser ophthalmoscopy
Rakebrandt F; North RV; Erichsen JT; Drasdo N; Fowler C; Cowey A; Morgan JE
Optometry and Vision Science 2003; 80: 252-258 (IGR: 5-1)


8804 Comparison of optic nerve head measurements obtained by optical coherence tomography and confocal scanning laser ophthalmoscopy
Schuman JS; Wollstein G; Farra T; Hertzmark E; Aydin A; Fujimoto JG; Paunescu LA
American Journal of Ophthalmology 2003; 135: 504-512 (IGR: 5-1)


8402 Reasons for rim area variability in scanning laser tomography
Tan JC; Garway-Heath DF; Fitzke FW; Hitchings RA
Investigative Ophthalmology and Visual Science 2003; 44: 1126-1131 (IGR: 5-1)


8403 Reference plane definition and reproducibility in optic nerve head images
Tan JC; Hitchings RA
Investigative Ophthalmology and Visual Science 2003; 44: 1132-1137 (IGR: 5-1)


8407 Increased disc size in glaucomatous eyes vs normal eyes in the Reykjavik eye study
Wang L; Damji KF; Munger R; Jonasson F; Arnarsson A; Sasaki H; Sasaki K
American Journal of Ophthalmology 2003; 135: 226-228 (IGR: 5-1)


8855 In Vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography
Yazdanfar S; Rollins AM; Izatt JA
Archives of Ophthalmology 2003; 121: 235-239 (IGR: 5-1)


8406 Reproducibility of evaluation of optic disc change for glaucoma with stereo optic disc photographs
Zeyen T; Miglior S; Pfeiffer N; Cunha-Vaz J; Adamsons I; European Glaucoma Prevention Study Group
Ophthalmology 2003; 110: 340-344 (IGR: 5-1)


8572 The normal optic nerve head on Heidelberg Retina Tomograph II
Agarwal HC; Gulati V; Sihota R
Indian Journal of Ophthalmology 2003; 51: 25-33 (IGR: 5-1)


8410 A comparison of cup-to-disc ratio evaluation in normal subjects using stereo biomicroscopy and digital imaging of the optic nerve head
Hrynchak P; Hutchings N; Jones D; Simpson T
Ophthalmic and Physiological Optics 2003; 23: 51-59 (IGR: 5-1)


8256 Morphometric change analysis of the optic nerve head in unilateral disc hemorrhage cases
Ahn JK; Park KH
American Journal of Ophthalmology 2002; 234: 920 (IGR: 4-3)


8175 Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc
Bowd C; Chan K; Zangwill LM; Goldbaum MH; Lee TW; Sejnowski TJ; Weinreb RN
Investigative Ophthalmology and Visual Science 2002; 43: 3444-3454 (IGR: 4-3)


8322 Research progress in glia cells of optic nerve
Bu S
Chinese Ophthalmic Research 2002; 20: 466-468 (IGR: 4-3)


8166 Effect of intraocular pressure on optic disc topography, electroretinography, and axonal loss in a chronic pressure-induced rat model of optic nerve damage
Chauhan BC; Pan J; Archibald ML; Levatte TL; Kelly MEM; Tremblay F
Investigative Ophthalmology and Visual Science 2002; 43: 2969-2976 (IGR: 4-3)


8168 Is the nasal optic disc sector important for morphometric glaucoma diagnosis?
Jonas JB; Budde WM
British Journal of Ophthalmology 2002; 86: 1232-1235 (IGR: 4-3)


8173 Inter-eye differences in chronic open-angle glaucoma patients with unilateral disc hemorrhages
Jonas JB; Martus P; Budde WM
Ophthalmology 2002; 109: 2078-2083 (IGR: 4-3)


8167 Anisometropia and degree of optic nerve damage in chronic open-angle glaucoma
Jonas JB; Martus P; Budde WM
American Journal of Ophthalmology 2002; 134: 547-551 (IGR: 4-3)


8165 Morphologic predictive factors for development of optic disc hemorrhages in glaucoma
Jonas JB; Martus P; Budde WM; Hayler J
Investigative Ophthalmology and Visual Science 2002; 43: 2956-2961 (IGR: 4-3)


8174 Optic nerve disc in unilateral myopia in children
Koraszewska-Matuszewska B; Samochowiec-Donocik E; Pieczara E; Filipek E
Klinika Oczna 2002; 104: 119-121 (IGR: 4-3)


8176 comparative analysis of changes in optic disc morphology after trabeculectomy, measured by scanning laser tomography
Krzyzanowska P; Jamrozy-Witkowska A; Koziorowska M
Klinika Oczna 2002; 104: 122-127 (IGR: 4-3)


8227 Comparison of clinical optic disc assessment with tests of early visual field loss
Landers JA; Goldberg I; Graham SL
Clinical and Experimental Ophthalmology 2002; 30: 338-342 (IGR: 4-3)


8169 Disc-to-macula distance to disc-diameter ratio for optic disc size estimation
Mok KH; Lee VW
Journal of Glaucoma 2002; 11: 392-395 (IGR: 4-3)


8171 Optic disc movement with variations in intraocular and cerebrospinal fluid pressure
Morgan WH; Chauhan BC; Yu DY; Cringle SJ; Alder VA; House PH
Investigative Ophthalmology and Visual Science 2002; 43: 3236-3242 (IGR: 4-3)


8172 Morphometry of the optic disc using a nerve fiver analyzer
Nakamura S; Kumagai K; Saito Y; Ishikawa H; Okita K; Furukawa M; Atsumi K
Japanese Journal of Clinical Ophthalmology 2002; 56: 1261-1265 (IGR: 4-3)


8170 Development of a novel reference plane for the Heidelberg retina tomograph with optical coherence tomography measurements
Park KH; Caprioli J
Journal of Glaucoma 2002; 11: 385-391 (IGR: 4-3)


8264 Reversal of optic disc cupping after trabeculotomy in primary congenital glaucoma
Wu SC; Huang S; Kuo CL; Lin KK; Lin SM
Canadian Journal of Ophthalmology 2002; 37: 337-341 (IGR: 4-3)


3387 Synucleins in glaucoma: implication of gamma-synuclein in glaucomatous alterations in the optic nerve
Surgucheva I; McMahan B; Ahmed F; Tomarev S; Wax MB; Surguchov A
Journal of Neuroscience Research 2002; 68: 97-106 (IGR: 4-2)


3403 Expression of bone morphogenetic proteins (BMP), BMP receptors, and BMP associated proteins in human trabecular meshwork and optic nerve head cells and tissues
Wordinger RJ; Agarwal R; Talati M; Fuller J; Lambert W; Clark AF
Molecular Vision 2002; 8: 241-250 (IGR: 4-2)


3418 Assessment of optic disc anatomy and nerve fiber layer thickness in ocular hypertensive subjects with normal short-wavelength automated perimetry
Mistlberger A; Liebmann JM; Greenfield DS; Hoh ST; Ishikawa H; Marmor M; Ritch R
Ophthalmology 2002; 109: 1362-1366 (IGR: 4-2)


3426 Validity of a new disk grading scale for estimating glaucomatous damage: correlation with visual field damage
Bayer A; Harasymowycz P; Henderer JD; Steinmann WG; Spaeth GL
American Journal of Ophthalmology 2002; 133: 758-763 (IGR: 4-2)


3427 Topographical analysis of corneal astigmatism in patients with tilted-disc syndrome
Bozkurt B; Irkec M; Gedik S; Orhan M; Erdener U
Cornea 2002; 21: 458-462 (IGR: 4-2)


3428 Optic disc cup slope and visual field indices in normal, ocular hypertensive and early glaucomatous eyes
Cullinane AB; Waldock A; Diamond JP; Sparrow JM
British Journal of Ophthalmology 2002; 86: 555-559 (IGR: 4-2)


3429 Anatomical correlations of intrinsic axon repair after partial optic nerve crush in rats
Hanke J
Annals of Anatomy 2002; 184: 113-123 (IGR: 4-2)


3430 Differential gene expression in astrocytes from human normal and glaucomatous optic nerve head analyzed by cDNA microarray
Hernandez MR; Agapova OA; Yang P; Salvador Silva M; Ricard CS; Aoi S
GLIA 2002; 38: 45-64 (IGR: 4-2)


3431 The Heidelberg Retina Tomograph versus clinical impression in the diagnosis of glaucoma
Kesen MR; Spaeth GL; Henderer JD; Pereira MLM; Smith AF; Steinmann WC
American Journal of Ophthalmology 2002; 133: 613-616 (IGR: 4-2)


3432 Image of optic nerve disc with laser scanning tomography and results of static perimetry in children with juvenile glaucoma
Koraszewska Matuszewska B; Filipek E; Samochowiec Donocik E; Pieczara E; Dudzinski A
Klinika Oczna 2002; 104: 37-40 (IGR: 4-2)


3433 Morphometry of the glaucomatous optic disc using an optical coherence tomography
Kumagami T; Saitoh A; Kinoshita A; Otani N; Kubota S; Amemiya T
Japanese Journal of Clinical Ophthalmology 2002; 56: 321-324 (IGR: 4-2)


3434 Intraobserver and interobserver reproducibility in the evaluation of optic disc stereometric parameters by Heidelberg Retina Tomograph
Miglior S; Albe E; Guareschi M; Rossetti L; Orzalesi N
Ophthalmology 2002; 109: 1072-1077 (IGR: 4-2)


3435 Cup-to-disc ratio asymmetry: diagnostic value in glaucoma
Polo Llorens V; Larrosa Poves JM; Pablo Julvez LE; Pinilla Lozano I; Marcuello Melendo B; Fernandez Larripa S; Honrubia Lopez FM
Archivos de la Sociedad Española de Oftalmologia 2002; 77: 17-22 (IGR: 4-2)


3436 The Autocad system for planimetric study of the optic disc in glaucoma: technique and reproducibility study
Sanchez Perez A; Honrubia Lopez FM; Larrosa Poves JM; Polo Llorens V; Melcon Sanchez Frieras B
Archivos de la Sociedad Española de Oftalmologia 2001; 76: 551-558 (IGR: 4-2)


3437 Variables affecting test-retest variability of Heidelberg Retina Tomograph II stereometric parameters
Sihota R; Gulati V; Agarwal HC; Saxena R; Sharma A; Pandey RM
Journal of Glaucoma 2002; 11: 321-328 (IGR: 4-2)


3438 Reproducibility of optic disc parameters acquisition in Heidelberg retina tomograph intraobserver and interobserver agreement in measurement of topometric data
Wang W; Chen X
Chinese Ophthalmic Research 2002; 20: 173-175 (IGR: 4-2)


3700 A morphological study of neuroretinal rim for different types of optic disc in normal eyes and early glaucoma
Xu L; Xia C; Yang H
Chinese Journal of Ophthalmology 2002; 38: 325-328 (IGR: 4-2)


3440 Expression of bFGF in the optic nerve of rat after injuries
Yuan H; Liu S; He X
Chinese Ophthalmic Research 2002; 20: 132-134 (IGR: 4-2)


6638 Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma
Greaney MJ; Hoffman DC; Garway Heath DF; Nakla M; Coleman AL; Caprioli J
Investigative Ophthalmology and Visual Science 2002; 43: 140-145 (IGR: 4-1)


6639 Optic nerve and retinal nerve fiber layer analyzers in glaucoma
Greenfield DS
Current Opinions in Ophthalmology 2002; 13: 68-76 (IGR: 4-1)


6646 Cup-to-disc ratio, intraocular pressure, and primary open-angle glaucoma in retinal venous occlusion
Beaumont PE; Kang HK
Ophthalmology 2002; 109: 282-286 (IGR: 4-1)


6647 Change detection in regional and volumetric disc parameters using longitudinal confocal scanning laser tomography
Burgoyne CF; Mercante DE; Thompson HW
Ophthalmology 2002; 109: 455-466 (IGR: 4-1)


6648 Optic nerve head behavior in Posner-Schlossman syndrome
Darchuk V; Sampaolesi J; Lopez Mato O; Nicoli C; Sampaolesi R
International Ophthalmology 2001; 23: 373-379 (IGR: 4-1)


6649 The Ocular Hypertension Treatment Study: reproducibility of cup/disc ratio measurements over time at an optic disc reading center
Feuer WJ; Parrish RK; Schiffman JC; Anderson DR; Budenz DL; Wells MC; Hess DJ; Kass MA; Gordon MO
American Journal of Ophthalmology 2002; 133: 19-28 (IGR: 4-1)


6650 Observer experience and Cup:Disc ratio assessment
Hanson S; Krishnan SK; Phillips J
Optometry and Vision Science 2001; 78: 701-705 (IGR: 4-1)


6651 Discriminant analysis formulas of optic nerve head parameters measured by confocal scanning laser tomography
Iester M; Mardin CY; Budde WM; Junemann AG; Hayler JK; Jonas JB
Journal of Glaucoma 2002; 11: 97-104 (IGR: 4-1)


6652 Comparing ophthalmoscopy, slide viewing, and semiautomated systems in optic disc morphometry
Ikram MK; Borger PH; Assink JJM; Jonas JB; Hofman A; de Jong PTVM
Ophthalmology 2002; 109: 486-493 (IGR: 4-1)


6653 Large optic nerve heads: megalopapilla or megalodiscs
Sampaolesi R; Sampaolesi JR
International Ophthalmology 2001; 23: 251-257 (IGR: 4-1)


6654 Agreement in assessing optic discs with a digital stereoscopic optic disc camera (Discam) and Heidelberg retina tomograph
Sung VCT; Bhan A; Vernon SA
British Journal of Ophthalmology 2002; 86: 196-202 (IGR: 4-1)


6655 Optic disc topography in pseudopapilledema: a comparison to pseudotumor cerebri
Trick GL; Bhatt SS; Dahl D; Skarf B
Journal of Neuro-Ophthalmology 2001; 21: 240-244 (IGR: 4-1)


18496 Optic disc surface compliance testing using confocal scanning laser tomography in the normal monkey eye
Bellezza AJ; Thompson HW; Burgoyne CF
Journal of Glaucoma 2001; 10: 369-382 (IGR: 3-3)


18495 Measuring structural changes in the optic nerve head and retinal nerve fibre layer
Anton A
European Journal of Ophthalmology 2001; 11: Suppl 2 S50-S56 (IGR: 3-3)


18494 Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography
Chauhan BC; McCormick TA; Nicolela MT; Leblanc RP
Annals of ophthalmology (Skokie, Ill.) 2001; 119: 1492-1499 (IGR: 3-3)


18493 Thinning of the papillomacular bundle in the glaucomatous eye and its influence of the reference plane of Heidelberg retinal tomography
Chen E; Gedda U; Landau I
Journal of Glaucoma 2001; 10: 386-389 (IGR: 3-3)


18492 The blood supply of the optic nerve head and the evaluation of it: myth and reality
Hayreh SS
Progress in Retinal and Eye Research 2001; 20: 563-593 (IGR: 3-3)


18491 Fast and robust optic disc detection using pyramidal decomposition and Hausdorff-based template matching
Lalonde M; Beaulieu M; Gagnon L
IEEE Transactions on Medical Imaging 2001; 20: 1193-1200 (IGR: 3-3)


18490 Neuroretinal rim width in normal, hypertensive and glaucomatous subjects
Larrosa JM; Polo V; Pinilla I; Gonzalvo F; Perez S; Honrubia FM
Archivos de la Sociedad Española de Oftalmologia 2001; 76: 673-678 (IGR: 3-3)


18489 Optic disc characteristics before the occurrence of disc hemorrhage in glaucoma patients
Law SK; Choe R; Caprioli J
American Journal of Ophthalmology 2001; 132: 411-413 (IGR: 3-3)


18488 Clinical ability of Heidelberg Retinal Tomograph examination to detect glaucomatous visual changes
Miglior S; Casula M; Guareschi M; Marchetti I; Iester M; Orzalesi N
Ophthalmology 2001; 108: 1621-1627 (IGR: 3-3)


18487 A clinical comparison study of two planimetry methods: conventional versus digital planimetry of optic disc photograph
Nguyen NX; Horn FK; Langenbucher A; Mardin CY
Klinische Monatsblätter für Augenheilkunde 2001; 218: 727-732 (IGR: 3-3)


18486 Agreement among clinicians in the recognition of patterns of optic disc damage in glaucoma
Nicolela MT; Drance SM; Broadway DC; Chauhan BC; McCormick TA; Leblanc RP
American Journal of Ophthalmology 2001; 132: 836-844 (IGR: 3-3)


18485 Nonlinear behavior of certain optic nerve head parameters and their determinants in normal subjects
Rudnicka AR; Frost C; Owen CG; Edgar DF
Ophthalmology 2001; 108: 2358-2368 (IGR: 3-3)


18484 Evaluation of optic disc in open-angle glaucoma with hemifield defect by Heidelberg retinal tomography
Wu L; Kunimatsu S; Suzuki Yet al.
Chinese Journal of Ophthalmology 2001; 37: 414 (IGR: 3-3)


18483 Correlation between blue chromatic macular sensitivity and optic disc change in early glaucoma patients
Yamazaki Y; Tanaka C; Hayamizu F; Mizuki K
Nippon Ganka Gakkai Zasshi 2001; 105: 776-780 (IGR: 3-3)


6305 In vitro evaluation of reactive astrocyte migration, a component of tissue remodeling in glaucomatous optic nerve head
Tezel G; Hernandez MR; Wax MB
GLIA 2001; 34: 178-189 (IGR: 3-2)


6309 Activated microglia in the human glaucomatous optic nerve head
Yuan L; Neufeld AH
Journal of Neuroscience Research 2001; 64: 523-532 (IGR: 3-2)


6341 Early detection of moderate glaucoma: redefining clinical care in 2001
Lee PP
Archives of Ophthalmology 2001; 119: 1069-1070 (IGR: 3-2)


6346 Discriminating between normal and glaucomatous eyes using the Heldelberg Retina Tomography, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph
Zangwill LM; Bowd C; Berry CC; Williams J; Blumenthal EZ; Sanchez-Galeana CA; Vasile C; Weinreb RN
Archives of Ophthalmology 2001; 199: 985-993 (IGR: 3-2)


6347 Retinal morphology and ERG response in the DBA/1NNia mouse model of angle-closure glaucoma
Bayer AU; Neuhardt T; May AC; Martus P; Maag KP; Brodie S; Lütjen-Drecoll E; Podos SM; Mittag TW
Investigative Ophthalmology and Visual Science 2001; 42: 1258-1265 (IGR: 3-2)


6348 Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function
Bowd C; Zangwill LM; Berry CC; Blumenthal EZ; Vasile C; Sanchez-Galeana CA; Bosworth CF; Sample PA; Weinreb RN
Investigative Ophthalmology and Visual Science 2001; 42: 1993-2003 (IGR: 3-2)


6349 Agreement between ophthalmologists and optometrists in optic disc assessment: training implications for glaucoma co-management
Harper R; Radi N; Reeves BC; Fenerty C; Spencer AF; Batterby M
Graefe's Archive for Clinical and Experimental Ophthalmology 2001; 239: 342-350 (IGR: 3-2)


6350 Interobserver variability of optic disc variables measured by confocal scanning laser tomography
Iester M; Mikelberg FS; Courtright P; Burk ROW; Caprioli J; Jonas JB; Weinreb RN; Zangwill LM
American Journal of Ophthalmology 2001; 132: 57-62 (IGR: 3-2)


6351 Three-dimensional optic nerve head algorithm for the detection of glaucomatous damage
Iester M; Rolando M; Macri A
Graefe's Archive for Clinical and Experimental Ophthalmology 2001; 239: 469-473 (IGR: 3-2)


6352 Optic disc changes following trabeculectomy: longitudinal and localisation of change
Kotecha A; Siriwardena D; Fitzke FW; Hitchings RA; Khaw PT
British Journal of Ophthalmology 2001; 85: 956-961 (IGR: 3-2)


6353 The effects of astigmatism and working distance on optic nerve head images using a Heidelberg retina tomograph scanning laser ophthalmoscope
Sheen NJL; Aldridge C; Drasdo N; North RV; Morgan JE
American Journal of Ophthalmology 2001; 131: 716-721 (IGR: 3-2)


6354 What optic disc parameters are most accurately assessed using the direct ophthalmoloscope?
Theodossiades J; Murdoch I
Eye 2001; 15: 283-287 (IGR: 3-2)


6355 Frequency doubling technology and confocal scanning ophthalmoscopic optic disc analysis in open-angle glaucoma with hemifield defects
Wu LL; Suzuki Y; Kunimatsu S; Araie M; Iwase A; Tomita G
Journal of Glaucoma 2001; 10: 256-260 (IGR: 3-2)


18963 Slope analysis of the optic disc in eyes with ocular hypertension and early normal tension glaucoma by confocal scanning laser ophthalmoscope
Dong J; Chihara E
British Journal of Ophthalmology 2001; 85: 56-62 (IGR: 3-1)


18964 Scanning laser ophthalmoscopy of the optic nerve head in exfoliation glaucoma and ocular hypertension with exfoliation syndrome
Harju M; Vesti E
British Journal of Ophthalmology 2001; 85: 297-303 (IGR: 3-1)


18965 The relationship between structural and functional alterations in glaucoma: a review
Johnson CA; Cioffi GA; Liebmann JR; Sample PA; Zangwill LM; Weinreb RN
Seminars in Ophthalmology 2000; 15: 221-233 (IGR: 3-1)


18966 The diagnostic value of optic nerve imaging in early glaucoma
Mardin CY; Jünemann AGM
Current Opinions in Ophthalmology 2001; 12: 100-104 (IGR: 3-1)


18967 How large is the optic disc? Systematic errors in fundus cameras and topographers
Meyer T; Howland HC
Ophthalmic and Physiological Optics 2001; 21: 139-150 (IGR: 3-1)


18968 Correlation between nerve damage and optic disc features in glaucoma
Nasciuti F; Sanna G; Traverso CE; Iester M; Zingirian M
Annali di Ottalmologia e Clinica Oculistica 2000; 126: 149-153 (IGR: 3-1)


18969 The influence of contour line size and location on the reproducibility of topographic measurement with the Heidelberg Retina Tomograph
Roff EJ; Hosking SL; Barnes DA
Ophthalmic and Physiological Optics 2001; 21: 173-181 (IGR: 3-1)


18970 Clinical optic disc assessment in early glaucoma
Vernon SA
CME Journal Ophthalmology 2000; 4: 70-74 (IGR: 3-1)


15735 The optic nerve head as a biomechanical structure: initial finite element modeling
Bellezza AJ; Hart RT; Burgoyne CF
Investigative Ophthalmology and Visual Science 2000; 41: 2991-3000 (IGR: 2-3)


15736 Imaging of the optic nerve head and nerve fiber layer in glaucoma
Schuman JS; Kim J
Ophthalmology Clinics of North America 2000; 13: 383-406 (IGR: 2-3)


15965 Criteria for progression of glaucoma in clinical management and in outcomestudies.
Anderson DR; Chauhan B; Johnson C; Katz J; Patella VM; Drance SM
American Journal of Ophthalmology 2000; 130: 827-829 (IGR: 2-3)


15697 Detection of changes of the optic disc in glaucomatous eyes: clinical examination and image analysis with the Topcon Imagenet system
Azuara-Blanco A; Katz LJ; Spaeth GL; Nicholl J; Lanzl IM
Acta Ophthalmologica Scandinavica 2000; 78: 647-650 (IGR: 2-3)


15709 Optic disc topography after medical treatment to reduce intraocular pressure
Bowd C; Weinreb RN; Lee B; Emdadi A; Zangwill LM
American Journal of Ophthalmology 2000; 130: 280-286 (IGR: 2-3)


16007 Influence of optic disc size on neuroretinal rim shape in healthy eyes
Budde WM; Jonas JB; Martus P; Grundler AE
Journal of Glaucoma 2000; 9: 357-62 (IGR: 2-3)


15714 Fred Hollows lecture: Digital screening for eye disease
Constable IJ; Yogesan K; Eikelboom RH; Barry CJ; Cuypers M
Clinical and Experimental Ophthalmology 2000; 28: 129-132 (IGR: 2-3)


15665 Optic nerve oxygen tension: effects of intraocular pressure and dorzolamide
Cour M; Kiilgaard JF; Eysteinsson T; Wiencke AK; Bang K; Dollerup J; Jensen PK; Stefansson E
British Journal of Ophthalmology 2000; 84: 1045-1049 (IGR: 2-3)


15724 Neuroretinal rim measurement error using PC-based stereo software
Eikelboom RH; Barry CJ; Jitskaia L; Voon ASP; Yogesan K
Clinical and Experimental Ophthalmology 2000; 28: 178-180 (IGR: 2-3)


15721 Short-wavelength automated perimetry and standard perimetry in the detection of progressive optic disc cupping
Girkin CA; Emdadi A; Sample PA; Blumenthal EZ; Lee AC; Zangwill LM; Weinreb RN
Archives of Ophthalmology 2000; 118: 1231-1236 (IGR: 2-3)


15723 The sensitivity and specificity of direct ophthalmoscopic optic disc assessment in screening for glaucoma: a multivariate analysis
Harper R; Reeves B
Graefe's Archive for Clinical and Experimental Ophthalmology 2000; 238: 949-955 (IGR: 2-3)


15731 Ophthalmoscopic appearance of the normal optic nerve head in rhesus monkeys
Jonas JB; Hayreh SS
Investigative Ophthalmology and Visual Science 2000; 41: 2978-2983 (IGR: 2-3)


15708 Use of sequential Heidelberg retina tomograph images to identify changes at the optic disc in ocular hypertensive patients at risk of developing glaucoma
Kamal DS; Garway-Heath DF; Hitchings RA; Fitzke FW
British Journal of Ophthalmology 2000; 84: 993-998 (IGR: 2-3)


15989 A study on the correlation between the structural parameter of optic disc and visual field in primary open-angle glaucoma
Pan Y; Li M
Chinese Journal of Ophthalmology 2000; 36: 275 (IGR: 2-3)


15713 Optic nerve evaluation among optometrists
Spalding JM; Litwak AB; Shufelt CL
Optometry and Vision Science 2000; 77: 446-452 (IGR: 2-3)


15710 Ultrasonographic evaluation of optic disc swelling: comparison with CSLO in idiopathic intracranial hypertension
Tamburrelli C; Salgarello T; Caputo CG; Giudiceandrea A; Scullica L
Investigative Ophthalmology and Visual Science 2000; 41: 2960-2966 (IGR: 2-3)


15712 Identifying early glaucomatous changes: comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy
Wollstein G; Garway-Heath DF; Fontana L; Hitchings RA
Ophthalmology 2000; 107: 2272-2277 (IGR: 2-3)


15707 Glaucomatous optic disc changes in the contralateral eye of unilateral normal pressure glaucoma patients
Wollstein G; Garway-Heath DF; Poinoosawmy DP; Hitchings RA
Ophthalmology 2000; 107: 2267-2271 (IGR: 2-3)


5958 Expression of nitric oxide synthase-2 (NOS-2) in reactive astrocytes of the human glaucomatous optic nerve head
Liu B; Neufeld AH
GLIA 2000; 30: 178-186 (IGR: 2-2)


5966 Matrix metalloproteinases and tumor necrosis factor alpha in glaucomatous optic nerve head
Yan X; Tezel G; Wax MB; Edward DP
Archives of Ophthalmology 2000; 118: 666-673 (IGR: 2-2)


6009 Relationship between structural abnormalities and short-wavelength perimetric defects in eyes at risk of glaucoma
Ugurlu S; Hoffman D; Garway-Heath DF; Caprioli J
American Journal of Ophthalmology 2000; 129: 592-598 (IGR: 2-2)


6013 Ability of a confocal scanning laser ophthalmoscope (TopSS) to detect early glaucomatous visual field defect
Ahn B-S; Kee C
British Journal of Ophthalmology 2000; 84: 852-855 (IGR: 2-2)


6014 An appraisal of the disc-macula distance to disc diameter ratio in the assessment of optic disc size
Barr DB; Weir CR; Purdie AT
Ophthalmic and Physiological Optics 1999; 19: 365-375 (IGR: 2-2)


6015 Computerized stereochronoscopy and alternation flicker to detect optic nerve head contour change
Berger JW; Patel TR; Shin DS; Piltz JR; Stone RA
Ophthalmology 2000; 107: 1316-1320 (IGR: 2-2)


6016 Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis
Clarke G; Goldberg AF; Vidgen D; Collins L; Ploder L; Schwarz L; Molday LL; Rossant J; Szel A; Molday RS
Nature Genetics 2000; 25: 67-73 (IGR: 2-2)


6017 Determinants of optic disc characteristics (letter)
Garway-Heath DF
Ophthalmology 2000; 107: 1217-1219 (IGR: 2-2)


6018 Observer variability in optic disc assessment: implications for glaucoma shared care
Harper R; Reeves B; Smith G
Ophthalmic and Physiological Optics 2000; 20: 265-273 (IGR: 2-2)


6019 Discriminant analysis models for early detection of glaucomatous optic disc changes
Iester M; Jonas JB; Mardin CY; Budde WM
British Journal of Ophthalmology 2000; 84: 464-468 (IGR: 2-2)


6020 Clinical quality assessment using computer monitor photoimages of optic nerve head cupping
Jamara RJ; Denial A; Valentini D; Thorn F
Optometry and Vision Science 2000; 77: 433-436 (IGR: 2-2)


6021 Ranking of optic disc variables for detection of glaucomatous optic nerve damage
Jonas JB; Bergua A; Schmitz-Valckenberg P; Papastathopoulos KI; Budde WM
Investigative Ophthalmology and Visual Science 2000; 41: 1764-1773 (IGR: 2-2)


6022 Methods in optic nerve disk digital planimetry
Kubena T; Cernosek P; Mayer J
?eska a Slovenska Oftalmologie 2000; 56: 170-175 (IGR: 2-2)


6023 Morphometric changes in optic discs with morphological progression of the glaucomatous optic atrophy measured with laser scanning tomography
Mardin CY; Horn F; Budde WM; Jonas JB
Klinische Monatsblätter für Augenheilkunde 2000; 217: 82-87 (IGR: 2-2)


6024 Measurement of a novel optic disc topographic parameter, 'spikiness', in glaucoma
Morgan-Davies J; King AJ; Aspinall P; O'brien CJ
Graefe's Archive for Clinical and Experimental Ophthalmology 2000; 238: 669-676 (IGR: 2-2)


6025 Effect of aging on optic nerve appearance: a longitudinal study
Moya FJ; Brigatti L; Caprioli J
British Journal of Ophthalmology 1999; 83: 567-572 (IGR: 2-2)


6026 Synthesis of elastic microfibrillar components fibrillin-1 and fibrillin-2 by human optic nerve head astrocytes in situ and in vitro
Pena JD; Mello PA; Hernandez MR
Experimental Eye Research 2000; 70: 589-601 (IGR: 2-2)


6027 Optic disc size in ocular hypertension
Sekhar GC; Nagarajan R; Naduvilath TJ; Dandona L; Rao KM; Rao VD
Indian Journal of Ophthalmology 1999; 47: 229-231 (IGR: 2-2)


6028 Automated analysis of normal and glaucomatous optic nerve head topography images
Swindale NV; Stjepanovic G; Chin A; Mikelberg FS
Investigative Ophthalmology and Visual Science 2000; 41: 1730-1742 (IGR: 2-2)


6029 Evaluation of optic disc changes in severe myopia
Wang TH; Lin SY; Shih YF; Huang JK; Lin LL; Hung PT
Journal of the Formosan Medical Association 2000; 99: 559-563 (IGR: 2-2)


5548 Correlation between neuroretinal rim and optic disc areas in normal melanoderm and glaucoma patients
Balo KP; Mihluedo H; Djagnikpo PA; Akpandja MS; Béchetoille A
Journal Français d'Ophtalmologie 2000; 23:37-41 (IGR: 2-1)


5570 Differential expression of neural cell adhesion molecule isoforms in normal and glaucomatous human optic nerve heads
Ricard CS; Pena JD; Hernandez MR
Molecular Brain Research 1999; 74:69-82 (IGR: 2-1)


5585 The similarity of protein expression in trabecular meshwork and lamina cribrosa: implications for glaucoma
Steeley HT Jr; English-Wright SL; Clark AF
Experimental Eye Research 2000; 70:17-30 (IGR: 2-1)


5596 Interocular differences in optic disc topographic parameters in normal subjects
Gherghel D; Orgül S; Prünte C; Gugleta K; Lübeck P; Gekkieva M; Flammer J
Current Eye Research 2000; 20: 276-282 (IGR: 2-1)


5606 Age related changes in the non-collagenous components of the extracellular matrix of the human lamina cribrosa
Albon J; Karwatowski WS; Easty DL; Sims TJ; Duance VC
British Journal of Ophthalmology 2000; 84: 311-317 (IGR: 2-1)


5607 Age related compliance of the lamina cribrosa in human eyes
Albon J; Purslow PP; Karwatowski WS; Easty DL
British Journal of Ophthalmology 2000; 84: 318-323 (IGR: 2-1)


5608 Comparison of optic disc image assessment methods when examining serial photographs for glaucomatous progression
Barry CJ; Eikelboom R; Kanagasingam Y; Jitskaia L; Morgan W; House P; Cuypers M
British Journal of Ophthalmology 2000; 84:28-30 (IGR: 2-1)


5609 The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography
Bowd C; Weinreb RN; Williams JM; Zangwill LM
Archives of Ophthalmology 2000; 118:22-26 (IGR: 2-1)


5610 Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography
Chauhan BC; Blanchard JW; Hamilton DC; Leblanc RP
Investigative Ophthalmology and Visual Science 2000; 41:775-782 (IGR: 2-1)


5611 Structural-functional relationships of the optic nerve in glaucoma (editorial)
Cioffi GA; Liebmann JM; Johnson CA; Weinreb RN
Journal of Glaucoma 2000; 9: 3-4 (IGR: 2-1)


5612 Comparison of ranked segment analysis (RSA) and cup to disc ratio in computer-assisted optic disc evaluation
Gundersen KG; Åsman P
Acta Ophthalmologica Scandinavica 2000; 78: 137-141 (IGR: 2-1)


5613 Comparability of three-dimensional optic disc imaging with different techniques: a study with confocal scanning laser tomography and raster tomography
Gundersen KG; Heijl A; Bengtsson B
Acta Ophthalmologica Scandinavica 2000; 78: 9-13 (IGR: 2-1)


5614 Scanning laser polarimetry measurements after laser-assisted in situ keratomileusis
Gürses-Özden R; Pons ME; Barbiere C; Ishikawa H; Buxton DF; Liebmann JM; Ritch R
American Journal of Ophthalmology 2000; 129; 461-464 (IGR: 2-1)


5615 Optic nerve head appearance in juvenile-onset chronic high-pressure glaucoma and normal-pressure glaucoma
Jonas JB; Budde WM
Ophthalmology 2000; 107: 704-711 (IGR: 2-1)


5616 The influence of age, gender, refractive error, and optic disc size on the optic disc configuration in Japanese normal eyes
Kashiwagi K; Tamura M; Abe K; Kogure S; Tsukahara S
Acta Ophthalmologica Scandinavica 2000; 78: 200-203 (IGR: 2-1)


5617 The optic nerve disc in myopic children with elevated intraocular pressure
Kubena T; Kubena K
?eska a Slovenska Oftalmologie 1999; 55: 312-315 (IGR: 2-1)


5618 Concordance between results of optic disc tomography and high-pass resolution perimetry in glaucoma
Martin LM; Lindblom B; Gedda UK
Journal of Glaucoma 2000; 9:28-33 (IGR: 2-1)


5619 Interobserver differences in assessing glaucomatous optic disc using a Heidelberg Retina Tomograph
Okada M; Tsukamoto H; Okada K; Nii H; Takamatsu M; Mishima HK
Japanese Journal of Clinical Ophthalmology 2000; 54: 313-316 (IGR: 2-1)


5620 Confocal laser scanning ophthalmoscope and spherical harmonics used as a possible aid to detect glaucoma
Rawlinson AA; Cucevic V; Nugent KA; Brooks AM; Klein AG
Journal of the Optical Society of America. A, Optics, Image Science, and Vision 2000; 17:477-483 (IGR: 2-1)


5621 A new digital optic disc stereo camera: intraobserver and interobserver repeatability of optic disc measurements
Shuttleworth GN; Khong CH; Diamond JP
British Journal of Ophthalmology 2000; 84: 403-407 (IGR: 2-1)


5622 Optical coherence tomography and localized defects of the retinal nerve fiber layer
Teesalu P; Tuulonen A; Airaksinen PJ
Acta Ophthalmologica Scandinavica 2000; 78: 49-52 (IGR: 2-1)


5623 The optic nerve head in normal-tension glaucoma
Tomita G
Current Opinions in Ophthalmology 2000; 11: 116-120 (IGR: 2-1)


15316 Optic disk size in open-angle glaucoma: the Blue Mountains Eye Study
Healy PR; Mitchell P
American Journal of Ophthalmology 1999; 128: 515-517 (IGR: 1-3)


15363 Heidelberg retina tomography and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes
Mistlberger A; Liebmann JM; Greenfield DS; Pons ME; Hoh ST; Ishikawa H; Ritch R
Ophthalmology 1999; 106: 2027-2032 (IGR: 1-3)


15367 Morphology of the optic disc in glaucoma. I. Primary open-angle glaucomas
Budde WM; Jonas JB
Klinische Monatsblätter für Augenheilkunde 1999; 215: 211-220 (IGR: 1-3)


15368 Morphology of the optic disc in glaucoma. II. Secondary chronic open-angle glaucomas
Budde WM; Jonas JB
Klinische Monatsblätter für Augenheilkunde 1999; 215: 221-227 (IGR: 1-3)


15369 Advances in optic nerve head analysis in glaucoma
Fechtner RD; Lama PJ
Seminars in Ophthalmology 1999; 14: 180-188 (IGR: 1-3)


15370 Optic disc size, an important consideration in the glaucoma evaluation
Hancox MD
Clinical Eye and Vision Care 1999; 11: 59-62 (IGR: 1-3)


15371 Diagnosis and pathogenesis of glaucomatous optic neuropathy: morphological aspects
Jonas JB; Budde WM
Progress in Retinal and Eye Research 2000; 19: 1-40 (IGR: 1-3)


15372 Morphometric features of laminar pores in lamina cribrosa observed by scanning laser ophthalmoscopy
Maeda H; Nakamura M; Yamamoto M
Japanese Journal of Ophthalmology 1999; 43: 415-421 (IGR: 1-3)


15373 Scanning laser tomography to evaluate optic discs of normal eyes
Nakamura H; Maeda T; Suzuki Y; Inoue Y
Japanese Journal of Ophthalmology 1999; 43: 410-414 (IGR: 1-3)


15374 The relationship between optic disc area and open-angle glaucoma: the Baltimore eye survey
Quigley HA; Varma R; Tielsch JM; Katz J; Sommer A; Gilbert DL
Journal of Glaucoma 1999; 8: 347-352 (IGR: 1-3)


15375 Effects of elevated intraocular pressure on haemoglobin oxygenation in the rabbit optic nerve head: a microendoscopical study
Selbach MJ; Wonka F; Höper J; Funk RHW
Experimental Eye Research 1999; 69: 301-309 (IGR: 1-3)


15376 Influence of myopic disc shape on the diagnostic precision of the Heidelberg Retina Tomograph
Yamazaki Y; Yoshikawa K; Kunimatsu S; Koseki N; Suzuki Y; Matsumoto S; Araie M
Japanese Journal of Ophthalmology 1999; 43: 392-397 (IGR: 1-3)


15377 Evaluation of a portable fundus camera for use in the teleophthalmologic diagnosis of glaucoma
Yogesan K; Constable IJ; Barry CJ; Eikelboom RH; Morgan W; Tay-Kearney ML; Jitskaia L
Journal of Glaucoma 1999; 8: 297-301 (IGR: 1-3)


15378 Optic disc topographic measurements after pupil dilation
Zangwill LM; Berry CC; Weinreb RN
Ophthalmology 1999; 106: 1751-1755 (IGR: 1-3)


15405 Spatial relationship of motion automated perimetry and optic disc topography in patients with glaucomatous optic neuropathy
Bosworth CF; Sample PA; Williams JM; Zangwill LM; Lee B; Weinreb RN
Journal of Glaucoma 1999; 8: 281-289 (IGR: 1-3)


5200 Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma
Neufeld AH
Archives of Ophthalmology 1999; 117: 1050-1056 (IGR: 1-2)


5201 Determinants of optic disc characteristics in a general population: The Rotterdam Study
Ramrattan RS; Wolfs RC; Jonas JB; Hofman A; De Jong PT
Ophthalmology 1999; 106: 1588-1596 (IGR: 1-2)


5212 Optic disc topographic changes post-trabeculectomy visualized by anaglyphs
Barry CJ; Kanagasingam Y; Morgan W
Australian and New Zealand Journal of Ophthalmology 1999; 27: 79-83 (IGR: 1-2)


5213 Optic disk appearances in primary open-angle glaucoma
Broadway DC; Nicolela MT; Drance SM
Survey of Ophthalmology 1999; 43 (S1): S223-S243 (IGR: 1-2)


5214 A biomathematical model for pressure-dependent lamina cribrosa behavior
Dongqi H; Zeqin R
Journal of Biomechanics 1999; 32: 579-584 (IGR: 1-2)


5215 STIR sequences in magnetic resonance imaging for confirmation of optic nerve atrophy
Fischel JD; Garrett J; Bell J
Annals of Ophthalmology - Glaucoma 1999; 31: 153-155 (IGR: 1-2)


5216 (Changes in transforming growth factor-beta and platelet-derived growth factor in the optic nerve head in monkey experimental glaucoma)
Fukuchi T; Ueda J; Hanyu T; Abe H; Sawaguchi S
Nippon Ganka Gakkai Zasshi 1999; 103: 93-200 (IGR: 1-2)


5217 Diagnostic value of magnetic resonance imaging and planimetric measurement of optic disc size in confirming optic nerve hypoplasia.
Hellstroem A; Wiklund LM; Svensson E
Journal of AAPOS 1999; 3: 104-108 (IGR: 1-2)


5218 Optic cup deepening spatially correlated with optic nerve damage in focal normal-pressure glaucoma
Jonas JB; Budde WM
Journal of Glaucoma 1999; 8: 227-231 (IGR: 1-2)


5219 Optic disk morphology in experimental central retinal artery occlusion in rhesus monkeys.
Jonas JB; Hayreh SS
American Journal of Ophthalmology 1999; 127: 523-530 (IGR: 1-2)


5220 Change in optic disc topography associated with diurnal variation in intraocular pressure
Lee BL; Zangwill L; Weinreb RN
Journal of Glaucoma 1999; 8: 221-223 (IGR: 1-2)


5221 Reversal of optic disc cupping after glaucoma surgery analyzed with a scanning laser tomograph.
Lesk MR; Spaeth GL; Azuara-Blanco A; Araujo SV; Katz LJ; Terebuh AK; Wilson RP; Moster MR; Schmidt CM
Ophthalmology 1999; 106: 1013-1018 (IGR: 1-2)


5222 Microvasculature of the rat optic nerve head.
Morrison JC; Johnson EC; Cepurna WO; Funk RH
Investigative Ophthalmology and Visual Science 1999; 40: 1702-1709 (IGR: 1-2)


5224 Optic disc surface smoothness and visual field indices.
Rolando M; Macri A; Iester M
Graefe's Archive for Clinical and Experimental Ophthalmology 1999; 237: 372-376 (IGR: 1-2)


5225 Longitudinal changes in optic disc topography of adult patients after trabeculectomy.
Topouzis F; Peng F; Kotas-Neumann R; Garcia R; Sanguinet J; Yu F; Coleman AL
Ophthalmology 1999; 106: 1147-1151 (IGR: 1-2)


5226 Cup-to-disc ratio: ophthalmoscopy versus automated measurement in a general population: The Rotterdam Study
Wolfs RC; Ramrattan RS; Hofman A; De Jong PT
Ophthalmology 1999; 106: 1597-1601 (IGR: 1-2)


5227 (Influence of myopic disc shape in a classification program of the Heidelberg retina tomograph)
Yamazaki Y; Yoshikawa K; Kunimatsu S; Koseki N; Suzuki Y; Matsumoto S; Araie M
Nippon Ganka Gakkai Zasshi 1999; 103: 392-398 (IGR: 1-2)


5228 Changes in optic disc parameters after intraocular pressure reduction in adult glaucoma patients
Yoshikawa K; Inoue Y
Japanese Journal of Ophthalmology 1999; 43: 225-231 (IGR: 1-2)



6.6.2 Automated (4525 abstracts found)


94543 Structure-Function Mapping Using a Three-Dimensional Neuroretinal Rim Parameter Derived From Spectral Domain Optical Coherence Tomography Volume Scans
Celebi ARC
Translational vision science & technology 2021; 10: 28 (IGR: 22-2)


94931 False Positive Responses in Standard Automated Perimetry
Anders H
American Journal of Ophthalmology 2022; 233: 180-188 (IGR: 22-2)


94735 Standard reliability and gaze tracking metrics in glaucoma and glaucoma suspects
Camp AS
American Journal of Ophthalmology 2022; 234: 91-98 (IGR: 22-2)


94439 Central Visual Field Sensitivity With and Without Background Light Given to the Nontested Fellow Eye in Glaucoma Patients
Mine I
Journal of Glaucoma 2021; 30: 537-544 (IGR: 22-2)


94791 Interpreting Deep Learning Studies in Glaucoma: Unresolved Challenges
Lee EB
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2021; 10: 261-267 (IGR: 22-2)


94496 Association of Intereye Visual-Sensitivity Asymmetry With Progression of Primary Open-Angle Glaucoma
Bak E
Investigative Ophthalmology and Visual Science 2021; 62: 4 (IGR: 22-2)


94705 Vertical Position of the Central Retinal Vessel in the Optic Disc and Its Association With the Site of Visual Field Defects in Glaucoma
Sawada Y
American Journal of Ophthalmology 2021; 229: 253-265 (IGR: 22-2)


94765 Visual Acuity in Glaucomatous Eyes Correlates Better with Visual Field Parameters than with OCT Parameters
Suzuki Y
Current Eye Research 2021; 46: 1717-1723 (IGR: 22-2)


94883 Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma
Gonzalez-Hernandez M
Journal of clinical medicine 2021; 10: (IGR: 22-2)


94509 Prediction of 10-2 Visual Field Loss Using Optical Coherence Tomography and 24-2 Visual Field Data
Sullivan-Mee M
Journal of Glaucoma 2021; 30: e292-e299 (IGR: 22-2)


94896 Viability of Performing Multiple 24-2 Visual Field Examinations at the Same Clinical Visit: The Frontloading Fields Study (FFS)
Phu J
American Journal of Ophthalmology 2021; 230: 48-59 (IGR: 22-2)


94802 Combined structure-function analysis in glaucoma screening
Karvonen E
British Journal of Ophthalmology 2022; 106: 1689-1695 (IGR: 22-2)


94532 Visual Field Endpoints Based on Subgroups of Points May Be Useful in Glaucoma Clinical Trials: A Study With the Humphrey Field Analyzer and Compass Perimeter
Barkana Y
Journal of Glaucoma 2021; 30: 661-665 (IGR: 22-2)


94332 Semi-AI and Full-AI digitizer: The ways to digitalize visual field big data
Kim TM
Computer Methods and Programs in Biomedicine 2021; 207: 106168 (IGR: 22-2)


94638 Does hemispheric vascular regulation differ significantly in glaucoma patients with altitudinal visual field asymmetry? A single-center, prospective study
Kuerten D
International Ophthalmology 2021; 41: 3109-3119 (IGR: 22-2)


94496 Association of Intereye Visual-Sensitivity Asymmetry With Progression of Primary Open-Angle Glaucoma
Bak E
Investigative Ophthalmology and Visual Science 2021; 62: 4 (IGR: 22-2)


94314 Agonistic autoantibodies against ß2-adrenergic receptor influence retinal microcirculation in glaucoma suspects and patients
Hohberger B
PLoS ONE 2021; 16: e0249202 (IGR: 22-2)


94801 Agreement between Compass Fundus Perimeter New Grid and 10-2 Testing Protocols for Detecting Central Visual Field Defects
El-Nimri NW
Ophthalmology. Glaucoma 2022; 5: 179-187 (IGR: 22-2)


94352 Cystic maculopathy of the inner nuclear layer in glaucoma patients
El Maftouhi A
Journal Français d'Ophtalmologie 2021; 44: 786-791 (IGR: 22-2)


94853 Steps to Measurement Floor of an Optical Microangiography Device in Glaucoma
Phillips MJ
American Journal of Ophthalmology 2021; 231: 58-69 (IGR: 22-2)


94496 Association of Intereye Visual-Sensitivity Asymmetry With Progression of Primary Open-Angle Glaucoma
Bak E
Investigative Ophthalmology and Visual Science 2021; 62: 4 (IGR: 22-2)


94710 Intraocular asymmetry of visual field defects in primary angle-closure glaucoma, high-tension glaucoma, and normal-tension glaucoma in a Chinese population
Jiang J
Scientific reports 2021; 11: 11674 (IGR: 22-2)


94841 Estimated Utility of the Short-term Assessment of Glaucoma Progression Model in Clinical Practice
Proudfoot JA
JAMA ophthalmology 2021; 139: 839-846 (IGR: 22-2)


94269 Agreement of Optic Nerve Head Evaluation of Primary Open-Angle Glaucoma Between General Ophthalmologists and Glaucoma Specialists
Zhu W
Risk management and healthcare policy 2021; 14: 1815-1822 (IGR: 22-2)


94801 Agreement between Compass Fundus Perimeter New Grid and 10-2 Testing Protocols for Detecting Central Visual Field Defects
El-Nimri NW
Ophthalmology. Glaucoma 2022; 5: 179-187 (IGR: 22-2)


94438 Agreement Between 10-2 and 24-2C Visual Field Test Protocols for Detecting Glaucomatous Central Visual Field Defects
Chakravarti T
Journal of Glaucoma 2021; 30: e285-e291 (IGR: 22-2)


94646 Visual field-based grading of disease severity in newly diagnosed primary open angle glaucoma patients presenting to a tertiary eye care centre in India
Rajendrababu S
International Ophthalmology 2021; 41: 3135-3143 (IGR: 22-2)


94496 Association of Intereye Visual-Sensitivity Asymmetry With Progression of Primary Open-Angle Glaucoma
Bak E
Investigative Ophthalmology and Visual Science 2021; 62: 4 (IGR: 22-2)


94355 Relationship between peripapillary vessel density and visual function based on Garway-Heath sectorization in open-angle glaucoma
Kwon JM
Indian Journal of Ophthalmology 2021; 69: 1825-1832 (IGR: 22-2)


94932 Association Between Visual Field Damage and Gait Dysfunction in Patients With Glaucoma
E JY
JAMA ophthalmology 2021; 139: 1053-1060 (IGR: 22-2)


94716 Agreement between the newly developed OCT glaucoma staging system and the standardized visual field glaucoma staging system 2
Mossa EAM
European Journal of Ophthalmology 2021; 0: 11206721211014378 (IGR: 22-2)


94261 Comparison of Superior and Inferior Visual Field Asymmetry Between Normal-tension and High-tension Glaucoma
Park IK
Journal of Glaucoma 2021; 30: 648-655 (IGR: 22-2)


94765 Visual Acuity in Glaucomatous Eyes Correlates Better with Visual Field Parameters than with OCT Parameters
Kiyosawa M
Current Eye Research 2021; 46: 1717-1723 (IGR: 22-2)


94269 Agreement of Optic Nerve Head Evaluation of Primary Open-Angle Glaucoma Between General Ophthalmologists and Glaucoma Specialists
Kong X
Risk management and healthcare policy 2021; 14: 1815-1822 (IGR: 22-2)


94638 Does hemispheric vascular regulation differ significantly in glaucoma patients with altitudinal visual field asymmetry? A single-center, prospective study
Kotliar K
International Ophthalmology 2021; 41: 3109-3119 (IGR: 22-2)


94543 Structure-Function Mapping Using a Three-Dimensional Neuroretinal Rim Parameter Derived From Spectral Domain Optical Coherence Tomography Volume Scans
Park EA
Translational vision science & technology 2021; 10: 28 (IGR: 22-2)


94496 Association of Intereye Visual-Sensitivity Asymmetry With Progression of Primary Open-Angle Glaucoma
Kim YK
Investigative Ophthalmology and Visual Science 2021; 62: 4 (IGR: 22-2)


94801 Agreement between Compass Fundus Perimeter New Grid and 10-2 Testing Protocols for Detecting Central Visual Field Defects
Penteado RC
Ophthalmology. Glaucoma 2022; 5: 179-187 (IGR: 22-2)


94883 Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma
Gonzalez-Hernandez D
Journal of clinical medicine 2021; 10: (IGR: 22-2)


94509 Prediction of 10-2 Visual Field Loss Using Optical Coherence Tomography and 24-2 Visual Field Data
Hedayat M
Journal of Glaucoma 2021; 30: e292-e299 (IGR: 22-2)


94332 Semi-AI and Full-AI digitizer: The ways to digitalize visual field big data
Choi W
Computer Methods and Programs in Biomedicine 2021; 207: 106168 (IGR: 22-2)


94841 Estimated Utility of the Short-term Assessment of Glaucoma Progression Model in Clinical Practice
Zangwill LM
JAMA ophthalmology 2021; 139: 839-846 (IGR: 22-2)


94710 Intraocular asymmetry of visual field defects in primary angle-closure glaucoma, high-tension glaucoma, and normal-tension glaucoma in a Chinese population
Ye C
Scientific reports 2021; 11: 11674 (IGR: 22-2)


94716 Agreement between the newly developed OCT glaucoma staging system and the standardized visual field glaucoma staging system 2
Khallaf H
European Journal of Ophthalmology 2021; 0: 11206721211014378 (IGR: 22-2)


94438 Agreement Between 10-2 and 24-2C Visual Field Test Protocols for Detecting Glaucomatous Central Visual Field Defects
Moghadam M
Journal of Glaucoma 2021; 30: e285-e291 (IGR: 22-2)


94261 Comparison of Superior and Inferior Visual Field Asymmetry Between Normal-tension and High-tension Glaucoma
Kim KW
Journal of Glaucoma 2021; 30: 648-655 (IGR: 22-2)


94355 Relationship between peripapillary vessel density and visual function based on Garway-Heath sectorization in open-angle glaucoma
Park K
Indian Journal of Ophthalmology 2021; 69: 1825-1832 (IGR: 22-2)


94791 Interpreting Deep Learning Studies in Glaucoma: Unresolved Challenges
Wang SY
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2021; 10: 261-267 (IGR: 22-2)


94853 Steps to Measurement Floor of an Optical Microangiography Device in Glaucoma
Dinh-Dang D
American Journal of Ophthalmology 2021; 231: 58-69 (IGR: 22-2)


94705 Vertical Position of the Central Retinal Vessel in the Optic Disc and Its Association With the Site of Visual Field Defects in Glaucoma
Araie M
American Journal of Ophthalmology 2021; 229: 253-265 (IGR: 22-2)


94932 Association Between Visual Field Damage and Gait Dysfunction in Patients With Glaucoma
Mihailovic A
JAMA ophthalmology 2021; 139: 1053-1060 (IGR: 22-2)


94735 Standard reliability and gaze tracking metrics in glaucoma and glaucoma suspects
Long CP
American Journal of Ophthalmology 2022; 234: 91-98 (IGR: 22-2)


94314 Agonistic autoantibodies against ß2-adrenergic receptor influence retinal microcirculation in glaucoma suspects and patients
Hosari S
PLoS ONE 2021; 16: e0249202 (IGR: 22-2)


94532 Visual Field Endpoints Based on Subgroups of Points May Be Useful in Glaucoma Clinical Trials: A Study With the Humphrey Field Analyzer and Compass Perimeter
Leshno A
Journal of Glaucoma 2021; 30: 661-665 (IGR: 22-2)


94896 Viability of Performing Multiple 24-2 Visual Field Examinations at the Same Clinical Visit: The Frontloading Fields Study (FFS)
Kalloniatis M
American Journal of Ophthalmology 2021; 230: 48-59 (IGR: 22-2)


94439 Central Visual Field Sensitivity With and Without Background Light Given to the Nontested Fellow Eye in Glaucoma Patients
Shoji T
Journal of Glaucoma 2021; 30: 537-544 (IGR: 22-2)


94646 Visual field-based grading of disease severity in newly diagnosed primary open angle glaucoma patients presenting to a tertiary eye care centre in India
Bansal O
International Ophthalmology 2021; 41: 3135-3143 (IGR: 22-2)


94802 Combined structure-function analysis in glaucoma screening
Stoor K
British Journal of Ophthalmology 2022; 106: 1689-1695 (IGR: 22-2)


94314 Agonistic autoantibodies against ß2-adrenergic receptor influence retinal microcirculation in glaucoma suspects and patients
Hosari S
PLoS ONE 2021; 16: e0249202 (IGR: 22-2)


94931 False Positive Responses in Standard Automated Perimetry
Vincent Michael P
American Journal of Ophthalmology 2022; 233: 180-188 (IGR: 22-2)


94352 Cystic maculopathy of the inner nuclear layer in glaucoma patients
Quaranta-El Maftouhi M
Journal Français d'Ophtalmologie 2021; 44: 786-791 (IGR: 22-2)


94314 Agonistic autoantibodies against ß2-adrenergic receptor influence retinal microcirculation in glaucoma suspects and patients
Wallukat G
PLoS ONE 2021; 16: e0249202 (IGR: 22-2)


94802 Combined structure-function analysis in glaucoma screening
Luodonpää M
British Journal of Ophthalmology 2022; 106: 1689-1695 (IGR: 22-2)


94269 Agreement of Optic Nerve Head Evaluation of Primary Open-Angle Glaucoma Between General Ophthalmologists and Glaucoma Specialists
Huang Y
Risk management and healthcare policy 2021; 14: 1815-1822 (IGR: 22-2)


94710 Intraocular asymmetry of visual field defects in primary angle-closure glaucoma, high-tension glaucoma, and normal-tension glaucoma in a Chinese population
Zhang C
Scientific reports 2021; 11: 11674 (IGR: 22-2)


94532 Visual Field Endpoints Based on Subgroups of Points May Be Useful in Glaucoma Clinical Trials: A Study With the Humphrey Field Analyzer and Compass Perimeter
Stern O
Journal of Glaucoma 2021; 30: 661-665 (IGR: 22-2)


94735 Standard reliability and gaze tracking metrics in glaucoma and glaucoma suspects
Patella VM
American Journal of Ophthalmology 2022; 234: 91-98 (IGR: 22-2)


94261 Comparison of Superior and Inferior Visual Field Asymmetry Between Normal-tension and High-tension Glaucoma
Moon NJ
Journal of Glaucoma 2021; 30: 648-655 (IGR: 22-2)


94931 False Positive Responses in Standard Automated Perimetry
John G F
American Journal of Ophthalmology 2022; 233: 180-188 (IGR: 22-2)


94509 Prediction of 10-2 Visual Field Loss Using Optical Coherence Tomography and 24-2 Visual Field Data
Charry N
Journal of Glaucoma 2021; 30: e292-e299 (IGR: 22-2)


94716 Agreement between the newly developed OCT glaucoma staging system and the standardized visual field glaucoma staging system 2
Sayed KM
European Journal of Ophthalmology 2021; 0: 11206721211014378 (IGR: 22-2)


94438 Agreement Between 10-2 and 24-2C Visual Field Test Protocols for Detecting Glaucomatous Central Visual Field Defects
Proudfoot JA
Journal of Glaucoma 2021; 30: e285-e291 (IGR: 22-2)


94543 Structure-Function Mapping Using a Three-Dimensional Neuroretinal Rim Parameter Derived From Spectral Domain Optical Coherence Tomography Volume Scans
Verticchio Vercellin AC
Translational vision science & technology 2021; 10: 28 (IGR: 22-2)


94496 Association of Intereye Visual-Sensitivity Asymmetry With Progression of Primary Open-Angle Glaucoma
Ha A
Investigative Ophthalmology and Visual Science 2021; 62: 4 (IGR: 22-2)


94646 Visual field-based grading of disease severity in newly diagnosed primary open angle glaucoma patients presenting to a tertiary eye care centre in India
Shroff S
International Ophthalmology 2021; 41: 3135-3143 (IGR: 22-2)


94332 Semi-AI and Full-AI digitizer: The ways to digitalize visual field big data
Choi IY
Computer Methods and Programs in Biomedicine 2021; 207: 106168 (IGR: 22-2)


94932 Association Between Visual Field Damage and Gait Dysfunction in Patients With Glaucoma
Garzon C
JAMA ophthalmology 2021; 139: 1053-1060 (IGR: 22-2)


94355 Relationship between peripapillary vessel density and visual function based on Garway-Heath sectorization in open-angle glaucoma
Kim S
Indian Journal of Ophthalmology 2021; 69: 1825-1832 (IGR: 22-2)


94791 Interpreting Deep Learning Studies in Glaucoma: Unresolved Challenges
Chang RT
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2021; 10: 261-267 (IGR: 22-2)


94853 Steps to Measurement Floor of an Optical Microangiography Device in Glaucoma
Bolo K
American Journal of Ophthalmology 2021; 231: 58-69 (IGR: 22-2)


94638 Does hemispheric vascular regulation differ significantly in glaucoma patients with altitudinal visual field asymmetry? A single-center, prospective study
Fuest M
International Ophthalmology 2021; 41: 3109-3119 (IGR: 22-2)


94352 Cystic maculopathy of the inner nuclear layer in glaucoma patients
Baudouin C
Journal Français d'Ophtalmologie 2021; 44: 786-791 (IGR: 22-2)


94439 Central Visual Field Sensitivity With and Without Background Light Given to the Nontested Fellow Eye in Glaucoma Patients
Kumagai T
Journal of Glaucoma 2021; 30: 537-544 (IGR: 22-2)


94801 Agreement between Compass Fundus Perimeter New Grid and 10-2 Testing Protocols for Detecting Central Visual Field Defects
Bowd C
Ophthalmology. Glaucoma 2022; 5: 179-187 (IGR: 22-2)


94841 Estimated Utility of the Short-term Assessment of Glaucoma Progression Model in Clinical Practice
Moghimi S
JAMA ophthalmology 2021; 139: 839-846 (IGR: 22-2)


94883 Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma
Perez-Barbudo D
Journal of clinical medicine 2021; 10: (IGR: 22-2)


94705 Vertical Position of the Central Retinal Vessel in the Optic Disc and Its Association With the Site of Visual Field Defects in Glaucoma
Shibata H
American Journal of Ophthalmology 2021; 229: 253-265 (IGR: 22-2)


94801 Agreement between Compass Fundus Perimeter New Grid and 10-2 Testing Protocols for Detecting Central Visual Field Defects
Proudfoot JA
Ophthalmology. Glaucoma 2022; 5: 179-187 (IGR: 22-2)


94646 Visual field-based grading of disease severity in newly diagnosed primary open angle glaucoma patients presenting to a tertiary eye care centre in India
Senthilkumar VA
International Ophthalmology 2021; 41: 3135-3143 (IGR: 22-2)


94438 Agreement Between 10-2 and 24-2C Visual Field Test Protocols for Detecting Glaucomatous Central Visual Field Defects
Weinreb RN
Journal of Glaucoma 2021; 30: e285-e291 (IGR: 22-2)


94932 Association Between Visual Field Damage and Gait Dysfunction in Patients With Glaucoma
Schrack JA
JAMA ophthalmology 2021; 139: 1053-1060 (IGR: 22-2)


94543 Structure-Function Mapping Using a Three-Dimensional Neuroretinal Rim Parameter Derived From Spectral Domain Optical Coherence Tomography Volume Scans
Tsikata E
Translational vision science & technology 2021; 10: 28 (IGR: 22-2)


94355 Relationship between peripapillary vessel density and visual function based on Garway-Heath sectorization in open-angle glaucoma
Shin J
Indian Journal of Ophthalmology 2021; 69: 1825-1832 (IGR: 22-2)


94710 Intraocular asymmetry of visual field defects in primary angle-closure glaucoma, high-tension glaucoma, and normal-tension glaucoma in a Chinese population
Ye W
Scientific reports 2021; 11: 11674 (IGR: 22-2)


94352 Cystic maculopathy of the inner nuclear layer in glaucoma patients
Denoyer A
Journal Français d'Ophtalmologie 2021; 44: 786-791 (IGR: 22-2)


94496 Association of Intereye Visual-Sensitivity Asymmetry With Progression of Primary Open-Angle Glaucoma
Han YS
Investigative Ophthalmology and Visual Science 2021; 62: 4 (IGR: 22-2)


94314 Agonistic autoantibodies against ß2-adrenergic receptor influence retinal microcirculation in glaucoma suspects and patients
Kunze R
PLoS ONE 2021; 16: e0249202 (IGR: 22-2)


94853 Steps to Measurement Floor of an Optical Microangiography Device in Glaucoma
Burkemper B
American Journal of Ophthalmology 2021; 231: 58-69 (IGR: 22-2)


94638 Does hemispheric vascular regulation differ significantly in glaucoma patients with altitudinal visual field asymmetry? A single-center, prospective study
Walter P
International Ophthalmology 2021; 41: 3109-3119 (IGR: 22-2)


94932 Association Between Visual Field Damage and Gait Dysfunction in Patients With Glaucoma
Schrack JA
JAMA ophthalmology 2021; 139: 1053-1060 (IGR: 22-2)


94439 Central Visual Field Sensitivity With and Without Background Light Given to the Nontested Fellow Eye in Glaucoma Patients
Yoshikawa Y
Journal of Glaucoma 2021; 30: 537-544 (IGR: 22-2)


94269 Agreement of Optic Nerve Head Evaluation of Primary Open-Angle Glaucoma Between General Ophthalmologists and Glaucoma Specialists
Fu M
Risk management and healthcare policy 2021; 14: 1815-1822 (IGR: 22-2)


94332 Semi-AI and Full-AI digitizer: The ways to digitalize visual field big data
Park SJ
Computer Methods and Programs in Biomedicine 2021; 207: 106168 (IGR: 22-2)


94802 Combined structure-function analysis in glaucoma screening
Hägg P
British Journal of Ophthalmology 2022; 106: 1689-1695 (IGR: 22-2)


94261 Comparison of Superior and Inferior Visual Field Asymmetry Between Normal-tension and High-tension Glaucoma
Shin JH
Journal of Glaucoma 2021; 30: 648-655 (IGR: 22-2)


94841 Estimated Utility of the Short-term Assessment of Glaucoma Progression Model in Clinical Practice
Bowd C
JAMA ophthalmology 2021; 139: 839-846 (IGR: 22-2)


94883 Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma
Rodriguez-Esteve P
Journal of clinical medicine 2021; 10: (IGR: 22-2)


94509 Prediction of 10-2 Visual Field Loss Using Optical Coherence Tomography and 24-2 Visual Field Data
Katiyar S
Journal of Glaucoma 2021; 30: e292-e299 (IGR: 22-2)


94931 False Positive Responses in Standard Automated Perimetry
Aiko I
American Journal of Ophthalmology 2022; 233: 180-188 (IGR: 22-2)


94735 Standard reliability and gaze tracking metrics in glaucoma and glaucoma suspects
Proudfoot JA
American Journal of Ophthalmology 2022; 234: 91-98 (IGR: 22-2)


94532 Visual Field Endpoints Based on Subgroups of Points May Be Useful in Glaucoma Clinical Trials: A Study With the Humphrey Field Analyzer and Compass Perimeter
Singer R
Journal of Glaucoma 2021; 30: 661-665 (IGR: 22-2)


94853 Steps to Measurement Floor of an Optical Microangiography Device in Glaucoma
Lee JC
American Journal of Ophthalmology 2021; 231: 58-69 (IGR: 22-2)


94496 Association of Intereye Visual-Sensitivity Asymmetry With Progression of Primary Open-Angle Glaucoma
Kim JS
Investigative Ophthalmology and Visual Science 2021; 62: 4 (IGR: 22-2)


94314 Agonistic autoantibodies against ß2-adrenergic receptor influence retinal microcirculation in glaucoma suspects and patients
Krebs J
PLoS ONE 2021; 16: e0249202 (IGR: 22-2)


94841 Estimated Utility of the Short-term Assessment of Glaucoma Progression Model in Clinical Practice
Saunders LJ
JAMA ophthalmology 2021; 139: 839-846 (IGR: 22-2)


94332 Semi-AI and Full-AI digitizer: The ways to digitalize visual field big data
Yoon KH
Computer Methods and Programs in Biomedicine 2021; 207: 106168 (IGR: 22-2)


94638 Does hemispheric vascular regulation differ significantly in glaucoma patients with altitudinal visual field asymmetry? A single-center, prospective study
Hollstein M
International Ophthalmology 2021; 41: 3109-3119 (IGR: 22-2)


94532 Visual Field Endpoints Based on Subgroups of Points May Be Useful in Glaucoma Clinical Trials: A Study With the Humphrey Field Analyzer and Compass Perimeter
Russ H
Journal of Glaucoma 2021; 30: 661-665 (IGR: 22-2)


94802 Combined structure-function analysis in glaucoma screening
Leiviskä I
British Journal of Ophthalmology 2022; 106: 1689-1695 (IGR: 22-2)


94801 Agreement between Compass Fundus Perimeter New Grid and 10-2 Testing Protocols for Detecting Central Visual Field Defects
Hou H
Ophthalmology. Glaucoma 2022; 5: 179-187 (IGR: 22-2)


94646 Visual field-based grading of disease severity in newly diagnosed primary open angle glaucoma patients presenting to a tertiary eye care centre in India
Uduman MS
International Ophthalmology 2021; 41: 3135-3143 (IGR: 22-2)


94883 Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma
Betancor-Caro N
Journal of clinical medicine 2021; 10: (IGR: 22-2)


94543 Structure-Function Mapping Using a Three-Dimensional Neuroretinal Rim Parameter Derived From Spectral Domain Optical Coherence Tomography Volume Scans
Lee R
Translational vision science & technology 2021; 10: 28 (IGR: 22-2)


94261 Comparison of Superior and Inferior Visual Field Asymmetry Between Normal-tension and High-tension Glaucoma
Chun YS
Journal of Glaucoma 2021; 30: 648-655 (IGR: 22-2)


94439 Central Visual Field Sensitivity With and Without Background Light Given to the Nontested Fellow Eye in Glaucoma Patients
Kosaka A
Journal of Glaucoma 2021; 30: 537-544 (IGR: 22-2)


94269 Agreement of Optic Nerve Head Evaluation of Primary Open-Angle Glaucoma Between General Ophthalmologists and Glaucoma Specialists
Shen X
Risk management and healthcare policy 2021; 14: 1815-1822 (IGR: 22-2)


94801 Agreement between Compass Fundus Perimeter New Grid and 10-2 Testing Protocols for Detecting Central Visual Field Defects
Hou H
Ophthalmology. Glaucoma 2022; 5: 179-187 (IGR: 22-2)


94932 Association Between Visual Field Damage and Gait Dysfunction in Patients With Glaucoma
Li T
JAMA ophthalmology 2021; 139: 1053-1060 (IGR: 22-2)


94438 Agreement Between 10-2 and 24-2C Visual Field Test Protocols for Detecting Glaucomatous Central Visual Field Defects
Bowd C
Journal of Glaucoma 2021; 30: e285-e291 (IGR: 22-2)


94710 Intraocular asymmetry of visual field defects in primary angle-closure glaucoma, high-tension glaucoma, and normal-tension glaucoma in a Chinese population
Wang X
Scientific reports 2021; 11: 11674 (IGR: 22-2)


94735 Standard reliability and gaze tracking metrics in glaucoma and glaucoma suspects
Weinreb RN
American Journal of Ophthalmology 2022; 234: 91-98 (IGR: 22-2)


94801 Agreement between Compass Fundus Perimeter New Grid and 10-2 Testing Protocols for Detecting Central Visual Field Defects
Hou H
Ophthalmology. Glaucoma 2022; 5: 179-187 (IGR: 22-2)


94509 Prediction of 10-2 Visual Field Loss Using Optical Coherence Tomography and 24-2 Visual Field Data
Kee H
Journal of Glaucoma 2021; 30: e292-e299 (IGR: 22-2)


94931 False Positive Responses in Standard Automated Perimetry
Christopher K L
American Journal of Ophthalmology 2022; 233: 180-188 (IGR: 22-2)


94802 Combined structure-function analysis in glaucoma screening
Leiviskä I
British Journal of Ophthalmology 2022; 106: 1689-1695 (IGR: 22-2)


94883 Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma
Gonzalez de la Rosa M
Journal of clinical medicine 2021; 10: (IGR: 22-2)


94932 Association Between Visual Field Damage and Gait Dysfunction in Patients With Glaucoma
West SK
JAMA ophthalmology 2021; 139: 1053-1060 (IGR: 22-2)


94841 Estimated Utility of the Short-term Assessment of Glaucoma Progression Model in Clinical Practice
Hou H
JAMA ophthalmology 2021; 139: 839-846 (IGR: 22-2)


94543 Structure-Function Mapping Using a Three-Dimensional Neuroretinal Rim Parameter Derived From Spectral Domain Optical Coherence Tomography Volume Scans
Shieh E
Translational vision science & technology 2021; 10: 28 (IGR: 22-2)


94438 Agreement Between 10-2 and 24-2C Visual Field Test Protocols for Detecting Glaucomatous Central Visual Field Defects
Zangwill LM
Journal of Glaucoma 2021; 30: e285-e291 (IGR: 22-2)


94496 Association of Intereye Visual-Sensitivity Asymmetry With Progression of Primary Open-Angle Glaucoma
Lee J
Investigative Ophthalmology and Visual Science 2021; 62: 4 (IGR: 22-2)


94801 Agreement between Compass Fundus Perimeter New Grid and 10-2 Testing Protocols for Detecting Central Visual Field Defects
Manalastas PIC
Ophthalmology. Glaucoma 2022; 5: 179-187 (IGR: 22-2)


94841 Estimated Utility of the Short-term Assessment of Glaucoma Progression Model in Clinical Practice
Hou H
JAMA ophthalmology 2021; 139: 839-846 (IGR: 22-2)


94931 False Positive Responses in Standard Automated Perimetry
Anja T
American Journal of Ophthalmology 2022; 233: 180-188 (IGR: 22-2)


94802 Combined structure-function analysis in glaucoma screening
Liinamaa J
British Journal of Ophthalmology 2022; 106: 1689-1695 (IGR: 22-2)


94638 Does hemispheric vascular regulation differ significantly in glaucoma patients with altitudinal visual field asymmetry? A single-center, prospective study
Plange N
International Ophthalmology 2021; 41: 3109-3119 (IGR: 22-2)


94853 Steps to Measurement Floor of an Optical Microangiography Device in Glaucoma
LeTran VH
American Journal of Ophthalmology 2021; 231: 58-69 (IGR: 22-2)


94509 Prediction of 10-2 Visual Field Loss Using Optical Coherence Tomography and 24-2 Visual Field Data
Kimura B
Journal of Glaucoma 2021; 30: e292-e299 (IGR: 22-2)


94314 Agonistic autoantibodies against ß2-adrenergic receptor influence retinal microcirculation in glaucoma suspects and patients
Müller M
PLoS ONE 2021; 16: e0249202 (IGR: 22-2)


94710 Intraocular asymmetry of visual field defects in primary angle-closure glaucoma, high-tension glaucoma, and normal-tension glaucoma in a Chinese population
Shang X
Scientific reports 2021; 11: 11674 (IGR: 22-2)


94532 Visual Field Endpoints Based on Subgroups of Points May Be Useful in Glaucoma Clinical Trials: A Study With the Humphrey Field Analyzer and Compass Perimeter
Oddone F
Journal of Glaucoma 2021; 30: 661-665 (IGR: 22-2)


94269 Agreement of Optic Nerve Head Evaluation of Primary Open-Angle Glaucoma Between General Ophthalmologists and Glaucoma Specialists
Wang F
Risk management and healthcare policy 2021; 14: 1815-1822 (IGR: 22-2)


94853 Steps to Measurement Floor of an Optical Microangiography Device in Glaucoma
LeTran VH
American Journal of Ophthalmology 2021; 231: 58-69 (IGR: 22-2)


94332 Semi-AI and Full-AI digitizer: The ways to digitalize visual field big data
Chang DJ
Computer Methods and Programs in Biomedicine 2021; 207: 106168 (IGR: 22-2)


94841 Estimated Utility of the Short-term Assessment of Glaucoma Progression Model in Clinical Practice
Hou H
JAMA ophthalmology 2021; 139: 839-846 (IGR: 22-2)


94439 Central Visual Field Sensitivity With and Without Background Light Given to the Nontested Fellow Eye in Glaucoma Patients
Shinoda K
Journal of Glaucoma 2021; 30: 537-544 (IGR: 22-2)


94853 Steps to Measurement Floor of an Optical Microangiography Device in Glaucoma
Chang BR
American Journal of Ophthalmology 2021; 231: 58-69 (IGR: 22-2)


94509 Prediction of 10-2 Visual Field Loss Using Optical Coherence Tomography and 24-2 Visual Field Data
Pensyl D
Journal of Glaucoma 2021; 30: e292-e299 (IGR: 22-2)


94802 Combined structure-function analysis in glaucoma screening
Tuulonen A
British Journal of Ophthalmology 2022; 106: 1689-1695 (IGR: 22-2)


94932 Association Between Visual Field Damage and Gait Dysfunction in Patients With Glaucoma
Gitlin LN
JAMA ophthalmology 2021; 139: 1053-1060 (IGR: 22-2)


94269 Agreement of Optic Nerve Head Evaluation of Primary Open-Angle Glaucoma Between General Ophthalmologists and Glaucoma Specialists
Sun X
Risk management and healthcare policy 2021; 14: 1815-1822 (IGR: 22-2)


94314 Agonistic autoantibodies against ß2-adrenergic receptor influence retinal microcirculation in glaucoma suspects and patients
Hennig T
PLoS ONE 2021; 16: e0249202 (IGR: 22-2)


94710 Intraocular asymmetry of visual field defects in primary angle-closure glaucoma, high-tension glaucoma, and normal-tension glaucoma in a Chinese population
Xu X
Scientific reports 2021; 11: 11674 (IGR: 22-2)


94931 False Positive Responses in Standard Automated Perimetry
Gary C L
American Journal of Ophthalmology 2022; 233: 180-188 (IGR: 22-2)


94543 Structure-Function Mapping Using a Three-Dimensional Neuroretinal Rim Parameter Derived From Spectral Domain Optical Coherence Tomography Volume Scans
Antar H
Translational vision science & technology 2021; 10: 28 (IGR: 22-2)


94801 Agreement between Compass Fundus Perimeter New Grid and 10-2 Testing Protocols for Detecting Central Visual Field Defects
Ghahari E
Ophthalmology. Glaucoma 2022; 5: 179-187 (IGR: 22-2)


94841 Estimated Utility of the Short-term Assessment of Glaucoma Progression Model in Clinical Practice
Belghith A
JAMA ophthalmology 2021; 139: 839-846 (IGR: 22-2)


94496 Association of Intereye Visual-Sensitivity Asymmetry With Progression of Primary Open-Angle Glaucoma
Kim YW
Investigative Ophthalmology and Visual Science 2021; 62: 4 (IGR: 22-2)


94532 Visual Field Endpoints Based on Subgroups of Points May Be Useful in Glaucoma Clinical Trials: A Study With the Humphrey Field Analyzer and Compass Perimeter
Lanzetta P
Journal of Glaucoma 2021; 30: 661-665 (IGR: 22-2)


94496 Association of Intereye Visual-Sensitivity Asymmetry With Progression of Primary Open-Angle Glaucoma
Baek SU
Investigative Ophthalmology and Visual Science 2021; 62: 4 (IGR: 22-2)


94710 Intraocular asymmetry of visual field defects in primary angle-closure glaucoma, high-tension glaucoma, and normal-tension glaucoma in a Chinese population
Zhang H
Scientific reports 2021; 11: 11674 (IGR: 22-2)


94853 Steps to Measurement Floor of an Optical Microangiography Device in Glaucoma
Grisafe DJ
American Journal of Ophthalmology 2021; 231: 58-69 (IGR: 22-2)


94314 Agonistic autoantibodies against ß2-adrenergic receptor influence retinal microcirculation in glaucoma suspects and patients
Lämmer R
PLoS ONE 2021; 16: e0249202 (IGR: 22-2)


94931 False Positive Responses in Standard Automated Perimetry
Thomas C
American Journal of Ophthalmology 2022; 233: 180-188 (IGR: 22-2)


94532 Visual Field Endpoints Based on Subgroups of Points May Be Useful in Glaucoma Clinical Trials: A Study With the Humphrey Field Analyzer and Compass Perimeter
Perdicchi A
Journal of Glaucoma 2021; 30: 661-665 (IGR: 22-2)


94932 Association Between Visual Field Damage and Gait Dysfunction in Patients With Glaucoma
Friedman DS
JAMA ophthalmology 2021; 139: 1053-1060 (IGR: 22-2)


94841 Estimated Utility of the Short-term Assessment of Glaucoma Progression Model in Clinical Practice
Medeiros FA
JAMA ophthalmology 2021; 139: 839-846 (IGR: 22-2)


94543 Structure-Function Mapping Using a Three-Dimensional Neuroretinal Rim Parameter Derived From Spectral Domain Optical Coherence Tomography Volume Scans
Freeman M
Translational vision science & technology 2021; 10: 28 (IGR: 22-2)


94801 Agreement between Compass Fundus Perimeter New Grid and 10-2 Testing Protocols for Detecting Central Visual Field Defects
Zangwill LM
Ophthalmology. Glaucoma 2022; 5: 179-187 (IGR: 22-2)


94496 Association of Intereye Visual-Sensitivity Asymmetry With Progression of Primary Open-Angle Glaucoma
Baek SU
Investigative Ophthalmology and Visual Science 2021; 62: 4 (IGR: 22-2)


94802 Combined structure-function analysis in glaucoma screening
Saarela V
British Journal of Ophthalmology 2022; 106: 1689-1695 (IGR: 22-2)


94801 Agreement between Compass Fundus Perimeter New Grid and 10-2 Testing Protocols for Detecting Central Visual Field Defects
Moghimi S
Ophthalmology. Glaucoma 2022; 5: 179-187 (IGR: 22-2)


94532 Visual Field Endpoints Based on Subgroups of Points May Be Useful in Glaucoma Clinical Trials: A Study With the Humphrey Field Analyzer and Compass Perimeter
Johnson CA
Journal of Glaucoma 2021; 30: 661-665 (IGR: 22-2)


94841 Estimated Utility of the Short-term Assessment of Glaucoma Progression Model in Clinical Practice
Williams-Steppe E
JAMA ophthalmology 2021; 139: 839-846 (IGR: 22-2)


94853 Steps to Measurement Floor of an Optical Microangiography Device in Glaucoma
Chu Z
American Journal of Ophthalmology 2021; 231: 58-69 (IGR: 22-2)


94314 Agonistic autoantibodies against ß2-adrenergic receptor influence retinal microcirculation in glaucoma suspects and patients
Horn F
PLoS ONE 2021; 16: e0249202 (IGR: 22-2)


94931 False Positive Responses in Standard Automated Perimetry
Boel B
American Journal of Ophthalmology 2022; 233: 180-188 (IGR: 22-2)


94496 Association of Intereye Visual-Sensitivity Asymmetry With Progression of Primary Open-Angle Glaucoma
Jeoung JW
Investigative Ophthalmology and Visual Science 2021; 62: 4 (IGR: 22-2)


94710 Intraocular asymmetry of visual field defects in primary angle-closure glaucoma, high-tension glaucoma, and normal-tension glaucoma in a Chinese population
Zhang S
Scientific reports 2021; 11: 11674 (IGR: 22-2)


94932 Association Between Visual Field Damage and Gait Dysfunction in Patients With Glaucoma
Ramulu PY
JAMA ophthalmology 2021; 139: 1053-1060 (IGR: 22-2)


94543 Structure-Function Mapping Using a Three-Dimensional Neuroretinal Rim Parameter Derived From Spectral Domain Optical Coherence Tomography Volume Scans
Zhang J
Translational vision science & technology 2021; 10: 28 (IGR: 22-2)


94801 Agreement between Compass Fundus Perimeter New Grid and 10-2 Testing Protocols for Detecting Central Visual Field Defects
Weinreb RN
Ophthalmology. Glaucoma 2022; 5: 179-187 (IGR: 22-2)


94841 Estimated Utility of the Short-term Assessment of Glaucoma Progression Model in Clinical Practice
Acera T
JAMA ophthalmology 2021; 139: 839-846 (IGR: 22-2)


94532 Visual Field Endpoints Based on Subgroups of Points May Be Useful in Glaucoma Clinical Trials: A Study With the Humphrey Field Analyzer and Compass Perimeter
Garway-Heath DF
Journal of Glaucoma 2021; 30: 661-665 (IGR: 22-2)


94496 Association of Intereye Visual-Sensitivity Asymmetry With Progression of Primary Open-Angle Glaucoma
Park KH
Investigative Ophthalmology and Visual Science 2021; 62: 4 (IGR: 22-2)


94314 Agonistic autoantibodies against ß2-adrenergic receptor influence retinal microcirculation in glaucoma suspects and patients
Muñoz LE
PLoS ONE 2021; 16: e0249202 (IGR: 22-2)


94853 Steps to Measurement Floor of an Optical Microangiography Device in Glaucoma
Zhou X
American Journal of Ophthalmology 2021; 231: 58-69 (IGR: 22-2)


94710 Intraocular asymmetry of visual field defects in primary angle-closure glaucoma, high-tension glaucoma, and normal-tension glaucoma in a Chinese population
Zheng J
Scientific reports 2021; 11: 11674 (IGR: 22-2)


94543 Structure-Function Mapping Using a Three-Dimensional Neuroretinal Rim Parameter Derived From Spectral Domain Optical Coherence Tomography Volume Scans
Que C
Translational vision science & technology 2021; 10: 28 (IGR: 22-2)


94853 Steps to Measurement Floor of an Optical Microangiography Device in Glaucoma
Song BJ
American Journal of Ophthalmology 2021; 231: 58-69 (IGR: 22-2)


94841 Estimated Utility of the Short-term Assessment of Glaucoma Progression Model in Clinical Practice
Dirkes K
JAMA ophthalmology 2021; 139: 839-846 (IGR: 22-2)


94532 Visual Field Endpoints Based on Subgroups of Points May Be Useful in Glaucoma Clinical Trials: A Study With the Humphrey Field Analyzer and Compass Perimeter
Rossetti LM
Journal of Glaucoma 2021; 30: 661-665 (IGR: 22-2)


94314 Agonistic autoantibodies against ß2-adrenergic receptor influence retinal microcirculation in glaucoma suspects and patients
Herrmann M
PLoS ONE 2021; 16: e0249202 (IGR: 22-2)


94543 Structure-Function Mapping Using a Three-Dimensional Neuroretinal Rim Parameter Derived From Spectral Domain Optical Coherence Tomography Volume Scans
Simavli H
Translational vision science & technology 2021; 10: 28 (IGR: 22-2)


94710 Intraocular asymmetry of visual field defects in primary angle-closure glaucoma, high-tension glaucoma, and normal-tension glaucoma in a Chinese population
Zuo J; Hu J
Scientific reports 2021; 11: 11674 (IGR: 22-2)


94853 Steps to Measurement Floor of an Optical Microangiography Device in Glaucoma
Xu BY
American Journal of Ophthalmology 2021; 231: 58-69 (IGR: 22-2)


94841 Estimated Utility of the Short-term Assessment of Glaucoma Progression Model in Clinical Practice
Weinreb R
JAMA ophthalmology 2021; 139: 839-846 (IGR: 22-2)


94532 Visual Field Endpoints Based on Subgroups of Points May Be Useful in Glaucoma Clinical Trials: A Study With the Humphrey Field Analyzer and Compass Perimeter
Skaat A
Journal of Glaucoma 2021; 30: 661-665 (IGR: 22-2)


94543 Structure-Function Mapping Using a Three-Dimensional Neuroretinal Rim Parameter Derived From Spectral Domain Optical Coherence Tomography Volume Scans
McClurkin M
Translational vision science & technology 2021; 10: 28 (IGR: 22-2)


94314 Agonistic autoantibodies against ß2-adrenergic receptor influence retinal microcirculation in glaucoma suspects and patients
Mardin C
PLoS ONE 2021; 16: e0249202 (IGR: 22-2)


94543 Structure-Function Mapping Using a Three-Dimensional Neuroretinal Rim Parameter Derived From Spectral Domain Optical Coherence Tomography Volume Scans
Guo R
Translational vision science & technology 2021; 10: 28 (IGR: 22-2)


94853 Steps to Measurement Floor of an Optical Microangiography Device in Glaucoma
Wong B
American Journal of Ophthalmology 2021; 231: 58-69 (IGR: 22-2)


94710 Intraocular asymmetry of visual field defects in primary angle-closure glaucoma, high-tension glaucoma, and normal-tension glaucoma in a Chinese population
Congdon N
Scientific reports 2021; 11: 11674 (IGR: 22-2)


94543 Structure-Function Mapping Using a Three-Dimensional Neuroretinal Rim Parameter Derived From Spectral Domain Optical Coherence Tomography Volume Scans
Elze T
Translational vision science & technology 2021; 10: 28 (IGR: 22-2)


94710 Intraocular asymmetry of visual field defects in primary angle-closure glaucoma, high-tension glaucoma, and normal-tension glaucoma in a Chinese population
Lu F
Scientific reports 2021; 11: 11674 (IGR: 22-2)


94853 Steps to Measurement Floor of an Optical Microangiography Device in Glaucoma
Wang RK
American Journal of Ophthalmology 2021; 231: 58-69 (IGR: 22-2)


94543 Structure-Function Mapping Using a Three-Dimensional Neuroretinal Rim Parameter Derived From Spectral Domain Optical Coherence Tomography Volume Scans
de Boer JF
Translational vision science & technology 2021; 10: 28 (IGR: 22-2)


94710 Intraocular asymmetry of visual field defects in primary angle-closure glaucoma, high-tension glaucoma, and normal-tension glaucoma in a Chinese population
Liang Y
Scientific reports 2021; 11: 11674 (IGR: 22-2)


94853 Steps to Measurement Floor of an Optical Microangiography Device in Glaucoma
Richter GM
American Journal of Ophthalmology 2021; 231: 58-69 (IGR: 22-2)


94543 Structure-Function Mapping Using a Three-Dimensional Neuroretinal Rim Parameter Derived From Spectral Domain Optical Coherence Tomography Volume Scans
Chen TC
Translational vision science & technology 2021; 10: 28 (IGR: 22-2)


92086 Retinal vessel density in primary open-angle glaucoma with a hemifield defect
Wang XL
Chinese Journal of Ophthalmology 2021; 57: 201-206 (IGR: 22-1)


91883 Advances in perimetry for glaucoma
Prager AJ
Current Opinions in Ophthalmology 2021; 32: 92-97 (IGR: 22-1)


92404 The Effect of Transitioning from SITA Standard to SITA Faster on Visual Field Performance
Pham AT
Ophthalmology 2021; 0: (IGR: 22-1)


92677 Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT
Christopher M
Ophthalmology 2021; 0: (IGR: 22-1)


92701 Central visual field change after fornix-based trabeculectomy in Japanese normal-tension glaucoma patients managed under 15 mmHg
Nakajima K
Graefe's Archive for Clinical and Experimental Ophthalmology 2021; 259: 2309-2316 (IGR: 22-1)


92566 Aqueous Humor Proteomic Alterations Associated with Visual Field Index Parameters in Glaucoma Patients: A Pilot Study
Kodeboyina SK
Journal of clinical medicine 2021; 10: (IGR: 22-1)


92450 Glaucoma-related central visual field deterioration after vitrectomy for epiretinal membrane: topographic characteristics and risk factors
Tsuchiya S
Eye 2021; 35: 919-928 (IGR: 22-1)


92509 A Review of Studies of the Association of Vision-Related Quality of Life with Measures of Visual Function and Structure in Patients with Glaucoma in the United States
Khachatryan N
Ophthalmic Epidemiology 2021; 28: 265-276 (IGR: 22-1)


92011 Longitudinal Macular Ganglion Cell-Inner Plexiform Layer Measurements to Detect Glaucoma Progression in High Myopia
Shin JW
American Journal of Ophthalmology 2021; 223: 9-20 (IGR: 22-1)


92618 Rapid initial OCT RNFL thinning is predictive of faster visual field loss during extended follow-up in glaucoma
Swaminathan SS
American Journal of Ophthalmology 2021; 229: 100-107 (IGR: 22-1)


92259 Eye-Movement-Based Assessment of the Perceptual Consequences of Glaucomatous and Neuro-Ophthalmological Visual Field Defects
Soans RS
Translational vision science & technology 2021; 10: 1 (IGR: 22-1)


92442 Central-most Visual Field Defects in Early Glaucoma
Chakravarti T
Journal of Glaucoma 2021; 30: e68-e75 (IGR: 22-1)


92468 Comparison of 10-2 and 24-2C Test Grids for Identifying Central Visual Field Defects in Glaucoma and Suspect Patients
Phu J
Ophthalmology 2021; 0: (IGR: 22-1)


92147 Glaucoma care in Germany-Results of a survey among German ophthalmologists-Part 1: diagnostics
Wolfram C
Ophthalmologe 2022; 119: 38-45 (IGR: 22-1)


91965 Factors affecting the diagnostic performance of circumpapillary retinal nerve fibre layer measurement in glaucoma
Wong D
British Journal of Ophthalmology 2021; 105: 397-402 (IGR: 22-1)


92145 The Impacts of Face Mask Use on Standard Automated Perimetry Results in Glaucoma Patients
Bayram N
Journal of Glaucoma 2021; 30: 287-292 (IGR: 22-1)


92725 A simplified combined index of structure and function for detecting and staging glaucomatous damage
Wu Z
Scientific reports 2021; 11: 3172 (IGR: 22-1)


92519 Variability and Power to Detect Progression of Different Visual Field Patterns
Susanna FN
Ophthalmology. Glaucoma 2021; 0: (IGR: 22-1)


92250 Systematic and Random Mapping Errors in Structure - Function Analysis of the Macula
Montesano G
Translational vision science & technology 2021; 10: 21 (IGR: 22-1)


92075 Clinical Evaluation of Unilateral Open-Angle Glaucoma: A Two-Year Follow-Up Study
Nam JW
Chonnam medical journal 2021; 57: 144-151 (IGR: 22-1)


92001 Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma
Hashimoto Y
British Journal of Ophthalmology 2021; 105: 507-513 (IGR: 22-1)


92660 Improving the Power of Glaucoma Neuroprotection Trials Using Existing Visual Field Data
Montesano G
American Journal of Ophthalmology 2021; 229: 127-136 (IGR: 22-1)


92524 Comparison of the Humphrey Field Analyzer and Photopic Negative Response of Focal Macular Electroretinograms in the Evaluation of the Relationship Between Macula Structure and Function
Hirooka K
Frontiers in medicine 2021; 8: 649971 (IGR: 22-1)


92051 Circumpapillary optical coherence tomography angiography differences in perimetrically affected and unaffected hemispheres in primary open-angle glaucoma and the preperimetric fellow eye
Sihota R
Indian Journal of Ophthalmology 2021; 69: 1120-1126 (IGR: 22-1)


92552 Changes in Corneal Biomechanics and Glaucomatous Visual Field Loss
Chan E
Journal of Glaucoma 2021; 30: e246-e251 (IGR: 22-1)


92054 Use of computerized campimetry and/or optical coherence tomography for glaucoma diagnosis by non-glaucoma specialists
Franco CGVS
Arquivos Brasileiros de Oftalmologia 2021; 84: 113-120 (IGR: 22-1)


92568 Comparison of the Performance of a Novel, Smartphone-based, Head-mounted Perimeter (GearVision) With the Humphrey Field Analyzer
Pradhan ZS
Journal of Glaucoma 2021; 30: e146-e152 (IGR: 22-1)


92187 Comparison of diagnostic ability of standard automated perimetry, short wavelength automated perimetry, retinal nerve fiber layer thickness analysis and ganglion cell layer thickness analysis in early detection of glaucoma
Kalyani VK
Indian Journal of Ophthalmology 2021; 69: 1108-1112 (IGR: 22-1)


92839 Qualitative Evaluation of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma
Orbach A
American Journal of Ophthalmology 2021; 229: 26-33 (IGR: 22-1)


92617 Characterizing and quantifying the temporal relationship between structural and functional change in glaucoma
Chu FI
PLoS ONE 2021; 16: e0249212 (IGR: 22-1)


92241 Nocturnal Variability of Intraocular Pressure Monitored With Contact Lens Sensor Is Associated With Visual Field Loss in Glaucoma
Yang Z
Journal of Glaucoma 2021; 30: e56-e60 (IGR: 22-1)


91933 Rate of visual field decay in glaucomatous eyes with acquired pits of the optic nerve
Mahmoudinezhad G
British Journal of Ophthalmology 2021; 105: 381-386 (IGR: 22-1)


92649 Functional Monitoring after Trabeculectomy or XEN Microstent Implantation Using Spectral Domain Optical Coherence Tomography and Visual Field Indices-A Retrospective Comparative Cohort Study
Schargus M
Biology 2021; 10: (IGR: 22-1)


92751 The performance of iPad-based noise-field perimeter versus Humphrey Field Analyser in detecting glaucomatous visual field loss
Ding J
Eye 2022; 36: 800-811 (IGR: 22-1)


92243 Effect of internal limiting membrane peeling on visual field sensitivity in eyes with epiretinal membrane accompanied by glaucoma with hemifield defect and myopia
Kaneko H
Japanese Journal of Ophthalmology 2021; 65: 380-387 (IGR: 22-1)


92054 Use of computerized campimetry and/or optical coherence tomography for glaucoma diagnosis by non-glaucoma specialists
Ávila MP
Arquivos Brasileiros de Oftalmologia 2021; 84: 113-120 (IGR: 22-1)


92147 Glaucoma care in Germany-Results of a survey among German ophthalmologists-Part 1: diagnostics
Schuster AK
Ophthalmologe 2022; 119: 38-45 (IGR: 22-1)


92617 Characterizing and quantifying the temporal relationship between structural and functional change in glaucoma
Racette L
PLoS ONE 2021; 16: e0249212 (IGR: 22-1)


92051 Circumpapillary optical coherence tomography angiography differences in perimetrically affected and unaffected hemispheres in primary open-angle glaucoma and the preperimetric fellow eye
Shakrawal J
Indian Journal of Ophthalmology 2021; 69: 1120-1126 (IGR: 22-1)


92839 Qualitative Evaluation of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma
Ang GS
American Journal of Ophthalmology 2021; 229: 26-33 (IGR: 22-1)


92519 Variability and Power to Detect Progression of Different Visual Field Patterns
Melchior B
Ophthalmology. Glaucoma 2021; 0: (IGR: 22-1)


91933 Rate of visual field decay in glaucomatous eyes with acquired pits of the optic nerve
Lin M
British Journal of Ophthalmology 2021; 105: 381-386 (IGR: 22-1)


92086 Retinal vessel density in primary open-angle glaucoma with a hemifield defect
Sun XH
Chinese Journal of Ophthalmology 2021; 57: 201-206 (IGR: 22-1)


92241 Nocturnal Variability of Intraocular Pressure Monitored With Contact Lens Sensor Is Associated With Visual Field Loss in Glaucoma
Mansouri K
Journal of Glaucoma 2021; 30: e56-e60 (IGR: 22-1)


92001 Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma
Asaoka R
British Journal of Ophthalmology 2021; 105: 507-513 (IGR: 22-1)


92677 Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT
Bowd C
Ophthalmology 2021; 0: (IGR: 22-1)


92524 Comparison of the Humphrey Field Analyzer and Photopic Negative Response of Focal Macular Electroretinograms in the Evaluation of the Relationship Between Macula Structure and Function
Yokoyama K
Frontiers in medicine 2021; 8: 649971 (IGR: 22-1)


92187 Comparison of diagnostic ability of standard automated perimetry, short wavelength automated perimetry, retinal nerve fiber layer thickness analysis and ganglion cell layer thickness analysis in early detection of glaucoma
Bharucha KM
Indian Journal of Ophthalmology 2021; 69: 1108-1112 (IGR: 22-1)


92259 Eye-Movement-Based Assessment of the Perceptual Consequences of Glaucomatous and Neuro-Ophthalmological Visual Field Defects
Grillini A
Translational vision science & technology 2021; 10: 1 (IGR: 22-1)


92442 Central-most Visual Field Defects in Early Glaucoma
Moghimi S
Journal of Glaucoma 2021; 30: e68-e75 (IGR: 22-1)


92468 Comparison of 10-2 and 24-2C Test Grids for Identifying Central Visual Field Defects in Glaucoma and Suspect Patients
Kalloniatis M
Ophthalmology 2021; 0: (IGR: 22-1)


92568 Comparison of the Performance of a Novel, Smartphone-based, Head-mounted Perimeter (GearVision) With the Humphrey Field Analyzer
Sircar T
Journal of Glaucoma 2021; 30: e146-e152 (IGR: 22-1)


92243 Effect of internal limiting membrane peeling on visual field sensitivity in eyes with epiretinal membrane accompanied by glaucoma with hemifield defect and myopia
Hirata N
Japanese Journal of Ophthalmology 2021; 65: 380-387 (IGR: 22-1)


92404 The Effect of Transitioning from SITA Standard to SITA Faster on Visual Field Performance
Ramulu PY
Ophthalmology 2021; 0: (IGR: 22-1)


92566 Aqueous Humor Proteomic Alterations Associated with Visual Field Index Parameters in Glaucoma Patients: A Pilot Study
Lee TJ
Journal of clinical medicine 2021; 10: (IGR: 22-1)


92450 Glaucoma-related central visual field deterioration after vitrectomy for epiretinal membrane: topographic characteristics and risk factors
Higashide T
Eye 2021; 35: 919-928 (IGR: 22-1)


92725 A simplified combined index of structure and function for detecting and staging glaucomatous damage
Medeiros FA
Scientific reports 2021; 11: 3172 (IGR: 22-1)


92509 A Review of Studies of the Association of Vision-Related Quality of Life with Measures of Visual Function and Structure in Patients with Glaucoma in the United States
Pistilli M
Ophthalmic Epidemiology 2021; 28: 265-276 (IGR: 22-1)


92649 Functional Monitoring after Trabeculectomy or XEN Microstent Implantation Using Spectral Domain Optical Coherence Tomography and Visual Field Indices-A Retrospective Comparative Cohort Study
Busch C
Biology 2021; 10: (IGR: 22-1)


92250 Systematic and Random Mapping Errors in Structure - Function Analysis of the Macula
Rossetti LM
Translational vision science & technology 2021; 10: 21 (IGR: 22-1)


92751 The performance of iPad-based noise-field perimeter versus Humphrey Field Analyser in detecting glaucomatous visual field loss
Tecson IC
Eye 2022; 36: 800-811 (IGR: 22-1)


92259 Eye-Movement-Based Assessment of the Perceptual Consequences of Glaucomatous and Neuro-Ophthalmological Visual Field Defects
Grillini A
Translational vision science & technology 2021; 10: 1 (IGR: 22-1)


91883 Advances in perimetry for glaucoma
Kang JM
Current Opinions in Ophthalmology 2021; 32: 92-97 (IGR: 22-1)


92552 Changes in Corneal Biomechanics and Glaucomatous Visual Field Loss
Yeh K
Journal of Glaucoma 2021; 30: e246-e251 (IGR: 22-1)


92075 Clinical Evaluation of Unilateral Open-Angle Glaucoma: A Two-Year Follow-Up Study
Kang YS
Chonnam medical journal 2021; 57: 144-151 (IGR: 22-1)


92701 Central visual field change after fornix-based trabeculectomy in Japanese normal-tension glaucoma patients managed under 15 mmHg
Sakata R
Graefe's Archive for Clinical and Experimental Ophthalmology 2021; 259: 2309-2316 (IGR: 22-1)


92145 The Impacts of Face Mask Use on Standard Automated Perimetry Results in Glaucoma Patients
Gundogan M
Journal of Glaucoma 2021; 30: 287-292 (IGR: 22-1)


91965 Factors affecting the diagnostic performance of circumpapillary retinal nerve fibre layer measurement in glaucoma
Chua J
British Journal of Ophthalmology 2021; 105: 397-402 (IGR: 22-1)


92660 Improving the Power of Glaucoma Neuroprotection Trials Using Existing Visual Field Data
Quigley HA
American Journal of Ophthalmology 2021; 229: 127-136 (IGR: 22-1)


92011 Longitudinal Macular Ganglion Cell-Inner Plexiform Layer Measurements to Detect Glaucoma Progression in High Myopia
Song MK
American Journal of Ophthalmology 2021; 223: 9-20 (IGR: 22-1)


92618 Rapid initial OCT RNFL thinning is predictive of faster visual field loss during extended follow-up in glaucoma
Jammal AA
American Journal of Ophthalmology 2021; 229: 100-107 (IGR: 22-1)


92404 The Effect of Transitioning from SITA Standard to SITA Faster on Visual Field Performance
Boland MV
Ophthalmology 2021; 0: (IGR: 22-1)


92566 Aqueous Humor Proteomic Alterations Associated with Visual Field Index Parameters in Glaucoma Patients: A Pilot Study
Bollinger K
Journal of clinical medicine 2021; 10: (IGR: 22-1)


92442 Central-most Visual Field Defects in Early Glaucoma
De Moraes CG
Journal of Glaucoma 2021; 30: e68-e75 (IGR: 22-1)


92701 Central visual field change after fornix-based trabeculectomy in Japanese normal-tension glaucoma patients managed under 15 mmHg
Ueda K
Graefe's Archive for Clinical and Experimental Ophthalmology 2021; 259: 2309-2316 (IGR: 22-1)


92509 A Review of Studies of the Association of Vision-Related Quality of Life with Measures of Visual Function and Structure in Patients with Glaucoma in the United States
Maguire MG
Ophthalmic Epidemiology 2021; 28: 265-276 (IGR: 22-1)


92241 Nocturnal Variability of Intraocular Pressure Monitored With Contact Lens Sensor Is Associated With Visual Field Loss in Glaucoma
Moghimi S
Journal of Glaucoma 2021; 30: e56-e60 (IGR: 22-1)


92524 Comparison of the Humphrey Field Analyzer and Photopic Negative Response of Focal Macular Electroretinograms in the Evaluation of the Relationship Between Macula Structure and Function
Tokumo K
Frontiers in medicine 2021; 8: 649971 (IGR: 22-1)


92075 Clinical Evaluation of Unilateral Open-Angle Glaucoma: A Two-Year Follow-Up Study
Sung MS
Chonnam medical journal 2021; 57: 144-151 (IGR: 22-1)


92649 Functional Monitoring after Trabeculectomy or XEN Microstent Implantation Using Spectral Domain Optical Coherence Tomography and Visual Field Indices-A Retrospective Comparative Cohort Study
Rehak M
Biology 2021; 10: (IGR: 22-1)


92001 Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma
Kiwaki T
British Journal of Ophthalmology 2021; 105: 507-513 (IGR: 22-1)


92568 Comparison of the Performance of a Novel, Smartphone-based, Head-mounted Perimeter (GearVision) With the Humphrey Field Analyzer
Agrawal H
Journal of Glaucoma 2021; 30: e146-e152 (IGR: 22-1)


92660 Improving the Power of Glaucoma Neuroprotection Trials Using Existing Visual Field Data
Crabb DP
American Journal of Ophthalmology 2021; 229: 127-136 (IGR: 22-1)


92250 Systematic and Random Mapping Errors in Structure - Function Analysis of the Macula
Allegrini D
Translational vision science & technology 2021; 10: 21 (IGR: 22-1)


92243 Effect of internal limiting membrane peeling on visual field sensitivity in eyes with epiretinal membrane accompanied by glaucoma with hemifield defect and myopia
Shimizu H
Japanese Journal of Ophthalmology 2021; 65: 380-387 (IGR: 22-1)


92552 Changes in Corneal Biomechanics and Glaucomatous Visual Field Loss
Moghimi S
Journal of Glaucoma 2021; 30: e246-e251 (IGR: 22-1)


92054 Use of computerized campimetry and/or optical coherence tomography for glaucoma diagnosis by non-glaucoma specialists
Magacho L
Arquivos Brasileiros de Oftalmologia 2021; 84: 113-120 (IGR: 22-1)


91965 Factors affecting the diagnostic performance of circumpapillary retinal nerve fibre layer measurement in glaucoma
Baskaran M
British Journal of Ophthalmology 2021; 105: 397-402 (IGR: 22-1)


92751 The performance of iPad-based noise-field perimeter versus Humphrey Field Analyser in detecting glaucomatous visual field loss
Ang BCH
Eye 2022; 36: 800-811 (IGR: 22-1)


92618 Rapid initial OCT RNFL thinning is predictive of faster visual field loss during extended follow-up in glaucoma
Berchuck SI
American Journal of Ophthalmology 2021; 229: 100-107 (IGR: 22-1)


91883 Advances in perimetry for glaucoma
Tanna AP
Current Opinions in Ophthalmology 2021; 32: 92-97 (IGR: 22-1)


91933 Rate of visual field decay in glaucomatous eyes with acquired pits of the optic nerve
Rabiolo A
British Journal of Ophthalmology 2021; 105: 381-386 (IGR: 22-1)


92011 Longitudinal Macular Ganglion Cell-Inner Plexiform Layer Measurements to Detect Glaucoma Progression in High Myopia
Sung KR
American Journal of Ophthalmology 2021; 223: 9-20 (IGR: 22-1)


92051 Circumpapillary optical coherence tomography angiography differences in perimetrically affected and unaffected hemispheres in primary open-angle glaucoma and the preperimetric fellow eye
Azad SV
Indian Journal of Ophthalmology 2021; 69: 1120-1126 (IGR: 22-1)


92677 Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT
Proudfoot JA
Ophthalmology 2021; 0: (IGR: 22-1)


92839 Qualitative Evaluation of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma
Camp AS
American Journal of Ophthalmology 2021; 229: 26-33 (IGR: 22-1)


92618 Rapid initial OCT RNFL thinning is predictive of faster visual field loss during extended follow-up in glaucoma
Berchuck SI
American Journal of Ophthalmology 2021; 229: 100-107 (IGR: 22-1)


92145 The Impacts of Face Mask Use on Standard Automated Perimetry Results in Glaucoma Patients
Ozsaygili C
Journal of Glaucoma 2021; 30: 287-292 (IGR: 22-1)


92450 Glaucoma-related central visual field deterioration after vitrectomy for epiretinal membrane: topographic characteristics and risk factors
Udagawa S
Eye 2021; 35: 919-928 (IGR: 22-1)


92519 Variability and Power to Detect Progression of Different Visual Field Patterns
Paula JS
Ophthalmology. Glaucoma 2021; 0: (IGR: 22-1)


92187 Comparison of diagnostic ability of standard automated perimetry, short wavelength automated perimetry, retinal nerve fiber layer thickness analysis and ganglion cell layer thickness analysis in early detection of glaucoma
Goyal N
Indian Journal of Ophthalmology 2021; 69: 1108-1112 (IGR: 22-1)


92259 Eye-Movement-Based Assessment of the Perceptual Consequences of Glaucomatous and Neuro-Ophthalmological Visual Field Defects
Saxena R
Translational vision science & technology 2021; 10: 1 (IGR: 22-1)


92568 Comparison of the Performance of a Novel, Smartphone-based, Head-mounted Perimeter (GearVision) With the Humphrey Field Analyzer
Rao HL
Journal of Glaucoma 2021; 30: e146-e152 (IGR: 22-1)


92649 Functional Monitoring after Trabeculectomy or XEN Microstent Implantation Using Spectral Domain Optical Coherence Tomography and Visual Field Indices-A Retrospective Comparative Cohort Study
Meng J
Biology 2021; 10: (IGR: 22-1)


92250 Systematic and Random Mapping Errors in Structure - Function Analysis of the Macula
Romano MR
Translational vision science & technology 2021; 10: 21 (IGR: 22-1)


92751 The performance of iPad-based noise-field perimeter versus Humphrey Field Analyser in detecting glaucomatous visual field loss
Chiew W
Eye 2022; 36: 800-811 (IGR: 22-1)


92552 Changes in Corneal Biomechanics and Glaucomatous Visual Field Loss
Proudfoot J
Journal of Glaucoma 2021; 30: e246-e251 (IGR: 22-1)


92519 Variability and Power to Detect Progression of Different Visual Field Patterns
Boland MV
Ophthalmology. Glaucoma 2021; 0: (IGR: 22-1)


92187 Comparison of diagnostic ability of standard automated perimetry, short wavelength automated perimetry, retinal nerve fiber layer thickness analysis and ganglion cell layer thickness analysis in early detection of glaucoma
Deshpande MM
Indian Journal of Ophthalmology 2021; 69: 1108-1112 (IGR: 22-1)


92839 Qualitative Evaluation of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma
Welsbie DS
American Journal of Ophthalmology 2021; 229: 26-33 (IGR: 22-1)


92001 Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma
Sugiura H
British Journal of Ophthalmology 2021; 105: 507-513 (IGR: 22-1)


92243 Effect of internal limiting membrane peeling on visual field sensitivity in eyes with epiretinal membrane accompanied by glaucoma with hemifield defect and myopia
Kataoka K
Japanese Journal of Ophthalmology 2021; 65: 380-387 (IGR: 22-1)


92259 Eye-Movement-Based Assessment of the Perceptual Consequences of Glaucomatous and Neuro-Ophthalmological Visual Field Defects
Renken RJ
Translational vision science & technology 2021; 10: 1 (IGR: 22-1)


92552 Changes in Corneal Biomechanics and Glaucomatous Visual Field Loss
Proudfoot J
Journal of Glaucoma 2021; 30: e246-e251 (IGR: 22-1)


92404 The Effect of Transitioning from SITA Standard to SITA Faster on Visual Field Performance
Yohannan J
Ophthalmology 2021; 0: (IGR: 22-1)


92075 Clinical Evaluation of Unilateral Open-Angle Glaucoma: A Two-Year Follow-Up Study
Park SW
Chonnam medical journal 2021; 57: 144-151 (IGR: 22-1)


92450 Glaucoma-related central visual field deterioration after vitrectomy for epiretinal membrane: topographic characteristics and risk factors
Sugiyama K
Eye 2021; 35: 919-928 (IGR: 22-1)


92618 Rapid initial OCT RNFL thinning is predictive of faster visual field loss during extended follow-up in glaucoma
Medeiros FA
American Journal of Ophthalmology 2021; 229: 100-107 (IGR: 22-1)


92701 Central visual field change after fornix-based trabeculectomy in Japanese normal-tension glaucoma patients managed under 15 mmHg
Fujita A
Graefe's Archive for Clinical and Experimental Ophthalmology 2021; 259: 2309-2316 (IGR: 22-1)


92145 The Impacts of Face Mask Use on Standard Automated Perimetry Results in Glaucoma Patients
Vural E
Journal of Glaucoma 2021; 30: 287-292 (IGR: 22-1)


92509 A Review of Studies of the Association of Vision-Related Quality of Life with Measures of Visual Function and Structure in Patients with Glaucoma in the United States
Chang AY
Ophthalmic Epidemiology 2021; 28: 265-276 (IGR: 22-1)


92241 Nocturnal Variability of Intraocular Pressure Monitored With Contact Lens Sensor Is Associated With Visual Field Loss in Glaucoma
Weinreb RN
Journal of Glaucoma 2021; 30: e56-e60 (IGR: 22-1)


92677 Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT
Belghith A
Ophthalmology 2021; 0: (IGR: 22-1)


91933 Rate of visual field decay in glaucomatous eyes with acquired pits of the optic nerve
Morales E
British Journal of Ophthalmology 2021; 105: 381-386 (IGR: 22-1)


91965 Factors affecting the diagnostic performance of circumpapillary retinal nerve fibre layer measurement in glaucoma
Tan B
British Journal of Ophthalmology 2021; 105: 397-402 (IGR: 22-1)


92051 Circumpapillary optical coherence tomography angiography differences in perimetrically affected and unaffected hemispheres in primary open-angle glaucoma and the preperimetric fellow eye
Kamble N
Indian Journal of Ophthalmology 2021; 69: 1120-1126 (IGR: 22-1)


92442 Central-most Visual Field Defects in Early Glaucoma
Weinreb RN
Journal of Glaucoma 2021; 30: e68-e75 (IGR: 22-1)


92566 Aqueous Humor Proteomic Alterations Associated with Visual Field Index Parameters in Glaucoma Patients: A Pilot Study
Ulrich L
Journal of clinical medicine 2021; 10: (IGR: 22-1)


92524 Comparison of the Humphrey Field Analyzer and Photopic Negative Response of Focal Macular Electroretinograms in the Evaluation of the Relationship Between Macula Structure and Function
Kiuchi Y
Frontiers in medicine 2021; 8: 649971 (IGR: 22-1)


92509 A Review of Studies of the Association of Vision-Related Quality of Life with Measures of Visual Function and Structure in Patients with Glaucoma in the United States
Samuels MR
Ophthalmic Epidemiology 2021; 28: 265-276 (IGR: 22-1)


92259 Eye-Movement-Based Assessment of the Perceptual Consequences of Glaucomatous and Neuro-Ophthalmological Visual Field Defects
Gandhi TK
Translational vision science & technology 2021; 10: 1 (IGR: 22-1)


91933 Rate of visual field decay in glaucomatous eyes with acquired pits of the optic nerve
Hirunpatravong P
British Journal of Ophthalmology 2021; 105: 381-386 (IGR: 22-1)


92145 The Impacts of Face Mask Use on Standard Automated Perimetry Results in Glaucoma Patients
Cicek A
Journal of Glaucoma 2021; 30: 287-292 (IGR: 22-1)


92751 The performance of iPad-based noise-field perimeter versus Humphrey Field Analyser in detecting glaucomatous visual field loss
Chua C
Eye 2022; 36: 800-811 (IGR: 22-1)


92839 Qualitative Evaluation of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma
Medeiros FA
American Journal of Ophthalmology 2021; 229: 26-33 (IGR: 22-1)


92677 Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT
Goldbaum MH
Ophthalmology 2021; 0: (IGR: 22-1)


92701 Central visual field change after fornix-based trabeculectomy in Japanese normal-tension glaucoma patients managed under 15 mmHg
Fujishiro T
Graefe's Archive for Clinical and Experimental Ophthalmology 2021; 259: 2309-2316 (IGR: 22-1)


92649 Functional Monitoring after Trabeculectomy or XEN Microstent Implantation Using Spectral Domain Optical Coherence Tomography and Visual Field Indices-A Retrospective Comparative Cohort Study
Schmidt M
Biology 2021; 10: (IGR: 22-1)


92250 Systematic and Random Mapping Errors in Structure - Function Analysis of the Macula
Garway-Heath DF
Translational vision science & technology 2021; 10: 21 (IGR: 22-1)


92051 Circumpapillary optical coherence tomography angiography differences in perimetrically affected and unaffected hemispheres in primary open-angle glaucoma and the preperimetric fellow eye
Dada T
Indian Journal of Ophthalmology 2021; 69: 1120-1126 (IGR: 22-1)


92566 Aqueous Humor Proteomic Alterations Associated with Visual Field Index Parameters in Glaucoma Patients: A Pilot Study
Bogorad D
Journal of clinical medicine 2021; 10: (IGR: 22-1)


91965 Factors affecting the diagnostic performance of circumpapillary retinal nerve fibre layer measurement in glaucoma
Yao X
British Journal of Ophthalmology 2021; 105: 397-402 (IGR: 22-1)


92519 Variability and Power to Detect Progression of Different Visual Field Patterns
Myers JS
Ophthalmology. Glaucoma 2021; 0: (IGR: 22-1)


92001 Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma
Asano S
British Journal of Ophthalmology 2021; 105: 507-513 (IGR: 22-1)


92552 Changes in Corneal Biomechanics and Glaucomatous Visual Field Loss
Liu X
Journal of Glaucoma 2021; 30: e246-e251 (IGR: 22-1)


92243 Effect of internal limiting membrane peeling on visual field sensitivity in eyes with epiretinal membrane accompanied by glaucoma with hemifield defect and myopia
Nonobe N
Japanese Journal of Ophthalmology 2021; 65: 380-387 (IGR: 22-1)


92568 Comparison of the Performance of a Novel, Smartphone-based, Head-mounted Perimeter (GearVision) With the Humphrey Field Analyzer
Bopardikar A
Journal of Glaucoma 2021; 30: e146-e152 (IGR: 22-1)


92552 Changes in Corneal Biomechanics and Glaucomatous Visual Field Loss
Zangwill L
Journal of Glaucoma 2021; 30: e246-e251 (IGR: 22-1)


91933 Rate of visual field decay in glaucomatous eyes with acquired pits of the optic nerve
Sharifipour F
British Journal of Ophthalmology 2021; 105: 381-386 (IGR: 22-1)


92243 Effect of internal limiting membrane peeling on visual field sensitivity in eyes with epiretinal membrane accompanied by glaucoma with hemifield defect and myopia
Mokuno K
Japanese Journal of Ophthalmology 2021; 65: 380-387 (IGR: 22-1)


91965 Factors affecting the diagnostic performance of circumpapillary retinal nerve fibre layer measurement in glaucoma
Chan S
British Journal of Ophthalmology 2021; 105: 397-402 (IGR: 22-1)


92566 Aqueous Humor Proteomic Alterations Associated with Visual Field Index Parameters in Glaucoma Patients: A Pilot Study
Estes A
Journal of clinical medicine 2021; 10: (IGR: 22-1)


92509 A Review of Studies of the Association of Vision-Related Quality of Life with Measures of Visual Function and Structure in Patients with Glaucoma in the United States
Mulvihill K
Ophthalmic Epidemiology 2021; 28: 265-276 (IGR: 22-1)


92701 Central visual field change after fornix-based trabeculectomy in Japanese normal-tension glaucoma patients managed under 15 mmHg
Honjo M
Graefe's Archive for Clinical and Experimental Ophthalmology 2021; 259: 2309-2316 (IGR: 22-1)


92568 Comparison of the Performance of a Novel, Smartphone-based, Head-mounted Perimeter (GearVision) With the Humphrey Field Analyzer
Devi S
Journal of Glaucoma 2021; 30: e146-e152 (IGR: 22-1)


92649 Functional Monitoring after Trabeculectomy or XEN Microstent Implantation Using Spectral Domain Optical Coherence Tomography and Visual Field Indices-A Retrospective Comparative Cohort Study
Bormann C
Biology 2021; 10: (IGR: 22-1)


92839 Qualitative Evaluation of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma
Girkin CA
American Journal of Ophthalmology 2021; 229: 26-33 (IGR: 22-1)


92001 Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma
Murata H
British Journal of Ophthalmology 2021; 105: 507-513 (IGR: 22-1)


92519 Variability and Power to Detect Progression of Different Visual Field Patterns
Wellik SR
Ophthalmology. Glaucoma 2021; 0: (IGR: 22-1)


92250 Systematic and Random Mapping Errors in Structure - Function Analysis of the Macula
Crabb DP
Translational vision science & technology 2021; 10: 21 (IGR: 22-1)


92751 The performance of iPad-based noise-field perimeter versus Humphrey Field Analyser in detecting glaucomatous visual field loss
Yip LWL
Eye 2022; 36: 800-811 (IGR: 22-1)


92259 Eye-Movement-Based Assessment of the Perceptual Consequences of Glaucomatous and Neuro-Ophthalmological Visual Field Defects
Cornelissen FW
Translational vision science & technology 2021; 10: 1 (IGR: 22-1)


92677 Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT
Rezapour J
Ophthalmology 2021; 0: (IGR: 22-1)


91965 Factors affecting the diagnostic performance of circumpapillary retinal nerve fibre layer measurement in glaucoma
Tham YC
British Journal of Ophthalmology 2021; 105: 397-402 (IGR: 22-1)


92839 Qualitative Evaluation of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma
Fazio MA
American Journal of Ophthalmology 2021; 229: 26-33 (IGR: 22-1)


92568 Comparison of the Performance of a Novel, Smartphone-based, Head-mounted Perimeter (GearVision) With the Humphrey Field Analyzer
Tiwari VN
Journal of Glaucoma 2021; 30: e146-e152 (IGR: 22-1)


92677 Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT
Fazio MA
Ophthalmology 2021; 0: (IGR: 22-1)


92243 Effect of internal limiting membrane peeling on visual field sensitivity in eyes with epiretinal membrane accompanied by glaucoma with hemifield defect and myopia
Terasaki H
Japanese Journal of Ophthalmology 2021; 65: 380-387 (IGR: 22-1)


92552 Changes in Corneal Biomechanics and Glaucomatous Visual Field Loss
Weinreb RN
Journal of Glaucoma 2021; 30: e246-e251 (IGR: 22-1)


91933 Rate of visual field decay in glaucomatous eyes with acquired pits of the optic nerve
Caprioli J
British Journal of Ophthalmology 2021; 105: 381-386 (IGR: 22-1)


92566 Aqueous Humor Proteomic Alterations Associated with Visual Field Index Parameters in Glaucoma Patients: A Pilot Study
Zhi W
Journal of clinical medicine 2021; 10: (IGR: 22-1)


92649 Functional Monitoring after Trabeculectomy or XEN Microstent Implantation Using Spectral Domain Optical Coherence Tomography and Visual Field Indices-A Retrospective Comparative Cohort Study
Unterlauft JD
Biology 2021; 10: (IGR: 22-1)


92701 Central visual field change after fornix-based trabeculectomy in Japanese normal-tension glaucoma patients managed under 15 mmHg
Shirato S
Graefe's Archive for Clinical and Experimental Ophthalmology 2021; 259: 2309-2316 (IGR: 22-1)


92519 Variability and Power to Detect Progression of Different Visual Field Patterns
Elze T
Ophthalmology. Glaucoma 2021; 0: (IGR: 22-1)


92001 Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma
Fujino Y
British Journal of Ophthalmology 2021; 105: 507-513 (IGR: 22-1)


92509 A Review of Studies of the Association of Vision-Related Quality of Life with Measures of Visual Function and Structure in Patients with Glaucoma in the United States
Salowe RJ
Ophthalmic Epidemiology 2021; 28: 265-276 (IGR: 22-1)


92701 Central visual field change after fornix-based trabeculectomy in Japanese normal-tension glaucoma patients managed under 15 mmHg
Aihara M
Graefe's Archive for Clinical and Experimental Ophthalmology 2021; 259: 2309-2316 (IGR: 22-1)


92677 Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT
Girkin CA
Ophthalmology 2021; 0: (IGR: 22-1)


92519 Variability and Power to Detect Progression of Different Visual Field Patterns
Pasquale LR
Ophthalmology. Glaucoma 2021; 0: (IGR: 22-1)


92566 Aqueous Humor Proteomic Alterations Associated with Visual Field Index Parameters in Glaucoma Patients: A Pilot Study
Sharma S
Journal of clinical medicine 2021; 10: (IGR: 22-1)


92509 A Review of Studies of the Association of Vision-Related Quality of Life with Measures of Visual Function and Structure in Patients with Glaucoma in the United States
O'Brien JM
Ophthalmic Epidemiology 2021; 28: 265-276 (IGR: 22-1)


91965 Factors affecting the diagnostic performance of circumpapillary retinal nerve fibre layer measurement in glaucoma
Chong R
British Journal of Ophthalmology 2021; 105: 397-402 (IGR: 22-1)


92001 Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma
Matsuura M
British Journal of Ophthalmology 2021; 105: 507-513 (IGR: 22-1)


92839 Qualitative Evaluation of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma
Oh WH
American Journal of Ophthalmology 2021; 229: 26-33 (IGR: 22-1)


92519 Variability and Power to Detect Progression of Different Visual Field Patterns
Shen LQ
Ophthalmology. Glaucoma 2021; 0: (IGR: 22-1)


92677 Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT
De Moraes G
Ophthalmology 2021; 0: (IGR: 22-1)


92566 Aqueous Humor Proteomic Alterations Associated with Visual Field Index Parameters in Glaucoma Patients: A Pilot Study
Sharma A
Journal of clinical medicine 2021; 10: (IGR: 22-1)


91965 Factors affecting the diagnostic performance of circumpapillary retinal nerve fibre layer measurement in glaucoma
Aung T
British Journal of Ophthalmology 2021; 105: 397-402 (IGR: 22-1)


92001 Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma
Miki A
British Journal of Ophthalmology 2021; 105: 507-513 (IGR: 22-1)


92839 Qualitative Evaluation of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma
Weinreb RN
American Journal of Ophthalmology 2021; 229: 26-33 (IGR: 22-1)


92677 Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT
Liebmann JM
Ophthalmology 2021; 0: (IGR: 22-1)


92001 Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma
Mori K
British Journal of Ophthalmology 2021; 105: 507-513 (IGR: 22-1)


92519 Variability and Power to Detect Progression of Different Visual Field Patterns
Ritch R
Ophthalmology. Glaucoma 2021; 0: (IGR: 22-1)


91965 Factors affecting the diagnostic performance of circumpapillary retinal nerve fibre layer measurement in glaucoma
Lamoureux EL
British Journal of Ophthalmology 2021; 105: 397-402 (IGR: 22-1)


92839 Qualitative Evaluation of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma
Zangwill LM
American Journal of Ophthalmology 2021; 229: 26-33 (IGR: 22-1)


92001 Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma
Ikeda Y
British Journal of Ophthalmology 2021; 105: 507-513 (IGR: 22-1)


92839 Qualitative Evaluation of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma
Wu Z
American Journal of Ophthalmology 2021; 229: 26-33 (IGR: 22-1)


92519 Variability and Power to Detect Progression of Different Visual Field Patterns
Susanna R
Ophthalmology. Glaucoma 2021; 0: (IGR: 22-1)


92677 Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT
Weinreb RN
Ophthalmology 2021; 0: (IGR: 22-1)


91965 Factors affecting the diagnostic performance of circumpapillary retinal nerve fibre layer measurement in glaucoma
Vithana EN; Cheng CY
British Journal of Ophthalmology 2021; 105: 397-402 (IGR: 22-1)


92519 Variability and Power to Detect Progression of Different Visual Field Patterns
Hood DC
Ophthalmology. Glaucoma 2021; 0: (IGR: 22-1)


92677 Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT
Zangwill LM
Ophthalmology 2021; 0: (IGR: 22-1)


92001 Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma
Kanamoto T
British Journal of Ophthalmology 2021; 105: 507-513 (IGR: 22-1)


91965 Factors affecting the diagnostic performance of circumpapillary retinal nerve fibre layer measurement in glaucoma
Schmetterer L
British Journal of Ophthalmology 2021; 105: 397-402 (IGR: 22-1)


92001 Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma
Yamagami J
British Journal of Ophthalmology 2021; 105: 507-513 (IGR: 22-1)


92519 Variability and Power to Detect Progression of Different Visual Field Patterns
Liebmann JM; De Moraes CG
Ophthalmology. Glaucoma 2021; 0: (IGR: 22-1)


92001 Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma
Inoue K; Tanito M; Yamanishi K
British Journal of Ophthalmology 2021; 105: 507-513 (IGR: 22-1)


91173 Visual Field Artifacts in Glaucoma With Face Mask Use During the COVID-19 Pandemic
El-Nimri NW
Journal of Glaucoma 2020; 29: 1184-1188 (IGR: 21-4)


91659 Visual Field Reconstruction Using fMRI-Based Techniques
Carvalho J
Translational vision science & technology 2021; 10: 25 (IGR: 21-4)


91393 Effect of Sensitivity Disparity Between the Two Eyes on Pointwise Monocular Sensitivity Under Binocular Viewing in Patients With Glaucoma
Wakayama A
Journal of Glaucoma 2021; 30: 37-43 (IGR: 21-4)


91729 Effects of Criterion Bias on Perimetric Sensitivity and Response Variability in Glaucoma
Rubinstein NJ
Translational vision science & technology 2021; 10: 18 (IGR: 21-4)


91769 Time Lag Between Functional Change and Loss of Retinal Nerve Fiber Layer in Glaucoma
Gardiner SK
Investigative Ophthalmology and Visual Science 2020; 61: 5 (IGR: 21-4)


91519 Comparison of Advanced Threshold and SITA Fast Perimetric Strategies
Sikorski BL
Journal of Ophthalmology 2020; 2020: 7139649 (IGR: 21-4)


91785 Correlation of Visual Field With Peripapillary Vessel Density Through Optical Coherence Tomography Angiography in Normal-Tension Glaucoma
Lin YH
Translational vision science & technology 2020; 9: 26 (IGR: 21-4)


91675 Assessing glaucoma deterioration using Spaeth/Richman contrast sensitivity test
Ichhpujani P
Therapeutic advances in ophthalmology 2020; 12: 2515841420977412 (IGR: 21-4)


91539 Relationship between mean follow-up intraocular pressure, rates of visual field progression and current target intraocular pressure guidelines
Melchior B
British Journal of Ophthalmology 2022; 106: 229-233 (IGR: 21-4)


91707 Comparing the usefulness of a new algorithm to measure visual field using the variational Bayes linear regression in glaucoma patients, in comparison to the Swedish interactive thresholding algorithm
Murata H
British Journal of Ophthalmology 2022; 106: 660-666 (IGR: 21-4)


91862 Quantification of the Peripapillary Microvasculature in Eyes with Glaucomatous Paracentral Visual Field Loss
Nascimento E Silva R
Ophthalmology. Glaucoma 2021; 4: 286-294 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Liu X
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91173 Visual Field Artifacts in Glaucoma With Face Mask Use During the COVID-19 Pandemic
El-Nimri NW
Journal of Glaucoma 2020; 29: 1184-1188 (IGR: 21-4)


91249 Preliminary Report on a Novel Virtual Reality Perimeter Compared With Standard Automated Perimetry
Razeghinejad R
Journal of Glaucoma 2021; 30: 17-23 (IGR: 21-4)


91009 Comparison of 24-2 Faster, Fast, and Standard Programs of Swedish Interactive Threshold Algorithm of Humphrey Field Analyzer for Perimetry in Patients With Manifest and Suspect Glaucoma
Thulasidas M
Journal of Glaucoma 2020; 29: 1070-1076 (IGR: 21-4)


91676 Retinal Sensitivity Thresholds Obtained Through Easyfield and Humphrey Perimeters in Eyes with Glaucoma: A Cross-Sectional Comparative Study
Nazareth T
Clinical Ophthalmology 2020; 14: 4201-4207 (IGR: 21-4)


91612 Optical coherence tomography angiography and the visual field in hypertensive and normotensive glaucoma
Zakova M
Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 2021; 165: 441-444 (IGR: 21-4)


91120 The Computerized Glaucoma Visual Function Test: A Pilot Study Evaluating Computer-Screen Based Tests of Visual Function in Glaucoma
Jong C
Translational vision science & technology 2020; 9: 9 (IGR: 21-4)


91639 Assessing Functional Disability in Glaucoma: The Relative Importance of Central Versus Far Peripheral Visual Fields
Odden JL
Investigative Ophthalmology and Visual Science 2020; 61: 23 (IGR: 21-4)


91214 Association of dipping status of blood pressure, visual field defects, and retinal nerve fiber layer thickness in patients with normotensive glaucoma
Lee SU
Medicine 2020; 99: e23565 (IGR: 21-4)


91376 Impact of binocular visual field loss on driving performance in glaucoma patients
Jiang ZY
International Journal of Ophthalmology 2021; 14: 112-119 (IGR: 21-4)


91306 VISUAL FIELD ASSESSMENT IN HYPERTENSION GLAUCOMA
Lešták J
?eska a Slovenska Oftalmologie 2021; 77: 22-26 (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Liu WW
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91733 Comparison of the structure-function relationship between compass microperimetry and Humphrey field analyser in myopic open-angle glaucoma eyes
Shin JW
British Journal of Ophthalmology 2022; 106: 485-490 (IGR: 21-4)


91608 Functional characteristics of glaucoma related arcuate defects seen on OCT en face visualisation of the retinal nerve fibre layer
Ashimatey BS
Ophthalmic and Physiological Optics 2021; 41: 437-446 (IGR: 21-4)


91111 Discrepancy in Loss of Macular Perfusion Density and Ganglion Cell Layer Thickness in Early Glaucoma
Hirasawa K
American Journal of Ophthalmology 2021; 221: 39-47 (IGR: 21-4)


91528 Predicting Glaucoma Development With Longitudinal Deep Learning Predictions From Fundus Photographs
Lee T
American Journal of Ophthalmology 2021; 225: 86-94 (IGR: 21-4)


91564 Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes
Ekici E
American Journal of Ophthalmology 2021; 223: 229-240 (IGR: 21-4)


91518 A case control study examining the feasibility of using eye tracking perimetry to differentiate patients with glaucoma from healthy controls
Tatham AJ
Scientific reports 2021; 11: 839 (IGR: 21-4)


91338 Effect of retinal protective therapy on optical coherence tomography angiography (pilot study)
Dorofeev DA
Vestnik Oftalmologii 2021; 137: 60-67 (IGR: 21-4)


91310 Validating tablet perimetry against standard Humphrey Visual Field Analyzer for glaucoma screening in Indian population
Ichhpujani P
Indian Journal of Ophthalmology 2021; 69: 87-91 (IGR: 21-4)


91476 Vision-related quality of life in adults with severe peripheral vision loss: a qualitative interview study
Lange R
Journal of patient-reported outcomes 2021; 5: 7 (IGR: 21-4)


91312 Impact of binocular integrated visual field defects on healthy related quality of life in glaucoma
Zhao C
Medicine 2021; 100: e24069 (IGR: 21-4)


91802 Association of Patterns of Glaucomatous Macular Damage With Contrast Sensitivity and Facial Recognition in Patients With Glaucoma
Hirji SH
JAMA ophthalmology 2021; 139: 27-32 (IGR: 21-4)


91230 Evaluation of the external validity of a joint structure-function model for monitoring glaucoma progression
Abu SL
Scientific reports 2020; 10: 19701 (IGR: 21-4)


90900 Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice
Mursch-Edlmayr AS
Translational vision science & technology 2020; 9: 55 (IGR: 21-4)


91286 Detection of functional deterioration in glaucoma by trend analysis using comprehensive overlapping clusters of locations
Gardiner SK
Scientific reports 2020; 10: 18470 (IGR: 21-4)


91812 Predicting Global Test-Retest Variability of Visual Fields in Glaucoma
Choi EY
Ophthalmology. Glaucoma 2021; 4: 390-399 (IGR: 21-4)


91547 Prediction of Visual Field Progression from OCT Structural Measures in Moderate to Advanced Glaucoma
Nouri-Mahdavi K
American Journal of Ophthalmology 2021; 226: 172-181 (IGR: 21-4)


91834 Association of Nailfold Capillary Abnormalities With Primary Open-angle Glaucoma and Glaucomatous Visual Field Loss
Goh H
Journal of Glaucoma 2021; 30: 50-57 (IGR: 21-4)


91286 Detection of functional deterioration in glaucoma by trend analysis using comprehensive overlapping clusters of locations
Mansberger SL
Scientific reports 2020; 10: 18470 (IGR: 21-4)


91676 Retinal Sensitivity Thresholds Obtained Through Easyfield and Humphrey Perimeters in Eyes with Glaucoma: A Cross-Sectional Comparative Study
Rocha J
Clinical Ophthalmology 2020; 14: 4201-4207 (IGR: 21-4)


91564 Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes
Moghimi S
American Journal of Ophthalmology 2021; 223: 229-240 (IGR: 21-4)


90900 Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice
Ng WS
Translational vision science & technology 2020; 9: 55 (IGR: 21-4)


91812 Predicting Global Test-Retest Variability of Visual Fields in Glaucoma
Li D
Ophthalmology. Glaucoma 2021; 4: 390-399 (IGR: 21-4)


91306 VISUAL FIELD ASSESSMENT IN HYPERTENSION GLAUCOMA
Fůs M
?eska a Slovenska Oftalmologie 2021; 77: 22-26 (IGR: 21-4)


91608 Functional characteristics of glaucoma related arcuate defects seen on OCT en face visualisation of the retinal nerve fibre layer
King BJ
Ophthalmic and Physiological Optics 2021; 41: 437-446 (IGR: 21-4)


91111 Discrepancy in Loss of Macular Perfusion Density and Ganglion Cell Layer Thickness in Early Glaucoma
Smith CA
American Journal of Ophthalmology 2021; 221: 39-47 (IGR: 21-4)


91528 Predicting Glaucoma Development With Longitudinal Deep Learning Predictions From Fundus Photographs
Jammal AA
American Journal of Ophthalmology 2021; 225: 86-94 (IGR: 21-4)


91659 Visual Field Reconstruction Using fMRI-Based Techniques
Invernizzi A
Translational vision science & technology 2021; 10: 25 (IGR: 21-4)


91376 Impact of binocular visual field loss on driving performance in glaucoma patients
Chen J
International Journal of Ophthalmology 2021; 14: 112-119 (IGR: 21-4)


91338 Effect of retinal protective therapy on optical coherence tomography angiography (pilot study)
Kirilik EV
Vestnik Oftalmologii 2021; 137: 60-67 (IGR: 21-4)


91310 Validating tablet perimetry against standard Humphrey Visual Field Analyzer for glaucoma screening in Indian population
Thakur S
Indian Journal of Ophthalmology 2021; 69: 87-91 (IGR: 21-4)


91834 Association of Nailfold Capillary Abnormalities With Primary Open-angle Glaucoma and Glaucomatous Visual Field Loss
Kersten HM
Journal of Glaucoma 2021; 30: 50-57 (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
McClurkin M
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91769 Time Lag Between Functional Change and Loss of Retinal Nerve Fiber Layer in Glaucoma
Mansberger SL
Investigative Ophthalmology and Visual Science 2020; 61: 5 (IGR: 21-4)


91519 Comparison of Advanced Threshold and SITA Fast Perimetric Strategies
Laudencka A
Journal of Ophthalmology 2020; 2020: 7139649 (IGR: 21-4)


91230 Evaluation of the external validity of a joint structure-function model for monitoring glaucoma progression
KhalafAllah MT
Scientific reports 2020; 10: 19701 (IGR: 21-4)


91707 Comparing the usefulness of a new algorithm to measure visual field using the variational Bayes linear regression in glaucoma patients, in comparison to the Swedish interactive thresholding algorithm
Asaoka R
British Journal of Ophthalmology 2022; 106: 660-666 (IGR: 21-4)


91862 Quantification of the Peripapillary Microvasculature in Eyes with Glaucomatous Paracentral Visual Field Loss
Chiou CA
Ophthalmology. Glaucoma 2021; 4: 286-294 (IGR: 21-4)


91173 Visual Field Artifacts in Glaucoma With Face Mask Use During the COVID-19 Pandemic
Moghimi S
Journal of Glaucoma 2020; 29: 1184-1188 (IGR: 21-4)


91802 Association of Patterns of Glaucomatous Macular Damage With Contrast Sensitivity and Facial Recognition in Patients With Glaucoma
Hood DC
JAMA ophthalmology 2021; 139: 27-32 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Lau A
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91214 Association of dipping status of blood pressure, visual field defects, and retinal nerve fiber layer thickness in patients with normotensive glaucoma
Park HS
Medicine 2020; 99: e23565 (IGR: 21-4)


91393 Effect of Sensitivity Disparity Between the Two Eyes on Pointwise Monocular Sensitivity Under Binocular Viewing in Patients With Glaucoma
Nomoto H
Journal of Glaucoma 2021; 30: 37-43 (IGR: 21-4)


91249 Preliminary Report on a Novel Virtual Reality Perimeter Compared With Standard Automated Perimetry
Gonzalez-Garcia A
Journal of Glaucoma 2021; 30: 17-23 (IGR: 21-4)


91009 Comparison of 24-2 Faster, Fast, and Standard Programs of Swedish Interactive Threshold Algorithm of Humphrey Field Analyzer for Perimetry in Patients With Manifest and Suspect Glaucoma
Patyal S
Journal of Glaucoma 2020; 29: 1070-1076 (IGR: 21-4)


91729 Effects of Criterion Bias on Perimetric Sensitivity and Response Variability in Glaucoma
Turpin A
Translational vision science & technology 2021; 10: 18 (IGR: 21-4)


91733 Comparison of the structure-function relationship between compass microperimetry and Humphrey field analyser in myopic open-angle glaucoma eyes
Song MK
British Journal of Ophthalmology 2022; 106: 485-490 (IGR: 21-4)


91120 The Computerized Glaucoma Visual Function Test: A Pilot Study Evaluating Computer-Screen Based Tests of Visual Function in Glaucoma
Skalicky SE
Translational vision science & technology 2020; 9: 9 (IGR: 21-4)


91639 Assessing Functional Disability in Glaucoma: The Relative Importance of Central Versus Far Peripheral Visual Fields
Mihailovic A
Investigative Ophthalmology and Visual Science 2020; 61: 23 (IGR: 21-4)


91547 Prediction of Visual Field Progression from OCT Structural Measures in Moderate to Advanced Glaucoma
Mohammadzadeh V
American Journal of Ophthalmology 2021; 226: 172-181 (IGR: 21-4)


91312 Impact of binocular integrated visual field defects on healthy related quality of life in glaucoma
Li J
Medicine 2021; 100: e24069 (IGR: 21-4)


91785 Correlation of Visual Field With Peripapillary Vessel Density Through Optical Coherence Tomography Angiography in Normal-Tension Glaucoma
Huang SM
Translational vision science & technology 2020; 9: 26 (IGR: 21-4)


91539 Relationship between mean follow-up intraocular pressure, rates of visual field progression and current target intraocular pressure guidelines
De Moraes CG
British Journal of Ophthalmology 2022; 106: 229-233 (IGR: 21-4)


91675 Assessing glaucoma deterioration using Spaeth/Richman contrast sensitivity test
Singh T
Therapeutic advances in ophthalmology 2020; 12: 2515841420977412 (IGR: 21-4)


91476 Vision-related quality of life in adults with severe peripheral vision loss: a qualitative interview study
Kumagai A
Journal of patient-reported outcomes 2021; 5: 7 (IGR: 21-4)


91612 Optical coherence tomography angiography and the visual field in hypertensive and normotensive glaucoma
Lestak J
Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 2021; 165: 441-444 (IGR: 21-4)


91518 A case control study examining the feasibility of using eye tracking perimetry to differentiate patients with glaucoma from healthy controls
Murray IC
Scientific reports 2021; 11: 839 (IGR: 21-4)


91528 Predicting Glaucoma Development With Longitudinal Deep Learning Predictions From Fundus Photographs
Mariottoni EB
American Journal of Ophthalmology 2021; 225: 86-94 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Hou H
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91230 Evaluation of the external validity of a joint structure-function model for monitoring glaucoma progression
Racette L
Scientific reports 2020; 10: 19701 (IGR: 21-4)


91547 Prediction of Visual Field Progression from OCT Structural Measures in Moderate to Advanced Glaucoma
Rabiolo A
American Journal of Ophthalmology 2021; 226: 172-181 (IGR: 21-4)


91310 Validating tablet perimetry against standard Humphrey Visual Field Analyzer for glaucoma screening in Indian population
Sahi RK
Indian Journal of Ophthalmology 2021; 69: 87-91 (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Tsikata E
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91338 Effect of retinal protective therapy on optical coherence tomography angiography (pilot study)
Klimova AV
Vestnik Oftalmologii 2021; 137: 60-67 (IGR: 21-4)


91612 Optical coherence tomography angiography and the visual field in hypertensive and normotensive glaucoma
Fus M
Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 2021; 165: 441-444 (IGR: 21-4)


91539 Relationship between mean follow-up intraocular pressure, rates of visual field progression and current target intraocular pressure guidelines
Paula JS
British Journal of Ophthalmology 2022; 106: 229-233 (IGR: 21-4)


91312 Impact of binocular integrated visual field defects on healthy related quality of life in glaucoma
Cun Q
Medicine 2021; 100: e24069 (IGR: 21-4)


91834 Association of Nailfold Capillary Abnormalities With Primary Open-angle Glaucoma and Glaucomatous Visual Field Loss
Yoon JJ
Journal of Glaucoma 2021; 30: 50-57 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Hou H
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91785 Correlation of Visual Field With Peripapillary Vessel Density Through Optical Coherence Tomography Angiography in Normal-Tension Glaucoma
Yeung L
Translational vision science & technology 2020; 9: 26 (IGR: 21-4)


91639 Assessing Functional Disability in Glaucoma: The Relative Importance of Central Versus Far Peripheral Visual Fields
Boland MV
Investigative Ophthalmology and Visual Science 2020; 61: 23 (IGR: 21-4)


91802 Association of Patterns of Glaucomatous Macular Damage With Contrast Sensitivity and Facial Recognition in Patients With Glaucoma
Liebmann JM
JAMA ophthalmology 2021; 139: 27-32 (IGR: 21-4)


90900 Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice
Diniz-Filho A
Translational vision science & technology 2020; 9: 55 (IGR: 21-4)


91393 Effect of Sensitivity Disparity Between the Two Eyes on Pointwise Monocular Sensitivity Under Binocular Viewing in Patients With Glaucoma
Chiba Y
Journal of Glaucoma 2021; 30: 37-43 (IGR: 21-4)


91729 Effects of Criterion Bias on Perimetric Sensitivity and Response Variability in Glaucoma
Denniss J
Translational vision science & technology 2021; 10: 18 (IGR: 21-4)


91111 Discrepancy in Loss of Macular Perfusion Density and Ganglion Cell Layer Thickness in Early Glaucoma
West ME
American Journal of Ophthalmology 2021; 221: 39-47 (IGR: 21-4)


91707 Comparing the usefulness of a new algorithm to measure visual field using the variational Bayes linear regression in glaucoma patients, in comparison to the Swedish interactive thresholding algorithm
Fujino Y
British Journal of Ophthalmology 2022; 106: 660-666 (IGR: 21-4)


91564 Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes
Hou H
American Journal of Ophthalmology 2021; 223: 229-240 (IGR: 21-4)


91518 A case control study examining the feasibility of using eye tracking perimetry to differentiate patients with glaucoma from healthy controls
McTrusty AD
Scientific reports 2021; 11: 839 (IGR: 21-4)


91659 Visual Field Reconstruction Using fMRI-Based Techniques
Martins J
Translational vision science & technology 2021; 10: 25 (IGR: 21-4)


91675 Assessing glaucoma deterioration using Spaeth/Richman contrast sensitivity test
Thakur S
Therapeutic advances in ophthalmology 2020; 12: 2515841420977412 (IGR: 21-4)


91862 Quantification of the Peripapillary Microvasculature in Eyes with Glaucomatous Paracentral Visual Field Loss
Wang M
Ophthalmology. Glaucoma 2021; 4: 286-294 (IGR: 21-4)


91676 Retinal Sensitivity Thresholds Obtained Through Easyfield and Humphrey Perimeters in Eyes with Glaucoma: A Cross-Sectional Comparative Study
Scoralick ALB
Clinical Ophthalmology 2020; 14: 4201-4207 (IGR: 21-4)


91476 Vision-related quality of life in adults with severe peripheral vision loss: a qualitative interview study
Weiss S
Journal of patient-reported outcomes 2021; 5: 7 (IGR: 21-4)


91564 Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes
Hou H
American Journal of Ophthalmology 2021; 223: 229-240 (IGR: 21-4)


91528 Predicting Glaucoma Development With Longitudinal Deep Learning Predictions From Fundus Photographs
Mariottoni EB
American Journal of Ophthalmology 2021; 225: 86-94 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Hou H
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91376 Impact of binocular visual field loss on driving performance in glaucoma patients
Yao J
International Journal of Ophthalmology 2021; 14: 112-119 (IGR: 21-4)


91812 Predicting Global Test-Retest Variability of Visual Fields in Glaucoma
Fan Y
Ophthalmology. Glaucoma 2021; 4: 390-399 (IGR: 21-4)


91608 Functional characteristics of glaucoma related arcuate defects seen on OCT en face visualisation of the retinal nerve fibre layer
Swanson WH
Ophthalmic and Physiological Optics 2021; 41: 437-446 (IGR: 21-4)


91769 Time Lag Between Functional Change and Loss of Retinal Nerve Fiber Layer in Glaucoma
Fortune B
Investigative Ophthalmology and Visual Science 2020; 61: 5 (IGR: 21-4)


91173 Visual Field Artifacts in Glaucoma With Face Mask Use During the COVID-19 Pandemic
Fingeret M
Journal of Glaucoma 2020; 29: 1184-1188 (IGR: 21-4)


91214 Association of dipping status of blood pressure, visual field defects, and retinal nerve fiber layer thickness in patients with normotensive glaucoma
Kim BJ
Medicine 2020; 99: e23565 (IGR: 21-4)


91249 Preliminary Report on a Novel Virtual Reality Perimeter Compared With Standard Automated Perimetry
Myers JS
Journal of Glaucoma 2021; 30: 17-23 (IGR: 21-4)


91564 Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes
Hou H
American Journal of Ophthalmology 2021; 223: 229-240 (IGR: 21-4)


91733 Comparison of the structure-function relationship between compass microperimetry and Humphrey field analyser in myopic open-angle glaucoma eyes
Won HJ
British Journal of Ophthalmology 2022; 106: 485-490 (IGR: 21-4)


91802 Association of Patterns of Glaucomatous Macular Damage With Contrast Sensitivity and Facial Recognition in Patients With Glaucoma
Blumberg DM
JAMA ophthalmology 2021; 139: 27-32 (IGR: 21-4)


91539 Relationship between mean follow-up intraocular pressure, rates of visual field progression and current target intraocular pressure guidelines
A Cioffi G
British Journal of Ophthalmology 2022; 106: 229-233 (IGR: 21-4)


91376 Impact of binocular visual field loss on driving performance in glaucoma patients
Qian SH
International Journal of Ophthalmology 2021; 14: 112-119 (IGR: 21-4)


91675 Assessing glaucoma deterioration using Spaeth/Richman contrast sensitivity test
Singh RB
Therapeutic advances in ophthalmology 2020; 12: 2515841420977412 (IGR: 21-4)


91518 A case control study examining the feasibility of using eye tracking perimetry to differentiate patients with glaucoma from healthy controls
Cameron LA
Scientific reports 2021; 11: 839 (IGR: 21-4)


91173 Visual Field Artifacts in Glaucoma With Face Mask Use During the COVID-19 Pandemic
Weinreb RN
Journal of Glaucoma 2020; 29: 1184-1188 (IGR: 21-4)


91659 Visual Field Reconstruction Using fMRI-Based Techniques
Jansonius NM
Translational vision science & technology 2021; 10: 25 (IGR: 21-4)


91393 Effect of Sensitivity Disparity Between the Two Eyes on Pointwise Monocular Sensitivity Under Binocular Viewing in Patients With Glaucoma
Matsumoto C
Journal of Glaucoma 2021; 30: 37-43 (IGR: 21-4)


91249 Preliminary Report on a Novel Virtual Reality Perimeter Compared With Standard Automated Perimetry
Katz LJ
Journal of Glaucoma 2021; 30: 17-23 (IGR: 21-4)


91707 Comparing the usefulness of a new algorithm to measure visual field using the variational Bayes linear regression in glaucoma patients, in comparison to the Swedish interactive thresholding algorithm
Matsuura M
British Journal of Ophthalmology 2022; 106: 660-666 (IGR: 21-4)


91564 Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes
Proudfoot J
American Journal of Ophthalmology 2021; 223: 229-240 (IGR: 21-4)


91676 Retinal Sensitivity Thresholds Obtained Through Easyfield and Humphrey Perimeters in Eyes with Glaucoma: A Cross-Sectional Comparative Study
Dias DT
Clinical Ophthalmology 2020; 14: 4201-4207 (IGR: 21-4)


91733 Comparison of the structure-function relationship between compass microperimetry and Humphrey field analyser in myopic open-angle glaucoma eyes
Jo Y
British Journal of Ophthalmology 2022; 106: 485-490 (IGR: 21-4)


91675 Assessing glaucoma deterioration using Spaeth/Richman contrast sensitivity test
Singh RB
Therapeutic advances in ophthalmology 2020; 12: 2515841420977412 (IGR: 21-4)


91312 Impact of binocular integrated visual field defects on healthy related quality of life in glaucoma
Tao Y
Medicine 2021; 100: e24069 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Moghimi S
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91785 Correlation of Visual Field With Peripapillary Vessel Density Through Optical Coherence Tomography Angiography in Normal-Tension Glaucoma
Ku WC
Translational vision science & technology 2020; 9: 26 (IGR: 21-4)


91812 Predicting Global Test-Retest Variability of Visual Fields in Glaucoma
Pasquale LR
Ophthalmology. Glaucoma 2021; 4: 390-399 (IGR: 21-4)


90900 Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice
Sousa DC
Translational vision science & technology 2020; 9: 55 (IGR: 21-4)


91547 Prediction of Visual Field Progression from OCT Structural Measures in Moderate to Advanced Glaucoma
Edalati K
American Journal of Ophthalmology 2021; 226: 172-181 (IGR: 21-4)


91834 Association of Nailfold Capillary Abnormalities With Primary Open-angle Glaucoma and Glaucomatous Visual Field Loss
Gossage L
Journal of Glaucoma 2021; 30: 50-57 (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Hui PC
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91612 Optical coherence tomography angiography and the visual field in hypertensive and normotensive glaucoma
Maresova K
Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 2021; 165: 441-444 (IGR: 21-4)


91214 Association of dipping status of blood pressure, visual field defects, and retinal nerve fiber layer thickness in patients with normotensive glaucoma
Kim HS
Medicine 2020; 99: e23565 (IGR: 21-4)


91338 Effect of retinal protective therapy on optical coherence tomography angiography (pilot study)
Solovieva AB
Vestnik Oftalmologii 2021; 137: 60-67 (IGR: 21-4)


91111 Discrepancy in Loss of Macular Perfusion Density and Ganglion Cell Layer Thickness in Early Glaucoma
Sharpe GP
American Journal of Ophthalmology 2021; 221: 39-47 (IGR: 21-4)


91639 Assessing Functional Disability in Glaucoma: The Relative Importance of Central Versus Far Peripheral Visual Fields
Friedman DS
Investigative Ophthalmology and Visual Science 2020; 61: 23 (IGR: 21-4)


91528 Predicting Glaucoma Development With Longitudinal Deep Learning Predictions From Fundus Photographs
Medeiros FA
American Journal of Ophthalmology 2021; 225: 86-94 (IGR: 21-4)


91729 Effects of Criterion Bias on Perimetric Sensitivity and Response Variability in Glaucoma
McKendrick AM
Translational vision science & technology 2021; 10: 18 (IGR: 21-4)


91564 Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes
Proudfoot J
American Journal of Ophthalmology 2021; 223: 229-240 (IGR: 21-4)


91476 Vision-related quality of life in adults with severe peripheral vision loss: a qualitative interview study
Zaffke KB
Journal of patient-reported outcomes 2021; 5: 7 (IGR: 21-4)


91310 Validating tablet perimetry against standard Humphrey Visual Field Analyzer for glaucoma screening in Indian population
Kumar S
Indian Journal of Ophthalmology 2021; 69: 87-91 (IGR: 21-4)


91862 Quantification of the Peripapillary Microvasculature in Eyes with Glaucomatous Paracentral Visual Field Loss
Devlin J
Ophthalmology. Glaucoma 2021; 4: 286-294 (IGR: 21-4)


91476 Vision-related quality of life in adults with severe peripheral vision loss: a qualitative interview study
Day S
Journal of patient-reported outcomes 2021; 5: 7 (IGR: 21-4)


91111 Discrepancy in Loss of Macular Perfusion Density and Ganglion Cell Layer Thickness in Early Glaucoma
Shuba LM
American Journal of Ophthalmology 2021; 221: 39-47 (IGR: 21-4)


91214 Association of dipping status of blood pressure, visual field defects, and retinal nerve fiber layer thickness in patients with normotensive glaucoma
Heo JH
Medicine 2020; 99: e23565 (IGR: 21-4)


90900 Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice
Arnold L
Translational vision science & technology 2020; 9: 55 (IGR: 21-4)


91539 Relationship between mean follow-up intraocular pressure, rates of visual field progression and current target intraocular pressure guidelines
Girkin CA
British Journal of Ophthalmology 2022; 106: 229-233 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Proudfoot JA
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91675 Assessing glaucoma deterioration using Spaeth/Richman contrast sensitivity test
Kumar S
Therapeutic advances in ophthalmology 2020; 12: 2515841420977412 (IGR: 21-4)


91834 Association of Nailfold Capillary Abnormalities With Primary Open-angle Glaucoma and Glaucomatous Visual Field Loss
Danesh-Meyer HV
Journal of Glaucoma 2021; 30: 50-57 (IGR: 21-4)


91312 Impact of binocular integrated visual field defects on healthy related quality of life in glaucoma
Yang W
Medicine 2021; 100: e24069 (IGR: 21-4)


91785 Correlation of Visual Field With Peripapillary Vessel Density Through Optical Coherence Tomography Angiography in Normal-Tension Glaucoma
Chen HS
Translational vision science & technology 2020; 9: 26 (IGR: 21-4)


91639 Assessing Functional Disability in Glaucoma: The Relative Importance of Central Versus Far Peripheral Visual Fields
West SK
Investigative Ophthalmology and Visual Science 2020; 61: 23 (IGR: 21-4)


91547 Prediction of Visual Field Progression from OCT Structural Measures in Moderate to Advanced Glaucoma
Caprioli J
American Journal of Ophthalmology 2021; 226: 172-181 (IGR: 21-4)


91812 Predicting Global Test-Retest Variability of Visual Fields in Glaucoma
Shen LQ
Ophthalmology. Glaucoma 2021; 4: 390-399 (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Elze T
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91707 Comparing the usefulness of a new algorithm to measure visual field using the variational Bayes linear regression in glaucoma patients, in comparison to the Swedish interactive thresholding algorithm
Hirasawa K
British Journal of Ophthalmology 2022; 106: 660-666 (IGR: 21-4)


91518 A case control study examining the feasibility of using eye tracking perimetry to differentiate patients with glaucoma from healthy controls
Perperidis A
Scientific reports 2021; 11: 839 (IGR: 21-4)


91659 Visual Field Reconstruction Using fMRI-Based Techniques
Renken RJ
Translational vision science & technology 2021; 10: 25 (IGR: 21-4)


91733 Comparison of the structure-function relationship between compass microperimetry and Humphrey field analyser in myopic open-angle glaucoma eyes
Kook MS
British Journal of Ophthalmology 2022; 106: 485-490 (IGR: 21-4)


91393 Effect of Sensitivity Disparity Between the Two Eyes on Pointwise Monocular Sensitivity Under Binocular Viewing in Patients With Glaucoma
Kusaka S
Journal of Glaucoma 2021; 30: 37-43 (IGR: 21-4)


91862 Quantification of the Peripapillary Microvasculature in Eyes with Glaucomatous Paracentral Visual Field Loss
Li D
Ophthalmology. Glaucoma 2021; 4: 286-294 (IGR: 21-4)


91676 Retinal Sensitivity Thresholds Obtained Through Easyfield and Humphrey Perimeters in Eyes with Glaucoma: A Cross-Sectional Comparative Study
Gracitelli CPB
Clinical Ophthalmology 2020; 14: 4201-4207 (IGR: 21-4)


91564 Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes
Zangwill LM
American Journal of Ophthalmology 2021; 223: 229-240 (IGR: 21-4)


91639 Assessing Functional Disability in Glaucoma: The Relative Importance of Central Versus Far Peripheral Visual Fields
Ramulu PY
Investigative Ophthalmology and Visual Science 2020; 61: 23 (IGR: 21-4)


90900 Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice
Schlenker MB
Translational vision science & technology 2020; 9: 55 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Chan E
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91476 Vision-related quality of life in adults with severe peripheral vision loss: a qualitative interview study
Wicker D
Journal of patient-reported outcomes 2021; 5: 7 (IGR: 21-4)


91564 Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes
Do JL
American Journal of Ophthalmology 2021; 223: 229-240 (IGR: 21-4)


91539 Relationship between mean follow-up intraocular pressure, rates of visual field progression and current target intraocular pressure guidelines
Fazio MA
British Journal of Ophthalmology 2022; 106: 229-233 (IGR: 21-4)


91214 Association of dipping status of blood pressure, visual field defects, and retinal nerve fiber layer thickness in patients with normotensive glaucoma
Im SI
Medicine 2020; 99: e23565 (IGR: 21-4)


91812 Predicting Global Test-Retest Variability of Visual Fields in Glaucoma
Boland MV
Ophthalmology. Glaucoma 2021; 4: 390-399 (IGR: 21-4)


91547 Prediction of Visual Field Progression from OCT Structural Measures in Moderate to Advanced Glaucoma
Yousefi S
American Journal of Ophthalmology 2021; 226: 172-181 (IGR: 21-4)


91518 A case control study examining the feasibility of using eye tracking perimetry to differentiate patients with glaucoma from healthy controls
Brash HM
Scientific reports 2021; 11: 839 (IGR: 21-4)


91111 Discrepancy in Loss of Macular Perfusion Density and Ganglion Cell Layer Thickness in Early Glaucoma
Rafuse PE
American Journal of Ophthalmology 2021; 221: 39-47 (IGR: 21-4)


91862 Quantification of the Peripapillary Microvasculature in Eyes with Glaucomatous Paracentral Visual Field Loss
Lovelace S
Ophthalmology. Glaucoma 2021; 4: 286-294 (IGR: 21-4)


91785 Correlation of Visual Field With Peripapillary Vessel Density Through Optical Coherence Tomography Angiography in Normal-Tension Glaucoma
Lai CC
Translational vision science & technology 2020; 9: 26 (IGR: 21-4)


91676 Retinal Sensitivity Thresholds Obtained Through Easyfield and Humphrey Perimeters in Eyes with Glaucoma: A Cross-Sectional Comparative Study
Kanadani FN
Clinical Ophthalmology 2020; 14: 4201-4207 (IGR: 21-4)


91659 Visual Field Reconstruction Using fMRI-Based Techniques
Cornelissen FW
Translational vision science & technology 2021; 10: 25 (IGR: 21-4)


91312 Impact of binocular integrated visual field defects on healthy related quality of life in glaucoma
Tighe S
Medicine 2021; 100: e24069 (IGR: 21-4)


91707 Comparing the usefulness of a new algorithm to measure visual field using the variational Bayes linear regression in glaucoma patients, in comparison to the Swedish interactive thresholding algorithm
Shimada S
British Journal of Ophthalmology 2022; 106: 660-666 (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Celebi ARC
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91785 Correlation of Visual Field With Peripapillary Vessel Density Through Optical Coherence Tomography Angiography in Normal-Tension Glaucoma
Chuang LH
Translational vision science & technology 2020; 9: 26 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Do J
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91812 Predicting Global Test-Retest Variability of Visual Fields in Glaucoma
Ramulu P
Ophthalmology. Glaucoma 2021; 4: 390-399 (IGR: 21-4)


91312 Impact of binocular integrated visual field defects on healthy related quality of life in glaucoma
Zhu Y
Medicine 2021; 100: e24069 (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Khoueir Z
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91862 Quantification of the Peripapillary Microvasculature in Eyes with Glaucomatous Paracentral Visual Field Loss
Wang H
Ophthalmology. Glaucoma 2021; 4: 286-294 (IGR: 21-4)


91676 Retinal Sensitivity Thresholds Obtained Through Easyfield and Humphrey Perimeters in Eyes with Glaucoma: A Cross-Sectional Comparative Study
Prata TS
Clinical Ophthalmology 2020; 14: 4201-4207 (IGR: 21-4)


91564 Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes
Oh WH
American Journal of Ophthalmology 2021; 223: 229-240 (IGR: 21-4)


91476 Vision-related quality of life in adults with severe peripheral vision loss: a qualitative interview study
Howson A
Journal of patient-reported outcomes 2021; 5: 7 (IGR: 21-4)


91539 Relationship between mean follow-up intraocular pressure, rates of visual field progression and current target intraocular pressure guidelines
N Weinreb R
British Journal of Ophthalmology 2022; 106: 229-233 (IGR: 21-4)


91518 A case control study examining the feasibility of using eye tracking perimetry to differentiate patients with glaucoma from healthy controls
Fleck BW
Scientific reports 2021; 11: 839 (IGR: 21-4)


91707 Comparing the usefulness of a new algorithm to measure visual field using the variational Bayes linear regression in glaucoma patients, in comparison to the Swedish interactive thresholding algorithm
Shoji N
British Journal of Ophthalmology 2022; 106: 660-666 (IGR: 21-4)


90900 Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice
Duenas-Angeles K
Translational vision science & technology 2020; 9: 55 (IGR: 21-4)


91111 Discrepancy in Loss of Macular Perfusion Density and Ganglion Cell Layer Thickness in Early Glaucoma
Nicolela MT
American Journal of Ophthalmology 2021; 221: 39-47 (IGR: 21-4)


91564 Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes
Kamalipour A
American Journal of Ophthalmology 2021; 223: 229-240 (IGR: 21-4)


91476 Vision-related quality of life in adults with severe peripheral vision loss: a qualitative interview study
Jayasundera KT
Journal of patient-reported outcomes 2021; 5: 7 (IGR: 21-4)


91518 A case control study examining the feasibility of using eye tracking perimetry to differentiate patients with glaucoma from healthy controls
Minns RA
Scientific reports 2021; 11: 839 (IGR: 21-4)


91812 Predicting Global Test-Retest Variability of Visual Fields in Glaucoma
Yousefi S
Ophthalmology. Glaucoma 2021; 4: 390-399 (IGR: 21-4)


91539 Relationship between mean follow-up intraocular pressure, rates of visual field progression and current target intraocular pressure guidelines
M Zangwill L
British Journal of Ophthalmology 2022; 106: 229-233 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Camp A
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Lee R
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91862 Quantification of the Peripapillary Microvasculature in Eyes with Glaucomatous Paracentral Visual Field Loss
Greenstein SH
Ophthalmology. Glaucoma 2021; 4: 286-294 (IGR: 21-4)


90900 Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice
Keane PA
Translational vision science & technology 2020; 9: 55 (IGR: 21-4)


91312 Impact of binocular integrated visual field defects on healthy related quality of life in glaucoma
Zhong H
Medicine 2021; 100: e24069 (IGR: 21-4)


91111 Discrepancy in Loss of Macular Perfusion Density and Ganglion Cell Layer Thickness in Early Glaucoma
Vianna JR
American Journal of Ophthalmology 2021; 221: 39-47 (IGR: 21-4)


91862 Quantification of the Peripapillary Microvasculature in Eyes with Glaucomatous Paracentral Visual Field Loss
Brauner SC
Ophthalmology. Glaucoma 2021; 4: 286-294 (IGR: 21-4)


91111 Discrepancy in Loss of Macular Perfusion Density and Ganglion Cell Layer Thickness in Early Glaucoma
Chauhan BC
American Journal of Ophthalmology 2021; 221: 39-47 (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Shieh E
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91564 Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes
Liebmann JM
American Journal of Ophthalmology 2021; 223: 229-240 (IGR: 21-4)


91476 Vision-related quality of life in adults with severe peripheral vision loss: a qualitative interview study
Smolinski L
Journal of patient-reported outcomes 2021; 5: 7 (IGR: 21-4)


90900 Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice
Crowston JG
Translational vision science & technology 2020; 9: 55 (IGR: 21-4)


91539 Relationship between mean follow-up intraocular pressure, rates of visual field progression and current target intraocular pressure guidelines
M Liebmann J
British Journal of Ophthalmology 2022; 106: 229-233 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Welsbie D
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91812 Predicting Global Test-Retest Variability of Visual Fields in Glaucoma
De Moraes CG
Ophthalmology. Glaucoma 2021; 4: 390-399 (IGR: 21-4)


91862 Quantification of the Peripapillary Microvasculature in Eyes with Glaucomatous Paracentral Visual Field Loss
Shen LQ
Ophthalmology. Glaucoma 2021; 4: 286-294 (IGR: 21-4)


91812 Predicting Global Test-Retest Variability of Visual Fields in Glaucoma
Wellik SR
Ophthalmology. Glaucoma 2021; 4: 390-399 (IGR: 21-4)


90900 Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice
Jayaram H
Translational vision science & technology 2020; 9: 55 (IGR: 21-4)


91564 Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes
De Moraes CG
American Journal of Ophthalmology 2021; 223: 229-240 (IGR: 21-4)


91476 Vision-related quality of life in adults with severe peripheral vision loss: a qualitative interview study
Hedlich C
Journal of patient-reported outcomes 2021; 5: 7 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Gustavo de Moraes C
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Simavli H
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91564 Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes
Girkin CA
American Journal of Ophthalmology 2021; 223: 229-240 (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Que C
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Girkin CA
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91812 Predicting Global Test-Retest Variability of Visual Fields in Glaucoma
Myers JS
Ophthalmology. Glaucoma 2021; 4: 390-399 (IGR: 21-4)


91476 Vision-related quality of life in adults with severe peripheral vision loss: a qualitative interview study
Lee PP
Journal of patient-reported outcomes 2021; 5: 7 (IGR: 21-4)


91812 Predicting Global Test-Retest Variability of Visual Fields in Glaucoma
Bex PJ
Ophthalmology. Glaucoma 2021; 4: 390-399 (IGR: 21-4)


91564 Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes
El-Nimri N
American Journal of Ophthalmology 2021; 223: 229-240 (IGR: 21-4)


91476 Vision-related quality of life in adults with severe peripheral vision loss: a qualitative interview study
Massof RW
Journal of patient-reported outcomes 2021; 5: 7 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Liebmann JM
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Guo R
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91812 Predicting Global Test-Retest Variability of Visual Fields in Glaucoma
Elze T
Ophthalmology. Glaucoma 2021; 4: 390-399 (IGR: 21-4)


91476 Vision-related quality of life in adults with severe peripheral vision loss: a qualitative interview study
Stelmack JA
Journal of patient-reported outcomes 2021; 5: 7 (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
de Boer J
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91564 Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes
Weinreb RN
American Journal of Ophthalmology 2021; 223: 229-240 (IGR: 21-4)


91365 Progressive Thinning of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Glaucoma Eyes with Disc Hemorrhage
Weinreb RN
Ophthalmology. Glaucoma 2021; 0: (IGR: 21-4)


91048 Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model
Chen TC
Journal of Glaucoma 2020; 29: 952-963 (IGR: 21-4)


91476 Vision-related quality of life in adults with severe peripheral vision loss: a qualitative interview study
Carlozzi NE
Journal of patient-reported outcomes 2021; 5: 7 (IGR: 21-4)


91812 Predicting Global Test-Retest Variability of Visual Fields in Glaucoma
Wang M
Ophthalmology. Glaucoma 2021; 4: 390-399 (IGR: 21-4)


91476 Vision-related quality of life in adults with severe peripheral vision loss: a qualitative interview study
Ehrlich JR
Journal of patient-reported outcomes 2021; 5: 7 (IGR: 21-4)


90688 Value of 10-2 Visual Field Testing in Glaucoma Patients with Early 24-2 Visual Field Loss
West ME
Ophthalmology 2021; 128: 545-553 (IGR: 21-3)


90421 A Comparison of the Visual Field Parameters of SITA Faster and SITA Standard Strategies in Glaucoma
Lavanya R
Journal of Glaucoma 2020; 29: 783-788 (IGR: 21-3)


90222 Disc-fovea Angle Is Associated With Visual Field Defect Location in Patients With Glaucoma
Abe RY
Journal of Glaucoma 2020; 29: 964-969 (IGR: 21-3)


90556 Asymmetry of Macular Vessel Density in Bilateral Early Open-angle Glaucoma With Unilateral Central 10-2 Visual Field Loss
Lu P
Journal of Glaucoma 2020; 29: 926-931 (IGR: 21-3)


90593 Associations of Ganglion Cell-Inner Plexiform Layer and Optic Nerve Head Parameters with Visual Field Sensitivity in Advanced Glaucoma
Hu H
Ophthalmic Research 2021; 64: 310-320 (IGR: 21-3)


90667 A Strategy for Seeding Point Error Assessment for Retesting (SPEAR) in Perimetry Applied to Normal Subjects, Glaucoma Suspects, and Patients With Glaucoma
Phu J
American Journal of Ophthalmology 2021; 221: 115-130 (IGR: 21-3)


90513 Relationship between peripapillary vessel density and visual field in glaucoma: a broken-stick model
Song MK
British Journal of Ophthalmology 2021; 105: 964-969 (IGR: 21-3)


89992 Improving the Detection of Glaucoma and Its Progression: A Topographical Approach
Hood DC
Journal of Glaucoma 2020; 29: 613-621 (IGR: 21-3)


90077 Association Between Structure-function Characteristics and Visual Field Outcomes in Glaucoma Subjects With Intraocular Pressure Reduction After Trabeculectomy
Kadziauskienė A
Journal of Glaucoma 2020; 29: 648-655 (IGR: 21-3)


90802 Improving Visual Field Trend Analysis with OCT and Deeply Regularized Latent-Space Linear Regression
Xu L
Ophthalmology. Glaucoma 2021; 4: 78-88 (IGR: 21-3)


90387 Correlations Between Subjective Evaluation of Quality of Life, Visual Field Loss, and Performance in Simulated Activities of Daily Living in Glaucoma Patients
Azoulay-Sebban L
Journal of Glaucoma 2020; 29: 970-974 (IGR: 21-3)


90238 Visual Field Artifacts From Face Mask Use
Young SL
Journal of Glaucoma 2020; 29: 989-991 (IGR: 21-3)


90566 Point-wise correlations between 10-2 Humphrey visual field and OCT data in open angle glaucoma
Cirafici P
Eye 2021; 35: 868-876 (IGR: 21-3)


90862 Effect of peripapillary tilt direction and magnitude on central visual field defects in primary open-angle glaucoma with high myopia
Usui S
Japanese Journal of Ophthalmology 2020; 64: 414-422 (IGR: 21-3)


90466 Impact of Visual Field Testing on Intraocular Pressure Change Trends in Healthy People and Glaucoma Patients
Li M
Journal of Ophthalmology 2020; 2020: 7936205 (IGR: 21-3)


89957 Ability of 24-2C and 24-2 Grids to Identify Central Visual Field Defects and Structure-Function Concordance in Glaucoma and Suspects
Phu J
American Journal of Ophthalmology 2020; 219: 317-331 (IGR: 21-3)


90534 The Trajectory of Glaucoma Progression in 2-Dimensional Structural-Functional Space
de Gainza A
Ophthalmology. Glaucoma 2020; 3: 466-474 (IGR: 21-3)


90668 Comparison between Fundus Automated Perimetry and Humphrey Field Analyzer: Performance and usability of the Fundus Automated Perimetry and Humphrey Field Analyzer in healthy, ocular hypertensive, and glaucomatous patients
Morbio R
European Journal of Ophthalmology 2020; 0: 1120672120945052 (IGR: 21-3)


90416 Influence of automated visual field testing on intraocular pressure
Bertaud S
BMC Ophthalmology 2020; 20: 363 (IGR: 21-3)


90145 Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression
Xu L
American Journal of Ophthalmology 2020; 218: 304-313 (IGR: 21-3)


90566 Point-wise correlations between 10-2 Humphrey visual field and OCT data in open angle glaucoma
Cirafici P
Eye 2021; 35: 868-876 (IGR: 21-3)


90438 Comparing Perimetric Loss at Different Target Intraocular Pressures for Patients with High-Tension and Normal-Tension Glaucoma
DeRoos L
Ophthalmology. Glaucoma 2021; 4: 251-259 (IGR: 21-3)


90530 Agreement amongst consultant ophthalmologists on levels of visual disability required for eligibility for certificate of sight impairment : Sight impairment registration using binocular composite visual fields
Jawaid I
Eye 2021; 35: 1644-1650 (IGR: 21-3)


90410 Estimating Global Visual Field Indices in Glaucoma by Combining Macula and Optic Disc OCT Scans Using 3-Dimensional Convolutional Neural Networks
Yu HH
Ophthalmology. Glaucoma 2021; 4: 102-112 (IGR: 21-3)


90758 Comparison and Correlation of Retinal Sensitivity Between Microperimetry and Standard Automated Perimetry in Low-tension Glaucoma
Tepelus TC
Journal of Glaucoma 2020; 29: 975-980 (IGR: 21-3)


90270 The Relationship Between Corneal Hysteresis and Retinal Ganglion Cells - A Step Forward in Early Glaucoma Diagnosis
Potop V
Medical Science Monitor 2020; 26: e924672 (IGR: 21-3)


90382 Comparison of perimetric Glaucoma Staging Systems in Asians with primary glaucoma
Hoang TT
Eye 2021; 35: 973-978 (IGR: 21-3)


90514 Comparison of Perimetric Outcomes from Melbourne Rapid Fields Tablet Perimeter Software and Humphrey Field Analyzer in Glaucoma Patients
Kumar H
Journal of Ophthalmology 2020; 2020: 8384509 (IGR: 21-3)


90152 Visual Field Outcomes from the Multicenter, Randomized Controlled Laser in Glaucoma and Ocular Hypertension Trial (LiGHT)
Wright DM
Ophthalmology 2020; 127: 1313-1321 (IGR: 21-3)


90002 A framework for assessing glaucoma progression using structural and functional indices jointly
Abu SL
PLoS ONE 2020; 15: e0235255 (IGR: 21-3)


90834 An Evaluation of a New 24-2 Metric for Detecting Early Central Glaucomatous Damage
Hood DC
American Journal of Ophthalmology 2020; 223: 119-128 (IGR: 21-3)


90434 Octopus 900 Automated Kinetic Perimetry versus Standard Automated Static Perimetry in Glaucoma Practice
Rowe FJ
Current Eye Research 2020; 0: 1-13 (IGR: 21-3)


90654 Increased Equivalent Input Noise in Glaucomatous Central Vision: Is it Due to Undersampling of Retinal Ganglion Cells?
Liu R
Investigative Ophthalmology and Visual Science 2020; 61: 10 (IGR: 21-3)


90513 Relationship between peripapillary vessel density and visual field in glaucoma: a broken-stick model
Shin JW
British Journal of Ophthalmology 2021; 105: 964-969 (IGR: 21-3)


90530 Agreement amongst consultant ophthalmologists on levels of visual disability required for eligibility for certificate of sight impairment : Sight impairment registration using binocular composite visual fields
Stead RE
Eye 2021; 35: 1644-1650 (IGR: 21-3)


90410 Estimating Global Visual Field Indices in Glaucoma by Combining Macula and Optic Disc OCT Scans Using 3-Dimensional Convolutional Neural Networks
Maetschke SR
Ophthalmology. Glaucoma 2021; 4: 102-112 (IGR: 21-3)


90152 Visual Field Outcomes from the Multicenter, Randomized Controlled Laser in Glaucoma and Ocular Hypertension Trial (LiGHT)
Konstantakopoulou E
Ophthalmology 2020; 127: 1313-1321 (IGR: 21-3)


90534 The Trajectory of Glaucoma Progression in 2-Dimensional Structural-Functional Space
Morales E
Ophthalmology. Glaucoma 2020; 3: 466-474 (IGR: 21-3)


90270 The Relationship Between Corneal Hysteresis and Retinal Ganglion Cells - A Step Forward in Early Glaucoma Diagnosis
Coviltir V
Medical Science Monitor 2020; 26: e924672 (IGR: 21-3)


90077 Association Between Structure-function Characteristics and Visual Field Outcomes in Glaucoma Subjects With Intraocular Pressure Reduction After Trabeculectomy
Chua J
Journal of Glaucoma 2020; 29: 648-655 (IGR: 21-3)


90862 Effect of peripapillary tilt direction and magnitude on central visual field defects in primary open-angle glaucoma with high myopia
Ikuno Y
Japanese Journal of Ophthalmology 2020; 64: 414-422 (IGR: 21-3)


90002 A framework for assessing glaucoma progression using structural and functional indices jointly
Marín-Franch I
PLoS ONE 2020; 15: e0235255 (IGR: 21-3)


90566 Point-wise correlations between 10-2 Humphrey visual field and OCT data in open angle glaucoma
Maiello G
Eye 2021; 35: 868-876 (IGR: 21-3)


90834 An Evaluation of a New 24-2 Metric for Detecting Early Central Glaucomatous Damage
Thenappan AA
American Journal of Ophthalmology 2020; 223: 119-128 (IGR: 21-3)


90416 Influence of automated visual field testing on intraocular pressure
Skarbek Borowski E
BMC Ophthalmology 2020; 20: 363 (IGR: 21-3)


90556 Asymmetry of Macular Vessel Density in Bilateral Early Open-angle Glaucoma With Unilateral Central 10-2 Visual Field Loss
Xiao H
Journal of Glaucoma 2020; 29: 926-931 (IGR: 21-3)


90434 Octopus 900 Automated Kinetic Perimetry versus Standard Automated Static Perimetry in Glaucoma Practice
Czanner G
Current Eye Research 2020; 0: 1-13 (IGR: 21-3)


90667 A Strategy for Seeding Point Error Assessment for Retesting (SPEAR) in Perimetry Applied to Normal Subjects, Glaucoma Suspects, and Patients With Glaucoma
Kalloniatis M
American Journal of Ophthalmology 2021; 221: 115-130 (IGR: 21-3)


90668 Comparison between Fundus Automated Perimetry and Humphrey Field Analyzer: Performance and usability of the Fundus Automated Perimetry and Humphrey Field Analyzer in healthy, ocular hypertensive, and glaucomatous patients
Longo C
European Journal of Ophthalmology 2020; 0: 1120672120945052 (IGR: 21-3)


90688 Value of 10-2 Visual Field Testing in Glaucoma Patients with Early 24-2 Visual Field Loss
Sharpe GP
Ophthalmology 2021; 128: 545-553 (IGR: 21-3)


90593 Associations of Ganglion Cell-Inner Plexiform Layer and Optic Nerve Head Parameters with Visual Field Sensitivity in Advanced Glaucoma
Li P
Ophthalmic Research 2021; 64: 310-320 (IGR: 21-3)


90382 Comparison of perimetric Glaucoma Staging Systems in Asians with primary glaucoma
Van Bui A
Eye 2021; 35: 973-978 (IGR: 21-3)


90514 Comparison of Perimetric Outcomes from Melbourne Rapid Fields Tablet Perimeter Software and Humphrey Field Analyzer in Glaucoma Patients
Thulasidas M
Journal of Ophthalmology 2020; 2020: 8384509 (IGR: 21-3)


90238 Visual Field Artifacts From Face Mask Use
Smith ML
Journal of Glaucoma 2020; 29: 989-991 (IGR: 21-3)


90654 Increased Equivalent Input Noise in Glaucomatous Central Vision: Is it Due to Undersampling of Retinal Ganglion Cells?
Kwon M
Investigative Ophthalmology and Visual Science 2020; 61: 10 (IGR: 21-3)


90387 Correlations Between Subjective Evaluation of Quality of Life, Visual Field Loss, and Performance in Simulated Activities of Daily Living in Glaucoma Patients
Zhao Z
Journal of Glaucoma 2020; 29: 970-974 (IGR: 21-3)


89957 Ability of 24-2C and 24-2 Grids to Identify Central Visual Field Defects and Structure-Function Concordance in Glaucoma and Suspects
Kalloniatis M
American Journal of Ophthalmology 2020; 219: 317-331 (IGR: 21-3)


90222 Disc-fovea Angle Is Associated With Visual Field Defect Location in Patients With Glaucoma
Matos AG
Journal of Glaucoma 2020; 29: 964-969 (IGR: 21-3)


89992 Improving the Detection of Glaucoma and Its Progression: A Topographical Approach
Zemborain ZZ
Journal of Glaucoma 2020; 29: 613-621 (IGR: 21-3)


90421 A Comparison of the Visual Field Parameters of SITA Faster and SITA Standard Strategies in Glaucoma
Riyazuddin M
Journal of Glaucoma 2020; 29: 783-788 (IGR: 21-3)


90145 Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression
Asaoka R
American Journal of Ophthalmology 2020; 218: 304-313 (IGR: 21-3)


90466 Impact of Visual Field Testing on Intraocular Pressure Change Trends in Healthy People and Glaucoma Patients
Zheng B
Journal of Ophthalmology 2020; 2020: 7936205 (IGR: 21-3)


90758 Comparison and Correlation of Retinal Sensitivity Between Microperimetry and Standard Automated Perimetry in Low-tension Glaucoma
Song S
Journal of Glaucoma 2020; 29: 975-980 (IGR: 21-3)


90438 Comparing Perimetric Loss at Different Target Intraocular Pressures for Patients with High-Tension and Normal-Tension Glaucoma
Nitta K
Ophthalmology. Glaucoma 2021; 4: 251-259 (IGR: 21-3)


90802 Improving Visual Field Trend Analysis with OCT and Deeply Regularized Latent-Space Linear Regression
Asaoka R
Ophthalmology. Glaucoma 2021; 4: 78-88 (IGR: 21-3)


90668 Comparison between Fundus Automated Perimetry and Humphrey Field Analyzer: Performance and usability of the Fundus Automated Perimetry and Humphrey Field Analyzer in healthy, ocular hypertensive, and glaucomatous patients
De Vitto AML
European Journal of Ophthalmology 2020; 0: 1120672120945052 (IGR: 21-3)


90758 Comparison and Correlation of Retinal Sensitivity Between Microperimetry and Standard Automated Perimetry in Low-tension Glaucoma
Nittala MG
Journal of Glaucoma 2020; 29: 975-980 (IGR: 21-3)


89992 Improving the Detection of Glaucoma and Its Progression: A Topographical Approach
Tsamis E
Journal of Glaucoma 2020; 29: 613-621 (IGR: 21-3)


90421 A Comparison of the Visual Field Parameters of SITA Faster and SITA Standard Strategies in Glaucoma
Dasari S
Journal of Glaucoma 2020; 29: 783-788 (IGR: 21-3)


90834 An Evaluation of a New 24-2 Metric for Detecting Early Central Glaucomatous Damage
Tsamis E
American Journal of Ophthalmology 2020; 223: 119-128 (IGR: 21-3)


90438 Comparing Perimetric Loss at Different Target Intraocular Pressures for Patients with High-Tension and Normal-Tension Glaucoma
Lavieri MS
Ophthalmology. Glaucoma 2021; 4: 251-259 (IGR: 21-3)


90382 Comparison of perimetric Glaucoma Staging Systems in Asians with primary glaucoma
Nguyen V
Eye 2021; 35: 973-978 (IGR: 21-3)


90466 Impact of Visual Field Testing on Intraocular Pressure Change Trends in Healthy People and Glaucoma Patients
Wang Q
Journal of Ophthalmology 2020; 2020: 7936205 (IGR: 21-3)


90152 Visual Field Outcomes from the Multicenter, Randomized Controlled Laser in Glaucoma and Ocular Hypertension Trial (LiGHT)
Montesano G
Ophthalmology 2020; 127: 1313-1321 (IGR: 21-3)


90434 Octopus 900 Automated Kinetic Perimetry versus Standard Automated Static Perimetry in Glaucoma Practice
Somerville T
Current Eye Research 2020; 0: 1-13 (IGR: 21-3)


90534 The Trajectory of Glaucoma Progression in 2-Dimensional Structural-Functional Space
Salazar Vega DC
Ophthalmology. Glaucoma 2020; 3: 466-474 (IGR: 21-3)


90410 Estimating Global Visual Field Indices in Glaucoma by Combining Macula and Optic Disc OCT Scans Using 3-Dimensional Convolutional Neural Networks
Antony BJ
Ophthalmology. Glaucoma 2021; 4: 102-112 (IGR: 21-3)


89992 Improving the Detection of Glaucoma and Its Progression: A Topographical Approach
Tsamis E
Journal of Glaucoma 2020; 29: 613-621 (IGR: 21-3)


90530 Agreement amongst consultant ophthalmologists on levels of visual disability required for eligibility for certificate of sight impairment : Sight impairment registration using binocular composite visual fields
Rotchford AR
Eye 2021; 35: 1644-1650 (IGR: 21-3)


90002 A framework for assessing glaucoma progression using structural and functional indices jointly
Racette L
PLoS ONE 2020; 15: e0235255 (IGR: 21-3)


90222 Disc-fovea Angle Is Associated With Visual Field Defect Location in Patients With Glaucoma
Gracitelli CPB
Journal of Glaucoma 2020; 29: 964-969 (IGR: 21-3)


90834 An Evaluation of a New 24-2 Metric for Detecting Early Central Glaucomatous Damage
Tsamis E
American Journal of Ophthalmology 2020; 223: 119-128 (IGR: 21-3)


90145 Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression
Kiwaki T
American Journal of Ophthalmology 2020; 218: 304-313 (IGR: 21-3)


90688 Value of 10-2 Visual Field Testing in Glaucoma Patients with Early 24-2 Visual Field Loss
Hutchison DM
Ophthalmology 2021; 128: 545-553 (IGR: 21-3)


89992 Improving the Detection of Glaucoma and Its Progression: A Topographical Approach
Tsamis E
Journal of Glaucoma 2020; 29: 613-621 (IGR: 21-3)


90077 Association Between Structure-function Characteristics and Visual Field Outcomes in Glaucoma Subjects With Intraocular Pressure Reduction After Trabeculectomy
Baskaran M
Journal of Glaucoma 2020; 29: 648-655 (IGR: 21-3)


90593 Associations of Ganglion Cell-Inner Plexiform Layer and Optic Nerve Head Parameters with Visual Field Sensitivity in Advanced Glaucoma
Yu X
Ophthalmic Research 2021; 64: 310-320 (IGR: 21-3)


90862 Effect of peripapillary tilt direction and magnitude on central visual field defects in primary open-angle glaucoma with high myopia
Asai T
Japanese Journal of Ophthalmology 2020; 64: 414-422 (IGR: 21-3)


90513 Relationship between peripapillary vessel density and visual field in glaucoma: a broken-stick model
Jo Y
British Journal of Ophthalmology 2021; 105: 964-969 (IGR: 21-3)


90387 Correlations Between Subjective Evaluation of Quality of Life, Visual Field Loss, and Performance in Simulated Activities of Daily Living in Glaucoma Patients
Zenouda A
Journal of Glaucoma 2020; 29: 970-974 (IGR: 21-3)


90802 Improving Visual Field Trend Analysis with OCT and Deeply Regularized Latent-Space Linear Regression
Murata H
Ophthalmology. Glaucoma 2021; 4: 78-88 (IGR: 21-3)


90834 An Evaluation of a New 24-2 Metric for Detecting Early Central Glaucomatous Damage
Tsamis E
American Journal of Ophthalmology 2020; 223: 119-128 (IGR: 21-3)


90416 Influence of automated visual field testing on intraocular pressure
Abbas R
BMC Ophthalmology 2020; 20: 363 (IGR: 21-3)


90238 Visual Field Artifacts From Face Mask Use
Tatham AJ
Journal of Glaucoma 2020; 29: 989-991 (IGR: 21-3)


90556 Asymmetry of Macular Vessel Density in Bilateral Early Open-angle Glaucoma With Unilateral Central 10-2 Visual Field Loss
Chen H
Journal of Glaucoma 2020; 29: 926-931 (IGR: 21-3)


90566 Point-wise correlations between 10-2 Humphrey visual field and OCT data in open angle glaucoma
Ancona C
Eye 2021; 35: 868-876 (IGR: 21-3)


90270 The Relationship Between Corneal Hysteresis and Retinal Ganglion Cells - A Step Forward in Early Glaucoma Diagnosis
Schmitzer S
Medical Science Monitor 2020; 26: e924672 (IGR: 21-3)


90862 Effect of peripapillary tilt direction and magnitude on central visual field defects in primary open-angle glaucoma with high myopia
Kikawa T
Japanese Journal of Ophthalmology 2020; 64: 414-422 (IGR: 21-3)


90593 Associations of Ganglion Cell-Inner Plexiform Layer and Optic Nerve Head Parameters with Visual Field Sensitivity in Advanced Glaucoma
Wei W
Ophthalmic Research 2021; 64: 310-320 (IGR: 21-3)


90668 Comparison between Fundus Automated Perimetry and Humphrey Field Analyzer: Performance and usability of the Fundus Automated Perimetry and Humphrey Field Analyzer in healthy, ocular hypertensive, and glaucomatous patients
Comacchio F
European Journal of Ophthalmology 2020; 0: 1120672120945052 (IGR: 21-3)


90688 Value of 10-2 Visual Field Testing in Glaucoma Patients with Early 24-2 Visual Field Loss
Rafuse PE
Ophthalmology 2021; 128: 545-553 (IGR: 21-3)


90530 Agreement amongst consultant ophthalmologists on levels of visual disability required for eligibility for certificate of sight impairment : Sight impairment registration using binocular composite visual fields
King AJ
Eye 2021; 35: 1644-1650 (IGR: 21-3)


90222 Disc-fovea Angle Is Associated With Visual Field Defect Location in Patients With Glaucoma
Prata TS
Journal of Glaucoma 2020; 29: 964-969 (IGR: 21-3)


90513 Relationship between peripapillary vessel density and visual field in glaucoma: a broken-stick model
Won HJ
British Journal of Ophthalmology 2021; 105: 964-969 (IGR: 21-3)


90416 Influence of automated visual field testing on intraocular pressure
Baudouin C
BMC Ophthalmology 2020; 20: 363 (IGR: 21-3)


90758 Comparison and Correlation of Retinal Sensitivity Between Microperimetry and Standard Automated Perimetry in Low-tension Glaucoma
Nassisi M
Journal of Glaucoma 2020; 29: 975-980 (IGR: 21-3)


90421 A Comparison of the Visual Field Parameters of SITA Faster and SITA Standard Strategies in Glaucoma
Puttaiah NK
Journal of Glaucoma 2020; 29: 783-788 (IGR: 21-3)


90270 The Relationship Between Corneal Hysteresis and Retinal Ganglion Cells - A Step Forward in Early Glaucoma Diagnosis
Corbu C
Medical Science Monitor 2020; 26: e924672 (IGR: 21-3)


90466 Impact of Visual Field Testing on Intraocular Pressure Change Trends in Healthy People and Glaucoma Patients
Sun X
Journal of Ophthalmology 2020; 2020: 7936205 (IGR: 21-3)


90387 Correlations Between Subjective Evaluation of Quality of Life, Visual Field Loss, and Performance in Simulated Activities of Daily Living in Glaucoma Patients
Lombardi M
Journal of Glaucoma 2020; 29: 970-974 (IGR: 21-3)


90834 An Evaluation of a New 24-2 Metric for Detecting Early Central Glaucomatous Damage
Liebmann JM
American Journal of Ophthalmology 2020; 223: 119-128 (IGR: 21-3)


90434 Octopus 900 Automated Kinetic Perimetry versus Standard Automated Static Perimetry in Glaucoma Practice
Sood I
Current Eye Research 2020; 0: 1-13 (IGR: 21-3)


90152 Visual Field Outcomes from the Multicenter, Randomized Controlled Laser in Glaucoma and Ocular Hypertension Trial (LiGHT)
Nathwani N
Ophthalmology 2020; 127: 1313-1321 (IGR: 21-3)


90534 The Trajectory of Glaucoma Progression in 2-Dimensional Structural-Functional Space
Mohammadzadeh V
Ophthalmology. Glaucoma 2020; 3: 466-474 (IGR: 21-3)


90556 Asymmetry of Macular Vessel Density in Bilateral Early Open-angle Glaucoma With Unilateral Central 10-2 Visual Field Loss
Ye D
Journal of Glaucoma 2020; 29: 926-931 (IGR: 21-3)


90438 Comparing Perimetric Loss at Different Target Intraocular Pressures for Patients with High-Tension and Normal-Tension Glaucoma
Van Oyen MP
Ophthalmology. Glaucoma 2021; 4: 251-259 (IGR: 21-3)


90410 Estimating Global Visual Field Indices in Glaucoma by Combining Macula and Optic Disc OCT Scans Using 3-Dimensional Convolutional Neural Networks
Ishikawa H
Ophthalmology. Glaucoma 2021; 4: 102-112 (IGR: 21-3)


89992 Improving the Detection of Glaucoma and Its Progression: A Topographical Approach
De Moraes CG
Journal of Glaucoma 2020; 29: 613-621 (IGR: 21-3)


90566 Point-wise correlations between 10-2 Humphrey visual field and OCT data in open angle glaucoma
Masala A
Eye 2021; 35: 868-876 (IGR: 21-3)


90382 Comparison of perimetric Glaucoma Staging Systems in Asians with primary glaucoma
McCluskey PJ
Eye 2021; 35: 973-978 (IGR: 21-3)


90077 Association Between Structure-function Characteristics and Visual Field Outcomes in Glaucoma Subjects With Intraocular Pressure Reduction After Trabeculectomy
Yow AP
Journal of Glaucoma 2020; 29: 648-655 (IGR: 21-3)


90802 Improving Visual Field Trend Analysis with OCT and Deeply Regularized Latent-Space Linear Regression
Kiwaki T
Ophthalmology. Glaucoma 2021; 4: 78-88 (IGR: 21-3)


90145 Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression
Murata H
American Journal of Ophthalmology 2020; 218: 304-313 (IGR: 21-3)


90387 Correlations Between Subjective Evaluation of Quality of Life, Visual Field Loss, and Performance in Simulated Activities of Daily Living in Glaucoma Patients
Gutman E
Journal of Glaucoma 2020; 29: 970-974 (IGR: 21-3)


90416 Influence of automated visual field testing on intraocular pressure
Labbé A
BMC Ophthalmology 2020; 20: 363 (IGR: 21-3)


90222 Disc-fovea Angle Is Associated With Visual Field Defect Location in Patients With Glaucoma
Ribeiro GB
Journal of Glaucoma 2020; 29: 964-969 (IGR: 21-3)


90270 The Relationship Between Corneal Hysteresis and Retinal Ganglion Cells - A Step Forward in Early Glaucoma Diagnosis
Ionescu IC
Medical Science Monitor 2020; 26: e924672 (IGR: 21-3)


90566 Point-wise correlations between 10-2 Humphrey visual field and OCT data in open angle glaucoma
Traverso CE
Eye 2021; 35: 868-876 (IGR: 21-3)


90434 Octopus 900 Automated Kinetic Perimetry versus Standard Automated Static Perimetry in Glaucoma Practice
Sood D
Current Eye Research 2020; 0: 1-13 (IGR: 21-3)


90862 Effect of peripapillary tilt direction and magnitude on central visual field defects in primary open-angle glaucoma with high myopia
Akiba M
Japanese Journal of Ophthalmology 2020; 64: 414-422 (IGR: 21-3)


90513 Relationship between peripapillary vessel density and visual field in glaucoma: a broken-stick model
Kook MS
British Journal of Ophthalmology 2021; 105: 964-969 (IGR: 21-3)


90145 Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression
Fujino Y
American Journal of Ophthalmology 2020; 218: 304-313 (IGR: 21-3)


90802 Improving Visual Field Trend Analysis with OCT and Deeply Regularized Latent-Space Linear Regression
Zheng Y
Ophthalmology. Glaucoma 2021; 4: 78-88 (IGR: 21-3)


90834 An Evaluation of a New 24-2 Metric for Detecting Early Central Glaucomatous Damage
De Moraes CG
American Journal of Ophthalmology 2020; 223: 119-128 (IGR: 21-3)


90410 Estimating Global Visual Field Indices in Glaucoma by Combining Macula and Optic Disc OCT Scans Using 3-Dimensional Convolutional Neural Networks
Wollstein G
Ophthalmology. Glaucoma 2021; 4: 102-112 (IGR: 21-3)


90438 Comparing Perimetric Loss at Different Target Intraocular Pressures for Patients with High-Tension and Normal-Tension Glaucoma
Kazemian P
Ophthalmology. Glaucoma 2021; 4: 251-259 (IGR: 21-3)


90758 Comparison and Correlation of Retinal Sensitivity Between Microperimetry and Standard Automated Perimetry in Low-tension Glaucoma
Sadda SR
Journal of Glaucoma 2020; 29: 975-980 (IGR: 21-3)


90556 Asymmetry of Macular Vessel Density in Bilateral Early Open-angle Glaucoma With Unilateral Central 10-2 Visual Field Loss
Huang J
Journal of Glaucoma 2020; 29: 926-931 (IGR: 21-3)


90421 A Comparison of the Visual Field Parameters of SITA Faster and SITA Standard Strategies in Glaucoma
Venugopal JP
Journal of Glaucoma 2020; 29: 783-788 (IGR: 21-3)


90382 Comparison of perimetric Glaucoma Staging Systems in Asians with primary glaucoma
Grigg JR
Eye 2021; 35: 973-978 (IGR: 21-3)


90668 Comparison between Fundus Automated Perimetry and Humphrey Field Analyzer: Performance and usability of the Fundus Automated Perimetry and Humphrey Field Analyzer in healthy, ocular hypertensive, and glaucomatous patients
Della Porta LB
European Journal of Ophthalmology 2020; 0: 1120672120945052 (IGR: 21-3)


90688 Value of 10-2 Visual Field Testing in Glaucoma Patients with Early 24-2 Visual Field Loss
Shuba LM
Ophthalmology 2021; 128: 545-553 (IGR: 21-3)


90593 Associations of Ganglion Cell-Inner Plexiform Layer and Optic Nerve Head Parameters with Visual Field Sensitivity in Advanced Glaucoma
He H
Ophthalmic Research 2021; 64: 310-320 (IGR: 21-3)


90152 Visual Field Outcomes from the Multicenter, Randomized Controlled Laser in Glaucoma and Ocular Hypertension Trial (LiGHT)
Garg A
Ophthalmology 2020; 127: 1313-1321 (IGR: 21-3)


90534 The Trajectory of Glaucoma Progression in 2-Dimensional Structural-Functional Space
Yu F
Ophthalmology. Glaucoma 2020; 3: 466-474 (IGR: 21-3)


90077 Association Between Structure-function Characteristics and Visual Field Outcomes in Glaucoma Subjects With Intraocular Pressure Reduction After Trabeculectomy
Tan B
Journal of Glaucoma 2020; 29: 648-655 (IGR: 21-3)


90145 Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression
Matsuura M
American Journal of Ophthalmology 2020; 218: 304-313 (IGR: 21-3)


90410 Estimating Global Visual Field Indices in Glaucoma by Combining Macula and Optic Disc OCT Scans Using 3-Dimensional Convolutional Neural Networks
Schuman JS
Ophthalmology. Glaucoma 2021; 4: 102-112 (IGR: 21-3)


90270 The Relationship Between Corneal Hysteresis and Retinal Ganglion Cells - A Step Forward in Early Glaucoma Diagnosis
Burcel M
Medical Science Monitor 2020; 26: e924672 (IGR: 21-3)


90077 Association Between Structure-function Characteristics and Visual Field Outcomes in Glaucoma Subjects With Intraocular Pressure Reduction After Trabeculectomy
Sng C
Journal of Glaucoma 2020; 29: 648-655 (IGR: 21-3)


90438 Comparing Perimetric Loss at Different Target Intraocular Pressures for Patients with High-Tension and Normal-Tension Glaucoma
Andrews CA
Ophthalmology. Glaucoma 2021; 4: 251-259 (IGR: 21-3)


90152 Visual Field Outcomes from the Multicenter, Randomized Controlled Laser in Glaucoma and Ocular Hypertension Trial (LiGHT)
Garway-Heath D
Ophthalmology 2020; 127: 1313-1321 (IGR: 21-3)


90758 Comparison and Correlation of Retinal Sensitivity Between Microperimetry and Standard Automated Perimetry in Low-tension Glaucoma
Chopra V
Journal of Glaucoma 2020; 29: 975-980 (IGR: 21-3)


90534 The Trajectory of Glaucoma Progression in 2-Dimensional Structural-Functional Space
Afifi A
Ophthalmology. Glaucoma 2020; 3: 466-474 (IGR: 21-3)


90593 Associations of Ganglion Cell-Inner Plexiform Layer and Optic Nerve Head Parameters with Visual Field Sensitivity in Advanced Glaucoma
Zhang X
Ophthalmic Research 2021; 64: 310-320 (IGR: 21-3)


90382 Comparison of perimetric Glaucoma Staging Systems in Asians with primary glaucoma
Skalicky SE
Eye 2021; 35: 973-978 (IGR: 21-3)


90802 Improving Visual Field Trend Analysis with OCT and Deeply Regularized Latent-Space Linear Regression
Matsuura M
Ophthalmology. Glaucoma 2021; 4: 78-88 (IGR: 21-3)


90387 Correlations Between Subjective Evaluation of Quality of Life, Visual Field Loss, and Performance in Simulated Activities of Daily Living in Glaucoma Patients
Brasnu E
Journal of Glaucoma 2020; 29: 970-974 (IGR: 21-3)


90566 Point-wise correlations between 10-2 Humphrey visual field and OCT data in open angle glaucoma
Iester M
Eye 2021; 35: 868-876 (IGR: 21-3)


90222 Disc-fovea Angle Is Associated With Visual Field Defect Location in Patients With Glaucoma
Paula JS
Journal of Glaucoma 2020; 29: 964-969 (IGR: 21-3)


90668 Comparison between Fundus Automated Perimetry and Humphrey Field Analyzer: Performance and usability of the Fundus Automated Perimetry and Humphrey Field Analyzer in healthy, ocular hypertensive, and glaucomatous patients
Marchini G
European Journal of Ophthalmology 2020; 0: 1120672120945052 (IGR: 21-3)


90688 Value of 10-2 Visual Field Testing in Glaucoma Patients with Early 24-2 Visual Field Loss
Nicolela MT
Ophthalmology 2021; 128: 545-553 (IGR: 21-3)


90421 A Comparison of the Visual Field Parameters of SITA Faster and SITA Standard Strategies in Glaucoma
Pradhan ZS
Journal of Glaucoma 2020; 29: 783-788 (IGR: 21-3)


90862 Effect of peripapillary tilt direction and magnitude on central visual field defects in primary open-angle glaucoma with high myopia
Miki A
Japanese Journal of Ophthalmology 2020; 64: 414-422 (IGR: 21-3)


90438 Comparing Perimetric Loss at Different Target Intraocular Pressures for Patients with High-Tension and Normal-Tension Glaucoma
Andrews CA
Ophthalmology. Glaucoma 2021; 4: 251-259 (IGR: 21-3)


90145 Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression
Hashimoto Y
American Journal of Ophthalmology 2020; 218: 304-313 (IGR: 21-3)


90152 Visual Field Outcomes from the Multicenter, Randomized Controlled Laser in Glaucoma and Ocular Hypertension Trial (LiGHT)
Crabb DP
Ophthalmology 2020; 127: 1313-1321 (IGR: 21-3)


90688 Value of 10-2 Visual Field Testing in Glaucoma Patients with Early 24-2 Visual Field Loss
Vianna JR
Ophthalmology 2021; 128: 545-553 (IGR: 21-3)


90534 The Trajectory of Glaucoma Progression in 2-Dimensional Structural-Functional Space
Nouri-Mahdavi K
Ophthalmology. Glaucoma 2020; 3: 466-474 (IGR: 21-3)


90421 A Comparison of the Visual Field Parameters of SITA Faster and SITA Standard Strategies in Glaucoma
Devi S
Journal of Glaucoma 2020; 29: 783-788 (IGR: 21-3)


90270 The Relationship Between Corneal Hysteresis and Retinal Ganglion Cells - A Step Forward in Early Glaucoma Diagnosis
Dăscălescu D
Medical Science Monitor 2020; 26: e924672 (IGR: 21-3)


90077 Association Between Structure-function Characteristics and Visual Field Outcomes in Glaucoma Subjects With Intraocular Pressure Reduction After Trabeculectomy
Ašoklis R
Journal of Glaucoma 2020; 29: 648-655 (IGR: 21-3)


90410 Estimating Global Visual Field Indices in Glaucoma by Combining Macula and Optic Disc OCT Scans Using 3-Dimensional Convolutional Neural Networks
Garnavi R
Ophthalmology. Glaucoma 2021; 4: 102-112 (IGR: 21-3)


90438 Comparing Perimetric Loss at Different Target Intraocular Pressures for Patients with High-Tension and Normal-Tension Glaucoma
Sugiyama K
Ophthalmology. Glaucoma 2021; 4: 251-259 (IGR: 21-3)


90802 Improving Visual Field Trend Analysis with OCT and Deeply Regularized Latent-Space Linear Regression
Fujino Y
Ophthalmology. Glaucoma 2021; 4: 78-88 (IGR: 21-3)


90270 The Relationship Between Corneal Hysteresis and Retinal Ganglion Cells - A Step Forward in Early Glaucoma Diagnosis
Dăscălescu D
Medical Science Monitor 2020; 26: e924672 (IGR: 21-3)


90862 Effect of peripapillary tilt direction and magnitude on central visual field defects in primary open-angle glaucoma with high myopia
Matsushita K
Japanese Journal of Ophthalmology 2020; 64: 414-422 (IGR: 21-3)


90387 Correlations Between Subjective Evaluation of Quality of Life, Visual Field Loss, and Performance in Simulated Activities of Daily Living in Glaucoma Patients
Hamard P
Journal of Glaucoma 2020; 29: 970-974 (IGR: 21-3)


90802 Improving Visual Field Trend Analysis with OCT and Deeply Regularized Latent-Space Linear Regression
Tanito M
Ophthalmology. Glaucoma 2021; 4: 78-88 (IGR: 21-3)


90387 Correlations Between Subjective Evaluation of Quality of Life, Visual Field Loss, and Performance in Simulated Activities of Daily Living in Glaucoma Patients
Sahel JA
Journal of Glaucoma 2020; 29: 970-974 (IGR: 21-3)


90688 Value of 10-2 Visual Field Testing in Glaucoma Patients with Early 24-2 Visual Field Loss
Chauhan BC
Ophthalmology 2021; 128: 545-553 (IGR: 21-3)


90438 Comparing Perimetric Loss at Different Target Intraocular Pressures for Patients with High-Tension and Normal-Tension Glaucoma
Stein JD
Ophthalmology. Glaucoma 2021; 4: 251-259 (IGR: 21-3)


90145 Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression
Asano S
American Journal of Ophthalmology 2020; 218: 304-313 (IGR: 21-3)


90421 A Comparison of the Visual Field Parameters of SITA Faster and SITA Standard Strategies in Glaucoma
Sreenivasaiah S
Journal of Glaucoma 2020; 29: 783-788 (IGR: 21-3)


90862 Effect of peripapillary tilt direction and magnitude on central visual field defects in primary open-angle glaucoma with high myopia
Kawasaki R
Japanese Journal of Ophthalmology 2020; 64: 414-422 (IGR: 21-3)


90152 Visual Field Outcomes from the Multicenter, Randomized Controlled Laser in Glaucoma and Ocular Hypertension Trial (LiGHT)
Gazzard G
Ophthalmology 2020; 127: 1313-1321 (IGR: 21-3)


90534 The Trajectory of Glaucoma Progression in 2-Dimensional Structural-Functional Space
Caprioli J
Ophthalmology. Glaucoma 2020; 3: 466-474 (IGR: 21-3)


90077 Association Between Structure-function Characteristics and Visual Field Outcomes in Glaucoma Subjects With Intraocular Pressure Reduction After Trabeculectomy
Lesinskas E
Journal of Glaucoma 2020; 29: 648-655 (IGR: 21-3)


90145 Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression
Miki A
American Journal of Ophthalmology 2020; 218: 304-313 (IGR: 21-3)


90421 A Comparison of the Visual Field Parameters of SITA Faster and SITA Standard Strategies in Glaucoma
Ganeshrao SB
Journal of Glaucoma 2020; 29: 783-788 (IGR: 21-3)


90387 Correlations Between Subjective Evaluation of Quality of Life, Visual Field Loss, and Performance in Simulated Activities of Daily Living in Glaucoma Patients
Baudouin C
Journal of Glaucoma 2020; 29: 970-974 (IGR: 21-3)


90152 Visual Field Outcomes from the Multicenter, Randomized Controlled Laser in Glaucoma and Ocular Hypertension Trial (LiGHT)

Ophthalmology 2020; 127: 1313-1321 (IGR: 21-3)


90802 Improving Visual Field Trend Analysis with OCT and Deeply Regularized Latent-Space Linear Regression
Mori K
Ophthalmology. Glaucoma 2021; 4: 78-88 (IGR: 21-3)


90077 Association Between Structure-function Characteristics and Visual Field Outcomes in Glaucoma Subjects With Intraocular Pressure Reduction After Trabeculectomy
Crowston J
Journal of Glaucoma 2020; 29: 648-655 (IGR: 21-3)


90862 Effect of peripapillary tilt direction and magnitude on central visual field defects in primary open-angle glaucoma with high myopia
Nishida K
Japanese Journal of Ophthalmology 2020; 64: 414-422 (IGR: 21-3)


90077 Association Between Structure-function Characteristics and Visual Field Outcomes in Glaucoma Subjects With Intraocular Pressure Reduction After Trabeculectomy
Schmetterer L
Journal of Glaucoma 2020; 29: 648-655 (IGR: 21-3)


90802 Improving Visual Field Trend Analysis with OCT and Deeply Regularized Latent-Space Linear Regression
Ikeda Y
Ophthalmology. Glaucoma 2021; 4: 78-88 (IGR: 21-3)


90145 Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression
Mori K
American Journal of Ophthalmology 2020; 218: 304-313 (IGR: 21-3)


90421 A Comparison of the Visual Field Parameters of SITA Faster and SITA Standard Strategies in Glaucoma
Rao HL
Journal of Glaucoma 2020; 29: 783-788 (IGR: 21-3)


90387 Correlations Between Subjective Evaluation of Quality of Life, Visual Field Loss, and Performance in Simulated Activities of Daily Living in Glaucoma Patients
Labbé A
Journal of Glaucoma 2020; 29: 970-974 (IGR: 21-3)


90802 Improving Visual Field Trend Analysis with OCT and Deeply Regularized Latent-Space Linear Regression
Kanamoto T
Ophthalmology. Glaucoma 2021; 4: 78-88 (IGR: 21-3)


90077 Association Between Structure-function Characteristics and Visual Field Outcomes in Glaucoma Subjects With Intraocular Pressure Reduction After Trabeculectomy
Wong DWK
Journal of Glaucoma 2020; 29: 648-655 (IGR: 21-3)


90145 Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression
Ikeda Y
American Journal of Ophthalmology 2020; 218: 304-313 (IGR: 21-3)


90802 Improving Visual Field Trend Analysis with OCT and Deeply Regularized Latent-Space Linear Regression
Yamanishi K
Ophthalmology. Glaucoma 2021; 4: 78-88 (IGR: 21-3)


90145 Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression
Kanamoto T; Yamagami J; Inoue K; Tanito M; Yamanishi K
American Journal of Ophthalmology 2020; 218: 304-313 (IGR: 21-3)


86855 Trends in the Retinal Nerve Fiber Layer Thickness Changes with Different Degrees of Visual Field Defects
Geng W
Journal of Ophthalmology 2020; 2020: 4874876 (IGR: 21-2)


86566 Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression
Bak E
American Journal of Ophthalmology 2020; 216: 121-131 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Shukla AG
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86316 Usefulness of data augmentation for visual field trend analyses in patients with glaucoma
Asaoka R
British Journal of Ophthalmology 2020; 104: 1697-1703 (IGR: 21-2)


86848 Functional assessment of glaucoma: Uncovering progression
Hu R
Survey of Ophthalmology 2020; 65: 639-661 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
Yousefi S
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86795 Visual Field Outcomes in the Tube Versus Trabeculectomy Study
Swaminathan SS
Ophthalmology 2020; 127: 1162-1169 (IGR: 21-2)


86552 Progression from ocular hypertension to visual field loss in the English hospital eye service
Kelly SR
British Journal of Ophthalmology 2020; 104: 1406-1411 (IGR: 21-2)


86553 Binocular superior visual field areas associated with driving self-regulation in patients with primary open-angle glaucoma
Yamasaki T
British Journal of Ophthalmology 2021; 105: 135-140 (IGR: 21-2)


86719 Severity of visual field defects in primary congenital glaucoma and their risk factors
Sihota R
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1483-1491 (IGR: 21-2)


86566 Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression
Bak E
American Journal of Ophthalmology 2020; 216: 121-131 (IGR: 21-2)


86692 Characteristics of Normal-tension Glaucoma Patients with Temporal Retinal Nerve Fibre Defects
Yum HR
Scientific reports 2020; 10: 6362 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Shukla AG
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86310 Temporal Wedge Defects in Glaucoma: Structure/Function Correlation With Threshold Automated Perimetry of the Full Visual Field
Wall M
Journal of Glaucoma 2020; 29: 191-197 (IGR: 21-2)


86595 Evaluation of Fear of Falling in Patients with Primary Open-Angle Glaucoma and the Importance of Inferior Visual Field Damage
Yuki K
Investigative Ophthalmology and Visual Science 2020; 61: 52 (IGR: 21-2)


86485 Impact of glaucoma on executive function and visual search
Lee SS
Ophthalmic and Physiological Optics 2020; 40: 333-342 (IGR: 21-2)


86662 Defective angles of localized retinal nerve fiber layer reflect the severity of visual field defect- a cross-sectional analysis
Chen A
BMC Ophthalmology 2020; 20: 141 (IGR: 21-2)


86714 Comparing Structure-Function Relationships Based on Drasdo's and Sjöstrand's Retinal Ganglion Cell Displacement Models
Hirasawa K
Investigative Ophthalmology and Visual Science 2020; 61: 10 (IGR: 21-2)


86575 Evaluation of Long-Term Visual Field Function in Patients Undergoing Glaucoma Drainage Device Implantation
Liu Q
American Journal of Ophthalmology 2020; 216: 44-54 (IGR: 21-2)


86770 Comparison of structural and functional tests in primary open angle glaucoma
Karaca U
Indian Journal of Ophthalmology 2020; 68: 805-811 (IGR: 21-2)


86632 Central visual function and inner retinal structure in primary open-angle glaucoma
Xu LJ
Journal of Zhejiang University. Science. B 2020; 21: 305-314 (IGR: 21-2)


86566 Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression
Bak E
American Journal of Ophthalmology 2020; 216: 121-131 (IGR: 21-2)


86372 Individualized Visual Reality Training Improves Visual Acuity and Visual Field Defects in Patients with Glaucoma: A Preliminary Study Report
Li B
Cyberpsychology, behavior and social networking 2020; 23: 179-184 (IGR: 21-2)


86226 Significant correlations between photopic negative response, afferent pupillary defect, and mean defects of visual fields in asymmetric optic nerve disorders
Okuno T
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1821-1827 (IGR: 21-2)


86523 Foveal Avascular Zone Measurement Via Optical Coherence Tomography Angiography and its Relationship With the Visual Field in Eyes With Open-angle Glaucoma
Igarashi R
Journal of Glaucoma 2020; 29: 492-497 (IGR: 21-2)


86609 Structure-function correlation of localized visual field defects and macular microvascular damage in primary open-angle glaucoma
Tao A
Microvascular Research 2020; 130: 104005 (IGR: 21-2)


86308 Visual Field Plots: A Comparison Study Between Standard Automated Perimetry and Eye Movement Perimetry
Mazumdar D
Journal of Glaucoma 2020; 29: 351-361 (IGR: 21-2)


86709 Visual evoked potential in the early diagnosis of glaucoma. Literature review
Firan AM
Romanian journal of ophthalmology 2020; 64: 15-20 (IGR: 21-2)


86566 Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression
Bak E
American Journal of Ophthalmology 2020; 216: 121-131 (IGR: 21-2)


86328 Effect of fundus tracking on structure-function relationship in glaucoma
Montesano G
British Journal of Ophthalmology 2020; 104: 1710-1716 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
De Moraes CG
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86370 Visual Field Cluster Map Corresponding to Bruch Membrane Opening-minimum Rim Area Sectors in Open-angle Glaucoma
Choi HS
Journal of Glaucoma 2020; 29: 485-491 (IGR: 21-2)


86706 Association of lamina cribrosa morphometry with retinal nerve fiber layer loss and visual field defects in primary open angle glaucoma
Naz AS
Pakistan journal of medical sciences 2020; 36: 521-525 (IGR: 21-2)


86795 Visual Field Outcomes in the Tube Versus Trabeculectomy Study
Jammal AA
Ophthalmology 2020; 127: 1162-1169 (IGR: 21-2)


86662 Defective angles of localized retinal nerve fiber layer reflect the severity of visual field defect- a cross-sectional analysis
Lai IC
BMC Ophthalmology 2020; 20: 141 (IGR: 21-2)


86328 Effect of fundus tracking on structure-function relationship in glaucoma
Rossetti LM
British Journal of Ophthalmology 2020; 104: 1710-1716 (IGR: 21-2)


86692 Characteristics of Normal-tension Glaucoma Patients with Temporal Retinal Nerve Fibre Defects
Park HL
Scientific reports 2020; 10: 6362 (IGR: 21-2)


86310 Temporal Wedge Defects in Glaucoma: Structure/Function Correlation With Threshold Automated Perimetry of the Full Visual Field
Lee EJ
Journal of Glaucoma 2020; 29: 191-197 (IGR: 21-2)


86553 Binocular superior visual field areas associated with driving self-regulation in patients with primary open-angle glaucoma
Yuki K
British Journal of Ophthalmology 2021; 105: 135-140 (IGR: 21-2)


86566 Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression
Kim YW
American Journal of Ophthalmology 2020; 216: 121-131 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Paula JS
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86308 Visual Field Plots: A Comparison Study Between Standard Automated Perimetry and Eye Movement Perimetry
Pel JJM
Journal of Glaucoma 2020; 29: 351-361 (IGR: 21-2)


86595 Evaluation of Fear of Falling in Patients with Primary Open-Angle Glaucoma and the Importance of Inferior Visual Field Damage
Asaoka R
Investigative Ophthalmology and Visual Science 2020; 61: 52 (IGR: 21-2)


86770 Comparison of structural and functional tests in primary open angle glaucoma
Dagli O
Indian Journal of Ophthalmology 2020; 68: 805-811 (IGR: 21-2)


86709 Visual evoked potential in the early diagnosis of glaucoma. Literature review
Istrate S
Romanian journal of ophthalmology 2020; 64: 15-20 (IGR: 21-2)


86226 Significant correlations between photopic negative response, afferent pupillary defect, and mean defects of visual fields in asymmetric optic nerve disorders
Kida T
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1821-1827 (IGR: 21-2)


86370 Visual Field Cluster Map Corresponding to Bruch Membrane Opening-minimum Rim Area Sectors in Open-angle Glaucoma
Park SP
Journal of Glaucoma 2020; 29: 485-491 (IGR: 21-2)


86575 Evaluation of Long-Term Visual Field Function in Patients Undergoing Glaucoma Drainage Device Implantation
Saifee M
American Journal of Ophthalmology 2020; 216: 44-54 (IGR: 21-2)


86609 Structure-function correlation of localized visual field defects and macular microvascular damage in primary open-angle glaucoma
Liang Y
Microvascular Research 2020; 130: 104005 (IGR: 21-2)


86316 Usefulness of data augmentation for visual field trend analyses in patients with glaucoma
Murata H
British Journal of Ophthalmology 2020; 104: 1697-1703 (IGR: 21-2)


86855 Trends in the Retinal Nerve Fiber Layer Thickness Changes with Different Degrees of Visual Field Defects
Wang D
Journal of Ophthalmology 2020; 2020: 4874876 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
Elze T
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86706 Association of lamina cribrosa morphometry with retinal nerve fiber layer loss and visual field defects in primary open angle glaucoma
Qamar A
Pakistan journal of medical sciences 2020; 36: 521-525 (IGR: 21-2)


86485 Impact of glaucoma on executive function and visual search
Wood JM
Ophthalmic and Physiological Optics 2020; 40: 333-342 (IGR: 21-2)


86848 Functional assessment of glaucoma: Uncovering progression
Racette L
Survey of Ophthalmology 2020; 65: 639-661 (IGR: 21-2)


86372 Individualized Visual Reality Training Improves Visual Acuity and Visual Field Defects in Patients with Glaucoma: A Preliminary Study Report
Chu H
Cyberpsychology, behavior and social networking 2020; 23: 179-184 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Sirinek PE
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86523 Foveal Avascular Zone Measurement Via Optical Coherence Tomography Angiography and its Relationship With the Visual Field in Eyes With Open-angle Glaucoma
Ochiai S
Journal of Glaucoma 2020; 29: 492-497 (IGR: 21-2)


86632 Central visual function and inner retinal structure in primary open-angle glaucoma
Li SL
Journal of Zhejiang University. Science. B 2020; 21: 305-314 (IGR: 21-2)


86552 Progression from ocular hypertension to visual field loss in the English hospital eye service
Khawaja AP
British Journal of Ophthalmology 2020; 104: 1406-1411 (IGR: 21-2)


86714 Comparing Structure-Function Relationships Based on Drasdo's and Sjöstrand's Retinal Ganglion Cell Displacement Models
Matsuura M
Investigative Ophthalmology and Visual Science 2020; 61: 10 (IGR: 21-2)


86719 Severity of visual field defects in primary congenital glaucoma and their risk factors
Selvan H
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1483-1491 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
Pasquale LR
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86372 Individualized Visual Reality Training Improves Visual Acuity and Visual Field Defects in Patients with Glaucoma: A Preliminary Study Report
Yan L
Cyberpsychology, behavior and social networking 2020; 23: 179-184 (IGR: 21-2)


86632 Central visual function and inner retinal structure in primary open-angle glaucoma
Zemon V
Journal of Zhejiang University. Science. B 2020; 21: 305-314 (IGR: 21-2)


86316 Usefulness of data augmentation for visual field trend analyses in patients with glaucoma
Matsuura M
British Journal of Ophthalmology 2020; 104: 1697-1703 (IGR: 21-2)


86714 Comparing Structure-Function Relationships Based on Drasdo's and Sjöstrand's Retinal Ganglion Cell Displacement Models
Fujino Y
Investigative Ophthalmology and Visual Science 2020; 61: 10 (IGR: 21-2)


86370 Visual Field Cluster Map Corresponding to Bruch Membrane Opening-minimum Rim Area Sectors in Open-angle Glaucoma
Na KI
Journal of Glaucoma 2020; 29: 485-491 (IGR: 21-2)


86595 Evaluation of Fear of Falling in Patients with Primary Open-Angle Glaucoma and the Importance of Inferior Visual Field Damage
Ono T
Investigative Ophthalmology and Visual Science 2020; 61: 52 (IGR: 21-2)


86706 Association of lamina cribrosa morphometry with retinal nerve fiber layer loss and visual field defects in primary open angle glaucoma
Haque SU
Pakistan journal of medical sciences 2020; 36: 521-525 (IGR: 21-2)


86855 Trends in the Retinal Nerve Fiber Layer Thickness Changes with Different Degrees of Visual Field Defects
Han J
Journal of Ophthalmology 2020; 2020: 4874876 (IGR: 21-2)


86308 Visual Field Plots: A Comparison Study Between Standard Automated Perimetry and Eye Movement Perimetry
Kadavath Meethal NS
Journal of Glaucoma 2020; 29: 351-361 (IGR: 21-2)


86719 Severity of visual field defects in primary congenital glaucoma and their risk factors
Sharma A
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1483-1491 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Blumberg DM
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86310 Temporal Wedge Defects in Glaucoma: Structure/Function Correlation With Threshold Automated Perimetry of the Full Visual Field
Wanzek RJ
Journal of Glaucoma 2020; 29: 191-197 (IGR: 21-2)


86795 Visual Field Outcomes in the Tube Versus Trabeculectomy Study
Kornmann HL
Ophthalmology 2020; 127: 1162-1169 (IGR: 21-2)


86552 Progression from ocular hypertension to visual field loss in the English hospital eye service
Bryan SR
British Journal of Ophthalmology 2020; 104: 1406-1411 (IGR: 21-2)


86553 Binocular superior visual field areas associated with driving self-regulation in patients with primary open-angle glaucoma
Awano-Tanabe S
British Journal of Ophthalmology 2021; 105: 135-140 (IGR: 21-2)


86328 Effect of fundus tracking on structure-function relationship in glaucoma
McKendrick AM
British Journal of Ophthalmology 2020; 104: 1710-1716 (IGR: 21-2)


86692 Characteristics of Normal-tension Glaucoma Patients with Temporal Retinal Nerve Fibre Defects
Park CK
Scientific reports 2020; 10: 6362 (IGR: 21-2)


86609 Structure-function correlation of localized visual field defects and macular microvascular damage in primary open-angle glaucoma
Chen J
Microvascular Research 2020; 130: 104005 (IGR: 21-2)


86575 Evaluation of Long-Term Visual Field Function in Patients Undergoing Glaucoma Drainage Device Implantation
Yu Y
American Journal of Ophthalmology 2020; 216: 44-54 (IGR: 21-2)


86226 Significant correlations between photopic negative response, afferent pupillary defect, and mean defects of visual fields in asymmetric optic nerve disorders
Ikeda T
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1821-1827 (IGR: 21-2)


86770 Comparison of structural and functional tests in primary open angle glaucoma
Ozge G
Indian Journal of Ophthalmology 2020; 68: 805-811 (IGR: 21-2)


86709 Visual evoked potential in the early diagnosis of glaucoma. Literature review
Iancu R
Romanian journal of ophthalmology 2020; 64: 15-20 (IGR: 21-2)


86848 Functional assessment of glaucoma: Uncovering progression
Chen KS
Survey of Ophthalmology 2020; 65: 639-661 (IGR: 21-2)


86662 Defective angles of localized retinal nerve fiber layer reflect the severity of visual field defect- a cross-sectional analysis
Cho WH
BMC Ophthalmology 2020; 20: 141 (IGR: 21-2)


86566 Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression
Ha A
American Journal of Ophthalmology 2020; 216: 121-131 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
De Moraes CG
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86523 Foveal Avascular Zone Measurement Via Optical Coherence Tomography Angiography and its Relationship With the Visual Field in Eyes With Open-angle Glaucoma
Togano T
Journal of Glaucoma 2020; 29: 492-497 (IGR: 21-2)


86485 Impact of glaucoma on executive function and visual search
Black AA
Ophthalmic and Physiological Optics 2020; 40: 333-342 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Cioffi GA
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86226 Significant correlations between photopic negative response, afferent pupillary defect, and mean defects of visual fields in asymmetric optic nerve disorders
Oku H
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1821-1827 (IGR: 21-2)


86770 Comparison of structural and functional tests in primary open angle glaucoma
Mumcuoglu T
Indian Journal of Ophthalmology 2020; 68: 805-811 (IGR: 21-2)


86795 Visual Field Outcomes in the Tube Versus Trabeculectomy Study
Chen PP
Ophthalmology 2020; 127: 1162-1169 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Blumberg DM
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86308 Visual Field Plots: A Comparison Study Between Standard Automated Perimetry and Eye Movement Perimetry
Asokan R
Journal of Glaucoma 2020; 29: 351-361 (IGR: 21-2)


86632 Central visual function and inner retinal structure in primary open-angle glaucoma
Xie YQ
Journal of Zhejiang University. Science. B 2020; 21: 305-314 (IGR: 21-2)


86662 Defective angles of localized retinal nerve fiber layer reflect the severity of visual field defect- a cross-sectional analysis
Lai HY
BMC Ophthalmology 2020; 20: 141 (IGR: 21-2)


86609 Structure-function correlation of localized visual field defects and macular microvascular damage in primary open-angle glaucoma
Hu H
Microvascular Research 2020; 130: 104005 (IGR: 21-2)


86523 Foveal Avascular Zone Measurement Via Optical Coherence Tomography Angiography and its Relationship With the Visual Field in Eyes With Open-angle Glaucoma
Sakaue Y
Journal of Glaucoma 2020; 29: 492-497 (IGR: 21-2)


86706 Association of lamina cribrosa morphometry with retinal nerve fiber layer loss and visual field defects in primary open angle glaucoma
Zaman Y
Pakistan journal of medical sciences 2020; 36: 521-525 (IGR: 21-2)


86552 Progression from ocular hypertension to visual field loss in the English hospital eye service
Azuara-Blanco A
British Journal of Ophthalmology 2020; 104: 1406-1411 (IGR: 21-2)


86848 Functional assessment of glaucoma: Uncovering progression
Johnson CA
Survey of Ophthalmology 2020; 65: 639-661 (IGR: 21-2)


86316 Usefulness of data augmentation for visual field trend analyses in patients with glaucoma
Fujino Y
British Journal of Ophthalmology 2020; 104: 1697-1703 (IGR: 21-2)


86566 Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression
Kim YK
American Journal of Ophthalmology 2020; 216: 121-131 (IGR: 21-2)


86372 Individualized Visual Reality Training Improves Visual Acuity and Visual Field Defects in Patients with Glaucoma: A Preliminary Study Report
Wiederhold BK
Cyberpsychology, behavior and social networking 2020; 23: 179-184 (IGR: 21-2)


86709 Visual evoked potential in the early diagnosis of glaucoma. Literature review
Tudosescu R
Romanian journal of ophthalmology 2020; 64: 15-20 (IGR: 21-2)


86575 Evaluation of Long-Term Visual Field Function in Patients Undergoing Glaucoma Drainage Device Implantation
Ying GS
American Journal of Ophthalmology 2020; 216: 44-54 (IGR: 21-2)


86714 Comparing Structure-Function Relationships Based on Drasdo's and Sjöstrand's Retinal Ganglion Cell Displacement Models
Yanagisawa M
Investigative Ophthalmology and Visual Science 2020; 61: 10 (IGR: 21-2)


86328 Effect of fundus tracking on structure-function relationship in glaucoma
Turpin A
British Journal of Ophthalmology 2020; 104: 1710-1716 (IGR: 21-2)


86719 Severity of visual field defects in primary congenital glaucoma and their risk factors
Gupta N
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1483-1491 (IGR: 21-2)


86310 Temporal Wedge Defects in Glaucoma: Structure/Function Correlation With Threshold Automated Perimetry of the Full Visual Field
Chong LX
Journal of Glaucoma 2020; 29: 191-197 (IGR: 21-2)


86553 Binocular superior visual field areas associated with driving self-regulation in patients with primary open-angle glaucoma
Ono T
British Journal of Ophthalmology 2021; 105: 135-140 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
Saeedi O
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86595 Evaluation of Fear of Falling in Patients with Primary Open-Angle Glaucoma and the Importance of Inferior Visual Field Damage
Awano-Tanabe S
Investigative Ophthalmology and Visual Science 2020; 61: 52 (IGR: 21-2)


86709 Visual evoked potential in the early diagnosis of glaucoma. Literature review
Ciuluvică R
Romanian journal of ophthalmology 2020; 64: 15-20 (IGR: 21-2)


86328 Effect of fundus tracking on structure-function relationship in glaucoma
Fogagnolo P
British Journal of Ophthalmology 2020; 104: 1710-1716 (IGR: 21-2)


86609 Structure-function correlation of localized visual field defects and macular microvascular damage in primary open-angle glaucoma
Huang Q
Microvascular Research 2020; 130: 104005 (IGR: 21-2)


86552 Progression from ocular hypertension to visual field loss in the English hospital eye service
Sparrow JM
British Journal of Ophthalmology 2020; 104: 1406-1411 (IGR: 21-2)


86372 Individualized Visual Reality Training Improves Visual Acuity and Visual Field Defects in Patients with Glaucoma: A Preliminary Study Report
Wiederhold M
Cyberpsychology, behavior and social networking 2020; 23: 179-184 (IGR: 21-2)


86523 Foveal Avascular Zone Measurement Via Optical Coherence Tomography Angiography and its Relationship With the Visual Field in Eyes With Open-angle Glaucoma
Suetake A
Journal of Glaucoma 2020; 29: 492-497 (IGR: 21-2)


86770 Comparison of structural and functional tests in primary open angle glaucoma
Bayer A
Indian Journal of Ophthalmology 2020; 68: 805-811 (IGR: 21-2)


86795 Visual Field Outcomes in the Tube Versus Trabeculectomy Study
Feuer WJ
Ophthalmology 2020; 127: 1162-1169 (IGR: 21-2)


86632 Central visual function and inner retinal structure in primary open-angle glaucoma
Liang YB
Journal of Zhejiang University. Science. B 2020; 21: 305-314 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Cioffi GA
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86706 Association of lamina cribrosa morphometry with retinal nerve fiber layer loss and visual field defects in primary open angle glaucoma
Faheem F
Pakistan journal of medical sciences 2020; 36: 521-525 (IGR: 21-2)


86714 Comparing Structure-Function Relationships Based on Drasdo's and Sjöstrand's Retinal Ganglion Cell Displacement Models
Kanamoto T
Investigative Ophthalmology and Visual Science 2020; 61: 10 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Al-Aswad LA
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86719 Severity of visual field defects in primary congenital glaucoma and their risk factors
Shakrawal J
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1483-1491 (IGR: 21-2)


86310 Temporal Wedge Defects in Glaucoma: Structure/Function Correlation With Threshold Automated Perimetry of the Full Visual Field
Turpin A
Journal of Glaucoma 2020; 29: 191-197 (IGR: 21-2)


86316 Usefulness of data augmentation for visual field trend analyses in patients with glaucoma
Miki A
British Journal of Ophthalmology 2020; 104: 1697-1703 (IGR: 21-2)


86662 Defective angles of localized retinal nerve fiber layer reflect the severity of visual field defect- a cross-sectional analysis
Lin PW
BMC Ophthalmology 2020; 20: 141 (IGR: 21-2)


86553 Binocular superior visual field areas associated with driving self-regulation in patients with primary open-angle glaucoma
Murata H
British Journal of Ophthalmology 2021; 105: 135-140 (IGR: 21-2)


86566 Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression
Park KH
American Journal of Ophthalmology 2020; 216: 121-131 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
Wang M
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86575 Evaluation of Long-Term Visual Field Function in Patients Undergoing Glaucoma Drainage Device Implantation
Li S
American Journal of Ophthalmology 2020; 216: 44-54 (IGR: 21-2)


86595 Evaluation of Fear of Falling in Patients with Primary Open-Angle Glaucoma and the Importance of Inferior Visual Field Damage
Murata H
Investigative Ophthalmology and Visual Science 2020; 61: 52 (IGR: 21-2)


86308 Visual Field Plots: A Comparison Study Between Standard Automated Perimetry and Eye Movement Perimetry
Panday M
Journal of Glaucoma 2020; 29: 351-361 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Girkin CA
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86566 Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression
Jeoung JW
American Journal of Ophthalmology 2020; 216: 121-131 (IGR: 21-2)


86575 Evaluation of Long-Term Visual Field Function in Patients Undergoing Glaucoma Drainage Device Implantation
Zhong H
American Journal of Ophthalmology 2020; 216: 44-54 (IGR: 21-2)


86709 Visual evoked potential in the early diagnosis of glaucoma. Literature review
Voinea L
Romanian journal of ophthalmology 2020; 64: 15-20 (IGR: 21-2)


86662 Defective angles of localized retinal nerve fiber layer reflect the severity of visual field defect- a cross-sectional analysis
Wu PC
BMC Ophthalmology 2020; 20: 141 (IGR: 21-2)


86328 Effect of fundus tracking on structure-function relationship in glaucoma
Oddone F
British Journal of Ophthalmology 2020; 104: 1710-1716 (IGR: 21-2)


86719 Severity of visual field defects in primary congenital glaucoma and their risk factors
Angmo D
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1483-1491 (IGR: 21-2)


86372 Individualized Visual Reality Training Improves Visual Acuity and Visual Field Defects in Patients with Glaucoma: A Preliminary Study Report
Lu Y
Cyberpsychology, behavior and social networking 2020; 23: 179-184 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
Shen LQ
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86714 Comparing Structure-Function Relationships Based on Drasdo's and Sjöstrand's Retinal Ganglion Cell Displacement Models
Inoue K
Investigative Ophthalmology and Visual Science 2020; 61: 10 (IGR: 21-2)


86553 Binocular superior visual field areas associated with driving self-regulation in patients with primary open-angle glaucoma
Tsubota K
British Journal of Ophthalmology 2021; 105: 135-140 (IGR: 21-2)


86523 Foveal Avascular Zone Measurement Via Optical Coherence Tomography Angiography and its Relationship With the Visual Field in Eyes With Open-angle Glaucoma
Iikawa R
Journal of Glaucoma 2020; 29: 492-497 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Skaat A
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86552 Progression from ocular hypertension to visual field loss in the English hospital eye service
Crabb DP
British Journal of Ophthalmology 2020; 104: 1406-1411 (IGR: 21-2)


86595 Evaluation of Fear of Falling in Patients with Primary Open-Angle Glaucoma and the Importance of Inferior Visual Field Damage
Tsubota K
Investigative Ophthalmology and Visual Science 2020; 61: 52 (IGR: 21-2)


86316 Usefulness of data augmentation for visual field trend analyses in patients with glaucoma
Tanito M
British Journal of Ophthalmology 2020; 104: 1697-1703 (IGR: 21-2)


86308 Visual Field Plots: A Comparison Study Between Standard Automated Perimetry and Eye Movement Perimetry
Steen JVD
Journal of Glaucoma 2020; 29: 351-361 (IGR: 21-2)


86609 Structure-function correlation of localized visual field defects and macular microvascular damage in primary open-angle glaucoma
Zheng J
Microvascular Research 2020; 130: 104005 (IGR: 21-2)


86795 Visual Field Outcomes in the Tube Versus Trabeculectomy Study
Medeiros FA
Ophthalmology 2020; 127: 1162-1169 (IGR: 21-2)


86553 Binocular superior visual field areas associated with driving self-regulation in patients with primary open-angle glaucoma
Asaoka R
British Journal of Ophthalmology 2021; 105: 135-140 (IGR: 21-2)


86719 Severity of visual field defects in primary congenital glaucoma and their risk factors
Dada T
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1483-1491 (IGR: 21-2)


86575 Evaluation of Long-Term Visual Field Function in Patients Undergoing Glaucoma Drainage Device Implantation
Gedde SJ
American Journal of Ophthalmology 2020; 216: 44-54 (IGR: 21-2)


86609 Structure-function correlation of localized visual field defects and macular microvascular damage in primary open-angle glaucoma
Ye C
Microvascular Research 2020; 130: 104005 (IGR: 21-2)


86328 Effect of fundus tracking on structure-function relationship in glaucoma
Lanzetta P
British Journal of Ophthalmology 2020; 104: 1710-1716 (IGR: 21-2)


86316 Usefulness of data augmentation for visual field trend analyses in patients with glaucoma
Mizoue S
British Journal of Ophthalmology 2020; 104: 1697-1703 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Weinreb RN
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86308 Visual Field Plots: A Comparison Study Between Standard Automated Perimetry and Eye Movement Perimetry
George R
Journal of Glaucoma 2020; 29: 351-361 (IGR: 21-2)


86662 Defective angles of localized retinal nerve fiber layer reflect the severity of visual field defect- a cross-sectional analysis
Kuo MT
BMC Ophthalmology 2020; 20: 141 (IGR: 21-2)


86714 Comparing Structure-Function Relationships Based on Drasdo's and Sjöstrand's Retinal Ganglion Cell Displacement Models
Nagumo M
Investigative Ophthalmology and Visual Science 2020; 61: 10 (IGR: 21-2)


86795 Visual Field Outcomes in the Tube Versus Trabeculectomy Study
Gedde SJ
Ophthalmology 2020; 127: 1162-1169 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Girkin CA
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86523 Foveal Avascular Zone Measurement Via Optical Coherence Tomography Angiography and its Relationship With the Visual Field in Eyes With Open-angle Glaucoma
Honma Y
Journal of Glaucoma 2020; 29: 492-497 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
Wellik SR
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86714 Comparing Structure-Function Relationships Based on Drasdo's and Sjöstrand's Retinal Ganglion Cell Displacement Models
Yamagami J
Investigative Ophthalmology and Visual Science 2020; 61: 10 (IGR: 21-2)


86523 Foveal Avascular Zone Measurement Via Optical Coherence Tomography Angiography and its Relationship With the Visual Field in Eyes With Open-angle Glaucoma
Miyamoto D
Journal of Glaucoma 2020; 29: 492-497 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Weinreb RN
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86316 Usefulness of data augmentation for visual field trend analyses in patients with glaucoma
Mori K
British Journal of Ophthalmology 2020; 104: 1697-1703 (IGR: 21-2)


86719 Severity of visual field defects in primary congenital glaucoma and their risk factors
Upadhyay A
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 1483-1491 (IGR: 21-2)


86575 Evaluation of Long-Term Visual Field Function in Patients Undergoing Glaucoma Drainage Device Implantation
Han Y
American Journal of Ophthalmology 2020; 216: 44-54 (IGR: 21-2)


86328 Effect of fundus tracking on structure-function relationship in glaucoma
Perdicchi A
British Journal of Ophthalmology 2020; 104: 1710-1716 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
De Moraes CG
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Zangwill LM
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86609 Structure-function correlation of localized visual field defects and macular microvascular damage in primary open-angle glaucoma
Lu F
Microvascular Research 2020; 130: 104005 (IGR: 21-2)


86795 Visual Field Outcomes in the Tube Versus Trabeculectomy Study

Ophthalmology 2020; 127: 1162-1169 (IGR: 21-2)


86316 Usefulness of data augmentation for visual field trend analyses in patients with glaucoma
Suzuki K
British Journal of Ophthalmology 2020; 104: 1697-1703 (IGR: 21-2)


86523 Foveal Avascular Zone Measurement Via Optical Coherence Tomography Angiography and its Relationship With the Visual Field in Eyes With Open-angle Glaucoma
Fukuchi T
Journal of Glaucoma 2020; 29: 492-497 (IGR: 21-2)


86714 Comparing Structure-Function Relationships Based on Drasdo's and Sjöstrand's Retinal Ganglion Cell Displacement Models
Yamashita T
Investigative Ophthalmology and Visual Science 2020; 61: 10 (IGR: 21-2)


86328 Effect of fundus tracking on structure-function relationship in glaucoma
Johnson CA
British Journal of Ophthalmology 2020; 104: 1710-1716 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
Myers JS
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Zangwill LM
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Ritch R
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
Boland MV
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86316 Usefulness of data augmentation for visual field trend analyses in patients with glaucoma
Yamashita T
British Journal of Ophthalmology 2020; 104: 1697-1703 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Susanna R
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86714 Comparing Structure-Function Relationships Based on Drasdo's and Sjöstrand's Retinal Ganglion Cell Displacement Models
Murata H
Investigative Ophthalmology and Visual Science 2020; 61: 10 (IGR: 21-2)


86328 Effect of fundus tracking on structure-function relationship in glaucoma
Brusini P
British Journal of Ophthalmology 2020; 104: 1710-1716 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Hood DC
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86714 Comparing Structure-Function Relationships Based on Drasdo's and Sjöstrand's Retinal Ganglion Cell Displacement Models
Asaoka R
Investigative Ophthalmology and Visual Science 2020; 61: 10 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Hood DC
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86316 Usefulness of data augmentation for visual field trend analyses in patients with glaucoma
Kashiwagi K
British Journal of Ophthalmology 2020; 104: 1697-1703 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Liebmann JM
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86328 Effect of fundus tracking on structure-function relationship in glaucoma
Garway-Heath DF; Crabb DP
British Journal of Ophthalmology 2020; 104: 1710-1716 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Liebmann JM
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86316 Usefulness of data augmentation for visual field trend analyses in patients with glaucoma
Shoji N
British Journal of Ophthalmology 2020; 104: 1697-1703 (IGR: 21-2)


84832 Factors Associated with Midterm Visual Field Variability in Patients with Stable Glaucoma
Guimarães MEV
Journal of Ophthalmology 2019; 2019: 2013160 (IGR: 21-1)


85127 Artificial Intelligence Classification of Central Visual Field Patterns in Glaucoma
Wang M
Ophthalmology 2020; 127: 731-738 (IGR: 21-1)


84443 Long-Term Follow-up on Glaucoma Patients With Initial Single-Hemifield Defect: Progression Patterns and Associated Factors
Baek SU
Journal of Glaucoma 2019; 28: 1041-1047 (IGR: 21-1)


84744 Comparison of visual field defect progression in secondary Glaucoma due to anterior uveitis caused by three types of herpes viruses
Shirahama S
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 639-645 (IGR: 21-1)


84989 Correlation between blood flow on optic nerve head and structural and functional changes in eyes with glaucoma
Kuroda F
Scientific reports 2020; 10: 729 (IGR: 21-1)


84835 Measurement of Retinal Changes in Primary Acute Angle Closure Glaucoma under Different Durations of Symptoms
Zhu X
Journal of Ophthalmology 2019; 2019: 5409837 (IGR: 21-1)


85192 Longitudinal Macular Structure-Function Relationships in Glaucoma
Mohammadzadeh V
Ophthalmology 2020; 127: 888-900 (IGR: 21-1)


84900 Temporal Wedge Defects in Glaucoma: Structure / Function Correlation with Threshold Automated Perimetry of the Full Visual Field
Wall M
Journal of Glaucoma 2020; 0: (IGR: 21-1)


84696 Estimating Visual Field Mean Deviation using Optical Coherence Tomographic Nerve Fiber Layer Measurements in Glaucoma Patients
Tan O
Scientific reports 2019; 9: 18528 (IGR: 21-1)


84969 Predictors of Long-Term Visual Field Fluctuation in Glaucoma Patients
Rabiolo A
Ophthalmology 2020; 127: 739-747 (IGR: 21-1)


84796 Structure-function relationship in a series of glaucoma cases
Sánchez-Pulgarín M
Journal Français d'Ophtalmologie 2020; 43: 111-122 (IGR: 21-1)


84527 Comparison of Short- And Long-Term Variability in Standard Perimetry and Spectral Domain Optical Coherence Tomography in Glaucoma
Urata CN
American Journal of Ophthalmology 2020; 210: 19-25 (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Ocansey S
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84493 Comparison of Humphrey Field Analyzer and imo visual field test results in patients with glaucoma and pseudo-fixation loss
Goukon H
PLoS ONE 2019; 14: e0224711 (IGR: 21-1)


85186 Mood and behavior seasonality in glaucoma; assessing correlations between seasonality and structure and function of the retinal ganglion cells
Madsen HØ
PLoS ONE 2020; 15: e0229991 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Wang M
JAMA ophthalmology 2020; 0: (IGR: 21-1)


84733 Sample Size Requirements of Glaucoma Clinical Trials When Using Combined Optical Coherence Tomography and Visual Field Endpoints
Wu Z
Scientific reports 2019; 9: 18886 (IGR: 21-1)


84972 Localization in glaucomatous visual field loss vulnerable to posture-induced intraocular pressure changes in open angle glaucoma
Manabe Y
American Journal of Ophthalmology 2020; 0: (IGR: 21-1)


84725 Structure-function relationship between Bruch's membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes
Li R
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 595-605 (IGR: 21-1)


85119 Visual function evaluation for low vision patients with advanced glaucoma
Jeon SJ
Medicine 2020; 99: e19149 (IGR: 21-1)


84503 Eye-Hand Coordination Impairment in Glaucoma Patients
Zwierko T
International journal of environmental research and public health 2019; 16: (IGR: 21-1)


84443 Long-Term Follow-up on Glaucoma Patients With Initial Single-Hemifield Defect: Progression Patterns and Associated Factors
Baek SU
Journal of Glaucoma 2019; 28: 1041-1047 (IGR: 21-1)


85167 Estimation of the central 10-degree visual field using en-face images obtained by optical coherence tomography
Iikawa R
PLoS ONE 2020; 15: e0229867 (IGR: 21-1)


85100 Application of Hemifield Visual Electrophysiology to Diagnose Functional Vision Loss
Moss HE
Journal of Neuro-Ophthalmology 2020; 0: (IGR: 21-1)


84595 Relationship Between Foveal Threshold and Macular Structure/Function/Vessel Density in Glaucoma
Jeong D
Journal of Glaucoma 2020; 29: 104-111 (IGR: 21-1)


84871 No Relationship Between Visual Field Damage And Choroidal Thickness In Eyes With Primary Open Angle Glaucoma
Karaca U
Ophthalmic Research 2020; 0: (IGR: 21-1)


85167 Estimation of the central 10-degree visual field using en-face images obtained by optical coherence tomography
Togano T
PLoS ONE 2020; 15: e0229867 (IGR: 21-1)


84989 Correlation between blood flow on optic nerve head and structural and functional changes in eyes with glaucoma
Iwase T
Scientific reports 2020; 10: 729 (IGR: 21-1)


84527 Comparison of Short- And Long-Term Variability in Standard Perimetry and Spectral Domain Optical Coherence Tomography in Glaucoma
Mariottoni EB
American Journal of Ophthalmology 2020; 210: 19-25 (IGR: 21-1)


85186 Mood and behavior seasonality in glaucoma; assessing correlations between seasonality and structure and function of the retinal ganglion cells
Ba-Ali S
PLoS ONE 2020; 15: e0229991 (IGR: 21-1)


85119 Visual function evaluation for low vision patients with advanced glaucoma
Jung Y
Medicine 2020; 99: e19149 (IGR: 21-1)


84725 Structure-function relationship between Bruch's membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes
Wang X
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 595-605 (IGR: 21-1)


84696 Estimating Visual Field Mean Deviation using Optical Coherence Tomographic Nerve Fiber Layer Measurements in Glaucoma Patients
Greenfield DS
Scientific reports 2019; 9: 18528 (IGR: 21-1)


84796 Structure-function relationship in a series of glaucoma cases
Saenz-Frances F
Journal Français d'Ophtalmologie 2020; 43: 111-122 (IGR: 21-1)


84871 No Relationship Between Visual Field Damage And Choroidal Thickness In Eyes With Primary Open Angle Glaucoma
Özge G
Ophthalmic Research 2020; 0: (IGR: 21-1)


84493 Comparison of Humphrey Field Analyzer and imo visual field test results in patients with glaucoma and pseudo-fixation loss
Hirasawa K
PLoS ONE 2019; 14: e0224711 (IGR: 21-1)


84832 Factors Associated with Midterm Visual Field Variability in Patients with Stable Glaucoma
Gracitelli CPB
Journal of Ophthalmology 2019; 2019: 2013160 (IGR: 21-1)


84443 Long-Term Follow-up on Glaucoma Patients With Initial Single-Hemifield Defect: Progression Patterns and Associated Factors
Kim YK
Journal of Glaucoma 2019; 28: 1041-1047 (IGR: 21-1)


84503 Eye-Hand Coordination Impairment in Glaucoma Patients
Jedziniak W
International journal of environmental research and public health 2019; 16: (IGR: 21-1)


85192 Longitudinal Macular Structure-Function Relationships in Glaucoma
Rabiolo A
Ophthalmology 2020; 127: 888-900 (IGR: 21-1)


85127 Artificial Intelligence Classification of Central Visual Field Patterns in Glaucoma
Shen LQ
Ophthalmology 2020; 127: 731-738 (IGR: 21-1)


85100 Application of Hemifield Visual Electrophysiology to Diagnose Functional Vision Loss
Jabbehdari S
Journal of Neuro-Ophthalmology 2020; 0: (IGR: 21-1)


84595 Relationship Between Foveal Threshold and Macular Structure/Function/Vessel Density in Glaucoma
Won HJ
Journal of Glaucoma 2020; 29: 104-111 (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Abu EK
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84969 Predictors of Long-Term Visual Field Fluctuation in Glaucoma Patients
Morales E
Ophthalmology 2020; 127: 739-747 (IGR: 21-1)


84744 Comparison of visual field defect progression in secondary Glaucoma due to anterior uveitis caused by three types of herpes viruses
Kaburaki T
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 639-645 (IGR: 21-1)


84527 Comparison of Short- And Long-Term Variability in Standard Perimetry and Spectral Domain Optical Coherence Tomography in Glaucoma
Mariottoni EB
American Journal of Ophthalmology 2020; 210: 19-25 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Tichelaar J
JAMA ophthalmology 2020; 0: (IGR: 21-1)


84733 Sample Size Requirements of Glaucoma Clinical Trials When Using Combined Optical Coherence Tomography and Visual Field Endpoints
Medeiros FA
Scientific reports 2019; 9: 18886 (IGR: 21-1)


84972 Localization in glaucomatous visual field loss vulnerable to posture-induced intraocular pressure changes in open angle glaucoma
Sawada A
American Journal of Ophthalmology 2020; 0: (IGR: 21-1)


84835 Measurement of Retinal Changes in Primary Acute Angle Closure Glaucoma under Different Durations of Symptoms
Zeng W
Journal of Ophthalmology 2019; 2019: 5409837 (IGR: 21-1)


84900 Temporal Wedge Defects in Glaucoma: Structure / Function Correlation with Threshold Automated Perimetry of the Full Visual Field
Lee EJ
Journal of Glaucoma 2020; 0: (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Pasquale LR
JAMA ophthalmology 2020; 0: (IGR: 21-1)


84595 Relationship Between Foveal Threshold and Macular Structure/Function/Vessel Density in Glaucoma
Jo YH
Journal of Glaucoma 2020; 29: 104-111 (IGR: 21-1)


84503 Eye-Hand Coordination Impairment in Glaucoma Patients
Lesiakowski P
International journal of environmental research and public health 2019; 16: (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Owusu-Ansah A
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84972 Localization in glaucomatous visual field loss vulnerable to posture-induced intraocular pressure changes in open angle glaucoma
Yamamoto T
American Journal of Ophthalmology 2020; 0: (IGR: 21-1)


85119 Visual function evaluation for low vision patients with advanced glaucoma
Jung CS
Medicine 2020; 99: e19149 (IGR: 21-1)


84725 Structure-function relationship between Bruch's membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes
Wei Y
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 595-605 (IGR: 21-1)


84969 Predictors of Long-Term Visual Field Fluctuation in Glaucoma Patients
Kim JH
Ophthalmology 2020; 127: 739-747 (IGR: 21-1)


84989 Correlation between blood flow on optic nerve head and structural and functional changes in eyes with glaucoma
Yamamoto K
Scientific reports 2020; 10: 729 (IGR: 21-1)


85186 Mood and behavior seasonality in glaucoma; assessing correlations between seasonality and structure and function of the retinal ganglion cells
Lund-Andersen H
PLoS ONE 2020; 15: e0229991 (IGR: 21-1)


84900 Temporal Wedge Defects in Glaucoma: Structure / Function Correlation with Threshold Automated Perimetry of the Full Visual Field
Wanzek RJ
Journal of Glaucoma 2020; 0: (IGR: 21-1)


85167 Estimation of the central 10-degree visual field using en-face images obtained by optical coherence tomography
Sakaue Y
PLoS ONE 2020; 15: e0229867 (IGR: 21-1)


84835 Measurement of Retinal Changes in Primary Acute Angle Closure Glaucoma under Different Durations of Symptoms
Wu S
Journal of Ophthalmology 2019; 2019: 5409837 (IGR: 21-1)


84871 No Relationship Between Visual Field Damage And Choroidal Thickness In Eyes With Primary Open Angle Glaucoma
Mumcuoglu T
Ophthalmic Research 2020; 0: (IGR: 21-1)


85127 Artificial Intelligence Classification of Central Visual Field Patterns in Glaucoma
Pasquale LR
Ophthalmology 2020; 127: 731-738 (IGR: 21-1)


84443 Long-Term Follow-up on Glaucoma Patients With Initial Single-Hemifield Defect: Progression Patterns and Associated Factors
Park KH
Journal of Glaucoma 2019; 28: 1041-1047 (IGR: 21-1)


84527 Comparison of Short- And Long-Term Variability in Standard Perimetry and Spectral Domain Optical Coherence Tomography in Glaucoma
Jammal AA
American Journal of Ophthalmology 2020; 210: 19-25 (IGR: 21-1)


84696 Estimating Visual Field Mean Deviation using Optical Coherence Tomographic Nerve Fiber Layer Measurements in Glaucoma Patients
Francis BA
Scientific reports 2019; 9: 18528 (IGR: 21-1)


84796 Structure-function relationship in a series of glaucoma cases
Martinez-de-la-Casa JM
Journal Français d'Ophtalmologie 2020; 43: 111-122 (IGR: 21-1)


84832 Factors Associated with Midterm Visual Field Variability in Patients with Stable Glaucoma
Dorairaj S
Journal of Ophthalmology 2019; 2019: 2013160 (IGR: 21-1)


85192 Longitudinal Macular Structure-Function Relationships in Glaucoma
Fu Q
Ophthalmology 2020; 127: 888-900 (IGR: 21-1)


84744 Comparison of visual field defect progression in secondary Glaucoma due to anterior uveitis caused by three types of herpes viruses
Takada S
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 639-645 (IGR: 21-1)


84493 Comparison of Humphrey Field Analyzer and imo visual field test results in patients with glaucoma and pseudo-fixation loss
Kasahara M
PLoS ONE 2019; 14: e0224711 (IGR: 21-1)


84832 Factors Associated with Midterm Visual Field Variability in Patients with Stable Glaucoma
Kanadani FN
Journal of Ophthalmology 2019; 2019: 2013160 (IGR: 21-1)


85186 Mood and behavior seasonality in glaucoma; assessing correlations between seasonality and structure and function of the retinal ganglion cells
Martiny K
PLoS ONE 2020; 15: e0229991 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Shen LQ
JAMA ophthalmology 2020; 0: (IGR: 21-1)


84744 Comparison of visual field defect progression in secondary Glaucoma due to anterior uveitis caused by three types of herpes viruses
Nakahara H
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 639-645 (IGR: 21-1)


84595 Relationship Between Foveal Threshold and Macular Structure/Function/Vessel Density in Glaucoma
Song MK
Journal of Glaucoma 2020; 29: 104-111 (IGR: 21-1)


84725 Structure-function relationship between Bruch's membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes
Fang Y
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 595-605 (IGR: 21-1)


84989 Correlation between blood flow on optic nerve head and structural and functional changes in eyes with glaucoma
Ra E
Scientific reports 2020; 10: 729 (IGR: 21-1)


85119 Visual function evaluation for low vision patients with advanced glaucoma
Park HL
Medicine 2020; 99: e19149 (IGR: 21-1)


85167 Estimation of the central 10-degree visual field using en-face images obtained by optical coherence tomography
Suetake A
PLoS ONE 2020; 15: e0229867 (IGR: 21-1)


84900 Temporal Wedge Defects in Glaucoma: Structure / Function Correlation with Threshold Automated Perimetry of the Full Visual Field
Chong LX
Journal of Glaucoma 2020; 0: (IGR: 21-1)


84503 Eye-Hand Coordination Impairment in Glaucoma Patients
Śliwiak M
International journal of environmental research and public health 2019; 16: (IGR: 21-1)


84871 No Relationship Between Visual Field Damage And Choroidal Thickness In Eyes With Primary Open Angle Glaucoma
Usta G
Ophthalmic Research 2020; 0: (IGR: 21-1)


84493 Comparison of Humphrey Field Analyzer and imo visual field test results in patients with glaucoma and pseudo-fixation loss
Matsumura K
PLoS ONE 2019; 14: e0224711 (IGR: 21-1)


84835 Measurement of Retinal Changes in Primary Acute Angle Closure Glaucoma under Different Durations of Symptoms
Chen X
Journal of Ophthalmology 2019; 2019: 5409837 (IGR: 21-1)


85192 Longitudinal Macular Structure-Function Relationships in Glaucoma
Morales E
Ophthalmology 2020; 127: 888-900 (IGR: 21-1)


84696 Estimating Visual Field Mean Deviation using Optical Coherence Tomographic Nerve Fiber Layer Measurements in Glaucoma Patients
Varma R
Scientific reports 2019; 9: 18528 (IGR: 21-1)


85127 Artificial Intelligence Classification of Central Visual Field Patterns in Glaucoma
Boland MV
Ophthalmology 2020; 127: 731-738 (IGR: 21-1)


84443 Long-Term Follow-up on Glaucoma Patients With Initial Single-Hemifield Defect: Progression Patterns and Associated Factors
Jeoung JW
Journal of Glaucoma 2019; 28: 1041-1047 (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Mensah S
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84969 Predictors of Long-Term Visual Field Fluctuation in Glaucoma Patients
Afifi AA
Ophthalmology 2020; 127: 739-747 (IGR: 21-1)


84796 Structure-function relationship in a series of glaucoma cases
García-Feijoó J
Journal Français d'Ophtalmologie 2020; 43: 111-122 (IGR: 21-1)


84527 Comparison of Short- And Long-Term Variability in Standard Perimetry and Spectral Domain Optical Coherence Tomography in Glaucoma
Ogata NG
American Journal of Ophthalmology 2020; 210: 19-25 (IGR: 21-1)


84725 Structure-function relationship between Bruch's membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes
Tian T
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 595-605 (IGR: 21-1)


84595 Relationship Between Foveal Threshold and Macular Structure/Function/Vessel Density in Glaucoma
Shin JW
Journal of Glaucoma 2020; 29: 104-111 (IGR: 21-1)


84527 Comparison of Short- And Long-Term Variability in Standard Perimetry and Spectral Domain Optical Coherence Tomography in Glaucoma
Thompson AC
American Journal of Ophthalmology 2020; 210: 19-25 (IGR: 21-1)


85119 Visual function evaluation for low vision patients with advanced glaucoma
Park CK
Medicine 2020; 99: e19149 (IGR: 21-1)


84835 Measurement of Retinal Changes in Primary Acute Angle Closure Glaucoma under Different Durations of Symptoms
Zheng T
Journal of Ophthalmology 2019; 2019: 5409837 (IGR: 21-1)


85127 Artificial Intelligence Classification of Central Visual Field Patterns in Glaucoma
Wellik SR
Ophthalmology 2020; 127: 731-738 (IGR: 21-1)


84744 Comparison of visual field defect progression in secondary Glaucoma due to anterior uveitis caused by three types of herpes viruses
Tanaka R
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 639-645 (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Oduro-Boateng J
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84900 Temporal Wedge Defects in Glaucoma: Structure / Function Correlation with Threshold Automated Perimetry of the Full Visual Field
Turpin A
Journal of Glaucoma 2020; 0: (IGR: 21-1)


84696 Estimating Visual Field Mean Deviation using Optical Coherence Tomographic Nerve Fiber Layer Measurements in Glaucoma Patients
Schuman JS
Scientific reports 2019; 9: 18528 (IGR: 21-1)


84493 Comparison of Humphrey Field Analyzer and imo visual field test results in patients with glaucoma and pseudo-fixation loss
Shoji N
PLoS ONE 2019; 14: e0224711 (IGR: 21-1)


84832 Factors Associated with Midterm Visual Field Variability in Patients with Stable Glaucoma
Prata TS
Journal of Ophthalmology 2019; 2019: 2013160 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Boland MV
JAMA ophthalmology 2020; 0: (IGR: 21-1)


84796 Structure-function relationship in a series of glaucoma cases
Ferreras-Amez A
Journal Français d'Ophtalmologie 2020; 43: 111-122 (IGR: 21-1)


85167 Estimation of the central 10-degree visual field using en-face images obtained by optical coherence tomography
Igarashi R
PLoS ONE 2020; 15: e0229867 (IGR: 21-1)


84989 Correlation between blood flow on optic nerve head and structural and functional changes in eyes with glaucoma
Terasaki H
Scientific reports 2020; 10: 729 (IGR: 21-1)


85186 Mood and behavior seasonality in glaucoma; assessing correlations between seasonality and structure and function of the retinal ganglion cells
Hageman I
PLoS ONE 2020; 15: e0229991 (IGR: 21-1)


84969 Predictors of Long-Term Visual Field Fluctuation in Glaucoma Patients
Yu F
Ophthalmology 2020; 127: 739-747 (IGR: 21-1)


85192 Longitudinal Macular Structure-Function Relationships in Glaucoma
Coleman AL
Ophthalmology 2020; 127: 888-900 (IGR: 21-1)


84503 Eye-Hand Coordination Impairment in Glaucoma Patients
Kirkiewicz M
International journal of environmental research and public health 2019; 16: (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Wellik SR
JAMA ophthalmology 2020; 0: (IGR: 21-1)


84969 Predictors of Long-Term Visual Field Fluctuation in Glaucoma Patients
Nouri-Mahdavi K
Ophthalmology 2020; 127: 739-747 (IGR: 21-1)


84527 Comparison of Short- And Long-Term Variability in Standard Perimetry and Spectral Domain Optical Coherence Tomography in Glaucoma
Berchuck SI
American Journal of Ophthalmology 2020; 210: 19-25 (IGR: 21-1)


85167 Estimation of the central 10-degree visual field using en-face images obtained by optical coherence tomography
Miyamoto D
PLoS ONE 2020; 15: e0229867 (IGR: 21-1)


84503 Eye-Hand Coordination Impairment in Glaucoma Patients
Lubiński W
International journal of environmental research and public health 2019; 16: (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Kojo RA
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


85192 Longitudinal Macular Structure-Function Relationships in Glaucoma
Law SK
Ophthalmology 2020; 127: 888-900 (IGR: 21-1)


84595 Relationship Between Foveal Threshold and Macular Structure/Function/Vessel Density in Glaucoma
Kook MS
Journal of Glaucoma 2020; 29: 104-111 (IGR: 21-1)


84725 Structure-function relationship between Bruch's membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes
Li M
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 595-605 (IGR: 21-1)


84796 Structure-function relationship in a series of glaucoma cases
Pablo LE
Journal Français d'Ophtalmologie 2020; 43: 111-122 (IGR: 21-1)


84835 Measurement of Retinal Changes in Primary Acute Angle Closure Glaucoma under Different Durations of Symptoms
Ke M
Journal of Ophthalmology 2019; 2019: 5409837 (IGR: 21-1)


84696 Estimating Visual Field Mean Deviation using Optical Coherence Tomographic Nerve Fiber Layer Measurements in Glaucoma Patients
Huang D
Scientific reports 2019; 9: 18528 (IGR: 21-1)


84744 Comparison of visual field defect progression in secondary Glaucoma due to anterior uveitis caused by three types of herpes viruses
Komae K
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 639-645 (IGR: 21-1)


85127 Artificial Intelligence Classification of Central Visual Field Patterns in Glaucoma
De Moraes CG
Ophthalmology 2020; 127: 731-738 (IGR: 21-1)


84527 Comparison of Short- And Long-Term Variability in Standard Perimetry and Spectral Domain Optical Coherence Tomography in Glaucoma
Berchuck SI
American Journal of Ophthalmology 2020; 210: 19-25 (IGR: 21-1)


85192 Longitudinal Macular Structure-Function Relationships in Glaucoma
Caprioli J
Ophthalmology 2020; 127: 888-900 (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Kyei S
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84527 Comparison of Short- And Long-Term Variability in Standard Perimetry and Spectral Domain Optical Coherence Tomography in Glaucoma
Estrela T
American Journal of Ophthalmology 2020; 210: 19-25 (IGR: 21-1)


85127 Artificial Intelligence Classification of Central Visual Field Patterns in Glaucoma
Myers JS
Ophthalmology 2020; 127: 731-738 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
De Moraes CG
JAMA ophthalmology 2020; 0: (IGR: 21-1)


84969 Predictors of Long-Term Visual Field Fluctuation in Glaucoma Patients
Caprioli J
Ophthalmology 2020; 127: 739-747 (IGR: 21-1)


85167 Estimation of the central 10-degree visual field using en-face images obtained by optical coherence tomography
Yaoeda K
PLoS ONE 2020; 15: e0229867 (IGR: 21-1)


84527 Comparison of Short- And Long-Term Variability in Standard Perimetry and Spectral Domain Optical Coherence Tomography in Glaucoma
Estrela T
American Journal of Ophthalmology 2020; 210: 19-25 (IGR: 21-1)


84725 Structure-function relationship between Bruch's membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes
Cai Y
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 595-605 (IGR: 21-1)


84744 Comparison of visual field defect progression in secondary Glaucoma due to anterior uveitis caused by three types of herpes viruses
Fujino Y
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 639-645 (IGR: 21-1)


85127 Artificial Intelligence Classification of Central Visual Field Patterns in Glaucoma
Nguyen TD
Ophthalmology 2020; 127: 731-738 (IGR: 21-1)


84744 Comparison of visual field defect progression in secondary Glaucoma due to anterior uveitis caused by three types of herpes viruses
Kawashima H
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 639-645 (IGR: 21-1)


84527 Comparison of Short- And Long-Term Variability in Standard Perimetry and Spectral Domain Optical Coherence Tomography in Glaucoma
Medeiros FA
American Journal of Ophthalmology 2020; 210: 19-25 (IGR: 21-1)


85192 Longitudinal Macular Structure-Function Relationships in Glaucoma
Nouri-Mahdavi K
Ophthalmology 2020; 127: 888-900 (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Boadi-Kusi SB
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


85167 Estimation of the central 10-degree visual field using en-face images obtained by optical coherence tomography
Seki M
PLoS ONE 2020; 15: e0229867 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Myers JS
JAMA ophthalmology 2020; 0: (IGR: 21-1)


84725 Structure-function relationship between Bruch's membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes
Pan Y
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 595-605 (IGR: 21-1)


84744 Comparison of visual field defect progression in secondary Glaucoma due to anterior uveitis caused by three types of herpes viruses
Aihara M
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 639-645 (IGR: 21-1)


85167 Estimation of the central 10-degree visual field using en-face images obtained by optical coherence tomography
Fukuchi T
PLoS ONE 2020; 15: e0229867 (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Amoah-Smith O
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Ramulu P
JAMA ophthalmology 2020; 0: (IGR: 21-1)


85127 Artificial Intelligence Classification of Central Visual Field Patterns in Glaucoma
Ritch R; Ramulu P
Ophthalmology 2020; 127: 731-738 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Kwon M
JAMA ophthalmology 2020; 0: (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Morny EKA
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Saeedi OJ
JAMA ophthalmology 2020; 0: (IGR: 21-1)


85127 Artificial Intelligence Classification of Central Visual Field Patterns in Glaucoma
Wang H
Ophthalmology 2020; 127: 731-738 (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Darko-Takyi C
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Wang H
JAMA ophthalmology 2020; 0: (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Abraham CH
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


85127 Artificial Intelligence Classification of Central Visual Field Patterns in Glaucoma
Tichelaar J
Ophthalmology 2020; 127: 731-738 (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Appiah Nyamekye B
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


85127 Artificial Intelligence Classification of Central Visual Field Patterns in Glaucoma
Li D
Ophthalmology 2020; 127: 731-738 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Baniasadi N
JAMA ophthalmology 2020; 0: (IGR: 21-1)


85152 Normative Values of Retinal Nerve Fibre Layer Thickness and Optic Nerve Head Parameters and Their Association with Visual Function in an African Population
Ilechie AA
Journal of Ophthalmology 2020; 2020: 7150673 (IGR: 21-1)


85127 Artificial Intelligence Classification of Central Visual Field Patterns in Glaucoma
Bex PJ
Ophthalmology 2020; 127: 731-738 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Li D
JAMA ophthalmology 2020; 0: (IGR: 21-1)


85127 Artificial Intelligence Classification of Central Visual Field Patterns in Glaucoma
Elze T
Ophthalmology 2020; 127: 731-738 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Bex PJ; Elze T
JAMA ophthalmology 2020; 0: (IGR: 21-1)


82764 Does Retinal Ganglion Cell Loss Precede Visual Field Loss in Glaucoma?
Hood DC
Journal of Glaucoma 2019; 28: 945-951 (IGR: 20-4)


82473 Structural evaluation of perimetrically normal and affected hemifields in open angle glaucoma
Deshpande G
Indian Journal of Ophthalmology 2019; 67: 1657-1662 (IGR: 20-4)


82341 Predicting Humphrey 10-2 visual field from 24-2 visual field in eyes with advanced glaucoma
Sugisaki K
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82329 Clinical Evaluation of Swedish Interactive Thresholding Algorithm-Faster Compared With Swedish Interactive Thresholding Algorithm-Standard in Normal Subjects, Glaucoma Suspects, and Patients With Glaucoma
Phu J
American Journal of Ophthalmology 2019; 208: 251-264 (IGR: 20-4)


82523 Structure-function Relationship in Advanced Glaucoma After Reaching the RNFL Floor
Sung MS
Journal of Glaucoma 2019; 28: 1006-1011 (IGR: 20-4)


82665 Quantification of Visual Field Variability in Glaucoma: Implications for Visual Field Prediction and Modeling
Rabiolo A
Translational vision science & technology 2019; 8: 25 (IGR: 20-4)


82620 Structure-Function Agreement Is Better Than Commonly Thought in Eyes With Early Glaucoma
Hood DC
Investigative Ophthalmology and Visual Science 2019; 60: 4241-4248 (IGR: 20-4)


82407 Severity of Visual Field Loss at First Presentation to Glaucoma Clinics in England and Tanzania
Jones PR
Ophthalmic Epidemiology 2020; 27: 10-18 (IGR: 20-4)


82432 Impact of tear metrics on the reliability of perimetry in patients with dry eye
Sagara H
PLoS ONE 2019; 14: e0222467 (IGR: 20-4)


82749 Dominance wave propagation during binocular rivalry in mild glaucoma
Tarita-Nistor L
Vision Research 2019; 165: 64-71 (IGR: 20-4)


82584 Investigating the structure-function relationship using Goldmann V standard automated perimetry where glaucomatous damage is advanced
Yanagisawa M
Ophthalmic and Physiological Optics 2019; 39: 441-450 (IGR: 20-4)


82519 Threshold Automated Perimetry of the Full Visual Field in Patients With Glaucoma With Mild Visual Loss
Wall M
Journal of Glaucoma 2019; 28: 997-1005 (IGR: 20-4)


82393 Topographic correlation and asymmetry analysis of ganglion cell layer thinning and the retinal nerve fiber layer with localized visual field defects
Casado A
PLoS ONE 2019; 14: e0222347 (IGR: 20-4)


81715 The Association Between Visual Field Reliability Indices and Cognitive Impairment in Glaucoma Patients
Raman P
Journal of Glaucoma 2019; 28: 685-690 (IGR: 20-4)


82113 CORRELATIONS between Functional and Structural Tests Measured by Spectral Domain Optical Coherence Tomography in Severe Glaucoma
Aksoy NÖ
Seminars in Ophthalmology 2019; 34: 446-450 (IGR: 20-4)


82644 Relationship between Vision-Related Quality of Life and Central 10° of the Binocular Integrated Visual Field in Advanced Glaucoma
Yamazaki Y
Scientific reports 2019; 9: 14990 (IGR: 20-4)


82621 Retinal Contrast Gain Control and Temporal Modulation Sensitivity Across the Visual Field in Glaucoma at Photopic and Mesopic Light Conditions
João CAR
Investigative Ophthalmology and Visual Science 2019; 60: 4270-4276 (IGR: 20-4)


82340 Characteristics of Patients Showing Discrepancy Between Bruch's Membrane Opening-Minimum Rim Width and Peripapillary Retinal Nerve Fiber Layer Thickness
Cho HK
Journal of clinical medicine 2019; 8: (IGR: 20-4)


82396 Comparison of vascular-function and structure-function correlations in glaucomatous eyes with high myopia
Lee SH
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82674 Structural evaluation of preperimetric and perimetric glaucoma
Deshpande G
Indian Journal of Ophthalmology 2019; 67: 1843-1849 (IGR: 20-4)


82450 The impact of artificial intelligence in the diagnosis and management of glaucoma
Mayro EL
Eye 2020; 34: 1-11 (IGR: 20-4)


82436 Specificity of various cluster criteria used for the detection of glaucomatous visual field abnormalities
Wu Z
British Journal of Ophthalmology 2020; 104: 822-826 (IGR: 20-4)


82852 Ocular Determinants of Peripapillary Vessel Density in Healthy African Americans: The African American Eye Disease Study
Nelson AJ
Investigative Ophthalmology and Visual Science 2019; 60: 3368-3373 (IGR: 20-4)


82424 Auditing service delivery in glaucoma clinics using visual field records: a feasibility study
Kelly SR
BMJ open ophthalmology 2019; 4: e000352 (IGR: 20-4)


82305 The correlation between the thickness of the inner macular layers and the mean deviation of the visual field in children with primary congenital glaucoma
Nieves-Moreno M
Archivos de la Sociedad Española de Oftalmologia 2019; 94: 536-539 (IGR: 20-4)


82105 Comparison of visual field tests in glaucoma patients with a central visual field defect
Shin HY
Canadian Journal of Ophthalmology 2019; 54: 489-494 (IGR: 20-4)


82788 Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps
Christopher M
Ophthalmology 2020; 127: 346-356 (IGR: 20-4)


82190 Intraocular pressure control and visual field changes in primary angle closure disease: the CUHK PACG Longitudinal (CUPAL) study
Cheung CY
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Girkin CA
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


82637 Macular vessel density in untreated normal tension glaucoma with a hemifield defect
Uchida N
Japanese Journal of Ophthalmology 2019; 63: 457-466 (IGR: 20-4)


82765 Baseline Central Visual Field Defect as a Risk Factor For NTG Progression: A 5-Year Prospective Study
Raman P
Journal of Glaucoma 2019; 28: 952-957 (IGR: 20-4)


82378 Pattern electroretinogram changes in patients with primary open-angle glaucoma in correlation with visual field and optical coherence tomography changes
Elgohary AM
European Journal of Ophthalmology 2019; 0: 1120672119872606 (IGR: 20-4)


81894 Macular Vascular Microcirculation in Eyes With Open-angle Glaucoma Using Different Visual Field Severity Classification Systems
Bojikian KD
Journal of Glaucoma 2019; 28: 790-796 (IGR: 20-4)


81604 Does eye examination order for standard automated perimetry matter?
Kelly SR
Acta Ophthalmologica 2019; 97: e833-e838 (IGR: 20-4)


82852 Ocular Determinants of Peripapillary Vessel Density in Healthy African Americans: The African American Eye Disease Study
Chang R
Investigative Ophthalmology and Visual Science 2019; 60: 3368-3373 (IGR: 20-4)


82424 Auditing service delivery in glaucoma clinics using visual field records: a feasibility study
Bryan SR
BMJ open ophthalmology 2019; 4: e000352 (IGR: 20-4)


82620 Structure-Function Agreement Is Better Than Commonly Thought in Eyes With Early Glaucoma
Tsamis E
Investigative Ophthalmology and Visual Science 2019; 60: 4241-4248 (IGR: 20-4)


82788 Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps
Bowd C
Ophthalmology 2020; 127: 346-356 (IGR: 20-4)


82519 Threshold Automated Perimetry of the Full Visual Field in Patients With Glaucoma With Mild Visual Loss
Lee EJ
Journal of Glaucoma 2019; 28: 997-1005 (IGR: 20-4)


82644 Relationship between Vision-Related Quality of Life and Central 10° of the Binocular Integrated Visual Field in Advanced Glaucoma
Sugisaki K
Scientific reports 2019; 9: 14990 (IGR: 20-4)


82305 The correlation between the thickness of the inner macular layers and the mean deviation of the visual field in children with primary congenital glaucoma
García-Caride S
Archivos de la Sociedad Española de Oftalmologia 2019; 94: 536-539 (IGR: 20-4)


82450 The impact of artificial intelligence in the diagnosis and management of glaucoma
Wang M
Eye 2020; 34: 1-11 (IGR: 20-4)


81715 The Association Between Visual Field Reliability Indices and Cognitive Impairment in Glaucoma Patients
Khy Ching Y
Journal of Glaucoma 2019; 28: 685-690 (IGR: 20-4)


82473 Structural evaluation of perimetrically normal and affected hemifields in open angle glaucoma
Bawankule P
Indian Journal of Ophthalmology 2019; 67: 1657-1662 (IGR: 20-4)


82378 Pattern electroretinogram changes in patients with primary open-angle glaucoma in correlation with visual field and optical coherence tomography changes
Elbedewy HA
European Journal of Ophthalmology 2019; 0: 1120672119872606 (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Fazio MA
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


82621 Retinal Contrast Gain Control and Temporal Modulation Sensitivity Across the Visual Field in Glaucoma at Photopic and Mesopic Light Conditions
Scanferla L
Investigative Ophthalmology and Visual Science 2019; 60: 4270-4276 (IGR: 20-4)


81604 Does eye examination order for standard automated perimetry matter?
Bryan SR
Acta Ophthalmologica 2019; 97: e833-e838 (IGR: 20-4)


82113 CORRELATIONS between Functional and Structural Tests Measured by Spectral Domain Optical Coherence Tomography in Severe Glaucoma
Çakır B
Seminars in Ophthalmology 2019; 34: 446-450 (IGR: 20-4)


82396 Comparison of vascular-function and structure-function correlations in glaucomatous eyes with high myopia
Lee EJ
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82749 Dominance wave propagation during binocular rivalry in mild glaucoma
Samet S
Vision Research 2019; 165: 64-71 (IGR: 20-4)


82620 Structure-Function Agreement Is Better Than Commonly Thought in Eyes With Early Glaucoma
Tsamis E
Investigative Ophthalmology and Visual Science 2019; 60: 4241-4248 (IGR: 20-4)


82329 Clinical Evaluation of Swedish Interactive Thresholding Algorithm-Faster Compared With Swedish Interactive Thresholding Algorithm-Standard in Normal Subjects, Glaucoma Suspects, and Patients With Glaucoma
Khuu SK
American Journal of Ophthalmology 2019; 208: 251-264 (IGR: 20-4)


81894 Macular Vascular Microcirculation in Eyes With Open-angle Glaucoma Using Different Visual Field Severity Classification Systems
Nobrega P
Journal of Glaucoma 2019; 28: 790-796 (IGR: 20-4)


82665 Quantification of Visual Field Variability in Glaucoma: Implications for Visual Field Prediction and Modeling
Morales E
Translational vision science & technology 2019; 8: 25 (IGR: 20-4)


82432 Impact of tear metrics on the reliability of perimetry in patients with dry eye
Sekiryu T
PLoS ONE 2019; 14: e0222467 (IGR: 20-4)


82436 Specificity of various cluster criteria used for the detection of glaucomatous visual field abnormalities
Medeiros FA
British Journal of Ophthalmology 2020; 104: 822-826 (IGR: 20-4)


82105 Comparison of visual field tests in glaucoma patients with a central visual field defect
Park HL
Canadian Journal of Ophthalmology 2019; 54: 489-494 (IGR: 20-4)


82584 Investigating the structure-function relationship using Goldmann V standard automated perimetry where glaucomatous damage is advanced
Murata H
Ophthalmic and Physiological Optics 2019; 39: 441-450 (IGR: 20-4)


82190 Intraocular pressure control and visual field changes in primary angle closure disease: the CUHK PACG Longitudinal (CUPAL) study
Li SL
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82620 Structure-Function Agreement Is Better Than Commonly Thought in Eyes With Early Glaucoma
Tsamis E
Investigative Ophthalmology and Visual Science 2019; 60: 4241-4248 (IGR: 20-4)


82749 Dominance wave propagation during binocular rivalry in mild glaucoma
Samet S
Vision Research 2019; 165: 64-71 (IGR: 20-4)


82765 Baseline Central Visual Field Defect as a Risk Factor For NTG Progression: A 5-Year Prospective Study
Suliman NB
Journal of Glaucoma 2019; 28: 952-957 (IGR: 20-4)


82523 Structure-function Relationship in Advanced Glaucoma After Reaching the RNFL Floor
Heo H
Journal of Glaucoma 2019; 28: 1006-1011 (IGR: 20-4)


82407 Severity of Visual Field Loss at First Presentation to Glaucoma Clinics in England and Tanzania
Philippin H
Ophthalmic Epidemiology 2020; 27: 10-18 (IGR: 20-4)


82340 Characteristics of Patients Showing Discrepancy Between Bruch's Membrane Opening-Minimum Rim Width and Peripapillary Retinal Nerve Fiber Layer Thickness
Kee C
Journal of clinical medicine 2019; 8: (IGR: 20-4)


82393 Topographic correlation and asymmetry analysis of ganglion cell layer thinning and the retinal nerve fiber layer with localized visual field defects
Cerveró A
PLoS ONE 2019; 14: e0222347 (IGR: 20-4)


82674 Structural evaluation of preperimetric and perimetric glaucoma
Gupta R
Indian Journal of Ophthalmology 2019; 67: 1843-1849 (IGR: 20-4)


82473 Structural evaluation of perimetrically normal and affected hemifields in open angle glaucoma
Bawankule P
Indian Journal of Ophthalmology 2019; 67: 1657-1662 (IGR: 20-4)


82637 Macular vessel density in untreated normal tension glaucoma with a hemifield defect
Ishida K
Japanese Journal of Ophthalmology 2019; 63: 457-466 (IGR: 20-4)


82341 Predicting Humphrey 10-2 visual field from 24-2 visual field in eyes with advanced glaucoma
Asaoka R
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82519 Threshold Automated Perimetry of the Full Visual Field in Patients With Glaucoma With Mild Visual Loss
Wanzek RJ
Journal of Glaucoma 2019; 28: 997-1005 (IGR: 20-4)


82852 Ocular Determinants of Peripapillary Vessel Density in Healthy African Americans: The African American Eye Disease Study
LeTran V
Investigative Ophthalmology and Visual Science 2019; 60: 3368-3373 (IGR: 20-4)


82674 Structural evaluation of preperimetric and perimetric glaucoma
Bawankule P
Indian Journal of Ophthalmology 2019; 67: 1843-1849 (IGR: 20-4)


82105 Comparison of visual field tests in glaucoma patients with a central visual field defect
Park CK
Canadian Journal of Ophthalmology 2019; 54: 489-494 (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Bowd C
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


82190 Intraocular pressure control and visual field changes in primary angle closure disease: the CUHK PACG Longitudinal (CUPAL) study
Chan PP
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82424 Auditing service delivery in glaucoma clinics using visual field records: a feasibility study
Sparrow JM
BMJ open ophthalmology 2019; 4: e000352 (IGR: 20-4)


82341 Predicting Humphrey 10-2 visual field from 24-2 visual field in eyes with advanced glaucoma
Inoue T
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82749 Dominance wave propagation during binocular rivalry in mild glaucoma
Trope GE
Vision Research 2019; 165: 64-71 (IGR: 20-4)


82637 Macular vessel density in untreated normal tension glaucoma with a hemifield defect
Anraku A
Japanese Journal of Ophthalmology 2019; 63: 457-466 (IGR: 20-4)


82788 Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps
Belghith A
Ophthalmology 2020; 127: 346-356 (IGR: 20-4)


82523 Structure-function Relationship in Advanced Glaucoma After Reaching the RNFL Floor
Park SW
Journal of Glaucoma 2019; 28: 1006-1011 (IGR: 20-4)


82393 Topographic correlation and asymmetry analysis of ganglion cell layer thinning and the retinal nerve fiber layer with localized visual field defects
López-de-Eguileta A
PLoS ONE 2019; 14: e0222347 (IGR: 20-4)


82584 Investigating the structure-function relationship using Goldmann V standard automated perimetry where glaucomatous damage is advanced
Matsuura M
Ophthalmic and Physiological Optics 2019; 39: 441-450 (IGR: 20-4)


82620 Structure-Function Agreement Is Better Than Commonly Thought in Eyes With Early Glaucoma
Bommakanti NK
Investigative Ophthalmology and Visual Science 2019; 60: 4241-4248 (IGR: 20-4)


82765 Baseline Central Visual Field Defect as a Risk Factor For NTG Progression: A 5-Year Prospective Study
Zahari M
Journal of Glaucoma 2019; 28: 952-957 (IGR: 20-4)


81604 Does eye examination order for standard automated perimetry matter?
Crabb DP
Acta Ophthalmologica 2019; 97: e833-e838 (IGR: 20-4)


82305 The correlation between the thickness of the inner macular layers and the mean deviation of the visual field in children with primary congenital glaucoma
Morales-Fernandez L
Archivos de la Sociedad Española de Oftalmologia 2019; 94: 536-539 (IGR: 20-4)


81715 The Association Between Visual Field Reliability Indices and Cognitive Impairment in Glaucoma Patients
Sivagurunathan PD
Journal of Glaucoma 2019; 28: 685-690 (IGR: 20-4)


82378 Pattern electroretinogram changes in patients with primary open-angle glaucoma in correlation with visual field and optical coherence tomography changes
Saad HA
European Journal of Ophthalmology 2019; 0: 1120672119872606 (IGR: 20-4)


81894 Macular Vascular Microcirculation in Eyes With Open-angle Glaucoma Using Different Visual Field Severity Classification Systems
Wen JC
Journal of Glaucoma 2019; 28: 790-796 (IGR: 20-4)


82113 CORRELATIONS between Functional and Structural Tests Measured by Spectral Domain Optical Coherence Tomography in Severe Glaucoma
Doğan E
Seminars in Ophthalmology 2019; 34: 446-450 (IGR: 20-4)


82665 Quantification of Visual Field Variability in Glaucoma: Implications for Visual Field Prediction and Modeling
Afifi AA
Translational vision science & technology 2019; 8: 25 (IGR: 20-4)


82674 Structural evaluation of preperimetric and perimetric glaucoma
Bawankule P
Indian Journal of Ophthalmology 2019; 67: 1843-1849 (IGR: 20-4)


82473 Structural evaluation of perimetrically normal and affected hemifields in open angle glaucoma
Raje D
Indian Journal of Ophthalmology 2019; 67: 1657-1662 (IGR: 20-4)


82621 Retinal Contrast Gain Control and Temporal Modulation Sensitivity Across the Visual Field in Glaucoma at Photopic and Mesopic Light Conditions
Jansonius NM
Investigative Ophthalmology and Visual Science 2019; 60: 4270-4276 (IGR: 20-4)


82396 Comparison of vascular-function and structure-function correlations in glaucomatous eyes with high myopia
Kim TW
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82407 Severity of Visual Field Loss at First Presentation to Glaucoma Clinics in England and Tanzania
Makupa WU
Ophthalmic Epidemiology 2020; 27: 10-18 (IGR: 20-4)


82432 Impact of tear metrics on the reliability of perimetry in patients with dry eye
Imaizumi K
PLoS ONE 2019; 14: e0222467 (IGR: 20-4)


82329 Clinical Evaluation of Swedish Interactive Thresholding Algorithm-Faster Compared With Swedish Interactive Thresholding Algorithm-Standard in Normal Subjects, Glaucoma Suspects, and Patients With Glaucoma
Agar A
American Journal of Ophthalmology 2019; 208: 251-264 (IGR: 20-4)


82450 The impact of artificial intelligence in the diagnosis and management of glaucoma
Elze T
Eye 2020; 34: 1-11 (IGR: 20-4)


82644 Relationship between Vision-Related Quality of Life and Central 10° of the Binocular Integrated Visual Field in Advanced Glaucoma
Araie M
Scientific reports 2019; 9: 14990 (IGR: 20-4)


82436 Specificity of various cluster criteria used for the detection of glaucomatous visual field abnormalities
Weinreb RN
British Journal of Ophthalmology 2020; 104: 822-826 (IGR: 20-4)


82788 Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps
Goldbaum MH
Ophthalmology 2020; 127: 346-356 (IGR: 20-4)


82113 CORRELATIONS between Functional and Structural Tests Measured by Spectral Domain Optical Coherence Tomography in Severe Glaucoma
Alagöz G
Seminars in Ophthalmology 2019; 34: 446-450 (IGR: 20-4)


82644 Relationship between Vision-Related Quality of Life and Central 10° of the Binocular Integrated Visual Field in Advanced Glaucoma
Murata H
Scientific reports 2019; 9: 14990 (IGR: 20-4)


82620 Structure-Function Agreement Is Better Than Commonly Thought in Eyes With Early Glaucoma
Joiner DB
Investigative Ophthalmology and Visual Science 2019; 60: 4241-4248 (IGR: 20-4)


82637 Macular vessel density in untreated normal tension glaucoma with a hemifield defect
Takeyama A
Japanese Journal of Ophthalmology 2019; 63: 457-466 (IGR: 20-4)


82665 Quantification of Visual Field Variability in Glaucoma: Implications for Visual Field Prediction and Modeling
Yu F
Translational vision science & technology 2019; 8: 25 (IGR: 20-4)


82674 Structural evaluation of preperimetric and perimetric glaucoma
Raje D
Indian Journal of Ophthalmology 2019; 67: 1843-1849 (IGR: 20-4)


82305 The correlation between the thickness of the inner macular layers and the mean deviation of the visual field in children with primary congenital glaucoma
Martínez-de-la-Casa JM
Archivos de la Sociedad Española de Oftalmologia 2019; 94: 536-539 (IGR: 20-4)


81894 Macular Vascular Microcirculation in Eyes With Open-angle Glaucoma Using Different Visual Field Severity Classification Systems
Zhang Q
Journal of Glaucoma 2019; 28: 790-796 (IGR: 20-4)


82432 Impact of tear metrics on the reliability of perimetry in patients with dry eye
Shintake H
PLoS ONE 2019; 14: e0222467 (IGR: 20-4)


82765 Baseline Central Visual Field Defect as a Risk Factor For NTG Progression: A 5-Year Prospective Study
Mohamad NF
Journal of Glaucoma 2019; 28: 952-957 (IGR: 20-4)


82450 The impact of artificial intelligence in the diagnosis and management of glaucoma
Pasquale LR
Eye 2020; 34: 1-11 (IGR: 20-4)


82407 Severity of Visual Field Loss at First Presentation to Glaucoma Clinics in England and Tanzania
Burton MJ
Ophthalmic Epidemiology 2020; 27: 10-18 (IGR: 20-4)


82190 Intraocular pressure control and visual field changes in primary angle closure disease: the CUHK PACG Longitudinal (CUPAL) study
Chan NCY
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82852 Ocular Determinants of Peripapillary Vessel Density in Healthy African Americans: The African American Eye Disease Study
Vu B
Investigative Ophthalmology and Visual Science 2019; 60: 3368-3373 (IGR: 20-4)


82473 Structural evaluation of perimetrically normal and affected hemifields in open angle glaucoma
Chakraborty M
Indian Journal of Ophthalmology 2019; 67: 1657-1662 (IGR: 20-4)


82378 Pattern electroretinogram changes in patients with primary open-angle glaucoma in correlation with visual field and optical coherence tomography changes
Eid TM
European Journal of Ophthalmology 2019; 0: 1120672119872606 (IGR: 20-4)


82393 Topographic correlation and asymmetry analysis of ganglion cell layer thinning and the retinal nerve fiber layer with localized visual field defects
Fernández R
PLoS ONE 2019; 14: e0222347 (IGR: 20-4)


82424 Auditing service delivery in glaucoma clinics using visual field records: a feasibility study
Crabb DP
BMJ open ophthalmology 2019; 4: e000352 (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Medeiros FA
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


82329 Clinical Evaluation of Swedish Interactive Thresholding Algorithm-Faster Compared With Swedish Interactive Thresholding Algorithm-Standard in Normal Subjects, Glaucoma Suspects, and Patients With Glaucoma
Kalloniatis M
American Journal of Ophthalmology 2019; 208: 251-264 (IGR: 20-4)


82341 Predicting Humphrey 10-2 visual field from 24-2 visual field in eyes with advanced glaucoma
Yoshikawa K
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


81715 The Association Between Visual Field Reliability Indices and Cognitive Impairment in Glaucoma Patients
Ramli N
Journal of Glaucoma 2019; 28: 685-690 (IGR: 20-4)


82584 Investigating the structure-function relationship using Goldmann V standard automated perimetry where glaucomatous damage is advanced
Fujino Y
Ophthalmic and Physiological Optics 2019; 39: 441-450 (IGR: 20-4)


82436 Specificity of various cluster criteria used for the detection of glaucomatous visual field abnormalities
Girkin CA
British Journal of Ophthalmology 2020; 104: 822-826 (IGR: 20-4)


82519 Threshold Automated Perimetry of the Full Visual Field in Patients With Glaucoma With Mild Visual Loss
Zamba KD
Journal of Glaucoma 2019; 28: 997-1005 (IGR: 20-4)


82620 Structure-Function Agreement Is Better Than Commonly Thought in Eyes With Early Glaucoma
Joiner DB
Investigative Ophthalmology and Visual Science 2019; 60: 4241-4248 (IGR: 20-4)


82749 Dominance wave propagation during binocular rivalry in mild glaucoma
González EG
Vision Research 2019; 165: 64-71 (IGR: 20-4)


82584 Investigating the structure-function relationship using Goldmann V standard automated perimetry where glaucomatous damage is advanced
Hirasawa K
Ophthalmic and Physiological Optics 2019; 39: 441-450 (IGR: 20-4)


82407 Severity of Visual Field Loss at First Presentation to Glaucoma Clinics in England and Tanzania
Crabb DP
Ophthalmic Epidemiology 2020; 27: 10-18 (IGR: 20-4)


82305 The correlation between the thickness of the inner macular layers and the mean deviation of the visual field in children with primary congenital glaucoma
Sáenz-Francés F
Archivos de la Sociedad Española de Oftalmologia 2019; 94: 536-539 (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Weinreb RN
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


82432 Impact of tear metrics on the reliability of perimetry in patients with dry eye
Sugiyama U
PLoS ONE 2019; 14: e0222467 (IGR: 20-4)


82393 Topographic correlation and asymmetry analysis of ganglion cell layer thinning and the retinal nerve fiber layer with localized visual field defects
Fonseca S
PLoS ONE 2019; 14: e0222347 (IGR: 20-4)


82436 Specificity of various cluster criteria used for the detection of glaucomatous visual field abnormalities
Zangwill LM
British Journal of Ophthalmology 2020; 104: 822-826 (IGR: 20-4)


82341 Predicting Humphrey 10-2 visual field from 24-2 visual field in eyes with advanced glaucoma
Kanamori A
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82788 Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps
Weinreb RN
Ophthalmology 2020; 127: 346-356 (IGR: 20-4)


82473 Structural evaluation of perimetrically normal and affected hemifields in open angle glaucoma
Gupta R
Indian Journal of Ophthalmology 2019; 67: 1657-1662 (IGR: 20-4)


82674 Structural evaluation of preperimetric and perimetric glaucoma
Chakarborty M
Indian Journal of Ophthalmology 2019; 67: 1843-1849 (IGR: 20-4)


81894 Macular Vascular Microcirculation in Eyes With Open-angle Glaucoma Using Different Visual Field Severity Classification Systems
Mudumbai RC
Journal of Glaucoma 2019; 28: 790-796 (IGR: 20-4)


82665 Quantification of Visual Field Variability in Glaucoma: Implications for Visual Field Prediction and Modeling
Nouri-Mahdavi K
Translational vision science & technology 2019; 8: 25 (IGR: 20-4)


82852 Ocular Determinants of Peripapillary Vessel Density in Healthy African Americans: The African American Eye Disease Study
Burkemper B
Investigative Ophthalmology and Visual Science 2019; 60: 3368-3373 (IGR: 20-4)


82644 Relationship between Vision-Related Quality of Life and Central 10° of the Binocular Integrated Visual Field in Advanced Glaucoma
Kanamori A
Scientific reports 2019; 9: 14990 (IGR: 20-4)


82519 Threshold Automated Perimetry of the Full Visual Field in Patients With Glaucoma With Mild Visual Loss
Turpin A
Journal of Glaucoma 2019; 28: 997-1005 (IGR: 20-4)


82637 Macular vessel density in untreated normal tension glaucoma with a hemifield defect
Tomita G
Japanese Journal of Ophthalmology 2019; 63: 457-466 (IGR: 20-4)


82190 Intraocular pressure control and visual field changes in primary angle closure disease: the CUHK PACG Longitudinal (CUPAL) study
Tan S
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82620 Structure-Function Agreement Is Better Than Commonly Thought in Eyes With Early Glaucoma
Al-Aswad LL
Investigative Ophthalmology and Visual Science 2019; 60: 4241-4248 (IGR: 20-4)


82765 Baseline Central Visual Field Defect as a Risk Factor For NTG Progression: A 5-Year Prospective Study
Kook MS
Journal of Glaucoma 2019; 28: 952-957 (IGR: 20-4)


81715 The Association Between Visual Field Reliability Indices and Cognitive Impairment in Glaucoma Patients
Mohd Khalid KH
Journal of Glaucoma 2019; 28: 685-690 (IGR: 20-4)


82393 Topographic correlation and asymmetry analysis of ganglion cell layer thinning and the retinal nerve fiber layer with localized visual field defects
González JC
PLoS ONE 2019; 14: e0222347 (IGR: 20-4)


82665 Quantification of Visual Field Variability in Glaucoma: Implications for Visual Field Prediction and Modeling
Caprioli J
Translational vision science & technology 2019; 8: 25 (IGR: 20-4)


82190 Intraocular pressure control and visual field changes in primary angle closure disease: the CUHK PACG Longitudinal (CUPAL) study
Man X
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82788 Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps
Fazio MA
Ophthalmology 2020; 127: 346-356 (IGR: 20-4)


82852 Ocular Determinants of Peripapillary Vessel Density in Healthy African Americans: The African American Eye Disease Study
Chu Z
Investigative Ophthalmology and Visual Science 2019; 60: 3368-3373 (IGR: 20-4)


82341 Predicting Humphrey 10-2 visual field from 24-2 visual field in eyes with advanced glaucoma
Yamazaki Y
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82765 Baseline Central Visual Field Defect as a Risk Factor For NTG Progression: A 5-Year Prospective Study
Ramli N
Journal of Glaucoma 2019; 28: 952-957 (IGR: 20-4)


82620 Structure-Function Agreement Is Better Than Commonly Thought in Eyes With Early Glaucoma
Blumberg DM
Investigative Ophthalmology and Visual Science 2019; 60: 4241-4248 (IGR: 20-4)


82644 Relationship between Vision-Related Quality of Life and Central 10° of the Binocular Integrated Visual Field in Advanced Glaucoma
Inoue T
Scientific reports 2019; 9: 14990 (IGR: 20-4)


82305 The correlation between the thickness of the inner macular layers and the mean deviation of the visual field in children with primary congenital glaucoma
Sánchez-Jean R
Archivos de la Sociedad Española de Oftalmologia 2019; 94: 536-539 (IGR: 20-4)


82519 Threshold Automated Perimetry of the Full Visual Field in Patients With Glaucoma With Mild Visual Loss
Chong LX
Journal of Glaucoma 2019; 28: 997-1005 (IGR: 20-4)


82432 Impact of tear metrics on the reliability of perimetry in patients with dry eye
Maehara H
PLoS ONE 2019; 14: e0222467 (IGR: 20-4)


81894 Macular Vascular Microcirculation in Eyes With Open-angle Glaucoma Using Different Visual Field Severity Classification Systems
Johnstone MA
Journal of Glaucoma 2019; 28: 790-796 (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Liebmann JM
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


82584 Investigating the structure-function relationship using Goldmann V standard automated perimetry where glaucomatous damage is advanced
Asaoka R
Ophthalmic and Physiological Optics 2019; 39: 441-450 (IGR: 20-4)


82393 Topographic correlation and asymmetry analysis of ganglion cell layer thinning and the retinal nerve fiber layer with localized visual field defects
Pacheco G
PLoS ONE 2019; 14: e0222347 (IGR: 20-4)


82190 Intraocular pressure control and visual field changes in primary angle closure disease: the CUHK PACG Longitudinal (CUPAL) study
Tham CC
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82305 The correlation between the thickness of the inner macular layers and the mean deviation of the visual field in children with primary congenital glaucoma
Santos-Bueso E
Archivos de la Sociedad Española de Oftalmologia 2019; 94: 536-539 (IGR: 20-4)


82644 Relationship between Vision-Related Quality of Life and Central 10° of the Binocular Integrated Visual Field in Advanced Glaucoma
Ishikawa S
Scientific reports 2019; 9: 14990 (IGR: 20-4)


81894 Macular Vascular Microcirculation in Eyes With Open-angle Glaucoma Using Different Visual Field Severity Classification Systems
Wang RK
Journal of Glaucoma 2019; 28: 790-796 (IGR: 20-4)


82519 Threshold Automated Perimetry of the Full Visual Field in Patients With Glaucoma With Mild Visual Loss
Marin-Franch I
Journal of Glaucoma 2019; 28: 997-1005 (IGR: 20-4)


82620 Structure-Function Agreement Is Better Than Commonly Thought in Eyes With Early Glaucoma
Cioffi GA
Investigative Ophthalmology and Visual Science 2019; 60: 4241-4248 (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Proudfoot J
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


82788 Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps
Girkin CA
Ophthalmology 2020; 127: 346-356 (IGR: 20-4)


82852 Ocular Determinants of Peripapillary Vessel Density in Healthy African Americans: The African American Eye Disease Study
Fard A
Investigative Ophthalmology and Visual Science 2019; 60: 3368-3373 (IGR: 20-4)


82341 Predicting Humphrey 10-2 visual field from 24-2 visual field in eyes with advanced glaucoma
Ishikawa S
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Proudfoot J
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


81894 Macular Vascular Microcirculation in Eyes With Open-angle Glaucoma Using Different Visual Field Severity Classification Systems
Chen PP
Journal of Glaucoma 2019; 28: 790-796 (IGR: 20-4)


82393 Topographic correlation and asymmetry analysis of ganglion cell layer thinning and the retinal nerve fiber layer with localized visual field defects
Gándara E
PLoS ONE 2019; 14: e0222347 (IGR: 20-4)


82852 Ocular Determinants of Peripapillary Vessel Density in Healthy African Americans: The African American Eye Disease Study
Kashani A
Investigative Ophthalmology and Visual Science 2019; 60: 3368-3373 (IGR: 20-4)


82644 Relationship between Vision-Related Quality of Life and Central 10° of the Binocular Integrated Visual Field in Advanced Glaucoma
Yoshikawa K
Scientific reports 2019; 9: 14990 (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Zangwill LM
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


82788 Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps
Liebmann JM
Ophthalmology 2020; 127: 346-356 (IGR: 20-4)


82341 Predicting Humphrey 10-2 visual field from 24-2 visual field in eyes with advanced glaucoma
Nemoto H
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82620 Structure-Function Agreement Is Better Than Commonly Thought in Eyes With Early Glaucoma
Liebmann JM
Investigative Ophthalmology and Visual Science 2019; 60: 4241-4248 (IGR: 20-4)


82305 The correlation between the thickness of the inner macular layers and the mean deviation of the visual field in children with primary congenital glaucoma
García-Feijoo J
Archivos de la Sociedad Española de Oftalmologia 2019; 94: 536-539 (IGR: 20-4)


82620 Structure-Function Agreement Is Better Than Commonly Thought in Eyes With Early Glaucoma
De Moraes CG
Investigative Ophthalmology and Visual Science 2019; 60: 4241-4248 (IGR: 20-4)


82852 Ocular Determinants of Peripapillary Vessel Density in Healthy African Americans: The African American Eye Disease Study
Xu B
Investigative Ophthalmology and Visual Science 2019; 60: 3368-3373 (IGR: 20-4)


82341 Predicting Humphrey 10-2 visual field from 24-2 visual field in eyes with advanced glaucoma
Iwase A
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82721 Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
Belghith A
Investigative Ophthalmology and Visual Science 2019; 60: 4496-4502 (IGR: 20-4)


82788 Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps
Zangwill LM
Ophthalmology 2020; 127: 346-356 (IGR: 20-4)


82393 Topographic correlation and asymmetry analysis of ganglion cell layer thinning and the retinal nerve fiber layer with localized visual field defects
Gordo-Vega MÁ
PLoS ONE 2019; 14: e0222347 (IGR: 20-4)


82644 Relationship between Vision-Related Quality of Life and Central 10° of the Binocular Integrated Visual Field in Advanced Glaucoma
Maeda H; Yamada Y
Scientific reports 2019; 9: 14990 (IGR: 20-4)


82852 Ocular Determinants of Peripapillary Vessel Density in Healthy African Americans: The African American Eye Disease Study
Wang R
Investigative Ophthalmology and Visual Science 2019; 60: 3368-3373 (IGR: 20-4)


82341 Predicting Humphrey 10-2 visual field from 24-2 visual field in eyes with advanced glaucoma
Araie M
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82644 Relationship between Vision-Related Quality of Life and Central 10° of the Binocular Integrated Visual Field in Advanced Glaucoma
Negi A
Scientific reports 2019; 9: 14990 (IGR: 20-4)


82852 Ocular Determinants of Peripapillary Vessel Density in Healthy African Americans: The African American Eye Disease Study
Varma R; Richter GM
Investigative Ophthalmology and Visual Science 2019; 60: 3368-3373 (IGR: 20-4)


82644 Relationship between Vision-Related Quality of Life and Central 10° of the Binocular Integrated Visual Field in Advanced Glaucoma
Inatani M; Tanihara H
Scientific reports 2019; 9: 14990 (IGR: 20-4)


82852 Ocular Determinants of Peripapillary Vessel Density in Healthy African Americans: The African American Eye Disease Study

Investigative Ophthalmology and Visual Science 2019; 60: 3368-3373 (IGR: 20-4)


82644 Relationship between Vision-Related Quality of Life and Central 10° of the Binocular Integrated Visual Field in Advanced Glaucoma
Okinami S; Mizuki K; Mishima K; Uchida K; Matsumoto S
Scientific reports 2019; 9: 14990 (IGR: 20-4)


80725 Primary Open-angle Glaucoma With Initial Visual Field Damage in the Superior and Inferior Hemifields: Comparison in a Population-based Setting
Iwase A
Journal of Glaucoma 2019; 28: 493-497 (IGR: 20-3)


80788 Comparison of head-mounted perimeter (imo) and Humphrey Field Analyzer
Kimura T
Clinical Ophthalmology 2019; 13: 501-513 (IGR: 20-3)


80630 Machine learning models based on the dimensionality reduction of standard automated perimetry data for glaucoma diagnosis
Lee SD
Artificial Intelligence in Medicine 2019; 94: 110-116 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Ghahari E
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


80218 Semi-automated kinetic perimetry: Comparison of the Octopus 900 and Humphrey visual field analyzer 3 versus Goldmann perimetry
Bevers C
Acta Ophthalmologica 2019; 97: e499-e505 (IGR: 20-3)


80562 Feasibility of simple machine learning approaches to support detection of non-glaucomatous visual fields in future automated glaucoma clinics
Thomas PBM
Eye 2019; 33: 1133-1139 (IGR: 20-3)


80812 Cluster analysis of computerized visual field and optical coherence tomography-ganglion cell complex defects in high intraocular pressure patients or early stage glaucoma
Perdicchi A
European Journal of Ophthalmology 2019; 0: 1120672119841774 (IGR: 20-3)


80629 Studying the role of 10-2 visual field test in different stages of glaucoma
Tomairek RH
European Journal of Ophthalmology 2019; 0: 1120672119836904 (IGR: 20-3)


81383 En Face Slab Images Visualize Nerve Fibers With Residual Visual Sensitivity in Significantly Thinned Macular Areas of Advanced Glaucomatous Eyes
Sakamoto M
Investigative Ophthalmology and Visual Science 2019; 60: 2811-2821 (IGR: 20-3)


81146 Machine Learning in the Detection of the Glaucomatous Disc and Visual Field
Smits DJ
Seminars in Ophthalmology 2019; 34: 232-242 (IGR: 20-3)


80920 Validation and reproducibility of the Heidelberg Edge Perimeter in the detection of glaucomatous visual field defects
Cui QN
International Journal of Ophthalmology 2019; 12: 577-581 (IGR: 20-3)


80841 Overuse and Underuse of Visual Field Testing Over 15 Years
Ben-Artsi E
Journal of Glaucoma 2019; 28: 660-665 (IGR: 20-3)


80626 Expediency of the Automated Perimetry Using the Goldmann V Stimulus Size in Visually Impaired Patients with Glaucoma
Morgan AM
Ophthalmology and therapy 2019; 8: 305-311 (IGR: 20-3)


81027 Longitudinal Macular Structure-Function Relationships in Glaucoma and Their Sources of Variability
Nouri-Mahdavi K
American Journal of Ophthalmology 2019; 207: 18-36 (IGR: 20-3)


81060 Factors Related to Superior and Inferior Hemifield Defects in Primary Open-Angle Glaucoma
Takeuchi R
Journal of Ophthalmology 2019; 2019: 4705485 (IGR: 20-3)


80778 A spatially varying change points model for monitoring glaucoma progression using visual field data
Berchuck SI
Spatial statistics 2019; 30: 1-26 (IGR: 20-3)


80569 Comparison of pattern electroretinograms of glaucoma patients with parafoveal scotoma versus peripheral nasal step
Jung KI
Scientific reports 2019; 9: 3547 (IGR: 20-3)


80564 Greater Severity of Glaucomatous Damage in Eyes With Than Without Choroidal Microvasculature Dropout in Open-Angle Glaucoma
Jo YH
Investigative Ophthalmology and Visual Science 2019; 60: 901-912 (IGR: 20-3)


81359 Investigation of the Presence of Glaucoma in Patients with Obstructive Sleep Apnea Syndrome Using and Not Using Continuous Positive Airway Pressure Treatment
Abdullayev A
Turkish journal of ophthalmology 2019; 49: 134-141 (IGR: 20-3)


80778 A spatially varying change points model for monitoring glaucoma progression using visual field data
Berchuck SI
Spatial statistics 2019; 30: 1-26 (IGR: 20-3)


80909 Association between Combined Structure Function Index and Glaucoma Severity
Ogawa S
Journal of Ophthalmology 2019; 2019: 9414675 (IGR: 20-3)


81027 Longitudinal Macular Structure-Function Relationships in Glaucoma and Their Sources of Variability
Fatehi N
American Journal of Ophthalmology 2019; 207: 18-36 (IGR: 20-3)


80562 Feasibility of simple machine learning approaches to support detection of non-glaucomatous visual fields in future automated glaucoma clinics
Chan T
Eye 2019; 33: 1133-1139 (IGR: 20-3)


80841 Overuse and Underuse of Visual Field Testing Over 15 Years
Goldenfeld M
Journal of Glaucoma 2019; 28: 660-665 (IGR: 20-3)


81359 Investigation of the Presence of Glaucoma in Patients with Obstructive Sleep Apnea Syndrome Using and Not Using Continuous Positive Airway Pressure Treatment
Tekeli O
Turkish journal of ophthalmology 2019; 49: 134-141 (IGR: 20-3)


80788 Comparison of head-mounted perimeter (imo) and Humphrey Field Analyzer
Matsumoto C
Clinical Ophthalmology 2019; 13: 501-513 (IGR: 20-3)


80564 Greater Severity of Glaucomatous Damage in Eyes With Than Without Choroidal Microvasculature Dropout in Open-Angle Glaucoma
Kwon J
Investigative Ophthalmology and Visual Science 2019; 60: 901-912 (IGR: 20-3)


80909 Association between Combined Structure Function Index and Glaucoma Severity
Tanabe Y
Journal of Ophthalmology 2019; 2019: 9414675 (IGR: 20-3)


80778 A spatially varying change points model for monitoring glaucoma progression using visual field data
Mwanza JC
Spatial statistics 2019; 30: 1-26 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Bowd C
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


80920 Validation and reproducibility of the Heidelberg Edge Perimeter in the detection of glaucomatous visual field defects
Gogt P
International Journal of Ophthalmology 2019; 12: 577-581 (IGR: 20-3)


81146 Machine Learning in the Detection of the Glaucomatous Disc and Visual Field
Elze T
Seminars in Ophthalmology 2019; 34: 232-242 (IGR: 20-3)


80725 Primary Open-angle Glaucoma With Initial Visual Field Damage in the Superior and Inferior Hemifields: Comparison in a Population-based Setting
Araie M
Journal of Glaucoma 2019; 28: 493-497 (IGR: 20-3)


80626 Expediency of the Automated Perimetry Using the Goldmann V Stimulus Size in Visually Impaired Patients with Glaucoma
Mazzoli LS
Ophthalmology and therapy 2019; 8: 305-311 (IGR: 20-3)


81060 Factors Related to Superior and Inferior Hemifield Defects in Primary Open-Angle Glaucoma
Enomoto N
Journal of Ophthalmology 2019; 2019: 4705485 (IGR: 20-3)


80218 Semi-automated kinetic perimetry: Comparison of the Octopus 900 and Humphrey visual field analyzer 3 versus Goldmann perimetry
Blanckaert G
Acta Ophthalmologica 2019; 97: e499-e505 (IGR: 20-3)


80630 Machine learning models based on the dimensionality reduction of standard automated perimetry data for glaucoma diagnosis
Lee JH
Artificial Intelligence in Medicine 2019; 94: 110-116 (IGR: 20-3)


81383 En Face Slab Images Visualize Nerve Fibers With Residual Visual Sensitivity in Significantly Thinned Macular Areas of Advanced Glaucomatous Eyes
Mori S
Investigative Ophthalmology and Visual Science 2019; 60: 2811-2821 (IGR: 20-3)


80812 Cluster analysis of computerized visual field and optical coherence tomography-ganglion cell complex defects in high intraocular pressure patients or early stage glaucoma
de Paula A
European Journal of Ophthalmology 2019; 0: 1120672119841774 (IGR: 20-3)


80569 Comparison of pattern electroretinograms of glaucoma patients with parafoveal scotoma versus peripheral nasal step
Jeon S
Scientific reports 2019; 9: 3547 (IGR: 20-3)


80629 Studying the role of 10-2 visual field test in different stages of glaucoma
Aboud SA
European Journal of Ophthalmology 2019; 0: 1120672119836904 (IGR: 20-3)


81146 Machine Learning in the Detection of the Glaucomatous Disc and Visual Field
Wang H
Seminars in Ophthalmology 2019; 34: 232-242 (IGR: 20-3)


80626 Expediency of the Automated Perimetry Using the Goldmann V Stimulus Size in Visually Impaired Patients with Glaucoma
Caixeta-Umbelino C
Ophthalmology and therapy 2019; 8: 305-311 (IGR: 20-3)


80778 A spatially varying change points model for monitoring glaucoma progression using visual field data
Warren JL
Spatial statistics 2019; 30: 1-26 (IGR: 20-3)


80569 Comparison of pattern electroretinograms of glaucoma patients with parafoveal scotoma versus peripheral nasal step
Kim YC
Scientific reports 2019; 9: 3547 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Zangwill LM
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


81027 Longitudinal Macular Structure-Function Relationships in Glaucoma and Their Sources of Variability
Caprioli J
American Journal of Ophthalmology 2019; 207: 18-36 (IGR: 20-3)


80920 Validation and reproducibility of the Heidelberg Edge Perimeter in the detection of glaucomatous visual field defects
Lam JM
International Journal of Ophthalmology 2019; 12: 577-581 (IGR: 20-3)


80218 Semi-automated kinetic perimetry: Comparison of the Octopus 900 and Humphrey visual field analyzer 3 versus Goldmann perimetry
Van Keer K
Acta Ophthalmologica 2019; 97: e499-e505 (IGR: 20-3)


80562 Feasibility of simple machine learning approaches to support detection of non-glaucomatous visual fields in future automated glaucoma clinics
Nixon T
Eye 2019; 33: 1133-1139 (IGR: 20-3)


81359 Investigation of the Presence of Glaucoma in Patients with Obstructive Sleep Apnea Syndrome Using and Not Using Continuous Positive Airway Pressure Treatment
Yanık Ö
Turkish journal of ophthalmology 2019; 49: 134-141 (IGR: 20-3)


80564 Greater Severity of Glaucomatous Damage in Eyes With Than Without Choroidal Microvasculature Dropout in Open-Angle Glaucoma
Shon K
Investigative Ophthalmology and Visual Science 2019; 60: 901-912 (IGR: 20-3)


80909 Association between Combined Structure Function Index and Glaucoma Severity
Itoh Y
Journal of Ophthalmology 2019; 2019: 9414675 (IGR: 20-3)


80630 Machine learning models based on the dimensionality reduction of standard automated perimetry data for glaucoma diagnosis
Choi YG
Artificial Intelligence in Medicine 2019; 94: 110-116 (IGR: 20-3)


81383 En Face Slab Images Visualize Nerve Fibers With Residual Visual Sensitivity in Significantly Thinned Macular Areas of Advanced Glaucomatous Eyes
Ueda K
Investigative Ophthalmology and Visual Science 2019; 60: 2811-2821 (IGR: 20-3)


80812 Cluster analysis of computerized visual field and optical coherence tomography-ganglion cell complex defects in high intraocular pressure patients or early stage glaucoma
Sordi E
European Journal of Ophthalmology 2019; 0: 1120672119841774 (IGR: 20-3)


80629 Studying the role of 10-2 visual field test in different stages of glaucoma
Hassan M
European Journal of Ophthalmology 2019; 0: 1120672119836904 (IGR: 20-3)


81060 Factors Related to Superior and Inferior Hemifield Defects in Primary Open-Angle Glaucoma
Ishida K
Journal of Ophthalmology 2019; 2019: 4705485 (IGR: 20-3)


80788 Comparison of head-mounted perimeter (imo) and Humphrey Field Analyzer
Nomoto H
Clinical Ophthalmology 2019; 13: 501-513 (IGR: 20-3)


80841 Overuse and Underuse of Visual Field Testing Over 15 Years
Zehavi-Dorin T
Journal of Glaucoma 2019; 28: 660-665 (IGR: 20-3)


80564 Greater Severity of Glaucomatous Damage in Eyes With Than Without Choroidal Microvasculature Dropout in Open-Angle Glaucoma
Jeong D
Investigative Ophthalmology and Visual Science 2019; 60: 901-912 (IGR: 20-3)


80920 Validation and reproducibility of the Heidelberg Edge Perimeter in the detection of glaucomatous visual field defects
Siraj S
International Journal of Ophthalmology 2019; 12: 577-581 (IGR: 20-3)


81060 Factors Related to Superior and Inferior Hemifield Defects in Primary Open-Angle Glaucoma
Anraku A
Journal of Ophthalmology 2019; 2019: 4705485 (IGR: 20-3)


80909 Association between Combined Structure Function Index and Glaucoma Severity
Noro T
Journal of Ophthalmology 2019; 2019: 9414675 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Proudfoot J
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


81146 Machine Learning in the Detection of the Glaucomatous Disc and Visual Field
Pasquale LR
Seminars in Ophthalmology 2019; 34: 232-242 (IGR: 20-3)


81359 Investigation of the Presence of Glaucoma in Patients with Obstructive Sleep Apnea Syndrome Using and Not Using Continuous Positive Airway Pressure Treatment
Acıcan T
Turkish journal of ophthalmology 2019; 49: 134-141 (IGR: 20-3)


80626 Expediency of the Automated Perimetry Using the Goldmann V Stimulus Size in Visually Impaired Patients with Glaucoma
Kasahara N
Ophthalmology and therapy 2019; 8: 305-311 (IGR: 20-3)


80629 Studying the role of 10-2 visual field test in different stages of glaucoma
Mohamed AH
European Journal of Ophthalmology 2019; 0: 1120672119836904 (IGR: 20-3)


81383 En Face Slab Images Visualize Nerve Fibers With Residual Visual Sensitivity in Significantly Thinned Macular Areas of Advanced Glaucomatous Eyes
Kurimoto T
Investigative Ophthalmology and Visual Science 2019; 60: 2811-2821 (IGR: 20-3)


80812 Cluster analysis of computerized visual field and optical coherence tomography-ganglion cell complex defects in high intraocular pressure patients or early stage glaucoma
Scuderi G
European Journal of Ophthalmology 2019; 0: 1120672119841774 (IGR: 20-3)


80569 Comparison of pattern electroretinograms of glaucoma patients with parafoveal scotoma versus peripheral nasal step
Park CK
Scientific reports 2019; 9: 3547 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Proudfoot J
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


80218 Semi-automated kinetic perimetry: Comparison of the Octopus 900 and Humphrey visual field analyzer 3 versus Goldmann perimetry
Fils JF
Acta Ophthalmologica 2019; 97: e499-e505 (IGR: 20-3)


80562 Feasibility of simple machine learning approaches to support detection of non-glaucomatous visual fields in future automated glaucoma clinics
Muthusamy B
Eye 2019; 33: 1133-1139 (IGR: 20-3)


80630 Machine learning models based on the dimensionality reduction of standard automated perimetry data for glaucoma diagnosis
You HC
Artificial Intelligence in Medicine 2019; 94: 110-116 (IGR: 20-3)


80841 Overuse and Underuse of Visual Field Testing Over 15 Years
Cohen A
Journal of Glaucoma 2019; 28: 660-665 (IGR: 20-3)


80920 Validation and reproducibility of the Heidelberg Edge Perimeter in the detection of glaucomatous visual field defects
Siraj S
International Journal of Ophthalmology 2019; 12: 577-581 (IGR: 20-3)


81359 Investigation of the Presence of Glaucoma in Patients with Obstructive Sleep Apnea Syndrome Using and Not Using Continuous Positive Airway Pressure Treatment
Gülbay B
Turkish journal of ophthalmology 2019; 49: 134-141 (IGR: 20-3)


80630 Machine learning models based on the dimensionality reduction of standard automated perimetry data for glaucoma diagnosis
Kang JH
Artificial Intelligence in Medicine 2019; 94: 110-116 (IGR: 20-3)


81383 En Face Slab Images Visualize Nerve Fibers With Residual Visual Sensitivity in Significantly Thinned Macular Areas of Advanced Glaucomatous Eyes
Kusuhara S
Investigative Ophthalmology and Visual Science 2019; 60: 2811-2821 (IGR: 20-3)


80841 Overuse and Underuse of Visual Field Testing Over 15 Years
Porath A
Journal of Glaucoma 2019; 28: 660-665 (IGR: 20-3)


80562 Feasibility of simple machine learning approaches to support detection of non-glaucomatous visual fields in future automated glaucoma clinics
White A
Eye 2019; 33: 1133-1139 (IGR: 20-3)


80909 Association between Combined Structure Function Index and Glaucoma Severity
Gunji H
Journal of Ophthalmology 2019; 2019: 9414675 (IGR: 20-3)


81060 Factors Related to Superior and Inferior Hemifield Defects in Primary Open-Angle Glaucoma
Tomita G
Journal of Ophthalmology 2019; 2019: 4705485 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Hasenstab KA
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


80218 Semi-automated kinetic perimetry: Comparison of the Octopus 900 and Humphrey visual field analyzer 3 versus Goldmann perimetry
Vandewalle E
Acta Ophthalmologica 2019; 97: e499-e505 (IGR: 20-3)


80564 Greater Severity of Glaucomatous Damage in Eyes With Than Without Choroidal Microvasculature Dropout in Open-Angle Glaucoma
Kook MS
Investigative Ophthalmology and Visual Science 2019; 60: 901-912 (IGR: 20-3)


80920 Validation and reproducibility of the Heidelberg Edge Perimeter in the detection of glaucomatous visual field defects
Hark LA
International Journal of Ophthalmology 2019; 12: 577-581 (IGR: 20-3)


80218 Semi-automated kinetic perimetry: Comparison of the Octopus 900 and Humphrey visual field analyzer 3 versus Goldmann perimetry
Stalmans I
Acta Ophthalmologica 2019; 97: e499-e505 (IGR: 20-3)


81383 En Face Slab Images Visualize Nerve Fibers With Residual Visual Sensitivity in Significantly Thinned Macular Areas of Advanced Glaucomatous Eyes
Yamada-Nakanishi Y
Investigative Ophthalmology and Visual Science 2019; 60: 2811-2821 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Hou H
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


80630 Machine learning models based on the dimensionality reduction of standard automated perimetry data for glaucoma diagnosis
Jun CH
Artificial Intelligence in Medicine 2019; 94: 110-116 (IGR: 20-3)


80841 Overuse and Underuse of Visual Field Testing Over 15 Years
Levkovitch-Verbin H
Journal of Glaucoma 2019; 28: 660-665 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Hou H
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


80909 Association between Combined Structure Function Index and Glaucoma Severity
Nakano T
Journal of Ophthalmology 2019; 2019: 9414675 (IGR: 20-3)


80920 Validation and reproducibility of the Heidelberg Edge Perimeter in the detection of glaucomatous visual field defects
Myers JS
International Journal of Ophthalmology 2019; 12: 577-581 (IGR: 20-3)


81383 En Face Slab Images Visualize Nerve Fibers With Residual Visual Sensitivity in Significantly Thinned Macular Areas of Advanced Glaucomatous Eyes
Yamada-Nakanishi Y
Investigative Ophthalmology and Visual Science 2019; 60: 2811-2821 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Hou H; Penteado RC
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


80920 Validation and reproducibility of the Heidelberg Edge Perimeter in the detection of glaucomatous visual field defects
Katz LJ
International Journal of Ophthalmology 2019; 12: 577-581 (IGR: 20-3)


81383 En Face Slab Images Visualize Nerve Fibers With Residual Visual Sensitivity in Significantly Thinned Macular Areas of Advanced Glaucomatous Eyes
Nakamura M
Investigative Ophthalmology and Visual Science 2019; 60: 2811-2821 (IGR: 20-3)


80920 Validation and reproducibility of the Heidelberg Edge Perimeter in the detection of glaucomatous visual field defects
Waisbourd M
International Journal of Ophthalmology 2019; 12: 577-581 (IGR: 20-3)


80645 Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma
Manalastas PIC; Moghimi S; Shoji T; Christopher M; Yarmohammadi A; Weinreb RN
American Journal of Ophthalmology 2019; 204: 51-61 (IGR: 20-3)


79815 Automated algorithms combining structure and function outperform general ophthalmologists in diagnosing glaucoma
Shigueoka LS
PLoS ONE 2018; 13: e0207784 (IGR: 20-2)


79560 Lamina Cribrosa Morphology in Glaucomatous Eyes with Hemifield Defect in a Korean Population
Kim JA
Ophthalmology 2019; 126: 692-701 (IGR: 20-2)


79395 Evaluation of Structure-Function Relationships in Longitudinal Changes of Glaucoma using the Spectralis OCT Follow-Up Mode
Suda K
Scientific reports 2018; 8: 17158 (IGR: 20-2)


79546 The relationship between optic nerve head deformation and visual field defects in myopic eyes with primary open-angle glaucoma
Hung CH
PLoS ONE 2018; 13: e0209755 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Wang M
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


79390 Early Detection of Glaucomatous Visual Field Progression Using Pointwise Linear Regression With Binomial Test in the Central 10 Degrees
Asano S
American Journal of Ophthalmology 2019; 199: 140-149 (IGR: 20-2)


79704 Artificial intelligence in glaucoma
Zheng C
Current Opinions in Ophthalmology 2019; 30: 97-103 (IGR: 20-2)


79394 Macular ganglion cell asymmetry for detecting paracentral scotoma in early glaucoma
Yang HY
Clinical Ophthalmology 2018; 12: 2253-2260 (IGR: 20-2)


79919 The Effect of Gender on Visual Field Sensitivity: The Singapore Chinese Eye Study
Tan NYQ
Ophthalmic Epidemiology 2019; 26: 183-188 (IGR: 20-2)


79471 Association of Macular Visual Field Measurements With Glaucoma Staging Systems
De Moraes CG
JAMA ophthalmology 2018; 0: (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure
Sakata R
Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


79326 Relating optical coherence tomography to visual fields in glaucoma: structure-function mapping, limitations and future applications
Denniss J
Clinical and Experimental Optometry 2019; 102: 291-299 (IGR: 20-2)


79572 Home-based visual field test for glaucoma screening comparison with Humphrey perimeter
Tsapakis S
Clinical Ophthalmology 2018; 12: 2597-2606 (IGR: 20-2)


79990 Comparison of Rates of Fast and Catastrophic Visual Field Loss in Three Glaucoma Subtypes
Anderson AJ
Investigative Ophthalmology and Visual Science 2019; 60: 161-167 (IGR: 20-2)


79394 Macular ganglion cell asymmetry for detecting paracentral scotoma in early glaucoma
Yang HY
Clinical Ophthalmology 2018; 12: 2253-2260 (IGR: 20-2)


79817 Cross-Sectional Imaging Analysis of Epiretinal Membrane Involvement in Unilateral Open-Angle Glaucoma Severity
Sakimoto S
Investigative Ophthalmology and Visual Science 2018; 59: 5745-5751 (IGR: 20-2)


79823 Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns
Yousefi S
Investigative Ophthalmology and Visual Science 2018; 59: 5717-5725 (IGR: 20-2)


79338 A deep learning approach to automatic detection of early glaucoma from visual fields
Kucur ŞS
PLoS ONE 2018; 13: e0206081 (IGR: 20-2)


79953 Vision-related quality of life according to location of visual field loss in patients with glaucoma
Chun YS
Acta Ophthalmologica 2019; 97: e772-e779 (IGR: 20-2)


79586 Circumpapillary structure-function relationships with microperimetry and spectral domain optical coherence tomography in glaucoma: a pilot study
Kita Y
Clinical Ophthalmology 2018; 12: 2535-2544 (IGR: 20-2)


80032 The Relationship Between Interocular Asymmetry of Visual Field Defects and Optic Nerve Head Blood Flow in Patients With Glaucoma
Yamada Y
Journal of Glaucoma 2019; 28: 231-237 (IGR: 20-2)


79889 Relationship between macular vessel density and central visual field sensitivity at different glaucoma stages
Shin JW
British Journal of Ophthalmology 2019; 103: 1827-1833 (IGR: 20-2)


79736 Relationship between Progressive Changes in Lamina Cribrosa Depth and Deterioration of Visual Field Loss in Glaucomatous Eyes
Kim YN
Korean Journal of Ophthalmology 2018; 32: 470-477 (IGR: 20-2)


79917 Quantification of RAPD by an automated pupillometer in asymmetric glaucoma and its correlation with manual pupillary assessment
Pillai MR
Indian Journal of Ophthalmology 2019; 67: 227-232 (IGR: 20-2)


80031 The Effects of Optic Nerve Head Tilt on Visual Field Defects in Myopic Normal Tension Glaucoma: The Intereye Comparison Study
Choi JH
Journal of Glaucoma 2019; 28: 341-346 (IGR: 20-2)


79546 The relationship between optic nerve head deformation and visual field defects in myopic eyes with primary open-angle glaucoma
Lee SH
PLoS ONE 2018; 13: e0209755 (IGR: 20-2)


79823 Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns
Sakai H
Investigative Ophthalmology and Visual Science 2018; 59: 5717-5725 (IGR: 20-2)


79390 Early Detection of Glaucomatous Visual Field Progression Using Pointwise Linear Regression With Binomial Test in the Central 10 Degrees
Murata H
American Journal of Ophthalmology 2019; 199: 140-149 (IGR: 20-2)


79889 Relationship between macular vessel density and central visual field sensitivity at different glaucoma stages
Lee J
British Journal of Ophthalmology 2019; 103: 1827-1833 (IGR: 20-2)


79395 Evaluation of Structure-Function Relationships in Longitudinal Changes of Glaucoma using the Spectralis OCT Follow-Up Mode
Akagi T
Scientific reports 2018; 8: 17158 (IGR: 20-2)


79917 Quantification of RAPD by an automated pupillometer in asymmetric glaucoma and its correlation with manual pupillary assessment
Sinha S
Indian Journal of Ophthalmology 2019; 67: 227-232 (IGR: 20-2)


80031 The Effects of Optic Nerve Head Tilt on Visual Field Defects in Myopic Normal Tension Glaucoma: The Intereye Comparison Study
Han JC
Journal of Glaucoma 2019; 28: 341-346 (IGR: 20-2)


79736 Relationship between Progressive Changes in Lamina Cribrosa Depth and Deterioration of Visual Field Loss in Glaucomatous Eyes
Shin JW
Korean Journal of Ophthalmology 2018; 32: 470-477 (IGR: 20-2)


79572 Home-based visual field test for glaucoma screening comparison with Humphrey perimeter
Papaconstantinou D
Clinical Ophthalmology 2018; 12: 2597-2606 (IGR: 20-2)


79338 A deep learning approach to automatic detection of early glaucoma from visual fields
Holló G
PLoS ONE 2018; 13: e0206081 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Shen LQ
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


79471 Association of Macular Visual Field Measurements With Glaucoma Staging Systems
Sun A
JAMA ophthalmology 2018; 0: (IGR: 20-2)


79953 Vision-related quality of life according to location of visual field loss in patients with glaucoma
Sung KR
Acta Ophthalmologica 2019; 97: e772-e779 (IGR: 20-2)


79586 Circumpapillary structure-function relationships with microperimetry and spectral domain optical coherence tomography in glaucoma: a pilot study
Holló G
Clinical Ophthalmology 2018; 12: 2535-2544 (IGR: 20-2)


79817 Cross-Sectional Imaging Analysis of Epiretinal Membrane Involvement in Unilateral Open-Angle Glaucoma Severity
Okazaki T
Investigative Ophthalmology and Visual Science 2018; 59: 5745-5751 (IGR: 20-2)


80032 The Relationship Between Interocular Asymmetry of Visual Field Defects and Optic Nerve Head Blood Flow in Patients With Glaucoma
Higashide T
Journal of Glaucoma 2019; 28: 231-237 (IGR: 20-2)


79919 The Effect of Gender on Visual Field Sensitivity: The Singapore Chinese Eye Study
Tham YC
Ophthalmic Epidemiology 2019; 26: 183-188 (IGR: 20-2)


79560 Lamina Cribrosa Morphology in Glaucomatous Eyes with Hemifield Defect in a Korean Population
Kim TW
Ophthalmology 2019; 126: 692-701 (IGR: 20-2)


79990 Comparison of Rates of Fast and Catastrophic Visual Field Loss in Three Glaucoma Subtypes
Chaurasia AK
Investigative Ophthalmology and Visual Science 2019; 60: 161-167 (IGR: 20-2)


79704 Artificial intelligence in glaucoma
Johnson TV
Current Opinions in Ophthalmology 2019; 30: 97-103 (IGR: 20-2)


79326 Relating optical coherence tomography to visual fields in glaucoma: structure-function mapping, limitations and future applications
Turpin A
Clinical and Experimental Optometry 2019; 102: 291-299 (IGR: 20-2)


79815 Automated algorithms combining structure and function outperform general ophthalmologists in diagnosing glaucoma
Vasconcellos JPC
PLoS ONE 2018; 13: e0207784 (IGR: 20-2)


79394 Macular ganglion cell asymmetry for detecting paracentral scotoma in early glaucoma
Chang YF
Clinical Ophthalmology 2018; 12: 2253-2260 (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure
Yoshitomi T
Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


79919 The Effect of Gender on Visual Field Sensitivity: The Singapore Chinese Eye Study
Koh V
Ophthalmic Epidemiology 2019; 26: 183-188 (IGR: 20-2)


79338 A deep learning approach to automatic detection of early glaucoma from visual fields
Sznitman R
PLoS ONE 2018; 13: e0206081 (IGR: 20-2)


79326 Relating optical coherence tomography to visual fields in glaucoma: structure-function mapping, limitations and future applications
McKendrick AM
Clinical and Experimental Optometry 2019; 102: 291-299 (IGR: 20-2)


79815 Automated algorithms combining structure and function outperform general ophthalmologists in diagnosing glaucoma
Schimiti RB
PLoS ONE 2018; 13: e0207784 (IGR: 20-2)


79990 Comparison of Rates of Fast and Catastrophic Visual Field Loss in Three Glaucoma Subtypes
Sharma A
Investigative Ophthalmology and Visual Science 2019; 60: 161-167 (IGR: 20-2)


79394 Macular ganglion cell asymmetry for detecting paracentral scotoma in early glaucoma
Hsu CC
Clinical Ophthalmology 2018; 12: 2253-2260 (IGR: 20-2)


79471 Association of Macular Visual Field Measurements With Glaucoma Staging Systems
Jarukasetphon R
JAMA ophthalmology 2018; 0: (IGR: 20-2)


79953 Vision-related quality of life according to location of visual field loss in patients with glaucoma
Park CK
Acta Ophthalmologica 2019; 97: e772-e779 (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure
Iwase A
Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


79560 Lamina Cribrosa Morphology in Glaucomatous Eyes with Hemifield Defect in a Korean Population
Lee EJ
Ophthalmology 2019; 126: 692-701 (IGR: 20-2)


80031 The Effects of Optic Nerve Head Tilt on Visual Field Defects in Myopic Normal Tension Glaucoma: The Intereye Comparison Study
Kee C
Journal of Glaucoma 2019; 28: 341-346 (IGR: 20-2)


79736 Relationship between Progressive Changes in Lamina Cribrosa Depth and Deterioration of Visual Field Loss in Glaucomatous Eyes
Sung KR
Korean Journal of Ophthalmology 2018; 32: 470-477 (IGR: 20-2)


79823 Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns
Murata H
Investigative Ophthalmology and Visual Science 2018; 59: 5717-5725 (IGR: 20-2)


79390 Early Detection of Glaucomatous Visual Field Progression Using Pointwise Linear Regression With Binomial Test in the Central 10 Degrees
Matsuura M
American Journal of Ophthalmology 2019; 199: 140-149 (IGR: 20-2)


80032 The Relationship Between Interocular Asymmetry of Visual Field Defects and Optic Nerve Head Blood Flow in Patients With Glaucoma
Udagawa S
Journal of Glaucoma 2019; 28: 231-237 (IGR: 20-2)


79889 Relationship between macular vessel density and central visual field sensitivity at different glaucoma stages
Kwon J
British Journal of Ophthalmology 2019; 103: 1827-1833 (IGR: 20-2)


79704 Artificial intelligence in glaucoma
Garg A
Current Opinions in Ophthalmology 2019; 30: 97-103 (IGR: 20-2)


79395 Evaluation of Structure-Function Relationships in Longitudinal Changes of Glaucoma using the Spectralis OCT Follow-Up Mode
Nakanishi H
Scientific reports 2018; 8: 17158 (IGR: 20-2)


79917 Quantification of RAPD by an automated pupillometer in asymmetric glaucoma and its correlation with manual pupillary assessment
Aggarwal P
Indian Journal of Ophthalmology 2019; 67: 227-232 (IGR: 20-2)


79572 Home-based visual field test for glaucoma screening comparison with Humphrey perimeter
Diagourtas A
Clinical Ophthalmology 2018; 12: 2597-2606 (IGR: 20-2)


79817 Cross-Sectional Imaging Analysis of Epiretinal Membrane Involvement in Unilateral Open-Angle Glaucoma Severity
Usui S
Investigative Ophthalmology and Visual Science 2018; 59: 5745-5751 (IGR: 20-2)


79546 The relationship between optic nerve head deformation and visual field defects in myopic eyes with primary open-angle glaucoma
Lin SY
PLoS ONE 2018; 13: e0209755 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Pasquale LR
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


79586 Circumpapillary structure-function relationships with microperimetry and spectral domain optical coherence tomography in glaucoma: a pilot study
Murai A
Clinical Ophthalmology 2018; 12: 2535-2544 (IGR: 20-2)


79546 The relationship between optic nerve head deformation and visual field defects in myopic eyes with primary open-angle glaucoma
Lin SL
PLoS ONE 2018; 13: e0209755 (IGR: 20-2)


79586 Circumpapillary structure-function relationships with microperimetry and spectral domain optical coherence tomography in glaucoma: a pilot study
Kita R
Clinical Ophthalmology 2018; 12: 2535-2544 (IGR: 20-2)


80032 The Relationship Between Interocular Asymmetry of Visual Field Defects and Optic Nerve Head Blood Flow in Patients With Glaucoma
Takeshima S
Journal of Glaucoma 2019; 28: 231-237 (IGR: 20-2)


79704 Artificial intelligence in glaucoma
Boland MV
Current Opinions in Ophthalmology 2019; 30: 97-103 (IGR: 20-2)


79817 Cross-Sectional Imaging Analysis of Epiretinal Membrane Involvement in Unilateral Open-Angle Glaucoma Severity
Ishibashi T
Investigative Ophthalmology and Visual Science 2018; 59: 5745-5751 (IGR: 20-2)


79572 Home-based visual field test for glaucoma screening comparison with Humphrey perimeter
Kandarakis S
Clinical Ophthalmology 2018; 12: 2597-2606 (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure
Matsumoto C
Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


79919 The Effect of Gender on Visual Field Sensitivity: The Singapore Chinese Eye Study
Cheung CY
Ophthalmic Epidemiology 2019; 26: 183-188 (IGR: 20-2)


79889 Relationship between macular vessel density and central visual field sensitivity at different glaucoma stages
Jo Y
British Journal of Ophthalmology 2019; 103: 1827-1833 (IGR: 20-2)


79823 Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns
Fujino Y
Investigative Ophthalmology and Visual Science 2018; 59: 5717-5725 (IGR: 20-2)


79394 Macular ganglion cell asymmetry for detecting paracentral scotoma in early glaucoma
Ko YC
Clinical Ophthalmology 2018; 12: 2253-2260 (IGR: 20-2)


79917 Quantification of RAPD by an automated pupillometer in asymmetric glaucoma and its correlation with manual pupillary assessment
Ravindran RD
Indian Journal of Ophthalmology 2019; 67: 227-232 (IGR: 20-2)


79560 Lamina Cribrosa Morphology in Glaucomatous Eyes with Hemifield Defect in a Korean Population
Girard MJA
Ophthalmology 2019; 126: 692-701 (IGR: 20-2)


79815 Automated algorithms combining structure and function outperform general ophthalmologists in diagnosing glaucoma
Reis ASC
PLoS ONE 2018; 13: e0207784 (IGR: 20-2)


79471 Association of Macular Visual Field Measurements With Glaucoma Staging Systems
Rajshekhar R
JAMA ophthalmology 2018; 0: (IGR: 20-2)


79953 Vision-related quality of life according to location of visual field loss in patients with glaucoma
Kim HK
Acta Ophthalmologica 2019; 97: e772-e779 (IGR: 20-2)


79395 Evaluation of Structure-Function Relationships in Longitudinal Changes of Glaucoma using the Spectralis OCT Follow-Up Mode
Noma H
Scientific reports 2018; 8: 17158 (IGR: 20-2)


79390 Early Detection of Glaucomatous Visual Field Progression Using Pointwise Linear Regression With Binomial Test in the Central 10 Degrees
Fujino Y
American Journal of Ophthalmology 2019; 199: 140-149 (IGR: 20-2)


79990 Comparison of Rates of Fast and Catastrophic Visual Field Loss in Three Glaucoma Subtypes
Gupta A
Investigative Ophthalmology and Visual Science 2019; 60: 161-167 (IGR: 20-2)


79471 Association of Macular Visual Field Measurements With Glaucoma Staging Systems
Rajshekhar R
JAMA ophthalmology 2018; 0: (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Petrakos P
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


79394 Macular ganglion cell asymmetry for detecting paracentral scotoma in early glaucoma
Liu CJ
Clinical Ophthalmology 2018; 12: 2253-2260 (IGR: 20-2)


79889 Relationship between macular vessel density and central visual field sensitivity at different glaucoma stages
Jeong D
British Journal of Ophthalmology 2019; 103: 1827-1833 (IGR: 20-2)


79471 Association of Macular Visual Field Measurements With Glaucoma Staging Systems
Shi L
JAMA ophthalmology 2018; 0: (IGR: 20-2)


79990 Comparison of Rates of Fast and Catastrophic Visual Field Loss in Three Glaucoma Subtypes
Gupta S
Investigative Ophthalmology and Visual Science 2019; 60: 161-167 (IGR: 20-2)


79919 The Effect of Gender on Visual Field Sensitivity: The Singapore Chinese Eye Study
Aung T
Ophthalmic Epidemiology 2019; 26: 183-188 (IGR: 20-2)


79953 Vision-related quality of life according to location of visual field loss in patients with glaucoma
Yoo C
Acta Ophthalmologica 2019; 97: e772-e779 (IGR: 20-2)


79823 Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns
Matsuura M
Investigative Ophthalmology and Visual Science 2018; 59: 5717-5725 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Formica S
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


79586 Circumpapillary structure-function relationships with microperimetry and spectral domain optical coherence tomography in glaucoma: a pilot study
Saito T
Clinical Ophthalmology 2018; 12: 2535-2544 (IGR: 20-2)


80032 The Relationship Between Interocular Asymmetry of Visual Field Defects and Optic Nerve Head Blood Flow in Patients With Glaucoma
Sakaguchi K
Journal of Glaucoma 2019; 28: 231-237 (IGR: 20-2)


79395 Evaluation of Structure-Function Relationships in Longitudinal Changes of Glaucoma using the Spectralis OCT Follow-Up Mode
Ikeda HO
Scientific reports 2018; 8: 17158 (IGR: 20-2)


79917 Quantification of RAPD by an automated pupillometer in asymmetric glaucoma and its correlation with manual pupillary assessment
Privitera CM
Indian Journal of Ophthalmology 2019; 67: 227-232 (IGR: 20-2)


79817 Cross-Sectional Imaging Analysis of Epiretinal Membrane Involvement in Unilateral Open-Angle Glaucoma Severity
Oura Y
Investigative Ophthalmology and Visual Science 2018; 59: 5745-5751 (IGR: 20-2)


79572 Home-based visual field test for glaucoma screening comparison with Humphrey perimeter
Droutsas K
Clinical Ophthalmology 2018; 12: 2597-2606 (IGR: 20-2)


79390 Early Detection of Glaucomatous Visual Field Progression Using Pointwise Linear Regression With Binomial Test in the Central 10 Degrees
Asaoka R
American Journal of Ophthalmology 2019; 199: 140-149 (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure
Higashide T
Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


79815 Automated algorithms combining structure and function outperform general ophthalmologists in diagnosing glaucoma
Oliveira GO
PLoS ONE 2018; 13: e0207784 (IGR: 20-2)


79546 The relationship between optic nerve head deformation and visual field defects in myopic eyes with primary open-angle glaucoma
Chen YC
PLoS ONE 2018; 13: e0209755 (IGR: 20-2)


79560 Lamina Cribrosa Morphology in Glaucomatous Eyes with Hemifield Defect in a Korean Population
Mari JM
Ophthalmology 2019; 126: 692-701 (IGR: 20-2)


79953 Vision-related quality of life according to location of visual field loss in patients with glaucoma
Kim YY
Acta Ophthalmologica 2019; 97: e772-e779 (IGR: 20-2)


79586 Circumpapillary structure-function relationships with microperimetry and spectral domain optical coherence tomography in glaucoma: a pilot study
Hirakata A
Clinical Ophthalmology 2018; 12: 2535-2544 (IGR: 20-2)


79823 Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns
Garway-Heath D
Investigative Ophthalmology and Visual Science 2018; 59: 5717-5725 (IGR: 20-2)


79815 Automated algorithms combining structure and function outperform general ophthalmologists in diagnosing glaucoma
Gomi ES
PLoS ONE 2018; 13: e0207784 (IGR: 20-2)


79990 Comparison of Rates of Fast and Catastrophic Visual Field Loss in Three Glaucoma Subtypes
Khanna A
Investigative Ophthalmology and Visual Science 2019; 60: 161-167 (IGR: 20-2)


80032 The Relationship Between Interocular Asymmetry of Visual Field Defects and Optic Nerve Head Blood Flow in Patients With Glaucoma
Nitta K
Journal of Glaucoma 2019; 28: 231-237 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Boland MV
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure
Shirakashi M
Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


79394 Macular ganglion cell asymmetry for detecting paracentral scotoma in early glaucoma
Chen MJ
Clinical Ophthalmology 2018; 12: 2253-2260 (IGR: 20-2)


79889 Relationship between macular vessel density and central visual field sensitivity at different glaucoma stages
Shon G
British Journal of Ophthalmology 2019; 103: 1827-1833 (IGR: 20-2)


79471 Association of Macular Visual Field Measurements With Glaucoma Staging Systems
Blumberg DM
JAMA ophthalmology 2018; 0: (IGR: 20-2)


79919 The Effect of Gender on Visual Field Sensitivity: The Singapore Chinese Eye Study
Wong TY
Ophthalmic Epidemiology 2019; 26: 183-188 (IGR: 20-2)


79572 Home-based visual field test for glaucoma screening comparison with Humphrey perimeter
Andreanos K
Clinical Ophthalmology 2018; 12: 2597-2606 (IGR: 20-2)


79395 Evaluation of Structure-Function Relationships in Longitudinal Changes of Glaucoma using the Spectralis OCT Follow-Up Mode
Kameda T
Scientific reports 2018; 8: 17158 (IGR: 20-2)


79823 Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns
Weinreb R
Investigative Ophthalmology and Visual Science 2018; 59: 5717-5725 (IGR: 20-2)


79572 Home-based visual field test for glaucoma screening comparison with Humphrey perimeter
Brouzas D
Clinical Ophthalmology 2018; 12: 2597-2606 (IGR: 20-2)


79395 Evaluation of Structure-Function Relationships in Longitudinal Changes of Glaucoma using the Spectralis OCT Follow-Up Mode
Hasegawa T
Scientific reports 2018; 8: 17158 (IGR: 20-2)


80032 The Relationship Between Interocular Asymmetry of Visual Field Defects and Optic Nerve Head Blood Flow in Patients With Glaucoma
Sugiyama K
Journal of Glaucoma 2019; 28: 231-237 (IGR: 20-2)


79815 Automated algorithms combining structure and function outperform general ophthalmologists in diagnosing glaucoma
Vianna JAR
PLoS ONE 2018; 13: e0207784 (IGR: 20-2)


79471 Association of Macular Visual Field Measurements With Glaucoma Staging Systems
Liebmann JM
JAMA ophthalmology 2018; 0: (IGR: 20-2)


79889 Relationship between macular vessel density and central visual field sensitivity at different glaucoma stages
Kook MS
British Journal of Ophthalmology 2019; 103: 1827-1833 (IGR: 20-2)


79990 Comparison of Rates of Fast and Catastrophic Visual Field Loss in Three Glaucoma Subtypes
Gupta V
Investigative Ophthalmology and Visual Science 2019; 60: 161-167 (IGR: 20-2)


79919 The Effect of Gender on Visual Field Sensitivity: The Singapore Chinese Eye Study
Cheng CY
Ophthalmic Epidemiology 2019; 26: 183-188 (IGR: 20-2)


79953 Vision-related quality of life according to location of visual field loss in patients with glaucoma
Park KH
Acta Ophthalmologica 2019; 97: e772-e779 (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure
Aihara M
Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Wellik SR
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


79817 Cross-Sectional Imaging Analysis of Epiretinal Membrane Involvement in Unilateral Open-Angle Glaucoma Severity
Miki A; Kawasaki R
Investigative Ophthalmology and Visual Science 2018; 59: 5745-5751 (IGR: 20-2)


79953 Vision-related quality of life according to location of visual field loss in patients with glaucoma
Kim CY
Acta Ophthalmologica 2019; 97: e772-e779 (IGR: 20-2)


79395 Evaluation of Structure-Function Relationships in Longitudinal Changes of Glaucoma using the Spectralis OCT Follow-Up Mode
Tsujikawa A
Scientific reports 2018; 8: 17158 (IGR: 20-2)


79471 Association of Macular Visual Field Measurements With Glaucoma Staging Systems
Ritch R
JAMA ophthalmology 2018; 0: (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
De Moraes CG
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


79815 Automated algorithms combining structure and function outperform general ophthalmologists in diagnosing glaucoma
Lisboa RDDR
PLoS ONE 2018; 13: e0207784 (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure
Sugiyama K
Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


79823 Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns
Asaoka R
Investigative Ophthalmology and Visual Science 2018; 59: 5717-5725 (IGR: 20-2)


79953 Vision-related quality of life according to location of visual field loss in patients with glaucoma
Choi KR
Acta Ophthalmologica 2019; 97: e772-e779 (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure
Araie M
Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


79817 Cross-Sectional Imaging Analysis of Epiretinal Membrane Involvement in Unilateral Open-Angle Glaucoma Severity
Matsushita K
Investigative Ophthalmology and Visual Science 2018; 59: 5745-5751 (IGR: 20-2)


79815 Automated algorithms combining structure and function outperform general ophthalmologists in diagnosing glaucoma
Medeiros FA
PLoS ONE 2018; 13: e0207784 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Myers JS
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


79471 Association of Macular Visual Field Measurements With Glaucoma Staging Systems
Hood DC
JAMA ophthalmology 2018; 0: (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure

Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


79815 Automated algorithms combining structure and function outperform general ophthalmologists in diagnosing glaucoma
Costa VP
PLoS ONE 2018; 13: e0207784 (IGR: 20-2)


79953 Vision-related quality of life according to location of visual field loss in patients with glaucoma
Lee KW
Acta Ophthalmologica 2019; 97: e772-e779 (IGR: 20-2)


79817 Cross-Sectional Imaging Analysis of Epiretinal Membrane Involvement in Unilateral Open-Angle Glaucoma Severity
Sakaguchi H
Investigative Ophthalmology and Visual Science 2018; 59: 5745-5751 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Saeedi O; Wang H
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


79817 Cross-Sectional Imaging Analysis of Epiretinal Membrane Involvement in Unilateral Open-Angle Glaucoma Severity
Nishida K
Investigative Ophthalmology and Visual Science 2018; 59: 5745-5751 (IGR: 20-2)


79953 Vision-related quality of life according to location of visual field loss in patients with glaucoma
Han S
Acta Ophthalmologica 2019; 97: e772-e779 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Baniasadi N
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


79953 Vision-related quality of life according to location of visual field loss in patients with glaucoma
Kim CS;
Acta Ophthalmologica 2019; 97: e772-e779 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Li D; Tichelaar J; Bex PJ; Elze T
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


78859 Agreement of driving simulator and on-road driving performance in patients with binocular visual field loss
Ungewiss J
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 2429-2435 (IGR: 20-1)


79101 The Relationship Between the Sighting Eye and Functional and Structural Asymmetries in Glaucoma
Choi JA
Investigative Ophthalmology and Visual Science 2018; 59: 5447-5454 (IGR: 20-1)


78934 Application of Pattern Recognition Analysis to Optimize Hemifield Asymmetry Patterns for Early Detection of Glaucoma
Phu J
Translational vision science & technology 2018; 7: 3 (IGR: 20-1)


79112 Spectral Domain Optical Coherence Tomography Assessment of Macular and Optic Nerve Alterations in Patients with Glaucoma and Correlation with Visual Field Index
Martucci A
Journal of Ophthalmology 2018; 2018: 6581846 (IGR: 20-1)


78910 Comparison of Esterman disability scores obtained using Goldmann perimetry and the Humphrey field analyzer in Japanese low-vision patients
Yanagisawa M
PLoS ONE 2018; 13: e0203258 (IGR: 20-1)


78338 Differences in Static and Kinetic Perimetry Results are Eliminated in Retinal Disease when Psychophysical Procedures are Equated
Phu J
Translational vision science & technology 2018; 7: 22 (IGR: 20-1)


79087 A Method to Measure the Rate of Glaucomatous Visual Field Change
Caprioli J
Translational vision science & technology 2018; 7: 14 (IGR: 20-1)


78496 Performance of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma
Wu Z
American Journal of Ophthalmology 2018; 196: 10-17 (IGR: 20-1)


79123 Outer retinal layer thickness in patients with glaucoma with horizontal hemifield visual field defects
Vianna JR
British Journal of Ophthalmology 2019; 103: 1217-1222 (IGR: 20-1)


78411 Accuracy of peripapillary versus macular vessel density in diagnosis of early to advanced primary open angle glaucoma
Poli M
Journal Français d'Ophtalmologie 2018; 41: 619-629 (IGR: 20-1)


79200 A New SITA Perimetric Threshold Testing Algorithm: Construction and a Multicenter Clinical Study
Heijl A
American Journal of Ophthalmology 2019; 198: 154-165 (IGR: 20-1)


78475 A Comparison between the Compass Fundus Perimeter and the Humphrey Field Analyzer
Montesano G
Ophthalmology 2019; 126: 242-251 (IGR: 20-1)


78763 Influence of learning effect on reliability parameters and global indices of standard automated perimetry in cases of primary open angle glaucoma
Tiwari US
Romanian journal of ophthalmology 2018; 62: 277-281 (IGR: 20-1)


79291 Correlation Between Visual Function and Performance of Simulated Daily Living Activities in Glaucomatous Patients
Lombardi M
Journal of Glaucoma 2018; 27: 1017-1024 (IGR: 20-1)


79133 Effect of Macular Vascular Density on Central Visual Function and Macular Structure in Glaucoma Patients
Jeon SJ
Scientific reports 2018; 8: 16009 (IGR: 20-1)


79199 Using Kalman Filtering to Forecast Disease Trajectory for Patients With Normal Tension Glaucoma
Garcia GP
American Journal of Ophthalmology 2019; 199: 111-119 (IGR: 20-1)


78329 Central Corneal Thickness and Intraocular Pressure of Adult Nigerians: An Assessment of Zaria Community
Abah ER
West African Journal of Medicine 2018; 35: 158-161 (IGR: 20-1)


78943 Macular Pigment and Visual Function in Patients With Glaucoma: The San Diego Macular Pigment Study
Daga FB
Investigative Ophthalmology and Visual Science 2018; 59: 4471-4476 (IGR: 20-1)


79073 Improving Visual Field Examination of the Macula Using Structural Information
Montesano G
Translational vision science & technology 2018; 7: 36 (IGR: 20-1)


78342 Non-Self-Sealing (Leaky) Anterior Chamber Paracentesis: A New Technique in Managing Postphacoemulsification Intraocular Pressure Rise in Glaucoma and Normal Eyes
Lam D
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2018; 7: 284-287 (IGR: 20-1)


79142 Spatial correlation between localized decreases in exploratory visual search performance and areas of glaucomatous visual field loss
Senger C
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 153-160 (IGR: 20-1)


79265 Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network
Li F
BMC medical imaging 2018; 18: 35 (IGR: 20-1)


78327 Improving Spatial Resolution and Test Times of Visual Field Testing Using ARREST
Turpin A
Translational vision science & technology 2018; 7: 35 (IGR: 20-1)


79073 Improving Visual Field Examination of the Macula Using Structural Information
Rossetti LM
Translational vision science & technology 2018; 7: 36 (IGR: 20-1)


78763 Influence of learning effect on reliability parameters and global indices of standard automated perimetry in cases of primary open angle glaucoma
Aishwarya A
Romanian journal of ophthalmology 2018; 62: 277-281 (IGR: 20-1)


79142 Spatial correlation between localized decreases in exploratory visual search performance and areas of glaucomatous visual field loss
da Silva MJL
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 153-160 (IGR: 20-1)


78496 Performance of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma
Medeiros FA
American Journal of Ophthalmology 2018; 196: 10-17 (IGR: 20-1)


79265 Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network
Wang Z
BMC medical imaging 2018; 18: 35 (IGR: 20-1)


78327 Improving Spatial Resolution and Test Times of Visual Field Testing Using ARREST
Morgan WH
Translational vision science & technology 2018; 7: 35 (IGR: 20-1)


79133 Effect of Macular Vascular Density on Central Visual Function and Macular Structure in Glaucoma Patients
Park HL
Scientific reports 2018; 8: 16009 (IGR: 20-1)


79199 Using Kalman Filtering to Forecast Disease Trajectory for Patients With Normal Tension Glaucoma
Nitta K
American Journal of Ophthalmology 2019; 199: 111-119 (IGR: 20-1)


79112 Spectral Domain Optical Coherence Tomography Assessment of Macular and Optic Nerve Alterations in Patients with Glaucoma and Correlation with Visual Field Index
Toschi N
Journal of Ophthalmology 2018; 2018: 6581846 (IGR: 20-1)


78859 Agreement of driving simulator and on-road driving performance in patients with binocular visual field loss
Kübler T
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 2429-2435 (IGR: 20-1)


79200 A New SITA Perimetric Threshold Testing Algorithm: Construction and a Multicenter Clinical Study
Patella VM
American Journal of Ophthalmology 2019; 198: 154-165 (IGR: 20-1)


78934 Application of Pattern Recognition Analysis to Optimize Hemifield Asymmetry Patterns for Early Detection of Glaucoma
Khuu SK
Translational vision science & technology 2018; 7: 3 (IGR: 20-1)


78342 Non-Self-Sealing (Leaky) Anterior Chamber Paracentesis: A New Technique in Managing Postphacoemulsification Intraocular Pressure Rise in Glaucoma and Normal Eyes
Lee J
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2018; 7: 284-287 (IGR: 20-1)


78943 Macular Pigment and Visual Function in Patients With Glaucoma: The San Diego Macular Pigment Study
Ogata NG
Investigative Ophthalmology and Visual Science 2018; 59: 4471-4476 (IGR: 20-1)


79291 Correlation Between Visual Function and Performance of Simulated Daily Living Activities in Glaucomatous Patients
Zenouda A
Journal of Glaucoma 2018; 27: 1017-1024 (IGR: 20-1)


79101 The Relationship Between the Sighting Eye and Functional and Structural Asymmetries in Glaucoma
Jung IY
Investigative Ophthalmology and Visual Science 2018; 59: 5447-5454 (IGR: 20-1)


78329 Central Corneal Thickness and Intraocular Pressure of Adult Nigerians: An Assessment of Zaria Community
Mahmud-Ajeigbe AF
West African Journal of Medicine 2018; 35: 158-161 (IGR: 20-1)


79123 Outer retinal layer thickness in patients with glaucoma with horizontal hemifield visual field defects
Butty Z
British Journal of Ophthalmology 2019; 103: 1217-1222 (IGR: 20-1)


78411 Accuracy of peripapillary versus macular vessel density in diagnosis of early to advanced primary open angle glaucoma
Cornut PL
Journal Français d'Ophtalmologie 2018; 41: 619-629 (IGR: 20-1)


78475 A Comparison between the Compass Fundus Perimeter and the Humphrey Field Analyzer
Bryan SR
Ophthalmology 2019; 126: 242-251 (IGR: 20-1)


78910 Comparison of Esterman disability scores obtained using Goldmann perimetry and the Humphrey field analyzer in Japanese low-vision patients
Kato S
PLoS ONE 2018; 13: e0203258 (IGR: 20-1)


78338 Differences in Static and Kinetic Perimetry Results are Eliminated in Retinal Disease when Psychophysical Procedures are Equated
Kalloniatis M
Translational vision science & technology 2018; 7: 22 (IGR: 20-1)


79087 A Method to Measure the Rate of Glaucomatous Visual Field Change
Mohamed L
Translational vision science & technology 2018; 7: 14 (IGR: 20-1)


78411 Accuracy of peripapillary versus macular vessel density in diagnosis of early to advanced primary open angle glaucoma
Nguyen AM
Journal Français d'Ophtalmologie 2018; 41: 619-629 (IGR: 20-1)


78338 Differences in Static and Kinetic Perimetry Results are Eliminated in Retinal Disease when Psychophysical Procedures are Equated
Wang H
Translational vision science & technology 2018; 7: 22 (IGR: 20-1)


79200 A New SITA Perimetric Threshold Testing Algorithm: Construction and a Multicenter Clinical Study
Chong LX
American Journal of Ophthalmology 2019; 198: 154-165 (IGR: 20-1)


79123 Outer retinal layer thickness in patients with glaucoma with horizontal hemifield visual field defects
Torres LA
British Journal of Ophthalmology 2019; 103: 1217-1222 (IGR: 20-1)


78342 Non-Self-Sealing (Leaky) Anterior Chamber Paracentesis: A New Technique in Managing Postphacoemulsification Intraocular Pressure Rise in Glaucoma and Normal Eyes
Leung E
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2018; 7: 284-287 (IGR: 20-1)


79265 Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network
Qu G
BMC medical imaging 2018; 18: 35 (IGR: 20-1)


79291 Correlation Between Visual Function and Performance of Simulated Daily Living Activities in Glaucomatous Patients
Azoulay-Sebban L
Journal of Glaucoma 2018; 27: 1017-1024 (IGR: 20-1)


78475 A Comparison between the Compass Fundus Perimeter and the Humphrey Field Analyzer
Crabb DP
Ophthalmology 2019; 126: 242-251 (IGR: 20-1)


78329 Central Corneal Thickness and Intraocular Pressure of Adult Nigerians: An Assessment of Zaria Community
Sharief S
West African Journal of Medicine 2018; 35: 158-161 (IGR: 20-1)


79199 Using Kalman Filtering to Forecast Disease Trajectory for Patients With Normal Tension Glaucoma
Lavieri MS
American Journal of Ophthalmology 2019; 199: 111-119 (IGR: 20-1)


79073 Improving Visual Field Examination of the Macula Using Structural Information
Allegrini D
Translational vision science & technology 2018; 7: 36 (IGR: 20-1)


78327 Improving Spatial Resolution and Test Times of Visual Field Testing Using ARREST
McKendrick AM
Translational vision science & technology 2018; 7: 35 (IGR: 20-1)


78910 Comparison of Esterman disability scores obtained using Goldmann perimetry and the Humphrey field analyzer in Japanese low-vision patients
Ochiai M
PLoS ONE 2018; 13: e0203258 (IGR: 20-1)


78859 Agreement of driving simulator and on-road driving performance in patients with binocular visual field loss
Sippel K
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 2429-2435 (IGR: 20-1)


78496 Performance of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma
Weinreb RN
American Journal of Ophthalmology 2018; 196: 10-17 (IGR: 20-1)


79142 Spatial correlation between localized decreases in exploratory visual search performance and areas of glaucomatous visual field loss
De Moraes CG
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 153-160 (IGR: 20-1)


79087 A Method to Measure the Rate of Glaucomatous Visual Field Change
Morales E
Translational vision science & technology 2018; 7: 14 (IGR: 20-1)


79101 The Relationship Between the Sighting Eye and Functional and Structural Asymmetries in Glaucoma
Jee D
Investigative Ophthalmology and Visual Science 2018; 59: 5447-5454 (IGR: 20-1)


78763 Influence of learning effect on reliability parameters and global indices of standard automated perimetry in cases of primary open angle glaucoma
Bhale A
Romanian journal of ophthalmology 2018; 62: 277-281 (IGR: 20-1)


79133 Effect of Macular Vascular Density on Central Visual Function and Macular Structure in Glaucoma Patients
Park CK
Scientific reports 2018; 8: 16009 (IGR: 20-1)


78943 Macular Pigment and Visual Function in Patients With Glaucoma: The San Diego Macular Pigment Study
Medeiros FA
Investigative Ophthalmology and Visual Science 2018; 59: 4471-4476 (IGR: 20-1)


79112 Spectral Domain Optical Coherence Tomography Assessment of Macular and Optic Nerve Alterations in Patients with Glaucoma and Correlation with Visual Field Index
Cesareo M
Journal of Ophthalmology 2018; 2018: 6581846 (IGR: 20-1)


78934 Application of Pattern Recognition Analysis to Optimize Hemifield Asymmetry Patterns for Early Detection of Glaucoma
Bui BV
Translational vision science & technology 2018; 7: 3 (IGR: 20-1)


78475 A Comparison between the Compass Fundus Perimeter and the Humphrey Field Analyzer
Fogagnolo P
Ophthalmology 2019; 126: 242-251 (IGR: 20-1)


78943 Macular Pigment and Visual Function in Patients With Glaucoma: The San Diego Macular Pigment Study
Moran R
Investigative Ophthalmology and Visual Science 2018; 59: 4471-4476 (IGR: 20-1)


78411 Accuracy of peripapillary versus macular vessel density in diagnosis of early to advanced primary open angle glaucoma
De Bats F
Journal Français d'Ophtalmologie 2018; 41: 619-629 (IGR: 20-1)


78329 Central Corneal Thickness and Intraocular Pressure of Adult Nigerians: An Assessment of Zaria Community
Chinda D
West African Journal of Medicine 2018; 35: 158-161 (IGR: 20-1)


79200 A New SITA Perimetric Threshold Testing Algorithm: Construction and a Multicenter Clinical Study
Iwase A
American Journal of Ophthalmology 2019; 198: 154-165 (IGR: 20-1)


79073 Improving Visual Field Examination of the Macula Using Structural Information
Romano MR
Translational vision science & technology 2018; 7: 36 (IGR: 20-1)


79142 Spatial correlation between localized decreases in exploratory visual search performance and areas of glaucomatous visual field loss
Messias A
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 153-160 (IGR: 20-1)


79087 A Method to Measure the Rate of Glaucomatous Visual Field Change
Rabiolo A
Translational vision science & technology 2018; 7: 14 (IGR: 20-1)


79265 Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network
Song D
BMC medical imaging 2018; 18: 35 (IGR: 20-1)


78338 Differences in Static and Kinetic Perimetry Results are Eliminated in Retinal Disease when Psychophysical Procedures are Equated
Khuu SK
Translational vision science & technology 2018; 7: 22 (IGR: 20-1)


78859 Agreement of driving simulator and on-road driving performance in patients with binocular visual field loss
Aehling K
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 2429-2435 (IGR: 20-1)


78934 Application of Pattern Recognition Analysis to Optimize Hemifield Asymmetry Patterns for Early Detection of Glaucoma
Kalloniatis M
Translational vision science & technology 2018; 7: 3 (IGR: 20-1)


79291 Correlation Between Visual Function and Performance of Simulated Daily Living Activities in Glaucomatous Patients
Lebrisse M
Journal of Glaucoma 2018; 27: 1017-1024 (IGR: 20-1)


79199 Using Kalman Filtering to Forecast Disease Trajectory for Patients With Normal Tension Glaucoma
Andrews C
American Journal of Ophthalmology 2019; 199: 111-119 (IGR: 20-1)


79112 Spectral Domain Optical Coherence Tomography Assessment of Macular and Optic Nerve Alterations in Patients with Glaucoma and Correlation with Visual Field Index
Giannini C
Journal of Ophthalmology 2018; 2018: 6581846 (IGR: 20-1)


78496 Performance of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma
Zangwill LM
American Journal of Ophthalmology 2018; 196: 10-17 (IGR: 20-1)


79123 Outer retinal layer thickness in patients with glaucoma with horizontal hemifield visual field defects
Sharpe GP
British Journal of Ophthalmology 2019; 103: 1217-1222 (IGR: 20-1)


78342 Non-Self-Sealing (Leaky) Anterior Chamber Paracentesis: A New Technique in Managing Postphacoemulsification Intraocular Pressure Rise in Glaucoma and Normal Eyes
Liu S
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2018; 7: 284-287 (IGR: 20-1)


79291 Correlation Between Visual Function and Performance of Simulated Daily Living Activities in Glaucomatous Patients
Gutman E
Journal of Glaucoma 2018; 27: 1017-1024 (IGR: 20-1)


79142 Spatial correlation between localized decreases in exploratory visual search performance and areas of glaucomatous visual field loss
Paula JS
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 153-160 (IGR: 20-1)


78943 Macular Pigment and Visual Function in Patients With Glaucoma: The San Diego Macular Pigment Study
Morris J
Investigative Ophthalmology and Visual Science 2018; 59: 4471-4476 (IGR: 20-1)


79200 A New SITA Perimetric Threshold Testing Algorithm: Construction and a Multicenter Clinical Study
Leung CK
American Journal of Ophthalmology 2019; 198: 154-165 (IGR: 20-1)


78475 A Comparison between the Compass Fundus Perimeter and the Humphrey Field Analyzer
Oddone F
Ophthalmology 2019; 126: 242-251 (IGR: 20-1)


79265 Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network
Yuan Y
BMC medical imaging 2018; 18: 35 (IGR: 20-1)


78411 Accuracy of peripapillary versus macular vessel density in diagnosis of early to advanced primary open angle glaucoma
Denis P
Journal Français d'Ophtalmologie 2018; 41: 619-629 (IGR: 20-1)


79087 A Method to Measure the Rate of Glaucomatous Visual Field Change
Sears N
Translational vision science & technology 2018; 7: 14 (IGR: 20-1)


78859 Agreement of driving simulator and on-road driving performance in patients with binocular visual field loss
Heister M
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 2429-2435 (IGR: 20-1)


79123 Outer retinal layer thickness in patients with glaucoma with horizontal hemifield visual field defects
Hutchison DM
British Journal of Ophthalmology 2019; 103: 1217-1222 (IGR: 20-1)


79199 Using Kalman Filtering to Forecast Disease Trajectory for Patients With Normal Tension Glaucoma
Liu X
American Journal of Ophthalmology 2019; 199: 111-119 (IGR: 20-1)


79073 Improving Visual Field Examination of the Macula Using Structural Information
Crabb DP
Translational vision science & technology 2018; 7: 36 (IGR: 20-1)


79112 Spectral Domain Optical Coherence Tomography Assessment of Macular and Optic Nerve Alterations in Patients with Glaucoma and Correlation with Visual Field Index
Pocobelli G
Journal of Ophthalmology 2018; 2018: 6581846 (IGR: 20-1)


78342 Non-Self-Sealing (Leaky) Anterior Chamber Paracentesis: A New Technique in Managing Postphacoemulsification Intraocular Pressure Rise in Glaucoma and Normal Eyes
Yuan J
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2018; 7: 284-287 (IGR: 20-1)


78329 Central Corneal Thickness and Intraocular Pressure of Adult Nigerians: An Assessment of Zaria Community
Jiya PY
West African Journal of Medicine 2018; 35: 158-161 (IGR: 20-1)


79123 Outer retinal layer thickness in patients with glaucoma with horizontal hemifield visual field defects
Shuba LM
British Journal of Ophthalmology 2019; 103: 1217-1222 (IGR: 20-1)


79199 Using Kalman Filtering to Forecast Disease Trajectory for Patients With Normal Tension Glaucoma
Lobaza E
American Journal of Ophthalmology 2019; 199: 111-119 (IGR: 20-1)


79265 Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network
Xu Y
BMC medical imaging 2018; 18: 35 (IGR: 20-1)


79112 Spectral Domain Optical Coherence Tomography Assessment of Macular and Optic Nerve Alterations in Patients with Glaucoma and Correlation with Visual Field Index
Garaci F
Journal of Ophthalmology 2018; 2018: 6581846 (IGR: 20-1)


78329 Central Corneal Thickness and Intraocular Pressure of Adult Nigerians: An Assessment of Zaria Community
Bob-Egbe O
West African Journal of Medicine 2018; 35: 158-161 (IGR: 20-1)


79291 Correlation Between Visual Function and Performance of Simulated Daily Living Activities in Glaucomatous Patients
Brasnu E
Journal of Glaucoma 2018; 27: 1017-1024 (IGR: 20-1)


78943 Macular Pigment and Visual Function in Patients With Glaucoma: The San Diego Macular Pigment Study
Zangwill LM
Investigative Ophthalmology and Visual Science 2018; 59: 4471-4476 (IGR: 20-1)


78342 Non-Self-Sealing (Leaky) Anterior Chamber Paracentesis: A New Technique in Managing Postphacoemulsification Intraocular Pressure Rise in Glaucoma and Normal Eyes
Ratra V
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2018; 7: 284-287 (IGR: 20-1)


78475 A Comparison between the Compass Fundus Perimeter and the Humphrey Field Analyzer
McKendrick AM
Ophthalmology 2019; 126: 242-251 (IGR: 20-1)


79200 A New SITA Perimetric Threshold Testing Algorithm: Construction and a Multicenter Clinical Study
Tuulonen A
American Journal of Ophthalmology 2019; 198: 154-165 (IGR: 20-1)


79087 A Method to Measure the Rate of Glaucomatous Visual Field Change
Pradtana H
Translational vision science & technology 2018; 7: 14 (IGR: 20-1)


78859 Agreement of driving simulator and on-road driving performance in patients with binocular visual field loss
Rosenstiel W
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 2429-2435 (IGR: 20-1)


79199 Using Kalman Filtering to Forecast Disease Trajectory for Patients With Normal Tension Glaucoma
Van Oyen MP
American Journal of Ophthalmology 2019; 199: 111-119 (IGR: 20-1)


78859 Agreement of driving simulator and on-road driving performance in patients with binocular visual field loss
Kasneci E
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 2429-2435 (IGR: 20-1)


79087 A Method to Measure the Rate of Glaucomatous Visual Field Change
Alizadeh R
Translational vision science & technology 2018; 7: 14 (IGR: 20-1)


78943 Macular Pigment and Visual Function in Patients With Glaucoma: The San Diego Macular Pigment Study
Weinreb RN
Investigative Ophthalmology and Visual Science 2018; 59: 4471-4476 (IGR: 20-1)


79112 Spectral Domain Optical Coherence Tomography Assessment of Macular and Optic Nerve Alterations in Patients with Glaucoma and Correlation with Visual Field Index
Mancino R
Journal of Ophthalmology 2018; 2018: 6581846 (IGR: 20-1)


79291 Correlation Between Visual Function and Performance of Simulated Daily Living Activities in Glaucomatous Patients
Hamard P
Journal of Glaucoma 2018; 27: 1017-1024 (IGR: 20-1)


78475 A Comparison between the Compass Fundus Perimeter and the Humphrey Field Analyzer
Turpin A
Ophthalmology 2019; 126: 242-251 (IGR: 20-1)


79265 Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network
Gao K
BMC medical imaging 2018; 18: 35 (IGR: 20-1)


79123 Outer retinal layer thickness in patients with glaucoma with horizontal hemifield visual field defects
Nicolela MT
British Journal of Ophthalmology 2019; 103: 1217-1222 (IGR: 20-1)


79200 A New SITA Perimetric Threshold Testing Algorithm: Construction and a Multicenter Clinical Study
Lee GC
American Journal of Ophthalmology 2019; 198: 154-165 (IGR: 20-1)


79199 Using Kalman Filtering to Forecast Disease Trajectory for Patients With Normal Tension Glaucoma
Sugiyama K
American Journal of Ophthalmology 2019; 199: 111-119 (IGR: 20-1)


79123 Outer retinal layer thickness in patients with glaucoma with horizontal hemifield visual field defects
Chauhan BC
British Journal of Ophthalmology 2019; 103: 1217-1222 (IGR: 20-1)


79291 Correlation Between Visual Function and Performance of Simulated Daily Living Activities in Glaucomatous Patients
Sahel JA
Journal of Glaucoma 2018; 27: 1017-1024 (IGR: 20-1)


79112 Spectral Domain Optical Coherence Tomography Assessment of Macular and Optic Nerve Alterations in Patients with Glaucoma and Correlation with Visual Field Index
Nucci C
Journal of Ophthalmology 2018; 2018: 6581846 (IGR: 20-1)


78859 Agreement of driving simulator and on-road driving performance in patients with binocular visual field loss
Papageorgiou E
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 2429-2435 (IGR: 20-1)


78475 A Comparison between the Compass Fundus Perimeter and the Humphrey Field Analyzer
Lanzetta P
Ophthalmology 2019; 126: 242-251 (IGR: 20-1)


79265 Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network
Luo G
BMC medical imaging 2018; 18: 35 (IGR: 20-1)


79087 A Method to Measure the Rate of Glaucomatous Visual Field Change
Yu F
Translational vision science & technology 2018; 7: 14 (IGR: 20-1)


79200 A New SITA Perimetric Threshold Testing Algorithm: Construction and a Multicenter Clinical Study
Callan T
American Journal of Ophthalmology 2019; 198: 154-165 (IGR: 20-1)


78943 Macular Pigment and Visual Function in Patients With Glaucoma: The San Diego Macular Pigment Study
Nolan JM
Investigative Ophthalmology and Visual Science 2018; 59: 4471-4476 (IGR: 20-1)


79087 A Method to Measure the Rate of Glaucomatous Visual Field Change
Afifi AA
Translational vision science & technology 2018; 7: 14 (IGR: 20-1)


78475 A Comparison between the Compass Fundus Perimeter and the Humphrey Field Analyzer
Perdicchi A
Ophthalmology 2019; 126: 242-251 (IGR: 20-1)


79199 Using Kalman Filtering to Forecast Disease Trajectory for Patients With Normal Tension Glaucoma
Stein JD
American Journal of Ophthalmology 2019; 199: 111-119 (IGR: 20-1)


79200 A New SITA Perimetric Threshold Testing Algorithm: Construction and a Multicenter Clinical Study
Bengtsson B
American Journal of Ophthalmology 2019; 198: 154-165 (IGR: 20-1)


79265 Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network
Xiao Z
BMC medical imaging 2018; 18: 35 (IGR: 20-1)


78859 Agreement of driving simulator and on-road driving performance in patients with binocular visual field loss

Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 2429-2435 (IGR: 20-1)


79291 Correlation Between Visual Function and Performance of Simulated Daily Living Activities in Glaucomatous Patients
Baudouin C
Journal of Glaucoma 2018; 27: 1017-1024 (IGR: 20-1)


79087 A Method to Measure the Rate of Glaucomatous Visual Field Change
Coleman AL
Translational vision science & technology 2018; 7: 14 (IGR: 20-1)


78475 A Comparison between the Compass Fundus Perimeter and the Humphrey Field Analyzer
Johnson CA
Ophthalmology 2019; 126: 242-251 (IGR: 20-1)


79265 Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network
Lam DSC
BMC medical imaging 2018; 18: 35 (IGR: 20-1)


79291 Correlation Between Visual Function and Performance of Simulated Daily Living Activities in Glaucomatous Patients
Labbé A
Journal of Glaucoma 2018; 27: 1017-1024 (IGR: 20-1)


79265 Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network
Zhong H
BMC medical imaging 2018; 18: 35 (IGR: 20-1)


79087 A Method to Measure the Rate of Glaucomatous Visual Field Change
Nouri-Mahdavi K
Translational vision science & technology 2018; 7: 14 (IGR: 20-1)


78475 A Comparison between the Compass Fundus Perimeter and the Humphrey Field Analyzer
Garway-Heath DF
Ophthalmology 2019; 126: 242-251 (IGR: 20-1)


79265 Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network
Qiao Y
BMC medical imaging 2018; 18: 35 (IGR: 20-1)


78475 A Comparison between the Compass Fundus Perimeter and the Humphrey Field Analyzer
Brusini P; Rossetti LM
Ophthalmology 2019; 126: 242-251 (IGR: 20-1)


79265 Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network
Zhang X
BMC medical imaging 2018; 18: 35 (IGR: 20-1)


77765 Deep-learning Classifier With an Ultrawide-field Scanning Laser Ophthalmoscope Detects Glaucoma Visual Field Severity
Masumoto H
Journal of Glaucoma 2018; 27: 647-652 (IGR: 19-4)


78150 Differences in the Relation Between Perimetric Sensitivity and Variability Between Locations Across the Visual Field
Gardiner SK
Investigative Ophthalmology and Visual Science 2018; 59: 3667-3674 (IGR: 19-4)


77860 Central 10-degree visual field change following non-penetrating deep sclerectomy in severe and end-stage glaucoma: preliminary results
Leleu I
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1489-1498 (IGR: 19-4)


78204 Macular Damage, as Determined by Structure-Function Staging, Is Associated With Worse Vision-related Quality of Life in Early Glaucoma
Garg A
American Journal of Ophthalmology 2018; 194: 88-94 (IGR: 19-4)


78242 Deep Optic Nerve Head Morphology Is Associated With Pattern of Glaucomatous Visual Field Defect in Open-Angle Glaucoma
Han JC
Investigative Ophthalmology and Visual Science 2018; 59: 3842-3851 (IGR: 19-4)


77955 Four Questions for Every Clinician Diagnosing and Monitoring Glaucoma
Hood DC
Journal of Glaucoma 2018; 27: 657-664 (IGR: 19-4)


78064 Factors associated with the presence of parafoveal scotoma in glaucomatous eyes with optic disc hemorrhages
Dias DT
Eye 2018; 32: 1669-1674 (IGR: 19-4)


77653 Associations between structure and function are different in healthy and glaucomatous eyes
Chu FI
PLoS ONE 2018; 13: e0196814 (IGR: 19-4)


78094 Improving the structure-function relationship in glaucomatous and normative eyes by incorporating photoreceptor layer thickness
Matsuura M
Scientific reports 2018; 8: 10450 (IGR: 19-4)


78251 Visual Field Changes in Professional Wind versus Non-wind Musical Instrument Players in the Philadelphia Orchestra
Lin SC
Journal of ophthalmic & vision research 2018; 13: 224-230 (IGR: 19-4)


78268 Deep learning in ophthalmology: a review
Grewal PS
Canadian Journal of Ophthalmology 2018; 53: 309-313 (IGR: 19-4)


78287 Comparison of Visual Field Point-Wise Event-Based and Global Trend-Based Analysis for Detecting Glaucomatous Progression
Wu Z
Translational vision science & technology 2018; 7: 20 (IGR: 19-4)


77688 Visual Field Tests for Glaucoma Patients With Initial Macular Damage: Comparison Between Frequency-doubling Technology and Standard Automated Perimetry Using 24-2 or 10-2 Visual Fields
Park HL
Journal of Glaucoma 2018; 27: 627-634 (IGR: 19-4)


78167 Correlation of central field index (10-2 visual field analysis) and activity limitation with increasing severity of glaucoma using glaucoma activity limitation-9 questionnaire
Daruka R
Indian Journal of Ophthalmology 2018; 66: 1098-1103 (IGR: 19-4)


78284 The Relationship Between Bruch's Membrane Opening-Minimum Rim Width and Retinal Nerve Fiber Layer Thickness and a New Index Using a Neural Network
Park K
Translational vision science & technology 2018; 7: 14 (IGR: 19-4)


78064 Factors associated with the presence of parafoveal scotoma in glaucomatous eyes with optic disc hemorrhages
Almeida I
Eye 2018; 32: 1669-1674 (IGR: 19-4)


77688 Visual Field Tests for Glaucoma Patients With Initial Macular Damage: Comparison Between Frequency-doubling Technology and Standard Automated Perimetry Using 24-2 or 10-2 Visual Fields
Lee J
Journal of Glaucoma 2018; 27: 627-634 (IGR: 19-4)


78287 Comparison of Visual Field Point-Wise Event-Based and Global Trend-Based Analysis for Detecting Glaucomatous Progression
Medeiros FA
Translational vision science & technology 2018; 7: 20 (IGR: 19-4)


77860 Central 10-degree visual field change following non-penetrating deep sclerectomy in severe and end-stage glaucoma: preliminary results
Penaud B
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1489-1498 (IGR: 19-4)


77653 Associations between structure and function are different in healthy and glaucomatous eyes
Marín-Franch I
PLoS ONE 2018; 13: e0196814 (IGR: 19-4)


77765 Deep-learning Classifier With an Ultrawide-field Scanning Laser Ophthalmoscope Detects Glaucoma Visual Field Severity
Tabuchi H
Journal of Glaucoma 2018; 27: 647-652 (IGR: 19-4)


78242 Deep Optic Nerve Head Morphology Is Associated With Pattern of Glaucomatous Visual Field Defect in Open-Angle Glaucoma
Choi JH
Investigative Ophthalmology and Visual Science 2018; 59: 3842-3851 (IGR: 19-4)


77955 Four Questions for Every Clinician Diagnosing and Monitoring Glaucoma
De Moraes CG
Journal of Glaucoma 2018; 27: 657-664 (IGR: 19-4)


78251 Visual Field Changes in Professional Wind versus Non-wind Musical Instrument Players in the Philadelphia Orchestra
Zheng CX
Journal of ophthalmic & vision research 2018; 13: 224-230 (IGR: 19-4)


78268 Deep learning in ophthalmology: a review
Oloumi F
Canadian Journal of Ophthalmology 2018; 53: 309-313 (IGR: 19-4)


78167 Correlation of central field index (10-2 visual field analysis) and activity limitation with increasing severity of glaucoma using glaucoma activity limitation-9 questionnaire
Kuzhuppilly NIR
Indian Journal of Ophthalmology 2018; 66: 1098-1103 (IGR: 19-4)


78284 The Relationship Between Bruch's Membrane Opening-Minimum Rim Width and Retinal Nerve Fiber Layer Thickness and a New Index Using a Neural Network
Kim J
Translational vision science & technology 2018; 7: 14 (IGR: 19-4)


78204 Macular Damage, as Determined by Structure-Function Staging, Is Associated With Worse Vision-related Quality of Life in Early Glaucoma
Hood DC
American Journal of Ophthalmology 2018; 194: 88-94 (IGR: 19-4)


78094 Improving the structure-function relationship in glaucomatous and normative eyes by incorporating photoreceptor layer thickness
Fujino Y
Scientific reports 2018; 8: 10450 (IGR: 19-4)


77860 Central 10-degree visual field change following non-penetrating deep sclerectomy in severe and end-stage glaucoma: preliminary results
Blumen-Ohana E
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1489-1498 (IGR: 19-4)


78251 Visual Field Changes in Professional Wind versus Non-wind Musical Instrument Players in the Philadelphia Orchestra
Waisbourd M
Journal of ophthalmic & vision research 2018; 13: 224-230 (IGR: 19-4)


78167 Correlation of central field index (10-2 visual field analysis) and activity limitation with increasing severity of glaucoma using glaucoma activity limitation-9 questionnaire
Dev S
Indian Journal of Ophthalmology 2018; 66: 1098-1103 (IGR: 19-4)


78268 Deep learning in ophthalmology: a review
Rubin U
Canadian Journal of Ophthalmology 2018; 53: 309-313 (IGR: 19-4)


77688 Visual Field Tests for Glaucoma Patients With Initial Macular Damage: Comparison Between Frequency-doubling Technology and Standard Automated Perimetry Using 24-2 or 10-2 Visual Fields
Park CK
Journal of Glaucoma 2018; 27: 627-634 (IGR: 19-4)


78284 The Relationship Between Bruch's Membrane Opening-Minimum Rim Width and Retinal Nerve Fiber Layer Thickness and a New Index Using a Neural Network
Lee J
Translational vision science & technology 2018; 7: 14 (IGR: 19-4)


78094 Improving the structure-function relationship in glaucomatous and normative eyes by incorporating photoreceptor layer thickness
Kanamoto T
Scientific reports 2018; 8: 10450 (IGR: 19-4)


77765 Deep-learning Classifier With an Ultrawide-field Scanning Laser Ophthalmoscope Detects Glaucoma Visual Field Severity
Nakakura S
Journal of Glaucoma 2018; 27: 647-652 (IGR: 19-4)


78204 Macular Damage, as Determined by Structure-Function Staging, Is Associated With Worse Vision-related Quality of Life in Early Glaucoma
Pensec N
American Journal of Ophthalmology 2018; 194: 88-94 (IGR: 19-4)


78064 Factors associated with the presence of parafoveal scotoma in glaucomatous eyes with optic disc hemorrhages
Sassaki AM
Eye 2018; 32: 1669-1674 (IGR: 19-4)


78242 Deep Optic Nerve Head Morphology Is Associated With Pattern of Glaucomatous Visual Field Defect in Open-Angle Glaucoma
Park DY
Investigative Ophthalmology and Visual Science 2018; 59: 3842-3851 (IGR: 19-4)


77653 Associations between structure and function are different in healthy and glaucomatous eyes
Ramezani K
PLoS ONE 2018; 13: e0196814 (IGR: 19-4)


78268 Deep learning in ophthalmology: a review
Tennant MTS
Canadian Journal of Ophthalmology 2018; 53: 309-313 (IGR: 19-4)


78242 Deep Optic Nerve Head Morphology Is Associated With Pattern of Glaucomatous Visual Field Defect in Open-Angle Glaucoma
Lee EJ
Investigative Ophthalmology and Visual Science 2018; 59: 3842-3851 (IGR: 19-4)


78204 Macular Damage, as Determined by Structure-Function Staging, Is Associated With Worse Vision-related Quality of Life in Early Glaucoma
Liebmann JM
American Journal of Ophthalmology 2018; 194: 88-94 (IGR: 19-4)


78251 Visual Field Changes in Professional Wind versus Non-wind Musical Instrument Players in the Philadelphia Orchestra
Molineaux J
Journal of ophthalmic & vision research 2018; 13: 224-230 (IGR: 19-4)


78167 Correlation of central field index (10-2 visual field analysis) and activity limitation with increasing severity of glaucoma using glaucoma activity limitation-9 questionnaire
Patil SN
Indian Journal of Ophthalmology 2018; 66: 1098-1103 (IGR: 19-4)


77653 Associations between structure and function are different in healthy and glaucomatous eyes
Racette L
PLoS ONE 2018; 13: e0196814 (IGR: 19-4)


77765 Deep-learning Classifier With an Ultrawide-field Scanning Laser Ophthalmoscope Detects Glaucoma Visual Field Severity
Ishitobi N
Journal of Glaucoma 2018; 27: 647-652 (IGR: 19-4)


78094 Improving the structure-function relationship in glaucomatous and normative eyes by incorporating photoreceptor layer thickness
Murata H
Scientific reports 2018; 8: 10450 (IGR: 19-4)


77860 Central 10-degree visual field change following non-penetrating deep sclerectomy in severe and end-stage glaucoma: preliminary results
Rodallec T
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1489-1498 (IGR: 19-4)


78064 Factors associated with the presence of parafoveal scotoma in glaucomatous eyes with optic disc hemorrhages
Juncal VR
Eye 2018; 32: 1669-1674 (IGR: 19-4)


78167 Correlation of central field index (10-2 visual field analysis) and activity limitation with increasing severity of glaucoma using glaucoma activity limitation-9 questionnaire
Rajendraprasad S
Indian Journal of Ophthalmology 2018; 66: 1098-1103 (IGR: 19-4)


77860 Central 10-degree visual field change following non-penetrating deep sclerectomy in severe and end-stage glaucoma: preliminary results
Adam R
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1489-1498 (IGR: 19-4)


78064 Factors associated with the presence of parafoveal scotoma in glaucomatous eyes with optic disc hemorrhages
Ushida M
Eye 2018; 32: 1669-1674 (IGR: 19-4)


78242 Deep Optic Nerve Head Morphology Is Associated With Pattern of Glaucomatous Visual Field Defect in Open-Angle Glaucoma
Kee C
Investigative Ophthalmology and Visual Science 2018; 59: 3842-3851 (IGR: 19-4)


78094 Improving the structure-function relationship in glaucomatous and normative eyes by incorporating photoreceptor layer thickness
Yanagisawa M
Scientific reports 2018; 8: 10450 (IGR: 19-4)


78251 Visual Field Changes in Professional Wind versus Non-wind Musical Instrument Players in the Philadelphia Orchestra
Zeng L
Journal of ophthalmic & vision research 2018; 13: 224-230 (IGR: 19-4)


78204 Macular Damage, as Determined by Structure-Function Staging, Is Associated With Worse Vision-related Quality of Life in Early Glaucoma
Blumberg DM
American Journal of Ophthalmology 2018; 194: 88-94 (IGR: 19-4)


77765 Deep-learning Classifier With an Ultrawide-field Scanning Laser Ophthalmoscope Detects Glaucoma Visual Field Severity
Miki M
Journal of Glaucoma 2018; 27: 647-652 (IGR: 19-4)


78251 Visual Field Changes in Professional Wind versus Non-wind Musical Instrument Players in the Philadelphia Orchestra
Zhan T
Journal of ophthalmic & vision research 2018; 13: 224-230 (IGR: 19-4)


78094 Improving the structure-function relationship in glaucomatous and normative eyes by incorporating photoreceptor layer thickness
Hirasawa K
Scientific reports 2018; 8: 10450 (IGR: 19-4)


78064 Factors associated with the presence of parafoveal scotoma in glaucomatous eyes with optic disc hemorrhages
Lopes FS
Eye 2018; 32: 1669-1674 (IGR: 19-4)


77860 Central 10-degree visual field change following non-penetrating deep sclerectomy in severe and end-stage glaucoma: preliminary results
Laplace O
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1489-1498 (IGR: 19-4)


77765 Deep-learning Classifier With an Ultrawide-field Scanning Laser Ophthalmoscope Detects Glaucoma Visual Field Severity
Enno H
Journal of Glaucoma 2018; 27: 647-652 (IGR: 19-4)


78064 Factors associated with the presence of parafoveal scotoma in glaucomatous eyes with optic disc hemorrhages
Alhadeff P
Eye 2018; 32: 1669-1674 (IGR: 19-4)


77860 Central 10-degree visual field change following non-penetrating deep sclerectomy in severe and end-stage glaucoma: preliminary results
Akesbi J
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1489-1498 (IGR: 19-4)


78094 Improving the structure-function relationship in glaucomatous and normative eyes by incorporating photoreceptor layer thickness
Inoue T
Scientific reports 2018; 8: 10450 (IGR: 19-4)


78251 Visual Field Changes in Professional Wind versus Non-wind Musical Instrument Players in the Philadelphia Orchestra
Rahmatnejad K
Journal of ophthalmic & vision research 2018; 13: 224-230 (IGR: 19-4)


78064 Factors associated with the presence of parafoveal scotoma in glaucomatous eyes with optic disc hemorrhages
Ritch R
Eye 2018; 32: 1669-1674 (IGR: 19-4)


78094 Improving the structure-function relationship in glaucomatous and normative eyes by incorporating photoreceptor layer thickness
Shoji N
Scientific reports 2018; 8: 10450 (IGR: 19-4)


78251 Visual Field Changes in Professional Wind versus Non-wind Musical Instrument Players in the Philadelphia Orchestra
Resende A
Journal of ophthalmic & vision research 2018; 13: 224-230 (IGR: 19-4)


77860 Central 10-degree visual field change following non-penetrating deep sclerectomy in severe and end-stage glaucoma: preliminary results
Nordmann JP
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1489-1498 (IGR: 19-4)


78094 Improving the structure-function relationship in glaucomatous and normative eyes by incorporating photoreceptor layer thickness
Inoue K
Scientific reports 2018; 8: 10450 (IGR: 19-4)


78251 Visual Field Changes in Professional Wind versus Non-wind Musical Instrument Players in the Philadelphia Orchestra
Mantravadi AV
Journal of ophthalmic & vision research 2018; 13: 224-230 (IGR: 19-4)


78064 Factors associated with the presence of parafoveal scotoma in glaucomatous eyes with optic disc hemorrhages
Prata TS
Eye 2018; 32: 1669-1674 (IGR: 19-4)


78094 Improving the structure-function relationship in glaucomatous and normative eyes by incorporating photoreceptor layer thickness
Yamagami J
Scientific reports 2018; 8: 10450 (IGR: 19-4)


78251 Visual Field Changes in Professional Wind versus Non-wind Musical Instrument Players in the Philadelphia Orchestra
Hark LA; Moster MR
Journal of ophthalmic & vision research 2018; 13: 224-230 (IGR: 19-4)


78094 Improving the structure-function relationship in glaucomatous and normative eyes by incorporating photoreceptor layer thickness
Asaoka R
Scientific reports 2018; 8: 10450 (IGR: 19-4)


78251 Visual Field Changes in Professional Wind versus Non-wind Musical Instrument Players in the Philadelphia Orchestra
Markoff JI; Spaeth GL; Katz LJ
Journal of ophthalmic & vision research 2018; 13: 224-230 (IGR: 19-4)


76559 Assessment of Glaucomatous Damage After Boston Keratoprosthesis Implantation Based on Digital Planimetric Quantification of Visual Fields and Optic Nerve Head Imaging
Ali MH
Cornea 2018; 37: 602-608 (IGR: 19-3)


77243 Association of Diopsys® Short-duration Transient Visual Evoked Potential Latency with Visual Field Progression in Chronic Glaucoma
Trevino R
Journal of Current Glaucoma Practice 2018; 12: 29-35 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Murata H
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


76735 Distribution and Progression of Visual Field Defects With Binocular Vision in Glaucoma
Hashimoto S
Journal of Glaucoma 2018; 27: 519-524 (IGR: 19-3)


76768 Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements
Song Y
Ophthalmology 2018; 0: (IGR: 19-3)


76746 Impact of Different Visual Field Testing Paradigms on Sample Size Requirements for Glaucoma Clinical Trials
Wu Z
Scientific reports 2018; 8: 4889 (IGR: 19-3)


76422 Validation of the structure-function correlation report from the heidelberg edge perimeter and spectral-domain optical coherence tomography
Cui QN
International Ophthalmology 2019; 39: 533-540 (IGR: 19-3)


77275 A Method Using Goldmann Stimulus Sizes I to V-Measured Sensitivities to Predict Lead Time Gained to Visual Field Defect Detection in Early Glaucoma
Phu J
Translational vision science & technology 2018; 7: 17 (IGR: 19-3)


76823 Reducing Spatial Uncertainty Through Attentional Cueing Improves Contrast Sensitivity in Regions of the Visual Field With Glaucomatous Defects
Phu J
Translational vision science & technology 2018; 7: 8 (IGR: 19-3)


77207 Mapping the Structure-Function Relationship in Glaucoma and Healthy Patients Measured with Spectralis OCT and Humphrey Perimetry
Jaumandreu L
Journal of Ophthalmology 2018; 2018: 1345409 (IGR: 19-3)


76659 How Many Subjects are Needed for a Visual Field Normative Database? A Comparison of Ground Truth and Bootstrapped Statistics
Phu J
Translational vision science & technology 2018; 7: 1 (IGR: 19-3)


76933 Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma
Penteado RC
Journal of Glaucoma 2018; 27: 481-489 (IGR: 19-3)


76852 Association Between the Deep-layer Microvasculature Dropout and the Visual Field Damage in Glaucoma
Suh MH
Journal of Glaucoma 2018; 27: 543-551 (IGR: 19-3)


77232 Relationship between vessel density and visual field sensitivity in glaucomatous eyes with high myopia
Shin JW
British Journal of Ophthalmology 2018; 0: (IGR: 19-3)


76479 Factors associated with developing a fear of falling in subjects with primary open-angle glaucoma
Adachi S
BMC Ophthalmology 2018; 18: 39 (IGR: 19-3)


76870 Event-based analysis of visual field change can miss fast glaucoma progression detected by a combined structure and function index
Zhang C
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1227-1234 (IGR: 19-3)


76871 New visual field indices of disharmony for early diagnosis of glaucoma, alone or associated with conventional parameters
Abreu-Gonzalez R
European Journal of Ophthalmology 2018; 0: 1120672118762668 (IGR: 19-3)


77252 Bruch's membrane opening-minimum rim width and visual field loss in glaucoma: a broken stick analysis
Park KH
International Journal of Ophthalmology 2018; 11: 828-834 (IGR: 19-3)


76874 Asymmetric Patterns of Visual Field Defect in Primary Open-Angle and Primary Angle-Closure Glaucoma
Yousefi S
Investigative Ophthalmology and Visual Science 2018; 59: 1279-1287 (IGR: 19-3)


77303 Development of a Visual Field Simulation Model of Longitudinal Point-Wise Sensitivity Changes From a Clinical Glaucoma Cohort
Wu Z
Translational vision science & technology 2018; 7: 22 (IGR: 19-3)


76474 Choroidal Microvasculature Dropout Is Associated With Parafoveal Visual Field Defects in Glaucoma
Kwon J
American Journal of Ophthalmology 2018; 188: 141-154 (IGR: 19-3)


76332 Relationship of Macular Thickness and Function to Optical Microangiography Measurements in Glaucoma
Rao HL
Journal of Glaucoma 2018; 27: 210-218 (IGR: 19-3)


76134 Morphology of the optic nerve head in glaucomatous eyes with visual field defects in superior or inferior hemifield
Longo A
European Journal of Ophthalmology 2018; 28: 175-181 (IGR: 19-3)


76842 Consistency of Structure-Function Correlation Between Spatially Scaled Visual Field Stimuli and In Vivo OCT Ganglion Cell Counts
Yoshioka N
Investigative Ophthalmology and Visual Science 2018; 59: 1693-1703 (IGR: 19-3)


76259 Recent developments in visual field testing for glaucoma
Wu Z
Current Opinions in Ophthalmology 2018; 29: 141-146 (IGR: 19-3)


76756 Compass fundus automated perimetry
Fogagnolo P
European Journal of Ophthalmology 2018; 0: 1120672118757667 (IGR: 19-3)


76520 Predicting the Integrated Visual Field with Wide-Scan Optical Coherence Tomography in Glaucoma Patients
Yoshida M
Current Eye Research 2018; 43: 754-761 (IGR: 19-3)


76735 Distribution and Progression of Visual Field Defects With Binocular Vision in Glaucoma
Matsumoto C
Journal of Glaucoma 2018; 27: 519-524 (IGR: 19-3)


76874 Asymmetric Patterns of Visual Field Defect in Primary Open-Angle and Primary Angle-Closure Glaucoma
Sakai H
Investigative Ophthalmology and Visual Science 2018; 59: 1279-1287 (IGR: 19-3)


76933 Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma
Zangwill LM
Journal of Glaucoma 2018; 27: 481-489 (IGR: 19-3)


76756 Compass fundus automated perimetry
Digiuni M
European Journal of Ophthalmology 2018; 0: 1120672118757667 (IGR: 19-3)


76842 Consistency of Structure-Function Correlation Between Spatially Scaled Visual Field Stimuli and In Vivo OCT Ganglion Cell Counts
Zangerl B
Investigative Ophthalmology and Visual Science 2018; 59: 1693-1703 (IGR: 19-3)


76659 How Many Subjects are Needed for a Visual Field Normative Database? A Comparison of Ground Truth and Bootstrapped Statistics
Bui BV
Translational vision science & technology 2018; 7: 1 (IGR: 19-3)


76259 Recent developments in visual field testing for glaucoma
Medeiros FA
Current Opinions in Ophthalmology 2018; 29: 141-146 (IGR: 19-3)


77232 Relationship between vessel density and visual field sensitivity in glaucomatous eyes with high myopia
Kwon J
British Journal of Ophthalmology 2018; 0: (IGR: 19-3)


76134 Morphology of the optic nerve head in glaucomatous eyes with visual field defects in superior or inferior hemifield
Avitabile T
European Journal of Ophthalmology 2018; 28: 175-181 (IGR: 19-3)


76870 Event-based analysis of visual field change can miss fast glaucoma progression detected by a combined structure and function index
Tatham AJ
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1227-1234 (IGR: 19-3)


77252 Bruch's membrane opening-minimum rim width and visual field loss in glaucoma: a broken stick analysis
Lee JW
International Journal of Ophthalmology 2018; 11: 828-834 (IGR: 19-3)


76520 Predicting the Integrated Visual Field with Wide-Scan Optical Coherence Tomography in Glaucoma Patients
Kunimatsu-Sanuki S
Current Eye Research 2018; 43: 754-761 (IGR: 19-3)


76871 New visual field indices of disharmony for early diagnosis of glaucoma, alone or associated with conventional parameters
Gonzalez-Hernandez M
European Journal of Ophthalmology 2018; 0: 1120672118762668 (IGR: 19-3)


76746 Impact of Different Visual Field Testing Paradigms on Sample Size Requirements for Glaucoma Clinical Trials
Medeiros FA
Scientific reports 2018; 8: 4889 (IGR: 19-3)


77275 A Method Using Goldmann Stimulus Sizes I to V-Measured Sensitivities to Predict Lead Time Gained to Visual Field Defect Detection in Early Glaucoma
Khuu SK
Translational vision science & technology 2018; 7: 17 (IGR: 19-3)


76332 Relationship of Macular Thickness and Function to Optical Microangiography Measurements in Glaucoma
Riyazuddin M
Journal of Glaucoma 2018; 27: 210-218 (IGR: 19-3)


76479 Factors associated with developing a fear of falling in subjects with primary open-angle glaucoma
Yuki K
BMC Ophthalmology 2018; 18: 39 (IGR: 19-3)


76768 Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements
Ishikawa H
Ophthalmology 2018; 0: (IGR: 19-3)


76852 Association Between the Deep-layer Microvasculature Dropout and the Visual Field Damage in Glaucoma
Park JW
Journal of Glaucoma 2018; 27: 543-551 (IGR: 19-3)


76559 Assessment of Glaucomatous Damage After Boston Keratoprosthesis Implantation Based on Digital Planimetric Quantification of Visual Fields and Optic Nerve Head Imaging
Dikopf MS
Cornea 2018; 37: 602-608 (IGR: 19-3)


76422 Validation of the structure-function correlation report from the heidelberg edge perimeter and spectral-domain optical coherence tomography
Fudemberg SJ
International Ophthalmology 2019; 39: 533-540 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Zangwill LM
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


76823 Reducing Spatial Uncertainty Through Attentional Cueing Improves Contrast Sensitivity in Regions of the Visual Field With Glaucomatous Defects
Kalloniatis M
Translational vision science & technology 2018; 7: 8 (IGR: 19-3)


77207 Mapping the Structure-Function Relationship in Glaucoma and Healthy Patients Measured with Spectralis OCT and Humphrey Perimetry
Muñoz-Negrete FJ
Journal of Ophthalmology 2018; 2018: 1345409 (IGR: 19-3)


77243 Association of Diopsys® Short-duration Transient Visual Evoked Potential Latency with Visual Field Progression in Chronic Glaucoma
Sponsel WE
Journal of Current Glaucoma Practice 2018; 12: 29-35 (IGR: 19-3)


77303 Development of a Visual Field Simulation Model of Longitudinal Point-Wise Sensitivity Changes From a Clinical Glaucoma Cohort
Medeiros FA
Translational vision science & technology 2018; 7: 22 (IGR: 19-3)


76474 Choroidal Microvasculature Dropout Is Associated With Parafoveal Visual Field Defects in Glaucoma
Shin JW
American Journal of Ophthalmology 2018; 188: 141-154 (IGR: 19-3)


76870 Event-based analysis of visual field change can miss fast glaucoma progression detected by a combined structure and function index
Daga FB
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1227-1234 (IGR: 19-3)


76735 Distribution and Progression of Visual Field Defects With Binocular Vision in Glaucoma
Eura M
Journal of Glaucoma 2018; 27: 519-524 (IGR: 19-3)


77275 A Method Using Goldmann Stimulus Sizes I to V-Measured Sensitivities to Predict Lead Time Gained to Visual Field Defect Detection in Early Glaucoma
Bui BV
Translational vision science & technology 2018; 7: 17 (IGR: 19-3)


76852 Association Between the Deep-layer Microvasculature Dropout and the Visual Field Damage in Glaucoma
Kim HR
Journal of Glaucoma 2018; 27: 543-551 (IGR: 19-3)


77252 Bruch's membrane opening-minimum rim width and visual field loss in glaucoma: a broken stick analysis
Kim JM
International Journal of Ophthalmology 2018; 11: 828-834 (IGR: 19-3)


76474 Choroidal Microvasculature Dropout Is Associated With Parafoveal Visual Field Defects in Glaucoma
Lee J
American Journal of Ophthalmology 2018; 188: 141-154 (IGR: 19-3)


76842 Consistency of Structure-Function Correlation Between Spatially Scaled Visual Field Stimuli and In Vivo OCT Ganglion Cell Counts
Phu J
Investigative Ophthalmology and Visual Science 2018; 59: 1693-1703 (IGR: 19-3)


76422 Validation of the structure-function correlation report from the heidelberg edge perimeter and spectral-domain optical coherence tomography
Resende AF
International Ophthalmology 2019; 39: 533-540 (IGR: 19-3)


76134 Morphology of the optic nerve head in glaucomatous eyes with visual field defects in superior or inferior hemifield
Uva MG
European Journal of Ophthalmology 2018; 28: 175-181 (IGR: 19-3)


76559 Assessment of Glaucomatous Damage After Boston Keratoprosthesis Implantation Based on Digital Planimetric Quantification of Visual Fields and Optic Nerve Head Imaging
Finder AG
Cornea 2018; 37: 602-608 (IGR: 19-3)


76874 Asymmetric Patterns of Visual Field Defect in Primary Open-Angle and Primary Angle-Closure Glaucoma
Murata H
Investigative Ophthalmology and Visual Science 2018; 59: 1279-1287 (IGR: 19-3)


76823 Reducing Spatial Uncertainty Through Attentional Cueing Improves Contrast Sensitivity in Regions of the Visual Field With Glaucomatous Defects
Khuu SK
Translational vision science & technology 2018; 7: 8 (IGR: 19-3)


77207 Mapping the Structure-Function Relationship in Glaucoma and Healthy Patients Measured with Spectralis OCT and Humphrey Perimetry
Oblanca N
Journal of Ophthalmology 2018; 2018: 1345409 (IGR: 19-3)


76520 Predicting the Integrated Visual Field with Wide-Scan Optical Coherence Tomography in Glaucoma Patients
Omodaka K
Current Eye Research 2018; 43: 754-761 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Fujino Y
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


77232 Relationship between vessel density and visual field sensitivity in glaucomatous eyes with high myopia
Lee J
British Journal of Ophthalmology 2018; 0: (IGR: 19-3)


77243 Association of Diopsys® Short-duration Transient Visual Evoked Potential Latency with Visual Field Progression in Chronic Glaucoma
Majcher CE
Journal of Current Glaucoma Practice 2018; 12: 29-35 (IGR: 19-3)


76756 Compass fundus automated perimetry
Montesano G
European Journal of Ophthalmology 2018; 0: 1120672118757667 (IGR: 19-3)


76479 Factors associated with developing a fear of falling in subjects with primary open-angle glaucoma
Awano-Tanabe S
BMC Ophthalmology 2018; 18: 39 (IGR: 19-3)


76659 How Many Subjects are Needed for a Visual Field Normative Database? A Comparison of Ground Truth and Bootstrapped Statistics
Kalloniatis M
Translational vision science & technology 2018; 7: 1 (IGR: 19-3)


76871 New visual field indices of disharmony for early diagnosis of glaucoma, alone or associated with conventional parameters
Pena-Betancor C
European Journal of Ophthalmology 2018; 0: 1120672118762668 (IGR: 19-3)


76332 Relationship of Macular Thickness and Function to Optical Microangiography Measurements in Glaucoma
Dasari S
Journal of Glaucoma 2018; 27: 210-218 (IGR: 19-3)


76933 Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma
Daga FB
Journal of Glaucoma 2018; 27: 481-489 (IGR: 19-3)


76768 Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements
Wu M
Ophthalmology 2018; 0: (IGR: 19-3)


76842 Consistency of Structure-Function Correlation Between Spatially Scaled Visual Field Stimuli and In Vivo OCT Ganglion Cell Counts
Choi AYJ
Investigative Ophthalmology and Visual Science 2018; 59: 1693-1703 (IGR: 19-3)


77232 Relationship between vessel density and visual field sensitivity in glaucomatous eyes with high myopia
Kook MS
British Journal of Ophthalmology 2018; 0: (IGR: 19-3)


76768 Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements
Liu YY
Ophthalmology 2018; 0: (IGR: 19-3)


76479 Factors associated with developing a fear of falling in subjects with primary open-angle glaucoma
Ono T
BMC Ophthalmology 2018; 18: 39 (IGR: 19-3)


76134 Morphology of the optic nerve head in glaucomatous eyes with visual field defects in superior or inferior hemifield
Bonfiglio V
European Journal of Ophthalmology 2018; 28: 175-181 (IGR: 19-3)


77207 Mapping the Structure-Function Relationship in Glaucoma and Healthy Patients Measured with Spectralis OCT and Humphrey Perimetry
Rebolleda G
Journal of Ophthalmology 2018; 2018: 1345409 (IGR: 19-3)


76520 Predicting the Integrated Visual Field with Wide-Scan Optical Coherence Tomography in Glaucoma Patients
Nakazawa T
Current Eye Research 2018; 43: 754-761 (IGR: 19-3)


76871 New visual field indices of disharmony for early diagnosis of glaucoma, alone or associated with conventional parameters
Rodriguez-Esteve P
European Journal of Ophthalmology 2018; 0: 1120672118762668 (IGR: 19-3)


76874 Asymmetric Patterns of Visual Field Defect in Primary Open-Angle and Primary Angle-Closure Glaucoma
Fujino Y
Investigative Ophthalmology and Visual Science 2018; 59: 1279-1287 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Matsuura M
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


76735 Distribution and Progression of Visual Field Defects With Binocular Vision in Glaucoma
Okuyama S
Journal of Glaucoma 2018; 27: 519-524 (IGR: 19-3)


76332 Relationship of Macular Thickness and Function to Optical Microangiography Measurements in Glaucoma
Puttaiah NK
Journal of Glaucoma 2018; 27: 210-218 (IGR: 19-3)


77252 Bruch's membrane opening-minimum rim width and visual field loss in glaucoma: a broken stick analysis
Nouri-Mahdavi K
International Journal of Ophthalmology 2018; 11: 828-834 (IGR: 19-3)


76756 Compass fundus automated perimetry
Rui C
European Journal of Ophthalmology 2018; 0: 1120672118757667 (IGR: 19-3)


76474 Choroidal Microvasculature Dropout Is Associated With Parafoveal Visual Field Defects in Glaucoma
Kook MS
American Journal of Ophthalmology 2018; 188: 141-154 (IGR: 19-3)


76559 Assessment of Glaucomatous Damage After Boston Keratoprosthesis Implantation Based on Digital Planimetric Quantification of Visual Fields and Optic Nerve Head Imaging
Aref AA
Cornea 2018; 37: 602-608 (IGR: 19-3)


76659 How Many Subjects are Needed for a Visual Field Normative Database? A Comparison of Ground Truth and Bootstrapped Statistics
Khuu SK
Translational vision science & technology 2018; 7: 1 (IGR: 19-3)


77243 Association of Diopsys® Short-duration Transient Visual Evoked Potential Latency with Visual Field Progression in Chronic Glaucoma
Allen J
Journal of Current Glaucoma Practice 2018; 12: 29-35 (IGR: 19-3)


76933 Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma
Saunders LJ
Journal of Glaucoma 2018; 27: 481-489 (IGR: 19-3)


76870 Event-based analysis of visual field change can miss fast glaucoma progression detected by a combined structure and function index
Jammal AA
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1227-1234 (IGR: 19-3)


77275 A Method Using Goldmann Stimulus Sizes I to V-Measured Sensitivities to Predict Lead Time Gained to Visual Field Defect Detection in Early Glaucoma
Kalloniatis M
Translational vision science & technology 2018; 7: 17 (IGR: 19-3)


76422 Validation of the structure-function correlation report from the heidelberg edge perimeter and spectral-domain optical coherence tomography
Vu TA
International Ophthalmology 2019; 39: 533-540 (IGR: 19-3)


76134 Morphology of the optic nerve head in glaucomatous eyes with visual field defects in superior or inferior hemifield
Russo A
European Journal of Ophthalmology 2018; 28: 175-181 (IGR: 19-3)


76559 Assessment of Glaucomatous Damage After Boston Keratoprosthesis Implantation Based on Digital Planimetric Quantification of Visual Fields and Optic Nerve Head Imaging
Vajaranant T
Cornea 2018; 37: 602-608 (IGR: 19-3)


76871 New visual field indices of disharmony for early diagnosis of glaucoma, alone or associated with conventional parameters
Gonzalez de la Rosa M
European Journal of Ophthalmology 2018; 0: 1120672118762668 (IGR: 19-3)


76332 Relationship of Macular Thickness and Function to Optical Microangiography Measurements in Glaucoma
Pradhan ZS
Journal of Glaucoma 2018; 27: 210-218 (IGR: 19-3)


76874 Asymmetric Patterns of Visual Field Defect in Primary Open-Angle and Primary Angle-Closure Glaucoma
Garway-Heath D
Investigative Ophthalmology and Visual Science 2018; 59: 1279-1287 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Miki A
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


77243 Association of Diopsys® Short-duration Transient Visual Evoked Potential Latency with Visual Field Progression in Chronic Glaucoma
Rabin J
Journal of Current Glaucoma Practice 2018; 12: 29-35 (IGR: 19-3)


76756 Compass fundus automated perimetry
Morales M
European Journal of Ophthalmology 2018; 0: 1120672118757667 (IGR: 19-3)


76768 Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements
Lucy KA
Ophthalmology 2018; 0: (IGR: 19-3)


76479 Factors associated with developing a fear of falling in subjects with primary open-angle glaucoma
Shiba D
BMC Ophthalmology 2018; 18: 39 (IGR: 19-3)


76422 Validation of the structure-function correlation report from the heidelberg edge perimeter and spectral-domain optical coherence tomography
Zhou C
International Ophthalmology 2019; 39: 533-540 (IGR: 19-3)


76842 Consistency of Structure-Function Correlation Between Spatially Scaled Visual Field Stimuli and In Vivo OCT Ganglion Cell Counts
Khuu SK
Investigative Ophthalmology and Visual Science 2018; 59: 1693-1703 (IGR: 19-3)


76735 Distribution and Progression of Visual Field Defects With Binocular Vision in Glaucoma
Nomoto H
Journal of Glaucoma 2018; 27: 519-524 (IGR: 19-3)


76933 Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma
Manalastas PIC
Journal of Glaucoma 2018; 27: 481-489 (IGR: 19-3)


76870 Event-based analysis of visual field change can miss fast glaucoma progression detected by a combined structure and function index
Medeiros FA
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1227-1234 (IGR: 19-3)


77252 Bruch's membrane opening-minimum rim width and visual field loss in glaucoma: a broken stick analysis
Caprioli J
International Journal of Ophthalmology 2018; 11: 828-834 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Hirasawa K
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


76422 Validation of the structure-function correlation report from the heidelberg edge perimeter and spectral-domain optical coherence tomography
Rahmatnejad K
International Ophthalmology 2019; 39: 533-540 (IGR: 19-3)


76479 Factors associated with developing a fear of falling in subjects with primary open-angle glaucoma
Murata H
BMC Ophthalmology 2018; 18: 39 (IGR: 19-3)


76933 Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma
Shoji T
Journal of Glaucoma 2018; 27: 481-489 (IGR: 19-3)


76735 Distribution and Progression of Visual Field Defects With Binocular Vision in Glaucoma
Tanabe F
Journal of Glaucoma 2018; 27: 519-524 (IGR: 19-3)


76134 Morphology of the optic nerve head in glaucomatous eyes with visual field defects in superior or inferior hemifield
Toro MD
European Journal of Ophthalmology 2018; 28: 175-181 (IGR: 19-3)


76332 Relationship of Macular Thickness and Function to Optical Microangiography Measurements in Glaucoma
Weinreb RN
Journal of Glaucoma 2018; 27: 210-218 (IGR: 19-3)


76756 Compass fundus automated perimetry
Rossetti L
European Journal of Ophthalmology 2018; 0: 1120672118757667 (IGR: 19-3)


76768 Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements
Lavinsky F
Ophthalmology 2018; 0: (IGR: 19-3)


76842 Consistency of Structure-Function Correlation Between Spatially Scaled Visual Field Stimuli and In Vivo OCT Ganglion Cell Counts
Masselos K
Investigative Ophthalmology and Visual Science 2018; 59: 1693-1703 (IGR: 19-3)


76559 Assessment of Glaucomatous Damage After Boston Keratoprosthesis Implantation Based on Digital Planimetric Quantification of Visual Fields and Optic Nerve Head Imaging
De La Cruz J
Cornea 2018; 37: 602-608 (IGR: 19-3)


76874 Asymmetric Patterns of Visual Field Defect in Primary Open-Angle and Primary Angle-Closure Glaucoma
Weinreb R
Investigative Ophthalmology and Visual Science 2018; 59: 1279-1287 (IGR: 19-3)


76559 Assessment of Glaucomatous Damage After Boston Keratoprosthesis Implantation Based on Digital Planimetric Quantification of Visual Fields and Optic Nerve Head Imaging
Cortina MS
Cornea 2018; 37: 602-608 (IGR: 19-3)


76332 Relationship of Macular Thickness and Function to Optical Microangiography Measurements in Glaucoma
Mansouri K
Journal of Glaucoma 2018; 27: 210-218 (IGR: 19-3)


76768 Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements
Liu M
Ophthalmology 2018; 0: (IGR: 19-3)


76479 Factors associated with developing a fear of falling in subjects with primary open-angle glaucoma
Asaoka R
BMC Ophthalmology 2018; 18: 39 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Tanito M
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


76842 Consistency of Structure-Function Correlation Between Spatially Scaled Visual Field Stimuli and In Vivo OCT Ganglion Cell Counts
Hennessy MP
Investigative Ophthalmology and Visual Science 2018; 59: 1693-1703 (IGR: 19-3)


76422 Validation of the structure-function correlation report from the heidelberg edge perimeter and spectral-domain optical coherence tomography
Hark LA
International Ophthalmology 2019; 39: 533-540 (IGR: 19-3)


76134 Morphology of the optic nerve head in glaucomatous eyes with visual field defects in superior or inferior hemifield
Faro S
European Journal of Ophthalmology 2018; 28: 175-181 (IGR: 19-3)


76874 Asymmetric Patterns of Visual Field Defect in Primary Open-Angle and Primary Angle-Closure Glaucoma
Asaoka R
Investigative Ophthalmology and Visual Science 2018; 59: 1279-1287 (IGR: 19-3)


76735 Distribution and Progression of Visual Field Defects With Binocular Vision in Glaucoma
Kayazawa T
Journal of Glaucoma 2018; 27: 519-524 (IGR: 19-3)


76933 Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma
Akagi T
Journal of Glaucoma 2018; 27: 481-489 (IGR: 19-3)


76332 Relationship of Macular Thickness and Function to Optical Microangiography Measurements in Glaucoma
Webers CAB
Journal of Glaucoma 2018; 27: 210-218 (IGR: 19-3)


76422 Validation of the structure-function correlation report from the heidelberg edge perimeter and spectral-domain optical coherence tomography
Myers JS
International Ophthalmology 2019; 39: 533-540 (IGR: 19-3)


76768 Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements
Wollstein G
Ophthalmology 2018; 0: (IGR: 19-3)


76933 Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma
Christopher M
Journal of Glaucoma 2018; 27: 481-489 (IGR: 19-3)


76134 Morphology of the optic nerve head in glaucomatous eyes with visual field defects in superior or inferior hemifield
Reibaldi M
European Journal of Ophthalmology 2018; 28: 175-181 (IGR: 19-3)


76735 Distribution and Progression of Visual Field Defects With Binocular Vision in Glaucoma
Iwase A
Journal of Glaucoma 2018; 27: 519-524 (IGR: 19-3)


76479 Factors associated with developing a fear of falling in subjects with primary open-angle glaucoma
Tsubota K
BMC Ophthalmology 2018; 18: 39 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Mizoue S
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


76842 Consistency of Structure-Function Correlation Between Spatially Scaled Visual Field Stimuli and In Vivo OCT Ganglion Cell Counts
Kalloniatis M
Investigative Ophthalmology and Visual Science 2018; 59: 1693-1703 (IGR: 19-3)


76933 Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma
Yarmohammadi A
Journal of Glaucoma 2018; 27: 481-489 (IGR: 19-3)


76422 Validation of the structure-function correlation report from the heidelberg edge perimeter and spectral-domain optical coherence tomography
Katz LJ
International Ophthalmology 2019; 39: 533-540 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Mori K
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


76735 Distribution and Progression of Visual Field Defects With Binocular Vision in Glaucoma
Shimomura Y
Journal of Glaucoma 2018; 27: 519-524 (IGR: 19-3)


76768 Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements
Schuman JS
Ophthalmology 2018; 0: (IGR: 19-3)


76933 Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma
Moghimi S
Journal of Glaucoma 2018; 27: 481-489 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Suzuki K
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


76422 Validation of the structure-function correlation report from the heidelberg edge perimeter and spectral-domain optical coherence tomography
Waisbourd M
International Ophthalmology 2019; 39: 533-540 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Yamashita T
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


76933 Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma
Weinreb RN
Journal of Glaucoma 2018; 27: 481-489 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Kashiwagi K; Shoji N; Asaoka R
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


75703 SITA-Standard perimetry has better performance than FDT2 matrix perimetry for detecting glaucomatous progression
Wall M
British Journal of Ophthalmology 2018; 0: (IGR: 19-2)


75352 Comparison of optical coherence tomography findings and visual field changes in patients with primary open-angle glaucoma and amyotrophic lateral sclerosis
Liu Z
Journal of Clinical Neuroscience 2018; 48: 233-237 (IGR: 19-2)


75628 Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma
Patel DE
JAMA ophthalmology 2018; 136: 155-161 (IGR: 19-2)


75508 The diagnostic use of choroidal thickness analysis and its correlation with visual field indices in glaucoma using spectral domain optical coherence tomography
Lin Z
PLoS ONE 2017; 12: e0189376 (IGR: 19-2)


75548 Impact of Different Visual Field Instruction Strategies on Reliability Indices
Rao A
Seminars in Ophthalmology 2017; 0: 1-7 (IGR: 19-2)


75572 Thin minimal rim width at Bruch's membrane opening is associated with glaucomatous paracentral visual field loss
Taniguchi EV
Clinical Ophthalmology 2017; 11: 2157-2167 (IGR: 19-2)


75524 Can Probability Maps of Swept-Source Optical Coherence Tomography Predict Visual Field Changes in Preperimetric Glaucoma?
Lee WJ
Investigative Ophthalmology and Visual Science 2017; 58: 6257-6264 (IGR: 19-2)


75358 The influence of oral statin medications on progression of glaucomatous visual field loss: A propensity score analysis
Whigham B
Ophthalmic Epidemiology 2018; 25: 207-214 (IGR: 19-2)


75177 Test Conditions in Macular Visual Field Testing in Glaucoma
Eura M
Journal of Glaucoma 2017; 26: 1101-1106 (IGR: 19-2)


75451 Personalized Prediction of Glaucoma Progression Under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods
Kazemian P
Ophthalmology 2018; 125: 569-577 (IGR: 19-2)


75682 Baseline 24-2 Central Visual Field Damage Is Predictive of Global Progressive Field Loss
Garg A
American Journal of Ophthalmology 2018; 187: 92-98 (IGR: 19-2)


75514 Applying a New Automated Perimetry Pattern Based on the Stimulus Distribution of the Multifocal ERG to Improve Structure-Function Investigation in Glaucoma
Brandão LM
Journal of Ophthalmology 2017; 2017: 8780934 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Kitaoka Y
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75333 Detecting Visual Field Progression
Aref AA
Ophthalmology 2017; 124: S51-S56 (IGR: 19-2)


75245 Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma
Wang M
Ophthalmology 2018; 125: 352-360 (IGR: 19-2)


75889 Scene and human face recognition in the central vision of patients with glaucoma
Roux-Sibilon A
PLoS ONE 2018; 13: e0193465 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Nitta K
Scientific reports 2017; 7: 15048 (IGR: 19-2)


75489 Central Visual Field Damage and Parapapillary Choroidal Microvasculature Dropout in Primary Open-Angle Glaucoma
Lee EJ
Ophthalmology 2018; 125: 588-596 (IGR: 19-2)


75268 Topographic Relationship Between Optic Disc Torsion and ß-Zone Peripapillary Atrophy in the Myopic Eyes of Young Patients With Glaucomatous-appearing Visual Field Defects
Lee J
Journal of Glaucoma 2018; 27: 41-49 (IGR: 19-2)


75335 The Evolving Role of the Relationship between Optic Nerve Structure and Function in Glaucoma
Yohannan J
Ophthalmology 2017; 124: S66-S70 (IGR: 19-2)


75628 Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma
Cumberland PM
JAMA ophthalmology 2018; 136: 155-161 (IGR: 19-2)


75572 Thin minimal rim width at Bruch's membrane opening is associated with glaucomatous paracentral visual field loss
Paschalis EI
Clinical Ophthalmology 2017; 11: 2157-2167 (IGR: 19-2)


75358 The influence of oral statin medications on progression of glaucomatous visual field loss: A propensity score analysis
Oddone EZ
Ophthalmic Epidemiology 2018; 25: 207-214 (IGR: 19-2)


75245 Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma
Pasquale LR
Ophthalmology 2018; 125: 352-360 (IGR: 19-2)


75489 Central Visual Field Damage and Parapapillary Choroidal Microvasculature Dropout in Primary Open-Angle Glaucoma
Kim TW
Ophthalmology 2018; 125: 588-596 (IGR: 19-2)


75268 Topographic Relationship Between Optic Disc Torsion and ß-Zone Peripapillary Atrophy in the Myopic Eyes of Young Patients With Glaucomatous-appearing Visual Field Defects
Lee JE
Journal of Glaucoma 2018; 27: 41-49 (IGR: 19-2)


75335 The Evolving Role of the Relationship between Optic Nerve Structure and Function in Glaucoma
Boland MV
Ophthalmology 2017; 124: S66-S70 (IGR: 19-2)


75451 Personalized Prediction of Glaucoma Progression Under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods
Lavieri MS
Ophthalmology 2018; 125: 569-577 (IGR: 19-2)


75703 SITA-Standard perimetry has better performance than FDT2 matrix perimetry for detecting glaucomatous progression
Johnson CA
British Journal of Ophthalmology 2018; 0: (IGR: 19-2)


75514 Applying a New Automated Perimetry Pattern Based on the Stimulus Distribution of the Multifocal ERG to Improve Structure-Function Investigation in Glaucoma
Monhart M
Journal of Ophthalmology 2017; 2017: 8780934 (IGR: 19-2)


75548 Impact of Different Visual Field Instruction Strategies on Reliability Indices
Sarangi SP
Seminars in Ophthalmology 2017; 0: 1-7 (IGR: 19-2)


75352 Comparison of optical coherence tomography findings and visual field changes in patients with primary open-angle glaucoma and amyotrophic lateral sclerosis
Wang H
Journal of Clinical Neuroscience 2018; 48: 233-237 (IGR: 19-2)


75177 Test Conditions in Macular Visual Field Testing in Glaucoma
Matsumoto C
Journal of Glaucoma 2017; 26: 1101-1106 (IGR: 19-2)


75889 Scene and human face recognition in the central vision of patients with glaucoma
Rutgé F
PLoS ONE 2018; 13: e0193465 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Wajima R
Scientific reports 2017; 7: 15048 (IGR: 19-2)


75508 The diagnostic use of choroidal thickness analysis and its correlation with visual field indices in glaucoma using spectral domain optical coherence tomography
Huang S
PLoS ONE 2017; 12: e0189376 (IGR: 19-2)


75682 Baseline 24-2 Central Visual Field Damage Is Predictive of Global Progressive Field Loss
De Moraes CG
American Journal of Ophthalmology 2018; 187: 92-98 (IGR: 19-2)


75524 Can Probability Maps of Swept-Source Optical Coherence Tomography Predict Visual Field Changes in Preperimetric Glaucoma?
Kim YK
Investigative Ophthalmology and Visual Science 2017; 58: 6257-6264 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Tanito M
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75333 Detecting Visual Field Progression
Budenz DL
Ophthalmology 2017; 124: S51-S56 (IGR: 19-2)


75358 The influence of oral statin medications on progression of glaucomatous visual field loss: A propensity score analysis
Woolson S
Ophthalmic Epidemiology 2018; 25: 207-214 (IGR: 19-2)


75451 Personalized Prediction of Glaucoma Progression Under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods
Van Oyen MP
Ophthalmology 2018; 125: 569-577 (IGR: 19-2)


75889 Scene and human face recognition in the central vision of patients with glaucoma
Aptel F
PLoS ONE 2018; 13: e0193465 (IGR: 19-2)


75524 Can Probability Maps of Swept-Source Optical Coherence Tomography Predict Visual Field Changes in Preperimetric Glaucoma?
Jeoung JW
Investigative Ophthalmology and Visual Science 2017; 58: 6257-6264 (IGR: 19-2)


75268 Topographic Relationship Between Optic Disc Torsion and ß-Zone Peripapillary Atrophy in the Myopic Eyes of Young Patients With Glaucomatous-appearing Visual Field Defects
Kwon J
Journal of Glaucoma 2018; 27: 41-49 (IGR: 19-2)


75177 Test Conditions in Macular Visual Field Testing in Glaucoma
Hashimoto S
Journal of Glaucoma 2017; 26: 1101-1106 (IGR: 19-2)


75245 Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma
Shen LQ
Ophthalmology 2018; 125: 352-360 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Tachibana G
Scientific reports 2017; 7: 15048 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Yokoyama Y
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75572 Thin minimal rim width at Bruch's membrane opening is associated with glaucomatous paracentral visual field loss
Li D
Clinical Ophthalmology 2017; 11: 2157-2167 (IGR: 19-2)


75352 Comparison of optical coherence tomography findings and visual field changes in patients with primary open-angle glaucoma and amyotrophic lateral sclerosis
Fan D
Journal of Clinical Neuroscience 2018; 48: 233-237 (IGR: 19-2)


75703 SITA-Standard perimetry has better performance than FDT2 matrix perimetry for detecting glaucomatous progression
Zamba KD
British Journal of Ophthalmology 2018; 0: (IGR: 19-2)


75514 Applying a New Automated Perimetry Pattern Based on the Stimulus Distribution of the Multifocal ERG to Improve Structure-Function Investigation in Glaucoma
Schötzau A
Journal of Ophthalmology 2017; 2017: 8780934 (IGR: 19-2)


75628 Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma
Walters BC
JAMA ophthalmology 2018; 136: 155-161 (IGR: 19-2)


75682 Baseline 24-2 Central Visual Field Damage Is Predictive of Global Progressive Field Loss
Cioffi GA
American Journal of Ophthalmology 2018; 187: 92-98 (IGR: 19-2)


75508 The diagnostic use of choroidal thickness analysis and its correlation with visual field indices in glaucoma using spectral domain optical coherence tomography
Huang P
PLoS ONE 2017; 12: e0189376 (IGR: 19-2)


75548 Impact of Different Visual Field Instruction Strategies on Reliability Indices
Padhy D
Seminars in Ophthalmology 2017; 0: 1-7 (IGR: 19-2)


75514 Applying a New Automated Perimetry Pattern Based on the Stimulus Distribution of the Multifocal ERG to Improve Structure-Function Investigation in Glaucoma
Ledolter AA
Journal of Ophthalmology 2017; 2017: 8780934 (IGR: 19-2)


75548 Impact of Different Visual Field Instruction Strategies on Reliability Indices
Raj N
Seminars in Ophthalmology 2017; 0: 1-7 (IGR: 19-2)


75889 Scene and human face recognition in the central vision of patients with glaucoma
Attye A
PLoS ONE 2018; 13: e0193465 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Inoue S
Scientific reports 2017; 7: 15048 (IGR: 19-2)


75508 The diagnostic use of choroidal thickness analysis and its correlation with visual field indices in glaucoma using spectral domain optical coherence tomography
Guo L
PLoS ONE 2017; 12: e0189376 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Nitta K
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75682 Baseline 24-2 Central Visual Field Damage Is Predictive of Global Progressive Field Loss
Girkin CA
American Journal of Ophthalmology 2018; 187: 92-98 (IGR: 19-2)


75489 Central Visual Field Damage and Parapapillary Choroidal Microvasculature Dropout in Primary Open-Angle Glaucoma
Kim JA
Ophthalmology 2018; 125: 588-596 (IGR: 19-2)


75268 Topographic Relationship Between Optic Disc Torsion and ß-Zone Peripapillary Atrophy in the Myopic Eyes of Young Patients With Glaucomatous-appearing Visual Field Defects
Shin JW
Journal of Glaucoma 2018; 27: 41-49 (IGR: 19-2)


75451 Personalized Prediction of Glaucoma Progression Under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods
Andrews C
Ophthalmology 2018; 125: 569-577 (IGR: 19-2)


75245 Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma
Boland MV
Ophthalmology 2018; 125: 352-360 (IGR: 19-2)


75572 Thin minimal rim width at Bruch's membrane opening is associated with glaucomatous paracentral visual field loss
Nouri-Mahdavi K
Clinical Ophthalmology 2017; 11: 2157-2167 (IGR: 19-2)


75352 Comparison of optical coherence tomography findings and visual field changes in patients with primary open-angle glaucoma and amyotrophic lateral sclerosis
Wang W
Journal of Clinical Neuroscience 2018; 48: 233-237 (IGR: 19-2)


75177 Test Conditions in Macular Visual Field Testing in Glaucoma
Okuyama S
Journal of Glaucoma 2017; 26: 1101-1106 (IGR: 19-2)


75628 Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma
Russell-Eggitt I
JAMA ophthalmology 2018; 136: 155-161 (IGR: 19-2)


75358 The influence of oral statin medications on progression of glaucomatous visual field loss: A propensity score analysis
Coffman C
Ophthalmic Epidemiology 2018; 25: 207-214 (IGR: 19-2)


75524 Can Probability Maps of Swept-Source Optical Coherence Tomography Predict Visual Field Changes in Preperimetric Glaucoma?
Park KH
Investigative Ophthalmology and Visual Science 2017; 58: 6257-6264 (IGR: 19-2)


75177 Test Conditions in Macular Visual Field Testing in Glaucoma
Takada S
Journal of Glaucoma 2017; 26: 1101-1106 (IGR: 19-2)


75245 Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma
Wellik SR
Ophthalmology 2018; 125: 352-360 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Ohigashi T
Scientific reports 2017; 7: 15048 (IGR: 19-2)


75572 Thin minimal rim width at Bruch's membrane opening is associated with glaucomatous paracentral visual field loss
Brauner SC
Clinical Ophthalmology 2017; 11: 2157-2167 (IGR: 19-2)


75682 Baseline 24-2 Central Visual Field Damage Is Predictive of Global Progressive Field Loss
Medeiros FA
American Journal of Ophthalmology 2018; 187: 92-98 (IGR: 19-2)


75628 Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma
Brookes J
JAMA ophthalmology 2018; 136: 155-161 (IGR: 19-2)


75268 Topographic Relationship Between Optic Disc Torsion and ß-Zone Peripapillary Atrophy in the Myopic Eyes of Young Patients With Glaucomatous-appearing Visual Field Defects
Kook MS
Journal of Glaucoma 2018; 27: 41-49 (IGR: 19-2)


75358 The influence of oral statin medications on progression of glaucomatous visual field loss: A propensity score analysis
Allingham RR
Ophthalmic Epidemiology 2018; 25: 207-214 (IGR: 19-2)


75451 Personalized Prediction of Glaucoma Progression Under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods
Stein JD
Ophthalmology 2018; 125: 569-577 (IGR: 19-2)


75514 Applying a New Automated Perimetry Pattern Based on the Stimulus Distribution of the Multifocal ERG to Improve Structure-Function Investigation in Glaucoma
Palmowski-Wolfe AM
Journal of Ophthalmology 2017; 2017: 8780934 (IGR: 19-2)


75548 Impact of Different Visual Field Instruction Strategies on Reliability Indices
Das G
Seminars in Ophthalmology 2017; 0: 1-7 (IGR: 19-2)


75508 The diagnostic use of choroidal thickness analysis and its correlation with visual field indices in glaucoma using spectral domain optical coherence tomography
Shen X
PLoS ONE 2017; 12: e0189376 (IGR: 19-2)


75889 Scene and human face recognition in the central vision of patients with glaucoma
Guyader N
PLoS ONE 2018; 13: e0193465 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Katai M
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75177 Test Conditions in Macular Visual Field Testing in Glaucoma
Nomoto H
Journal of Glaucoma 2017; 26: 1101-1106 (IGR: 19-2)


75508 The diagnostic use of choroidal thickness analysis and its correlation with visual field indices in glaucoma using spectral domain optical coherence tomography
Zhong Y
PLoS ONE 2017; 12: e0189376 (IGR: 19-2)


75628 Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma
Papadopoulos M
JAMA ophthalmology 2018; 136: 155-161 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Omodaka K
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75572 Thin minimal rim width at Bruch's membrane opening is associated with glaucomatous paracentral visual field loss
Greenstein SH
Clinical Ophthalmology 2017; 11: 2157-2167 (IGR: 19-2)


75358 The influence of oral statin medications on progression of glaucomatous visual field loss: A propensity score analysis
Shieh C
Ophthalmic Epidemiology 2018; 25: 207-214 (IGR: 19-2)


75682 Baseline 24-2 Central Visual Field Damage Is Predictive of Global Progressive Field Loss
Weinreb RN
American Journal of Ophthalmology 2018; 187: 92-98 (IGR: 19-2)


75245 Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma
De Moraes CG
Ophthalmology 2018; 125: 352-360 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Otsuka N
Scientific reports 2017; 7: 15048 (IGR: 19-2)


75889 Scene and human face recognition in the central vision of patients with glaucoma
Boucart M
PLoS ONE 2018; 13: e0193465 (IGR: 19-2)


75245 Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma
Myers JS
Ophthalmology 2018; 125: 352-360 (IGR: 19-2)


75682 Baseline 24-2 Central Visual Field Damage Is Predictive of Global Progressive Field Loss
Zangwill LM
American Journal of Ophthalmology 2018; 187: 92-98 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Nakazawa T
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75358 The influence of oral statin medications on progression of glaucomatous visual field loss: A propensity score analysis
Muir KW
Ophthalmic Epidemiology 2018; 25: 207-214 (IGR: 19-2)


75572 Thin minimal rim width at Bruch's membrane opening is associated with glaucomatous paracentral visual field loss
Turalba AV
Clinical Ophthalmology 2017; 11: 2157-2167 (IGR: 19-2)


75628 Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma
Khaw PT
JAMA ophthalmology 2018; 136: 155-161 (IGR: 19-2)


75889 Scene and human face recognition in the central vision of patients with glaucoma
Chiquet C
PLoS ONE 2018; 13: e0193465 (IGR: 19-2)


75177 Test Conditions in Macular Visual Field Testing in Glaucoma
Tanabe F
Journal of Glaucoma 2017; 26: 1101-1106 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Kurashima H
Scientific reports 2017; 7: 15048 (IGR: 19-2)


75628 Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma
Viswanathan AC
JAMA ophthalmology 2018; 136: 155-161 (IGR: 19-2)


75682 Baseline 24-2 Central Visual Field Damage Is Predictive of Global Progressive Field Loss
Liebmann JM
American Journal of Ophthalmology 2018; 187: 92-98 (IGR: 19-2)


75177 Test Conditions in Macular Visual Field Testing in Glaucoma
Shimomura Y
Journal of Glaucoma 2017; 26: 1101-1106 (IGR: 19-2)


75245 Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma
Wang H
Ophthalmology 2018; 125: 352-360 (IGR: 19-2)


75572 Thin minimal rim width at Bruch's membrane opening is associated with glaucomatous paracentral visual field loss
Wiggs JL
Clinical Ophthalmology 2017; 11: 2157-2167 (IGR: 19-2)


75889 Scene and human face recognition in the central vision of patients with glaucoma
Peyrin C
PLoS ONE 2018; 13: e0193465 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Santo K; Hashimoto M
Scientific reports 2017; 7: 15048 (IGR: 19-2)


75245 Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma
Baniasadi N
Ophthalmology 2018; 125: 352-360 (IGR: 19-2)


75628 Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma
Garway-Heath D
JAMA ophthalmology 2018; 136: 155-161 (IGR: 19-2)


75572 Thin minimal rim width at Bruch's membrane opening is associated with glaucomatous paracentral visual field loss
Pasquale LR
Clinical Ophthalmology 2017; 11: 2157-2167 (IGR: 19-2)


75628 Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma
Cortina-Borja M
JAMA ophthalmology 2018; 136: 155-161 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Shibahara H
Scientific reports 2017; 7: 15048 (IGR: 19-2)


75572 Thin minimal rim width at Bruch's membrane opening is associated with glaucomatous paracentral visual field loss
Shen LQ
Clinical Ophthalmology 2017; 11: 2157-2167 (IGR: 19-2)


75245 Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma
Li D
Ophthalmology 2018; 125: 352-360 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Hirukawa M
Scientific reports 2017; 7: 15048 (IGR: 19-2)


75628 Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma
Rahi JS
JAMA ophthalmology 2018; 136: 155-161 (IGR: 19-2)


75245 Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma
Silva RNE; Bex PJ
Ophthalmology 2018; 125: 352-360 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Sugiyama K
Scientific reports 2017; 7: 15048 (IGR: 19-2)


75628 Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma

JAMA ophthalmology 2018; 136: 155-161 (IGR: 19-2)


75245 Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma
Elze T
Ophthalmology 2018; 125: 352-360 (IGR: 19-2)


74660 Structure-function relationship comparison between retinal nerve fibre layer and Bruch's membrane opening-minimum rim width in glaucoma
Reznicek L
International Journal of Ophthalmology 2017; 10: 1534-1538 (IGR: 19-1)


74708 Goldmann V Standard Automated Perimetry Underestimates Central Visual Sensitivity in Glaucomatous Eyes with Increased Axial Length
Yanagisawa M
Translational vision science & technology 2017; 6: 13 (IGR: 19-1)


74502 Tolerable rates of visual field progression in a population-based sample of patients with glaucoma
Salonikiou A
British Journal of Ophthalmology 2018; 102: 916-921 (IGR: 19-1)


74585 Diagnostic utility of combined retinal ganglion cell count estimates in Japanese glaucoma patients
Sakamoto M
Japanese Journal of Ophthalmology 2018; 62: 31-40 (IGR: 19-1)


74072 The association between structure-function relationships and cognitive impairment in elderly glaucoma patients
Honjo M
Scientific reports 2017; 7: 7095 (IGR: 19-1)


74742 Parapapillary Deep-Layer Microvasculature Dropout in Primary Open-Angle Glaucoma Eyes With a Parapapillary γ-Zone
Lee EJ
Investigative Ophthalmology and Visual Science 2017; 58: 5673-5680 (IGR: 19-1)


74384 Effect of Cognitive Demand on Functional Visual Field Performance in Senior Drivers with Glaucoma
Gangeddula V
Frontiers in aging neuroscience 2017; 9: 286 (IGR: 19-1)


74169 Ocular and Systemic Risk Factors of Different Morphologies of Scotoma in Patients with Normal-Tension Glaucoma
Kosior-Jarecka E
Journal of Ophthalmology 2017; 2017: 1480746 (IGR: 19-1)


74533 Macular pigment is associated with glare-affected visual function and central visual field loss in glaucoma
Siah WF
British Journal of Ophthalmology 2018; 102: 929-935 (IGR: 19-1)


74061 Can Home Monitoring Allow Earlier Detection of Rapid Visual Field Progression in Glaucoma?
Anderson AJ
Ophthalmology 2017; 124: 1735-1742 (IGR: 19-1)


74062 The association between ocular surface measurements with visual field reliability indices and gaze tracking results in preperimetric glaucoma
Arai T
British Journal of Ophthalmology 2018; 102: 525-530 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Cirineo N
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74389 Analysis of various factors affecting pupil size in patients with glaucoma
Park JW
BMC Ophthalmology 2017; 17: 168 (IGR: 19-1)


74453 5-year disease progression of patients across the glaucoma spectrum assessed by structural and functional tools
Seth NG
British Journal of Ophthalmology 2018; 102: 802-807 (IGR: 19-1)


74303 Will Perimetry Be Performed to Monitor Glaucoma in 2025?
Camp AS
Ophthalmology 2017; 124: S71-S75 (IGR: 19-1)


74472 Assessment of patient perception of glaucomatous visual field loss and its association with disease severity using Amsler grid
Fujitani K
PLoS ONE 2017; 12: e0184230 (IGR: 19-1)


74577 The association between photoreceptor layer thickness measured by optical coherence tomography and visual sensitivity in glaucomatous eyes
Asaoka R
PLoS ONE 2017; 12: e0184064 (IGR: 19-1)


74129 Optical Coherence Tomography Analysis Based Prediction of Humphrey 24-2 Visual Field Thresholds in Patients With Glaucoma
Guo Z
Investigative Ophthalmology and Visual Science 2017; 58: 3975-3985 (IGR: 19-1)


74619 Exploring Test-Retest Variability Using High-Resolution Perimetry
Numata T
Translational vision science & technology 2017; 6: 8 (IGR: 19-1)


74509 Pattern Recognition Analysis Reveals Unique Contrast Sensitivity Isocontours Using Static Perimetry Thresholds Across the Visual Field
Phu J
Investigative Ophthalmology and Visual Science 2017; 58: 4863-4876 (IGR: 19-1)


74215 Change in Visual Field Progression Following Treatment Escalation in Primary Open-angle Glaucoma
Aptel F
Journal of Glaucoma 2017; 26: 875-880 (IGR: 19-1)


74256 Volumetric Measurement of Optic Nerve Head Drusen Using Swept-Source Optical Coherence Tomography
Tsikata E
Journal of Glaucoma 2017; 26: 798-804 (IGR: 19-1)


74063 Effects of acute peripheral/central visual field loss on standing balance
O'Connell C
Experimental Brain Research 2017; 235: 3261-3270 (IGR: 19-1)


74604 Intereye comparison of ocular factors in normal tension glaucoma with asymmetric visual field loss in Korean population
Lee EJ
PLoS ONE 2017; 12: e0186236 (IGR: 19-1)


74219 Glaucoma progression detection with frequency doubling technology (FDT) compared to standard automated perimetry (SAP) in the Groningen Longitudinal Glaucoma Study
Wesselink C
Ophthalmic and Physiological Optics 2017; 37: 594-601 (IGR: 19-1)


74237 Visual field examination method using virtual reality glasses compared with the Humphrey perimeter
Tsapakis S
Clinical Ophthalmology 2017; 11: 1431-1443 (IGR: 19-1)


74712 Evaluation of Visual Field and Imaging Outcomes for Glaucoma Clinical Trials (An American Ophthalomological Society Thesis)
Garway-Heath DF
Transactions of the American Ophthalmological Society 2017; 115: T4 (IGR: 19-1)


74610 Long-term scanning laser ophthalmoscopy and perimetry in different severities of primary open and chronic angle closure glaucoma eyes
Sihota R
Indian Journal of Ophthalmology 2017; 65: 963-968 (IGR: 19-1)


74524 Intraocular pressure and visual field changes in normal-tension glaucoma patients treated using either unoprostone or latanoprost: a prospective comparative study
Takemoto D
Clinical Ophthalmology 2017; 11: 1617-1624 (IGR: 19-1)


74324 The Pattern of Retinal Nerve Fiber Layer and Macular Ganglion Cell-Inner Plexiform Layer Thickness Changes in Glaucoma
Choi JA
Journal of Ophthalmology 2017; 2017: 6078365 (IGR: 19-1)


74687 Example of monitoring measurements in a virtual eye clinic using 'big data'
Jones L
British Journal of Ophthalmology 2018; 102: 911-915 (IGR: 19-1)


74487 Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field
Zhang X
American Journal of Ophthalmology 2017; 184: 63-74 (IGR: 19-1)


74353 Structure-Function Relationships in Perimetric Glaucoma: Comparison of Minimum-Rim Width and Retinal Nerve Fiber Layer Parameters
Amini N
Investigative Ophthalmology and Visual Science 2017; 58: 4623-4631 (IGR: 19-1)


74700 Detection of central visual field defects in early glaucomatous eyes: Comparison of Humphrey and Octopus perimetry
Roberti G
PLoS ONE 2017; 12: e0186793 (IGR: 19-1)


74519 The diagnostic value of white blood cell, neutrophil, neutrophil-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio in patients with primary angle closure glaucoma
Li S
Oncotarget 2017; 8: 68984-68995 (IGR: 19-1)


74300 The Effect of Testing Reliability on Visual Field Sensitivity in Normal Eyes: The Singapore Chinese Eye Study
Tan NYQ
Ophthalmology 2018; 125: 15-21 (IGR: 19-1)


74358 Comparison of Saccadic Vector Optokinetic Perimetry and Standard Automated Perimetry in Glaucoma. Part I: Threshold Values and Repeatability
Murray IC
Translational vision science & technology 2017; 6: 3 (IGR: 19-1)


74160 The Estimates of Retinal Ganglion Cell Counts Performed Better than Isolated Structure and Functional Tests for Glaucoma Diagnosis
Esporcatte BLB
Journal of Ophthalmology 2017; 2017: 2724312 (IGR: 19-1)


74359 Comparison of Threshold Saccadic Vector Optokinetic Perimetry (SVOP) and Standard Automated Perimetry (SAP) in Glaucoma. Part II: Patterns of Visual Field Loss and Acceptability
McTrusty AD
Translational vision science & technology 2017; 6: 4 (IGR: 19-1)


74761 Comparison between the Correlations of Retinal Nerve Fiber Layer Thickness Measured by Spectral Domain Optical Coherence Tomography and Visual Field Defects in Standard Automated White-on-White Perimetry versus Pulsar Perimetry
Alnawaiseh M
Journal of Ophthalmology 2017; 2017: 8014294 (IGR: 19-1)


74687 Example of monitoring measurements in a virtual eye clinic using 'big data'
Bryan SR
British Journal of Ophthalmology 2018; 102: 911-915 (IGR: 19-1)


74577 The association between photoreceptor layer thickness measured by optical coherence tomography and visual sensitivity in glaucomatous eyes
Murata H
PLoS ONE 2017; 12: e0184064 (IGR: 19-1)


74062 The association between ocular surface measurements with visual field reliability indices and gaze tracking results in preperimetric glaucoma
Murata H
British Journal of Ophthalmology 2018; 102: 525-530 (IGR: 19-1)


74063 Effects of acute peripheral/central visual field loss on standing balance
Mahboobin A
Experimental Brain Research 2017; 235: 3261-3270 (IGR: 19-1)


74487 Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field
Dastiridou A
American Journal of Ophthalmology 2017; 184: 63-74 (IGR: 19-1)


74300 The Effect of Testing Reliability on Visual Field Sensitivity in Normal Eyes: The Singapore Chinese Eye Study
Tham YC
Ophthalmology 2018; 125: 15-21 (IGR: 19-1)


74472 Assessment of patient perception of glaucomatous visual field loss and its association with disease severity using Amsler grid
Su D
PLoS ONE 2017; 12: e0184230 (IGR: 19-1)


74256 Volumetric Measurement of Optic Nerve Head Drusen Using Swept-Source Optical Coherence Tomography
Verticchio Vercellin AC
Journal of Glaucoma 2017; 26: 798-804 (IGR: 19-1)


74604 Intereye comparison of ocular factors in normal tension glaucoma with asymmetric visual field loss in Korean population
Han JC
PLoS ONE 2017; 12: e0186236 (IGR: 19-1)


74129 Optical Coherence Tomography Analysis Based Prediction of Humphrey 24-2 Visual Field Thresholds in Patients With Glaucoma
Kwon YH
Investigative Ophthalmology and Visual Science 2017; 58: 3975-3985 (IGR: 19-1)


74519 The diagnostic value of white blood cell, neutrophil, neutrophil-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio in patients with primary angle closure glaucoma
Cao W
Oncotarget 2017; 8: 68984-68995 (IGR: 19-1)


74353 Structure-Function Relationships in Perimetric Glaucoma: Comparison of Minimum-Rim Width and Retinal Nerve Fiber Layer Parameters
Daneshvar R
Investigative Ophthalmology and Visual Science 2017; 58: 4623-4631 (IGR: 19-1)


74237 Visual field examination method using virtual reality glasses compared with the Humphrey perimeter
Papaconstantinou D
Clinical Ophthalmology 2017; 11: 1431-1443 (IGR: 19-1)


74708 Goldmann V Standard Automated Perimetry Underestimates Central Visual Sensitivity in Glaucomatous Eyes with Increased Axial Length
Murata H
Translational vision science & technology 2017; 6: 13 (IGR: 19-1)


74742 Parapapillary Deep-Layer Microvasculature Dropout in Primary Open-Angle Glaucoma Eyes With a Parapapillary γ-Zone
Kim TW
Investigative Ophthalmology and Visual Science 2017; 58: 5673-5680 (IGR: 19-1)


74453 5-year disease progression of patients across the glaucoma spectrum assessed by structural and functional tools
Kaushik S
British Journal of Ophthalmology 2018; 102: 802-807 (IGR: 19-1)


74524 Intraocular pressure and visual field changes in normal-tension glaucoma patients treated using either unoprostone or latanoprost: a prospective comparative study
Higashide T
Clinical Ophthalmology 2017; 11: 1617-1624 (IGR: 19-1)


74533 Macular pigment is associated with glare-affected visual function and central visual field loss in glaucoma
O'Brien C
British Journal of Ophthalmology 2018; 102: 929-935 (IGR: 19-1)


74324 The Pattern of Retinal Nerve Fiber Layer and Macular Ganglion Cell-Inner Plexiform Layer Thickness Changes in Glaucoma
Shin HY
Journal of Ophthalmology 2017; 2017: 6078365 (IGR: 19-1)


74359 Comparison of Threshold Saccadic Vector Optokinetic Perimetry (SVOP) and Standard Automated Perimetry (SAP) in Glaucoma. Part II: Patterns of Visual Field Loss and Acceptability
Cameron LA
Translational vision science & technology 2017; 6: 4 (IGR: 19-1)


74303 Will Perimetry Be Performed to Monitor Glaucoma in 2025?
Weinreb RN
Ophthalmology 2017; 124: S71-S75 (IGR: 19-1)


74061 Can Home Monitoring Allow Earlier Detection of Rapid Visual Field Progression in Glaucoma?
Bedggood PA
Ophthalmology 2017; 124: 1735-1742 (IGR: 19-1)


74502 Tolerable rates of visual field progression in a population-based sample of patients with glaucoma
Founti P
British Journal of Ophthalmology 2018; 102: 916-921 (IGR: 19-1)


74358 Comparison of Saccadic Vector Optokinetic Perimetry and Standard Automated Perimetry in Glaucoma. Part I: Threshold Values and Repeatability
Perperidis A
Translational vision science & technology 2017; 6: 3 (IGR: 19-1)


74610 Long-term scanning laser ophthalmoscopy and perimetry in different severities of primary open and chronic angle closure glaucoma eyes
Rao A
Indian Journal of Ophthalmology 2017; 65: 963-968 (IGR: 19-1)


74389 Analysis of various factors affecting pupil size in patients with glaucoma
Kang BH
BMC Ophthalmology 2017; 17: 168 (IGR: 19-1)


74160 The Estimates of Retinal Ganglion Cell Counts Performed Better than Isolated Structure and Functional Tests for Glaucoma Diagnosis
Kara-José AC
Journal of Ophthalmology 2017; 2017: 2724312 (IGR: 19-1)


74509 Pattern Recognition Analysis Reveals Unique Contrast Sensitivity Isocontours Using Static Perimetry Thresholds Across the Visual Field
Khuu SK
Investigative Ophthalmology and Visual Science 2017; 58: 4863-4876 (IGR: 19-1)


74761 Comparison between the Correlations of Retinal Nerve Fiber Layer Thickness Measured by Spectral Domain Optical Coherence Tomography and Visual Field Defects in Standard Automated White-on-White Perimetry versus Pulsar Perimetry
Hömberg L
Journal of Ophthalmology 2017; 2017: 8014294 (IGR: 19-1)


74660 Structure-function relationship comparison between retinal nerve fibre layer and Bruch's membrane opening-minimum rim width in glaucoma
Burzer S
International Journal of Ophthalmology 2017; 10: 1534-1538 (IGR: 19-1)


74215 Change in Visual Field Progression Following Treatment Escalation in Primary Open-angle Glaucoma
Bron AM
Journal of Glaucoma 2017; 26: 875-880 (IGR: 19-1)


74384 Effect of Cognitive Demand on Functional Visual Field Performance in Senior Drivers with Glaucoma
Ranchet M
Frontiers in aging neuroscience 2017; 9: 286 (IGR: 19-1)


74169 Ocular and Systemic Risk Factors of Different Morphologies of Scotoma in Patients with Normal-Tension Glaucoma
Wróbel-Dudzińska D
Journal of Ophthalmology 2017; 2017: 1480746 (IGR: 19-1)


74219 Glaucoma progression detection with frequency doubling technology (FDT) compared to standard automated perimetry (SAP) in the Groningen Longitudinal Glaucoma Study
Jansonius NM
Ophthalmic and Physiological Optics 2017; 37: 594-601 (IGR: 19-1)


74700 Detection of central visual field defects in early glaucomatous eyes: Comparison of Humphrey and Octopus perimetry
Manni G
PLoS ONE 2017; 12: e0186793 (IGR: 19-1)


74585 Diagnostic utility of combined retinal ganglion cell count estimates in Japanese glaucoma patients
Mori S
Japanese Journal of Ophthalmology 2018; 62: 31-40 (IGR: 19-1)


74072 The association between structure-function relationships and cognitive impairment in elderly glaucoma patients
Numaga J
Scientific reports 2017; 7: 7095 (IGR: 19-1)


74712 Evaluation of Visual Field and Imaging Outcomes for Glaucoma Clinical Trials (An American Ophthalomological Society Thesis)
Quartilho A
Transactions of the American Ophthalmological Society 2017; 115: T4 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Morales E
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74619 Exploring Test-Retest Variability Using High-Resolution Perimetry
Maddess T
Translational vision science & technology 2017; 6: 8 (IGR: 19-1)


74215 Change in Visual Field Progression Following Treatment Escalation in Primary Open-angle Glaucoma
Lachkar Y
Journal of Glaucoma 2017; 26: 875-880 (IGR: 19-1)


74487 Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field
Francis BA
American Journal of Ophthalmology 2017; 184: 63-74 (IGR: 19-1)


74358 Comparison of Saccadic Vector Optokinetic Perimetry and Standard Automated Perimetry in Glaucoma. Part I: Threshold Values and Repeatability
Cameron LA
Translational vision science & technology 2017; 6: 3 (IGR: 19-1)


74256 Volumetric Measurement of Optic Nerve Head Drusen Using Swept-Source Optical Coherence Tomography
Falkenstein I
Journal of Glaucoma 2017; 26: 798-804 (IGR: 19-1)


74619 Exploring Test-Retest Variability Using High-Resolution Perimetry
Matsumoto C
Translational vision science & technology 2017; 6: 8 (IGR: 19-1)


74524 Intraocular pressure and visual field changes in normal-tension glaucoma patients treated using either unoprostone or latanoprost: a prospective comparative study
Saito Y
Clinical Ophthalmology 2017; 11: 1617-1624 (IGR: 19-1)


74324 The Pattern of Retinal Nerve Fiber Layer and Macular Ganglion Cell-Inner Plexiform Layer Thickness Changes in Glaucoma
Park HL
Journal of Ophthalmology 2017; 2017: 6078365 (IGR: 19-1)


74577 The association between photoreceptor layer thickness measured by optical coherence tomography and visual sensitivity in glaucomatous eyes
Yanagisawa M
PLoS ONE 2017; 12: e0184064 (IGR: 19-1)


74610 Long-term scanning laser ophthalmoscopy and perimetry in different severities of primary open and chronic angle closure glaucoma eyes
Srinivasan G
Indian Journal of Ophthalmology 2017; 65: 963-968 (IGR: 19-1)


74359 Comparison of Threshold Saccadic Vector Optokinetic Perimetry (SVOP) and Standard Automated Perimetry (SAP) in Glaucoma. Part II: Patterns of Visual Field Loss and Acceptability
Perperidis A
Translational vision science & technology 2017; 6: 4 (IGR: 19-1)


74708 Goldmann V Standard Automated Perimetry Underestimates Central Visual Sensitivity in Glaucomatous Eyes with Increased Axial Length
Matsuura M
Translational vision science & technology 2017; 6: 13 (IGR: 19-1)


74687 Example of monitoring measurements in a virtual eye clinic using 'big data'
Miranda MA
British Journal of Ophthalmology 2018; 102: 911-915 (IGR: 19-1)


74063 Effects of acute peripheral/central visual field loss on standing balance
Drexler S
Experimental Brain Research 2017; 235: 3261-3270 (IGR: 19-1)


74502 Tolerable rates of visual field progression in a population-based sample of patients with glaucoma
Kilintzis V
British Journal of Ophthalmology 2018; 102: 916-921 (IGR: 19-1)


74509 Pattern Recognition Analysis Reveals Unique Contrast Sensitivity Isocontours Using Static Perimetry Thresholds Across the Visual Field
Nivison-Smith L
Investigative Ophthalmology and Visual Science 2017; 58: 4863-4876 (IGR: 19-1)


74160 The Estimates of Retinal Ganglion Cell Counts Performed Better than Isolated Structure and Functional Tests for Glaucoma Diagnosis
Melo LAS
Journal of Ophthalmology 2017; 2017: 2724312 (IGR: 19-1)


74660 Structure-function relationship comparison between retinal nerve fibre layer and Bruch's membrane opening-minimum rim width in glaucoma
Laubichler A
International Journal of Ophthalmology 2017; 10: 1534-1538 (IGR: 19-1)


74353 Structure-Function Relationships in Perimetric Glaucoma: Comparison of Minimum-Rim Width and Retinal Nerve Fiber Layer Parameters
Sharifipour F
Investigative Ophthalmology and Visual Science 2017; 58: 4623-4631 (IGR: 19-1)


74237 Visual field examination method using virtual reality glasses compared with the Humphrey perimeter
Diagourtas A
Clinical Ophthalmology 2017; 11: 1431-1443 (IGR: 19-1)


74062 The association between ocular surface measurements with visual field reliability indices and gaze tracking results in preperimetric glaucoma
Matsuura M
British Journal of Ophthalmology 2018; 102: 525-530 (IGR: 19-1)


74761 Comparison between the Correlations of Retinal Nerve Fiber Layer Thickness Measured by Spectral Domain Optical Coherence Tomography and Visual Field Defects in Standard Automated White-on-White Perimetry versus Pulsar Perimetry
Eter N
Journal of Ophthalmology 2017; 2017: 8014294 (IGR: 19-1)


74389 Analysis of various factors affecting pupil size in patients with glaucoma
Kwon JW
BMC Ophthalmology 2017; 17: 168 (IGR: 19-1)


74169 Ocular and Systemic Risk Factors of Different Morphologies of Scotoma in Patients with Normal-Tension Glaucoma
Łukasik U
Journal of Ophthalmology 2017; 2017: 1480746 (IGR: 19-1)


74472 Assessment of patient perception of glaucomatous visual field loss and its association with disease severity using Amsler grid
Ghassibi MP
PLoS ONE 2017; 12: e0184230 (IGR: 19-1)


74700 Detection of central visual field defects in early glaucomatous eyes: Comparison of Humphrey and Octopus perimetry
Riva I
PLoS ONE 2017; 12: e0186793 (IGR: 19-1)


74585 Diagnostic utility of combined retinal ganglion cell count estimates in Japanese glaucoma patients
Ueda K
Japanese Journal of Ophthalmology 2018; 62: 31-40 (IGR: 19-1)


74072 The association between structure-function relationships and cognitive impairment in elderly glaucoma patients
Hara T
Scientific reports 2017; 7: 7095 (IGR: 19-1)


74712 Evaluation of Visual Field and Imaging Outcomes for Glaucoma Clinical Trials (An American Ophthalomological Society Thesis)
Prah P
Transactions of the American Ophthalmological Society 2017; 115: T4 (IGR: 19-1)


74384 Effect of Cognitive Demand on Functional Visual Field Performance in Senior Drivers with Glaucoma
Akinwuntan AE
Frontiers in aging neuroscience 2017; 9: 286 (IGR: 19-1)


74300 The Effect of Testing Reliability on Visual Field Sensitivity in Normal Eyes: The Singapore Chinese Eye Study
Koh V
Ophthalmology 2018; 125: 15-21 (IGR: 19-1)


74604 Intereye comparison of ocular factors in normal tension glaucoma with asymmetric visual field loss in Korean population
Kee C
PLoS ONE 2017; 12: e0186236 (IGR: 19-1)


74453 5-year disease progression of patients across the glaucoma spectrum assessed by structural and functional tools
Kaur S
British Journal of Ophthalmology 2018; 102: 802-807 (IGR: 19-1)


74533 Macular pigment is associated with glare-affected visual function and central visual field loss in glaucoma
Loughman JJ
British Journal of Ophthalmology 2018; 102: 929-935 (IGR: 19-1)


74061 Can Home Monitoring Allow Earlier Detection of Rapid Visual Field Progression in Glaucoma?
George Kong YX
Ophthalmology 2017; 124: 1735-1742 (IGR: 19-1)


74519 The diagnostic value of white blood cell, neutrophil, neutrophil-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio in patients with primary angle closure glaucoma
Han J
Oncotarget 2017; 8: 68984-68995 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Lee JM
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74129 Optical Coherence Tomography Analysis Based Prediction of Humphrey 24-2 Visual Field Thresholds in Patients With Glaucoma
Lee K
Investigative Ophthalmology and Visual Science 2017; 58: 3975-3985 (IGR: 19-1)


74324 The Pattern of Retinal Nerve Fiber Layer and Macular Ganglion Cell-Inner Plexiform Layer Thickness Changes in Glaucoma
Park CK
Journal of Ophthalmology 2017; 2017: 6078365 (IGR: 19-1)


74353 Structure-Function Relationships in Perimetric Glaucoma: Comparison of Minimum-Rim Width and Retinal Nerve Fiber Layer Parameters
Romero P
Investigative Ophthalmology and Visual Science 2017; 58: 4623-4631 (IGR: 19-1)


74660 Structure-function relationship comparison between retinal nerve fibre layer and Bruch's membrane opening-minimum rim width in glaucoma
Nasseri A
International Journal of Ophthalmology 2017; 10: 1534-1538 (IGR: 19-1)


74215 Change in Visual Field Progression Following Treatment Escalation in Primary Open-angle Glaucoma
Schweitzer C
Journal of Glaucoma 2017; 26: 875-880 (IGR: 19-1)


74237 Visual field examination method using virtual reality glasses compared with the Humphrey perimeter
Droutsas K
Clinical Ophthalmology 2017; 11: 1431-1443 (IGR: 19-1)


74063 Effects of acute peripheral/central visual field loss on standing balance
Redfern MS
Experimental Brain Research 2017; 235: 3261-3270 (IGR: 19-1)


74160 The Estimates of Retinal Ganglion Cell Counts Performed Better than Isolated Structure and Functional Tests for Glaucoma Diagnosis
Pinto LM
Journal of Ophthalmology 2017; 2017: 2724312 (IGR: 19-1)


74761 Comparison between the Correlations of Retinal Nerve Fiber Layer Thickness Measured by Spectral Domain Optical Coherence Tomography and Visual Field Defects in Standard Automated White-on-White Perimetry versus Pulsar Perimetry
Prokosch V
Journal of Ophthalmology 2017; 2017: 8014294 (IGR: 19-1)


74169 Ocular and Systemic Risk Factors of Different Morphologies of Scotoma in Patients with Normal-Tension Glaucoma
Żarnowski T
Journal of Ophthalmology 2017; 2017: 1480746 (IGR: 19-1)


74487 Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field
Tan O
American Journal of Ophthalmology 2017; 184: 63-74 (IGR: 19-1)


74585 Diagnostic utility of combined retinal ganglion cell count estimates in Japanese glaucoma patients
Akashi A
Japanese Journal of Ophthalmology 2018; 62: 31-40 (IGR: 19-1)


74256 Volumetric Measurement of Optic Nerve Head Drusen Using Swept-Source Optical Coherence Tomography
Poon LY
Journal of Glaucoma 2017; 26: 798-804 (IGR: 19-1)


74072 The association between structure-function relationships and cognitive impairment in elderly glaucoma patients
Asaoka R
Scientific reports 2017; 7: 7095 (IGR: 19-1)


74300 The Effect of Testing Reliability on Visual Field Sensitivity in Normal Eyes: The Singapore Chinese Eye Study
Nguyen DQ
Ophthalmology 2018; 125: 15-21 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Ramanathan M
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74129 Optical Coherence Tomography Analysis Based Prediction of Humphrey 24-2 Visual Field Thresholds in Patients With Glaucoma
Wang K
Investigative Ophthalmology and Visual Science 2017; 58: 3975-3985 (IGR: 19-1)


74700 Detection of central visual field defects in early glaucomatous eyes: Comparison of Humphrey and Octopus perimetry
Holló G
PLoS ONE 2017; 12: e0186793 (IGR: 19-1)


74358 Comparison of Saccadic Vector Optokinetic Perimetry and Standard Automated Perimetry in Glaucoma. Part I: Threshold Values and Repeatability
McTrusty AD
Translational vision science & technology 2017; 6: 3 (IGR: 19-1)


74708 Goldmann V Standard Automated Perimetry Underestimates Central Visual Sensitivity in Glaucomatous Eyes with Increased Axial Length
Fujino Y
Translational vision science & technology 2017; 6: 13 (IGR: 19-1)


74453 5-year disease progression of patients across the glaucoma spectrum assessed by structural and functional tools
Raj S
British Journal of Ophthalmology 2018; 102: 802-807 (IGR: 19-1)


74519 The diagnostic value of white blood cell, neutrophil, neutrophil-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio in patients with primary angle closure glaucoma
Tang B
Oncotarget 2017; 8: 68984-68995 (IGR: 19-1)


74061 Can Home Monitoring Allow Earlier Detection of Rapid Visual Field Progression in Glaucoma?
Martin KR
Ophthalmology 2017; 124: 1735-1742 (IGR: 19-1)


74062 The association between ocular surface measurements with visual field reliability indices and gaze tracking results in preperimetric glaucoma
Usui T
British Journal of Ophthalmology 2018; 102: 525-530 (IGR: 19-1)


74502 Tolerable rates of visual field progression in a population-based sample of patients with glaucoma
Antoniadis A
British Journal of Ophthalmology 2018; 102: 916-921 (IGR: 19-1)


74359 Comparison of Threshold Saccadic Vector Optokinetic Perimetry (SVOP) and Standard Automated Perimetry (SAP) in Glaucoma. Part II: Patterns of Visual Field Loss and Acceptability
Brash HM
Translational vision science & technology 2017; 6: 4 (IGR: 19-1)


74742 Parapapillary Deep-Layer Microvasculature Dropout in Primary Open-Angle Glaucoma Eyes With a Parapapillary γ-Zone
Kim JA
Investigative Ophthalmology and Visual Science 2017; 58: 5673-5680 (IGR: 19-1)


74619 Exploring Test-Retest Variability Using High-Resolution Perimetry
Okuyama S
Translational vision science & technology 2017; 6: 8 (IGR: 19-1)


74524 Intraocular pressure and visual field changes in normal-tension glaucoma patients treated using either unoprostone or latanoprost: a prospective comparative study
Ohkubo S
Clinical Ophthalmology 2017; 11: 1617-1624 (IGR: 19-1)


74687 Example of monitoring measurements in a virtual eye clinic using 'big data'
Crabb DP
British Journal of Ophthalmology 2018; 102: 911-915 (IGR: 19-1)


74472 Assessment of patient perception of glaucomatous visual field loss and its association with disease severity using Amsler grid
Simonson JL
PLoS ONE 2017; 12: e0184230 (IGR: 19-1)


74577 The association between photoreceptor layer thickness measured by optical coherence tomography and visual sensitivity in glaucomatous eyes
Fujino Y
PLoS ONE 2017; 12: e0184064 (IGR: 19-1)


74384 Effect of Cognitive Demand on Functional Visual Field Performance in Senior Drivers with Glaucoma
Bollinger K
Frontiers in aging neuroscience 2017; 9: 286 (IGR: 19-1)


74389 Analysis of various factors affecting pupil size in patients with glaucoma
Cho KJ
BMC Ophthalmology 2017; 17: 168 (IGR: 19-1)


74712 Evaluation of Visual Field and Imaging Outcomes for Glaucoma Clinical Trials (An American Ophthalomological Society Thesis)
Crabb DP
Transactions of the American Ophthalmological Society 2017; 115: T4 (IGR: 19-1)


74509 Pattern Recognition Analysis Reveals Unique Contrast Sensitivity Isocontours Using Static Perimetry Thresholds Across the Visual Field
Zangerl B
Investigative Ophthalmology and Visual Science 2017; 58: 4863-4876 (IGR: 19-1)


74610 Long-term scanning laser ophthalmoscopy and perimetry in different severities of primary open and chronic angle closure glaucoma eyes
Gupta V
Indian Journal of Ophthalmology 2017; 65: 963-968 (IGR: 19-1)


74524 Intraocular pressure and visual field changes in normal-tension glaucoma patients treated using either unoprostone or latanoprost: a prospective comparative study
Udagawa S
Clinical Ophthalmology 2017; 11: 1617-1624 (IGR: 19-1)


74359 Comparison of Threshold Saccadic Vector Optokinetic Perimetry (SVOP) and Standard Automated Perimetry (SAP) in Glaucoma. Part II: Patterns of Visual Field Loss and Acceptability
Tatham AJ
Translational vision science & technology 2017; 6: 4 (IGR: 19-1)


74453 5-year disease progression of patients across the glaucoma spectrum assessed by structural and functional tools
Pandav SS
British Journal of Ophthalmology 2018; 102: 802-807 (IGR: 19-1)


74353 Structure-Function Relationships in Perimetric Glaucoma: Comparison of Minimum-Rim Width and Retinal Nerve Fiber Layer Parameters
Henry S
Investigative Ophthalmology and Visual Science 2017; 58: 4623-4631 (IGR: 19-1)


74712 Evaluation of Visual Field and Imaging Outcomes for Glaucoma Clinical Trials (An American Ophthalomological Society Thesis)
Cheng Q
Transactions of the American Ophthalmological Society 2017; 115: T4 (IGR: 19-1)


74509 Pattern Recognition Analysis Reveals Unique Contrast Sensitivity Isocontours Using Static Perimetry Thresholds Across the Visual Field
Choi AYJ
Investigative Ophthalmology and Visual Science 2017; 58: 4863-4876 (IGR: 19-1)


74062 The association between ocular surface measurements with visual field reliability indices and gaze tracking results in preperimetric glaucoma
Asaoka R
British Journal of Ophthalmology 2018; 102: 525-530 (IGR: 19-1)


74358 Comparison of Saccadic Vector Optokinetic Perimetry and Standard Automated Perimetry in Glaucoma. Part I: Threshold Values and Repeatability
Brash HM
Translational vision science & technology 2017; 6: 3 (IGR: 19-1)


74384 Effect of Cognitive Demand on Functional Visual Field Performance in Senior Drivers with Glaucoma
Devos H
Frontiers in aging neuroscience 2017; 9: 286 (IGR: 19-1)


74061 Can Home Monitoring Allow Earlier Detection of Rapid Visual Field Progression in Glaucoma?
Vingrys AJ
Ophthalmology 2017; 124: 1735-1742 (IGR: 19-1)


74700 Detection of central visual field defects in early glaucomatous eyes: Comparison of Humphrey and Octopus perimetry
Quaranta L
PLoS ONE 2017; 12: e0186793 (IGR: 19-1)


74585 Diagnostic utility of combined retinal ganglion cell count estimates in Japanese glaucoma patients
Inoue Y
Japanese Journal of Ophthalmology 2018; 62: 31-40 (IGR: 19-1)


74619 Exploring Test-Retest Variability Using High-Resolution Perimetry
Hashimoto S
Translational vision science & technology 2017; 6: 8 (IGR: 19-1)


74519 The diagnostic value of white blood cell, neutrophil, neutrophil-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio in patients with primary angle closure glaucoma
Sun X
Oncotarget 2017; 8: 68984-68995 (IGR: 19-1)


74160 The Estimates of Retinal Ganglion Cell Counts Performed Better than Isolated Structure and Functional Tests for Glaucoma Diagnosis
Tavares IM
Journal of Ophthalmology 2017; 2017: 2724312 (IGR: 19-1)


74660 Structure-function relationship comparison between retinal nerve fibre layer and Bruch's membrane opening-minimum rim width in glaucoma
Lohmann CP
International Journal of Ophthalmology 2017; 10: 1534-1538 (IGR: 19-1)


74687 Example of monitoring measurements in a virtual eye clinic using 'big data'
Kotecha A
British Journal of Ophthalmology 2018; 102: 911-915 (IGR: 19-1)


74577 The association between photoreceptor layer thickness measured by optical coherence tomography and visual sensitivity in glaucomatous eyes
Matsuura M
PLoS ONE 2017; 12: e0184064 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Hirunpatravong P
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74472 Assessment of patient perception of glaucomatous visual field loss and its association with disease severity using Amsler grid
Liebmann JM
PLoS ONE 2017; 12: e0184230 (IGR: 19-1)


74708 Goldmann V Standard Automated Perimetry Underestimates Central Visual Sensitivity in Glaucomatous Eyes with Increased Axial Length
Hirasawa K
Translational vision science & technology 2017; 6: 13 (IGR: 19-1)


74129 Optical Coherence Tomography Analysis Based Prediction of Humphrey 24-2 Visual Field Thresholds in Patients With Glaucoma
Wahle A
Investigative Ophthalmology and Visual Science 2017; 58: 3975-3985 (IGR: 19-1)


74487 Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field
Varma R
American Journal of Ophthalmology 2017; 184: 63-74 (IGR: 19-1)


74237 Visual field examination method using virtual reality glasses compared with the Humphrey perimeter
Andreanos K
Clinical Ophthalmology 2017; 11: 1431-1443 (IGR: 19-1)


74063 Effects of acute peripheral/central visual field loss on standing balance
Perera S
Experimental Brain Research 2017; 235: 3261-3270 (IGR: 19-1)


74502 Tolerable rates of visual field progression in a population-based sample of patients with glaucoma
Anastasopoulos E
British Journal of Ophthalmology 2018; 102: 916-921 (IGR: 19-1)


74256 Volumetric Measurement of Optic Nerve Head Drusen Using Swept-Source Optical Coherence Tomography
Brauner S
Journal of Glaucoma 2017; 26: 798-804 (IGR: 19-1)


74610 Long-term scanning laser ophthalmoscopy and perimetry in different severities of primary open and chronic angle closure glaucoma eyes
Sharma A
Indian Journal of Ophthalmology 2017; 65: 963-968 (IGR: 19-1)


74300 The Effect of Testing Reliability on Visual Field Sensitivity in Normal Eyes: The Singapore Chinese Eye Study
Cheung CY
Ophthalmology 2018; 125: 15-21 (IGR: 19-1)


74472 Assessment of patient perception of glaucomatous visual field loss and its association with disease severity using Amsler grid
Ritch R
PLoS ONE 2017; 12: e0184230 (IGR: 19-1)


74237 Visual field examination method using virtual reality glasses compared with the Humphrey perimeter
Moschos MM
Clinical Ophthalmology 2017; 11: 1431-1443 (IGR: 19-1)


74487 Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field
Greenfield DS
American Journal of Ophthalmology 2017; 184: 63-74 (IGR: 19-1)


74502 Tolerable rates of visual field progression in a population-based sample of patients with glaucoma
Pappas T
British Journal of Ophthalmology 2018; 102: 916-921 (IGR: 19-1)


74585 Diagnostic utility of combined retinal ganglion cell count estimates in Japanese glaucoma patients
Kurimoto T
Japanese Journal of Ophthalmology 2018; 62: 31-40 (IGR: 19-1)


74524 Intraocular pressure and visual field changes in normal-tension glaucoma patients treated using either unoprostone or latanoprost: a prospective comparative study
Takeda H
Clinical Ophthalmology 2017; 11: 1617-1624 (IGR: 19-1)


74700 Detection of central visual field defects in early glaucomatous eyes: Comparison of Humphrey and Octopus perimetry
Agnifili L
PLoS ONE 2017; 12: e0186793 (IGR: 19-1)


74359 Comparison of Threshold Saccadic Vector Optokinetic Perimetry (SVOP) and Standard Automated Perimetry (SAP) in Glaucoma. Part II: Patterns of Visual Field Loss and Acceptability
Agarwal PK
Translational vision science & technology 2017; 6: 4 (IGR: 19-1)


74712 Evaluation of Visual Field and Imaging Outcomes for Glaucoma Clinical Trials (An American Ophthalomological Society Thesis)
Zhu H
Transactions of the American Ophthalmological Society 2017; 115: T4 (IGR: 19-1)


74610 Long-term scanning laser ophthalmoscopy and perimetry in different severities of primary open and chronic angle closure glaucoma eyes
Dada T
Indian Journal of Ophthalmology 2017; 65: 963-968 (IGR: 19-1)


74577 The association between photoreceptor layer thickness measured by optical coherence tomography and visual sensitivity in glaucomatous eyes
Inoue T
PLoS ONE 2017; 12: e0184064 (IGR: 19-1)


74353 Structure-Function Relationships in Perimetric Glaucoma: Comparison of Minimum-Rim Width and Retinal Nerve Fiber Layer Parameters
Caprioli J
Investigative Ophthalmology and Visual Science 2017; 58: 4623-4631 (IGR: 19-1)


74358 Comparison of Saccadic Vector Optokinetic Perimetry and Standard Automated Perimetry in Glaucoma. Part I: Threshold Values and Repeatability
Tatham AJ
Translational vision science & technology 2017; 6: 3 (IGR: 19-1)


74708 Goldmann V Standard Automated Perimetry Underestimates Central Visual Sensitivity in Glaucomatous Eyes with Increased Axial Length
Asaoka R
Translational vision science & technology 2017; 6: 13 (IGR: 19-1)


74619 Exploring Test-Retest Variability Using High-Resolution Perimetry
Nomoto H
Translational vision science & technology 2017; 6: 8 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Lin M
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74129 Optical Coherence Tomography Analysis Based Prediction of Humphrey 24-2 Visual Field Thresholds in Patients With Glaucoma
Alward WLM
Investigative Ophthalmology and Visual Science 2017; 58: 3975-3985 (IGR: 19-1)


74256 Volumetric Measurement of Optic Nerve Head Drusen Using Swept-Source Optical Coherence Tomography
Khoueir Z
Journal of Glaucoma 2017; 26: 798-804 (IGR: 19-1)


74063 Effects of acute peripheral/central visual field loss on standing balance
Nau AC
Experimental Brain Research 2017; 235: 3261-3270 (IGR: 19-1)


74300 The Effect of Testing Reliability on Visual Field Sensitivity in Normal Eyes: The Singapore Chinese Eye Study
Aung T
Ophthalmology 2018; 125: 15-21 (IGR: 19-1)


74660 Structure-function relationship comparison between retinal nerve fibre layer and Bruch's membrane opening-minimum rim width in glaucoma
Feucht N
International Journal of Ophthalmology 2017; 10: 1534-1538 (IGR: 19-1)


74509 Pattern Recognition Analysis Reveals Unique Contrast Sensitivity Isocontours Using Static Perimetry Thresholds Across the Visual Field
Jones BW
Investigative Ophthalmology and Visual Science 2017; 58: 4863-4876 (IGR: 19-1)


74700 Detection of central visual field defects in early glaucomatous eyes: Comparison of Humphrey and Octopus perimetry
Figus M
PLoS ONE 2017; 12: e0186793 (IGR: 19-1)


74585 Diagnostic utility of combined retinal ganglion cell count estimates in Japanese glaucoma patients
Kanamori A
Japanese Journal of Ophthalmology 2018; 62: 31-40 (IGR: 19-1)


74509 Pattern Recognition Analysis Reveals Unique Contrast Sensitivity Isocontours Using Static Perimetry Thresholds Across the Visual Field
Pfeiffer RL
Investigative Ophthalmology and Visual Science 2017; 58: 4863-4876 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Capistrano V
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74619 Exploring Test-Retest Variability Using High-Resolution Perimetry
Shimomura Y
Translational vision science & technology 2017; 6: 8 (IGR: 19-1)


74660 Structure-function relationship comparison between retinal nerve fibre layer and Bruch's membrane opening-minimum rim width in glaucoma
Ulbig M
International Journal of Ophthalmology 2017; 10: 1534-1538 (IGR: 19-1)


74610 Long-term scanning laser ophthalmoscopy and perimetry in different severities of primary open and chronic angle closure glaucoma eyes
Kalaiwani M
Indian Journal of Ophthalmology 2017; 65: 963-968 (IGR: 19-1)


74359 Comparison of Threshold Saccadic Vector Optokinetic Perimetry (SVOP) and Standard Automated Perimetry (SAP) in Glaucoma. Part II: Patterns of Visual Field Loss and Acceptability
Murray IC
Translational vision science & technology 2017; 6: 4 (IGR: 19-1)


74472 Assessment of patient perception of glaucomatous visual field loss and its association with disease severity using Amsler grid
Park SC
PLoS ONE 2017; 12: e0184230 (IGR: 19-1)


74487 Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field
Schuman JS
American Journal of Ophthalmology 2017; 184: 63-74 (IGR: 19-1)


74502 Tolerable rates of visual field progression in a population-based sample of patients with glaucoma
Raptou A
British Journal of Ophthalmology 2018; 102: 916-921 (IGR: 19-1)


74129 Optical Coherence Tomography Analysis Based Prediction of Humphrey 24-2 Visual Field Thresholds in Patients With Glaucoma
Fingert JH
Investigative Ophthalmology and Visual Science 2017; 58: 3975-3985 (IGR: 19-1)


74300 The Effect of Testing Reliability on Visual Field Sensitivity in Normal Eyes: The Singapore Chinese Eye Study
Wong TY
Ophthalmology 2018; 125: 15-21 (IGR: 19-1)


74524 Intraocular pressure and visual field changes in normal-tension glaucoma patients treated using either unoprostone or latanoprost: a prospective comparative study
Sugiyama K
Clinical Ophthalmology 2017; 11: 1617-1624 (IGR: 19-1)


74577 The association between photoreceptor layer thickness measured by optical coherence tomography and visual sensitivity in glaucomatous eyes
Inoue K
PLoS ONE 2017; 12: e0184064 (IGR: 19-1)


74063 Effects of acute peripheral/central visual field loss on standing balance
Cham R
Experimental Brain Research 2017; 235: 3261-3270 (IGR: 19-1)


74256 Volumetric Measurement of Optic Nerve Head Drusen Using Swept-Source Optical Coherence Tomography
Miller JB
Journal of Glaucoma 2017; 26: 798-804 (IGR: 19-1)


74237 Visual field examination method using virtual reality glasses compared with the Humphrey perimeter
Brouzas D
Clinical Ophthalmology 2017; 11: 1431-1443 (IGR: 19-1)


74353 Structure-Function Relationships in Perimetric Glaucoma: Comparison of Minimum-Rim Width and Retinal Nerve Fiber Layer Parameters
Nouri-Mahdavi K
Investigative Ophthalmology and Visual Science 2017; 58: 4623-4631 (IGR: 19-1)


74358 Comparison of Saccadic Vector Optokinetic Perimetry and Standard Automated Perimetry in Glaucoma. Part I: Threshold Values and Repeatability
Agarwal PK
Translational vision science & technology 2017; 6: 3 (IGR: 19-1)


74129 Optical Coherence Tomography Analysis Based Prediction of Humphrey 24-2 Visual Field Thresholds in Patients With Glaucoma
Bettis DI
Investigative Ophthalmology and Visual Science 2017; 58: 3975-3985 (IGR: 19-1)


74660 Structure-function relationship comparison between retinal nerve fibre layer and Bruch's membrane opening-minimum rim width in glaucoma
Maier M
International Journal of Ophthalmology 2017; 10: 1534-1538 (IGR: 19-1)


74700 Detection of central visual field defects in early glaucomatous eyes: Comparison of Humphrey and Octopus perimetry
Giammaria S
PLoS ONE 2017; 12: e0186793 (IGR: 19-1)


74359 Comparison of Threshold Saccadic Vector Optokinetic Perimetry (SVOP) and Standard Automated Perimetry (SAP) in Glaucoma. Part II: Patterns of Visual Field Loss and Acceptability
Fleck BW
Translational vision science & technology 2017; 6: 4 (IGR: 19-1)


74300 The Effect of Testing Reliability on Visual Field Sensitivity in Normal Eyes: The Singapore Chinese Eye Study
Cheng CY
Ophthalmology 2018; 125: 15-21 (IGR: 19-1)


74256 Volumetric Measurement of Optic Nerve Head Drusen Using Swept-Source Optical Coherence Tomography
Chen TC
Journal of Glaucoma 2017; 26: 798-804 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Abdelmonen A
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74502 Tolerable rates of visual field progression in a population-based sample of patients with glaucoma
Topouzis F
British Journal of Ophthalmology 2018; 102: 916-921 (IGR: 19-1)


74487 Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field
Huang D
American Journal of Ophthalmology 2017; 184: 63-74 (IGR: 19-1)


74509 Pattern Recognition Analysis Reveals Unique Contrast Sensitivity Isocontours Using Static Perimetry Thresholds Across the Visual Field
Marc RE
Investigative Ophthalmology and Visual Science 2017; 58: 4863-4876 (IGR: 19-1)


74577 The association between photoreceptor layer thickness measured by optical coherence tomography and visual sensitivity in glaucomatous eyes
Yamagami J
PLoS ONE 2017; 12: e0184064 (IGR: 19-1)


74585 Diagnostic utility of combined retinal ganglion cell count estimates in Japanese glaucoma patients
Yamada Y
Japanese Journal of Ophthalmology 2018; 62: 31-40 (IGR: 19-1)


74358 Comparison of Saccadic Vector Optokinetic Perimetry and Standard Automated Perimetry in Glaucoma. Part I: Threshold Values and Repeatability
Fleck BW; Minns RA
Translational vision science & technology 2017; 6: 3 (IGR: 19-1)


74509 Pattern Recognition Analysis Reveals Unique Contrast Sensitivity Isocontours Using Static Perimetry Thresholds Across the Visual Field
Kalloniatis M
Investigative Ophthalmology and Visual Science 2017; 58: 4863-4876 (IGR: 19-1)


74585 Diagnostic utility of combined retinal ganglion cell count estimates in Japanese glaucoma patients
Nakamura M
Japanese Journal of Ophthalmology 2018; 62: 31-40 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Yu F
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74359 Comparison of Threshold Saccadic Vector Optokinetic Perimetry (SVOP) and Standard Automated Perimetry (SAP) in Glaucoma. Part II: Patterns of Visual Field Loss and Acceptability
Minns RA
Translational vision science & technology 2017; 6: 4 (IGR: 19-1)


74487 Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field

American Journal of Ophthalmology 2017; 184: 63-74 (IGR: 19-1)


74129 Optical Coherence Tomography Analysis Based Prediction of Humphrey 24-2 Visual Field Thresholds in Patients With Glaucoma
Johnson CA
Investigative Ophthalmology and Visual Science 2017; 58: 3975-3985 (IGR: 19-1)


74700 Detection of central visual field defects in early glaucomatous eyes: Comparison of Humphrey and Octopus perimetry
Rastelli D; Oddone F
PLoS ONE 2017; 12: e0186793 (IGR: 19-1)


74129 Optical Coherence Tomography Analysis Based Prediction of Humphrey 24-2 Visual Field Thresholds in Patients With Glaucoma
Garvin MK
Investigative Ophthalmology and Visual Science 2017; 58: 3975-3985 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Nouri-Mahdavi K; Coleman AL
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74129 Optical Coherence Tomography Analysis Based Prediction of Humphrey 24-2 Visual Field Thresholds in Patients With Glaucoma
Sonka M
Investigative Ophthalmology and Visual Science 2017; 58: 3975-3985 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Caprioli J
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74129 Optical Coherence Tomography Analysis Based Prediction of Humphrey 24-2 Visual Field Thresholds in Patients With Glaucoma
Abràmoff MD
Investigative Ophthalmology and Visual Science 2017; 58: 3975-3985 (IGR: 19-1)


73414 Evidence-based Criteria for Assessment of Visual Field Reliability
Yohannan J
Ophthalmology 2017; 124: 1612-1620 (IGR: 18-4)


72867 Long-term clinical course of normotensive preperimetric glaucoma
Sawada A
British Journal of Ophthalmology 2017; 101: 1649-1653 (IGR: 18-4)


72696 The Association Between Clinical Features Seen on Fundus Photographs and Glaucomatous Damage Detected on Visual Fields and Optical Coherence Tomography Scans
Alhadeff PA
Journal of Glaucoma 2017; 26: 498-504 (IGR: 18-4)


73069 Comparison of isolated-check visual evoked potential and standard automated perimetry in early glaucoma and high-risk ocular hypertension
Chen XW
International Journal of Ophthalmology 2017; 10: 599-604 (IGR: 18-4)


72875 Regional Relationship between Macular Retinal Thickness and Corresponding Central Visual Field Sensitivity in Glaucoma Patients
Liu CH
Journal of Ophthalmology 2017; 2017: 3720157 (IGR: 18-4)


72719 Association of Structural and Functional Measures With Contrast Sensitivity in Glaucoma
Fatehi N
American Journal of Ophthalmology 2017; 178: 129-139 (IGR: 18-4)


72766 Evaluation of a Novel Visual Field Analyzer Application for Automated Classification of Glaucoma Severity
Germano RAS
Journal of Glaucoma 2017; 26: 586-591 (IGR: 18-4)


72759 Correlation between central corneal thickness and visual field defects, cup to disc ratio and retinal nerve fiber layer thickness in primary open angle glaucoma patients
Sarfraz MH
Pakistan journal of medical sciences 2017; 33: 132-136 (IGR: 18-4)


72918 Using perimetric data to estimate ganglion cell loss for detecting progression of glaucoma: a comparison of models
Price DA
Ophthalmic and Physiological Optics 2017; 37: 409-419 (IGR: 18-4)


72739 Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma
Wu Z
Investigative Ophthalmology and Visual Science 2017; 58: 1825-1833 (IGR: 18-4)


72597 Frequency of Testing to Detect Visual Field Progression Derived Using a Longitudinal Cohort of Glaucoma Patients
Wu Z
Ophthalmology 2017; 124: 786-792 (IGR: 18-4)


72905 Regional vascular density-visual field sensitivity relationship in glaucoma according to disease severity
Shin JW
British Journal of Ophthalmology 2017; 101: 1666-1672 (IGR: 18-4)


72922 Comparison of Size Modulation Standard Automated Perimetry and Conventional Standard Automated Perimetry with a 10-2 Test Program in Glaucoma Patients
Hirasawa K
Current Eye Research 2017; 0: 1-9 (IGR: 18-4)


72977 Impact of the Ability to Divide Attention on Reading Performance in Glaucoma
Swenor BK
Investigative Ophthalmology and Visual Science 2017; 58: 2456-2462 (IGR: 18-4)


72816 Structure-Function Relationship Between the Bruch Membrane Opening-based Minimum Rim Width and Visual Field Defects in Advanced Glaucoma
Imamoglu S
Journal of Glaucoma 2017; 26: 561-565 (IGR: 18-4)


72952 Detecting Glaucoma With a Portable Brain-Computer Interface for Objective Assessment of Visual Function Loss
Nakanishi M
JAMA ophthalmology 2017; 135: 550-557 (IGR: 18-4)


72998 Using CorvisST tonometry to assess glaucoma progression
Matsuura M
PLoS ONE 2017; 12: e0176380 (IGR: 18-4)


72749 Development of visual field defect after first-detected optic disc hemorrhage in preperimetric open-angle glaucoma
Kim HJ
Japanese Journal of Ophthalmology 2017; 61: 307-313 (IGR: 18-4)


72847 Binocular Measures of Visual Acuity and Visual Field versus Binocular Approximations
Musch DC
Ophthalmology 2017; 124: 1031-1038 (IGR: 18-4)


72647 Correlation between Visual Field Index and Other Functional and Structural Measures in Glaucoma Patients and Suspects
Iutaka NA
Journal of ophthalmic & vision research 2017; 12: 53-57 (IGR: 18-4)


73167 Multiple Temporal Lamina Cribrosa Defects in Myopic Eyes with Glaucoma and Their Association with Visual Field Defects
Sawada Y
Ophthalmology 2017; 124: 1600-1611 (IGR: 18-4)


72701 Visual Field Defects in Young Patients With Open-angle Glaucoma: Comparison Between High-tension and Normal-tension Glaucoma
Park JH
Journal of Glaucoma 2017; 26: 541-547 (IGR: 18-4)


73000 Association of Glaucoma-Susceptible Genes to Regional Circumpapillary Retinal Nerve Fiber Layer Thickness and Visual Field Defects
Yoshikawa M
Investigative Ophthalmology and Visual Science 2017; 58: 2510-2519 (IGR: 18-4)


73146 Comparison of matrix frequency-doubling technology perimetry and standard automated perimetry in monitoring the development of visual field defects for glaucoma suspect eyes
Hu R
PLoS ONE 2017; 12: e0178079 (IGR: 18-4)


73168 24-2 Visual Fields Miss Central Defects Shown on 10-2 Tests in Glaucoma Suspects, Ocular Hypertensives, and Early Glaucoma
De Moraes CG
Ophthalmology 2017; 124: 1449-1456 (IGR: 18-4)


73175 The Association of Glaucomatous Visual Field Loss and Balance
de Luna RA
Translational vision science & technology 2017; 6: 8 (IGR: 18-4)


73000 Association of Glaucoma-Susceptible Genes to Regional Circumpapillary Retinal Nerve Fiber Layer Thickness and Visual Field Defects
Nakanishi H
Investigative Ophthalmology and Visual Science 2017; 58: 2510-2519 (IGR: 18-4)


72739 Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma
Lin C
Investigative Ophthalmology and Visual Science 2017; 58: 1825-1833 (IGR: 18-4)


72597 Frequency of Testing to Detect Visual Field Progression Derived Using a Longitudinal Cohort of Glaucoma Patients
Saunders LJ
Ophthalmology 2017; 124: 786-792 (IGR: 18-4)


72749 Development of visual field defect after first-detected optic disc hemorrhage in preperimetric open-angle glaucoma
Song YJ
Japanese Journal of Ophthalmology 2017; 61: 307-313 (IGR: 18-4)


73414 Evidence-based Criteria for Assessment of Visual Field Reliability
Wang J
Ophthalmology 2017; 124: 1612-1620 (IGR: 18-4)


72701 Visual Field Defects in Young Patients With Open-angle Glaucoma: Comparison Between High-tension and Normal-tension Glaucoma
Yoo C
Journal of Glaucoma 2017; 26: 541-547 (IGR: 18-4)


73146 Comparison of matrix frequency-doubling technology perimetry and standard automated perimetry in monitoring the development of visual field defects for glaucoma suspect eyes
Wang C
PLoS ONE 2017; 12: e0178079 (IGR: 18-4)


72977 Impact of the Ability to Divide Attention on Reading Performance in Glaucoma
Varadaraj V
Investigative Ophthalmology and Visual Science 2017; 58: 2456-2462 (IGR: 18-4)


72816 Structure-Function Relationship Between the Bruch Membrane Opening-based Minimum Rim Width and Visual Field Defects in Advanced Glaucoma
Celik NB
Journal of Glaucoma 2017; 26: 561-565 (IGR: 18-4)


73167 Multiple Temporal Lamina Cribrosa Defects in Myopic Eyes with Glaucoma and Their Association with Visual Field Defects
Araie M
Ophthalmology 2017; 124: 1600-1611 (IGR: 18-4)


73168 24-2 Visual Fields Miss Central Defects Shown on 10-2 Tests in Glaucoma Suspects, Ocular Hypertensives, and Early Glaucoma
Hood DC
Ophthalmology 2017; 124: 1449-1456 (IGR: 18-4)


73175 The Association of Glaucomatous Visual Field Loss and Balance
Mihailovic A
Translational vision science & technology 2017; 6: 8 (IGR: 18-4)


72759 Correlation between central corneal thickness and visual field defects, cup to disc ratio and retinal nerve fiber layer thickness in primary open angle glaucoma patients
Mehboob MA
Pakistan journal of medical sciences 2017; 33: 132-136 (IGR: 18-4)


72696 The Association Between Clinical Features Seen on Fundus Photographs and Glaucomatous Damage Detected on Visual Fields and Optical Coherence Tomography Scans
De Moraes CG
Journal of Glaucoma 2017; 26: 498-504 (IGR: 18-4)


72875 Regional Relationship between Macular Retinal Thickness and Corresponding Central Visual Field Sensitivity in Glaucoma Patients
Chang SHL
Journal of Ophthalmology 2017; 2017: 3720157 (IGR: 18-4)


72766 Evaluation of a Novel Visual Field Analyzer Application for Automated Classification of Glaucoma Severity
De Moraes CG
Journal of Glaucoma 2017; 26: 586-591 (IGR: 18-4)


72867 Long-term clinical course of normotensive preperimetric glaucoma
Manabe Y
British Journal of Ophthalmology 2017; 101: 1649-1653 (IGR: 18-4)


72905 Regional vascular density-visual field sensitivity relationship in glaucoma according to disease severity
Lee J
British Journal of Ophthalmology 2017; 101: 1666-1672 (IGR: 18-4)


72719 Association of Structural and Functional Measures With Contrast Sensitivity in Glaucoma
Nowroozizadeh S
American Journal of Ophthalmology 2017; 178: 129-139 (IGR: 18-4)


73069 Comparison of isolated-check visual evoked potential and standard automated perimetry in early glaucoma and high-risk ocular hypertension
Zhao YX
International Journal of Ophthalmology 2017; 10: 599-604 (IGR: 18-4)


72922 Comparison of Size Modulation Standard Automated Perimetry and Conventional Standard Automated Perimetry with a 10-2 Test Program in Glaucoma Patients
Takahashi N
Current Eye Research 2017; 0: 1-9 (IGR: 18-4)


72952 Detecting Glaucoma With a Portable Brain-Computer Interface for Objective Assessment of Visual Function Loss
Wang YT
JAMA ophthalmology 2017; 135: 550-557 (IGR: 18-4)


72998 Using CorvisST tonometry to assess glaucoma progression
Hirasawa K
PLoS ONE 2017; 12: e0176380 (IGR: 18-4)


72847 Binocular Measures of Visual Acuity and Visual Field versus Binocular Approximations
Niziol LM
Ophthalmology 2017; 124: 1031-1038 (IGR: 18-4)


72918 Using perimetric data to estimate ganglion cell loss for detecting progression of glaucoma: a comparison of models
Swanson WH
Ophthalmic and Physiological Optics 2017; 37: 409-419 (IGR: 18-4)


72647 Correlation between Visual Field Index and Other Functional and Structural Measures in Glaucoma Patients and Suspects
Grochowski RA
Journal of ophthalmic & vision research 2017; 12: 53-57 (IGR: 18-4)


73167 Multiple Temporal Lamina Cribrosa Defects in Myopic Eyes with Glaucoma and Their Association with Visual Field Defects
Ishikawa M
Ophthalmology 2017; 124: 1600-1611 (IGR: 18-4)


73175 The Association of Glaucomatous Visual Field Loss and Balance
Nguyen AM
Translational vision science & technology 2017; 6: 8 (IGR: 18-4)


73000 Association of Glaucoma-Susceptible Genes to Regional Circumpapillary Retinal Nerve Fiber Layer Thickness and Visual Field Defects
Yamashiro K
Investigative Ophthalmology and Visual Science 2017; 58: 2510-2519 (IGR: 18-4)


72905 Regional vascular density-visual field sensitivity relationship in glaucoma according to disease severity
Kwon J
British Journal of Ophthalmology 2017; 101: 1666-1672 (IGR: 18-4)


72647 Correlation between Visual Field Index and Other Functional and Structural Measures in Glaucoma Patients and Suspects
Kasahara N
Journal of ophthalmic & vision research 2017; 12: 53-57 (IGR: 18-4)


72867 Long-term clinical course of normotensive preperimetric glaucoma
Yamamoto T
British Journal of Ophthalmology 2017; 101: 1649-1653 (IGR: 18-4)


72749 Development of visual field defect after first-detected optic disc hemorrhage in preperimetric open-angle glaucoma
Kim YK
Japanese Journal of Ophthalmology 2017; 61: 307-313 (IGR: 18-4)


72998 Using CorvisST tonometry to assess glaucoma progression
Murata H
PLoS ONE 2017; 12: e0176380 (IGR: 18-4)


72847 Binocular Measures of Visual Acuity and Visual Field versus Binocular Approximations
Gillespie BW
Ophthalmology 2017; 124: 1031-1038 (IGR: 18-4)


72701 Visual Field Defects in Young Patients With Open-angle Glaucoma: Comparison Between High-tension and Normal-tension Glaucoma
Park J
Journal of Glaucoma 2017; 26: 541-547 (IGR: 18-4)


72719 Association of Structural and Functional Measures With Contrast Sensitivity in Glaucoma
Henry S
American Journal of Ophthalmology 2017; 178: 129-139 (IGR: 18-4)


73146 Comparison of matrix frequency-doubling technology perimetry and standard automated perimetry in monitoring the development of visual field defects for glaucoma suspect eyes
Racette L
PLoS ONE 2017; 12: e0178079 (IGR: 18-4)


72739 Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma
Crowther M
Investigative Ophthalmology and Visual Science 2017; 58: 1825-1833 (IGR: 18-4)


72597 Frequency of Testing to Detect Visual Field Progression Derived Using a Longitudinal Cohort of Glaucoma Patients
Daga FB
Ophthalmology 2017; 124: 786-792 (IGR: 18-4)


72918 Using perimetric data to estimate ganglion cell loss for detecting progression of glaucoma: a comparison of models
Horner DG
Ophthalmic and Physiological Optics 2017; 37: 409-419 (IGR: 18-4)


72922 Comparison of Size Modulation Standard Automated Perimetry and Conventional Standard Automated Perimetry with a 10-2 Test Program in Glaucoma Patients
Satou T
Current Eye Research 2017; 0: 1-9 (IGR: 18-4)


73168 24-2 Visual Fields Miss Central Defects Shown on 10-2 Tests in Glaucoma Suspects, Ocular Hypertensives, and Early Glaucoma
Thenappan A
Ophthalmology 2017; 124: 1449-1456 (IGR: 18-4)


72816 Structure-Function Relationship Between the Bruch Membrane Opening-based Minimum Rim Width and Visual Field Defects in Advanced Glaucoma
Sevim MS
Journal of Glaucoma 2017; 26: 561-565 (IGR: 18-4)


72759 Correlation between central corneal thickness and visual field defects, cup to disc ratio and retinal nerve fiber layer thickness in primary open angle glaucoma patients
Haq RI
Pakistan journal of medical sciences 2017; 33: 132-136 (IGR: 18-4)


72977 Impact of the Ability to Divide Attention on Reading Performance in Glaucoma
Dave P
Investigative Ophthalmology and Visual Science 2017; 58: 2456-2462 (IGR: 18-4)


73414 Evidence-based Criteria for Assessment of Visual Field Reliability
Brown J
Ophthalmology 2017; 124: 1612-1620 (IGR: 18-4)


72696 The Association Between Clinical Features Seen on Fundus Photographs and Glaucomatous Damage Detected on Visual Fields and Optical Coherence Tomography Scans
Chen M
Journal of Glaucoma 2017; 26: 498-504 (IGR: 18-4)


72875 Regional Relationship between Macular Retinal Thickness and Corresponding Central Visual Field Sensitivity in Glaucoma Patients
Wu SC
Journal of Ophthalmology 2017; 2017: 3720157 (IGR: 18-4)


72952 Detecting Glaucoma With a Portable Brain-Computer Interface for Objective Assessment of Visual Function Loss
Jung TP
JAMA ophthalmology 2017; 135: 550-557 (IGR: 18-4)


72766 Evaluation of a Novel Visual Field Analyzer Application for Automated Classification of Glaucoma Severity
Susanna R
Journal of Glaucoma 2017; 26: 586-591 (IGR: 18-4)


72998 Using CorvisST tonometry to assess glaucoma progression
Nakakura S
PLoS ONE 2017; 12: e0176380 (IGR: 18-4)


72847 Binocular Measures of Visual Acuity and Visual Field versus Binocular Approximations
Lichter PR
Ophthalmology 2017; 124: 1031-1038 (IGR: 18-4)


72922 Comparison of Size Modulation Standard Automated Perimetry and Conventional Standard Automated Perimetry with a 10-2 Test Program in Glaucoma Patients
Kasahara M
Current Eye Research 2017; 0: 1-9 (IGR: 18-4)


72749 Development of visual field defect after first-detected optic disc hemorrhage in preperimetric open-angle glaucoma
Jeoung JW
Japanese Journal of Ophthalmology 2017; 61: 307-313 (IGR: 18-4)


72696 The Association Between Clinical Features Seen on Fundus Photographs and Glaucomatous Damage Detected on Visual Fields and Optical Coherence Tomography Scans
Raza AS
Journal of Glaucoma 2017; 26: 498-504 (IGR: 18-4)


72905 Regional vascular density-visual field sensitivity relationship in glaucoma according to disease severity
Choi J
British Journal of Ophthalmology 2017; 101: 1666-1672 (IGR: 18-4)


73175 The Association of Glaucomatous Visual Field Loss and Balance
Friedman DS
Translational vision science & technology 2017; 6: 8 (IGR: 18-4)


72816 Structure-Function Relationship Between the Bruch Membrane Opening-based Minimum Rim Width and Visual Field Defects in Advanced Glaucoma
Pekel G
Journal of Glaucoma 2017; 26: 561-565 (IGR: 18-4)


72766 Evaluation of a Novel Visual Field Analyzer Application for Automated Classification of Glaucoma Severity
Dantas DO
Journal of Glaucoma 2017; 26: 586-591 (IGR: 18-4)


72867 Long-term clinical course of normotensive preperimetric glaucoma
Nagata C
British Journal of Ophthalmology 2017; 101: 1649-1653 (IGR: 18-4)


73168 24-2 Visual Fields Miss Central Defects Shown on 10-2 Tests in Glaucoma Suspects, Ocular Hypertensives, and Early Glaucoma
Girkin CA
Ophthalmology 2017; 124: 1449-1456 (IGR: 18-4)


72719 Association of Structural and Functional Measures With Contrast Sensitivity in Glaucoma
Coleman AL
American Journal of Ophthalmology 2017; 178: 129-139 (IGR: 18-4)


73167 Multiple Temporal Lamina Cribrosa Defects in Myopic Eyes with Glaucoma and Their Association with Visual Field Defects
Yoshitomi T
Ophthalmology 2017; 124: 1600-1611 (IGR: 18-4)


72977 Impact of the Ability to Divide Attention on Reading Performance in Glaucoma
West SK
Investigative Ophthalmology and Visual Science 2017; 58: 2456-2462 (IGR: 18-4)


73414 Evidence-based Criteria for Assessment of Visual Field Reliability
Chauhan BC
Ophthalmology 2017; 124: 1612-1620 (IGR: 18-4)


72701 Visual Field Defects in Young Patients With Open-angle Glaucoma: Comparison Between High-tension and Normal-tension Glaucoma
Kim YY
Journal of Glaucoma 2017; 26: 541-547 (IGR: 18-4)


72739 Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma
Mak H
Investigative Ophthalmology and Visual Science 2017; 58: 1825-1833 (IGR: 18-4)


72597 Frequency of Testing to Detect Visual Field Progression Derived Using a Longitudinal Cohort of Glaucoma Patients
Diniz-Filho A
Ophthalmology 2017; 124: 786-792 (IGR: 18-4)


73000 Association of Glaucoma-Susceptible Genes to Regional Circumpapillary Retinal Nerve Fiber Layer Thickness and Visual Field Defects
Miyake M
Investigative Ophthalmology and Visual Science 2017; 58: 2510-2519 (IGR: 18-4)


72952 Detecting Glaucoma With a Portable Brain-Computer Interface for Objective Assessment of Visual Function Loss
Zao JK
JAMA ophthalmology 2017; 135: 550-557 (IGR: 18-4)


72905 Regional vascular density-visual field sensitivity relationship in glaucoma according to disease severity
Kook MS
British Journal of Ophthalmology 2017; 101: 1666-1672 (IGR: 18-4)


72719 Association of Structural and Functional Measures With Contrast Sensitivity in Glaucoma
Caprioli J
American Journal of Ophthalmology 2017; 178: 129-139 (IGR: 18-4)


72696 The Association Between Clinical Features Seen on Fundus Photographs and Glaucomatous Damage Detected on Visual Fields and Optical Coherence Tomography Scans
Ritch R
Journal of Glaucoma 2017; 26: 498-504 (IGR: 18-4)


73000 Association of Glaucoma-Susceptible Genes to Regional Circumpapillary Retinal Nerve Fiber Layer Thickness and Visual Field Defects
Akagi T
Investigative Ophthalmology and Visual Science 2017; 58: 2510-2519 (IGR: 18-4)


73175 The Association of Glaucomatous Visual Field Loss and Balance
Gitlin LN
Translational vision science & technology 2017; 6: 8 (IGR: 18-4)


73168 24-2 Visual Fields Miss Central Defects Shown on 10-2 Tests in Glaucoma Suspects, Ocular Hypertensives, and Early Glaucoma
Medeiros FA
Ophthalmology 2017; 124: 1449-1456 (IGR: 18-4)


72977 Impact of the Ability to Divide Attention on Reading Performance in Glaucoma
Rubin GS
Investigative Ophthalmology and Visual Science 2017; 58: 2456-2462 (IGR: 18-4)


72952 Detecting Glaucoma With a Portable Brain-Computer Interface for Objective Assessment of Visual Function Loss
Chien YY
JAMA ophthalmology 2017; 135: 550-557 (IGR: 18-4)


73414 Evidence-based Criteria for Assessment of Visual Field Reliability
Boland MV
Ophthalmology 2017; 124: 1612-1620 (IGR: 18-4)


72847 Binocular Measures of Visual Acuity and Visual Field versus Binocular Approximations
Janz NK
Ophthalmology 2017; 124: 1031-1038 (IGR: 18-4)


72739 Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma
Yu M
Investigative Ophthalmology and Visual Science 2017; 58: 1825-1833 (IGR: 18-4)


72597 Frequency of Testing to Detect Visual Field Progression Derived Using a Longitudinal Cohort of Glaucoma Patients
Medeiros FA
Ophthalmology 2017; 124: 786-792 (IGR: 18-4)


72816 Structure-Function Relationship Between the Bruch Membrane Opening-based Minimum Rim Width and Visual Field Defects in Advanced Glaucoma
Ercalik NY
Journal of Glaucoma 2017; 26: 561-565 (IGR: 18-4)


72922 Comparison of Size Modulation Standard Automated Perimetry and Conventional Standard Automated Perimetry with a 10-2 Test Program in Glaucoma Patients
Matsumura K
Current Eye Research 2017; 0: 1-9 (IGR: 18-4)


72749 Development of visual field defect after first-detected optic disc hemorrhage in preperimetric open-angle glaucoma
Park KH
Japanese Journal of Ophthalmology 2017; 61: 307-313 (IGR: 18-4)


72766 Evaluation of a Novel Visual Field Analyzer Application for Automated Classification of Glaucoma Severity
Neto EDS
Journal of Glaucoma 2017; 26: 586-591 (IGR: 18-4)


72998 Using CorvisST tonometry to assess glaucoma progression
Kiuchi Y
PLoS ONE 2017; 12: e0176380 (IGR: 18-4)


72922 Comparison of Size Modulation Standard Automated Perimetry and Conventional Standard Automated Perimetry with a 10-2 Test Program in Glaucoma Patients
Shoji N
Current Eye Research 2017; 0: 1-9 (IGR: 18-4)


72977 Impact of the Ability to Divide Attention on Reading Performance in Glaucoma
Ramulu PY
Investigative Ophthalmology and Visual Science 2017; 58: 2456-2462 (IGR: 18-4)


72719 Association of Structural and Functional Measures With Contrast Sensitivity in Glaucoma
Nouri-Mahdavi K
American Journal of Ophthalmology 2017; 178: 129-139 (IGR: 18-4)


73414 Evidence-based Criteria for Assessment of Visual Field Reliability
Friedman DS
Ophthalmology 2017; 124: 1612-1620 (IGR: 18-4)


72696 The Association Between Clinical Features Seen on Fundus Photographs and Glaucomatous Damage Detected on Visual Fields and Optical Coherence Tomography Scans
Hood DC
Journal of Glaucoma 2017; 26: 498-504 (IGR: 18-4)


73000 Association of Glaucoma-Susceptible Genes to Regional Circumpapillary Retinal Nerve Fiber Layer Thickness and Visual Field Defects
Gotoh N
Investigative Ophthalmology and Visual Science 2017; 58: 2510-2519 (IGR: 18-4)


72998 Using CorvisST tonometry to assess glaucoma progression
Asaoka R
PLoS ONE 2017; 12: e0176380 (IGR: 18-4)


73168 24-2 Visual Fields Miss Central Defects Shown on 10-2 Tests in Glaucoma Suspects, Ocular Hypertensives, and Early Glaucoma
Weinreb RN
Ophthalmology 2017; 124: 1449-1456 (IGR: 18-4)


72952 Detecting Glaucoma With a Portable Brain-Computer Interface for Objective Assessment of Visual Function Loss
Diniz-Filho A
JAMA ophthalmology 2017; 135: 550-557 (IGR: 18-4)


73175 The Association of Glaucomatous Visual Field Loss and Balance
Ramulu PY
Translational vision science & technology 2017; 6: 8 (IGR: 18-4)


72739 Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma
Leung CK
Investigative Ophthalmology and Visual Science 2017; 58: 1825-1833 (IGR: 18-4)


72816 Structure-Function Relationship Between the Bruch Membrane Opening-based Minimum Rim Width and Visual Field Defects in Advanced Glaucoma
Turkseven Kumral E; Bardak H
Journal of Glaucoma 2017; 26: 561-565 (IGR: 18-4)


72952 Detecting Glaucoma With a Portable Brain-Computer Interface for Objective Assessment of Visual Function Loss
Daga FB
JAMA ophthalmology 2017; 135: 550-557 (IGR: 18-4)


73414 Evidence-based Criteria for Assessment of Visual Field Reliability
Ramulu PY
Ophthalmology 2017; 124: 1612-1620 (IGR: 18-4)


73000 Association of Glaucoma-Susceptible Genes to Regional Circumpapillary Retinal Nerve Fiber Layer Thickness and Visual Field Defects
Ikeda HO
Investigative Ophthalmology and Visual Science 2017; 58: 2510-2519 (IGR: 18-4)


73168 24-2 Visual Fields Miss Central Defects Shown on 10-2 Tests in Glaucoma Suspects, Ocular Hypertensives, and Early Glaucoma
Zangwill LM; Liebmann JM
Ophthalmology 2017; 124: 1449-1456 (IGR: 18-4)


72952 Detecting Glaucoma With a Portable Brain-Computer Interface for Objective Assessment of Visual Function Loss
Lin YP
JAMA ophthalmology 2017; 135: 550-557 (IGR: 18-4)


73000 Association of Glaucoma-Susceptible Genes to Regional Circumpapillary Retinal Nerve Fiber Layer Thickness and Visual Field Defects
Suda K
Investigative Ophthalmology and Visual Science 2017; 58: 2510-2519 (IGR: 18-4)


72952 Detecting Glaucoma With a Portable Brain-Computer Interface for Objective Assessment of Visual Function Loss
Wang Y
JAMA ophthalmology 2017; 135: 550-557 (IGR: 18-4)


73000 Association of Glaucoma-Susceptible Genes to Regional Circumpapillary Retinal Nerve Fiber Layer Thickness and Visual Field Defects
Yamada H; Hasegawa T
Investigative Ophthalmology and Visual Science 2017; 58: 2510-2519 (IGR: 18-4)


72952 Detecting Glaucoma With a Portable Brain-Computer Interface for Objective Assessment of Visual Function Loss
Medeiros FA
JAMA ophthalmology 2017; 135: 550-557 (IGR: 18-4)


73000 Association of Glaucoma-Susceptible Genes to Regional Circumpapillary Retinal Nerve Fiber Layer Thickness and Visual Field Defects
Iida Y; Yamada R; Matsuda F; Yoshimura N;
Investigative Ophthalmology and Visual Science 2017; 58: 2510-2519 (IGR: 18-4)


71581 Intraobserver and Interobserver Agreement of Structural and Functional Software Programs for Measuring Glaucoma Progression
Moreno-Montañés J
JAMA ophthalmology 2017; 135: 313-319 (IGR: 18-3)


71258 The relationship between central visual field sensitivity and macular ganglion cell/inner plexiform layer thickness in glaucoma
Lee JW
British Journal of Ophthalmology 2017; 101: 1052-1058 (IGR: 18-3)


71323 Predicting conversion to glaucoma using standard automated perimetry and frequency doubling technology
Takahashi G
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 797-803 (IGR: 18-3)


71609 Short-duration transient visual evoked potentials and color reflectivity discretization analysis in glaucoma patients and suspects
Waisbourd M
International Journal of Ophthalmology 2017; 10: 254-261 (IGR: 18-3)


71262 Retinal Oximetry in Subjects With Glaucomatous Hemifield Asymmetry
Yap ZL
Journal of Glaucoma 2017; 26: 367-372 (IGR: 18-3)


71637 Relationship between visual field index and visual field morphological stages of glaucoma and their diagnostic value
Hou XR
Chinese Journal of Ophthalmology 2017; 53: 92-97 (IGR: 18-3)


71493 Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect
Yarmohammadi A
Ophthalmology 2017; 124: 709-719 (IGR: 18-3)


71289 Relationship between Central Retinal Vessel Trunk Location and Visual Field Loss in Glaucoma
Wang M
American Journal of Ophthalmology 2017; 176: 53-60 (IGR: 18-3)


71411 Bayesian hierarchical modeling of longitudinal glaucomatous visual fields using a two-stage approach
Bryan SR
Statistics in Medicine 2017; 36: 1735-1753 (IGR: 18-3)


71451 Ultra-high resolution profiles of macular intra-retinal layer thicknesses and associations with visual field defects in primary open angle glaucoma
Chen Q
Scientific reports 2017; 7: 41100 (IGR: 18-3)


71389 A New Glaucoma Severity Score Combining Structural and Functional Defects
Wachtl J
Klinische Monatsblätter für Augenheilkunde 2017; 234: 468-473 (IGR: 18-3)


71424 Reclaiming the Periphery: Automated Kinetic Perimetry for Measuring Peripheral Visual Fields in Patients With Glaucoma
Mönter VM
Investigative Ophthalmology and Visual Science 2017; 58: 868-875 (IGR: 18-3)


71261 Comparison of Impact of Monocular and Integrated Binocular Visual Fields on Vision-related Quality of Life
Chun YS
Journal of Glaucoma 2017; 26: 283-291 (IGR: 18-3)


71456 Predicting the Magnitude of Functional and Structural Damage in Glaucoma From Monocular Pupillary Light Responses Using Automated Pupillography
Pradhan ZS
Journal of Glaucoma 2017; 26: 409-414 (IGR: 18-3)


71494 The Proportion of Individuals Likely to Benefit from Customized Optic Nerve Head Structure-Function Mapping
McKendrick AM
Ophthalmology 2017; 124: 554-561 (IGR: 18-3)


71515 A comparison of Goldmann III, V and spatially equated test stimuli in visual field testing: the importance of complete and partial spatial summation
Phu J
Ophthalmic and Physiological Optics 2017; 37: 160-176 (IGR: 18-3)


71248 Evaluation of the Macular Ganglion Cell-Inner Plexiform Layer and the Circumpapillary Retinal Nerve Fiber Layer in Early to Severe Stages of Glaucoma: Correlation with Central Visual Function and Visual Field Indexes
Bambo MP
Ophthalmic Research 2017; 57: 216-223 (IGR: 18-3)


71445 Transient Peripapillary Retinoschisis in Glaucomatous Eyes
van der Schoot J
Journal of Ophthalmology 2017; 2017: 1536030 (IGR: 18-3)


71606 Properties of pattern standard deviation in open-angle glaucoma patients with hemi-optic neuropathy and bi-optic neuropathy
Heo DW
PLoS ONE 2017; 12: e0171960 (IGR: 18-3)


71364 Detecting change using standard global perimetric indices in glaucoma
Gardiner SK
American Journal of Ophthalmology 2017; 176: 148-156 (IGR: 18-3)


71587 Stage of visual field loss and age at diagnosis in 1988 patients with different glaucomas: implications for glaucoma screening and driving ability
Gramer G
International Ophthalmology 2018; 38: 429-441 (IGR: 18-3)


71515 A comparison of Goldmann III, V and spatially equated test stimuli in visual field testing: the importance of complete and partial spatial summation
Khuu SK
Ophthalmic and Physiological Optics 2017; 37: 160-176 (IGR: 18-3)


71411 Bayesian hierarchical modeling of longitudinal glaucomatous visual fields using a two-stage approach
Eilers PH
Statistics in Medicine 2017; 36: 1735-1753 (IGR: 18-3)


71606 Properties of pattern standard deviation in open-angle glaucoma patients with hemi-optic neuropathy and bi-optic neuropathy
Kim KN
PLoS ONE 2017; 12: e0171960 (IGR: 18-3)


71587 Stage of visual field loss and age at diagnosis in 1988 patients with different glaucomas: implications for glaucoma screening and driving ability
Gramer E
International Ophthalmology 2018; 38: 429-441 (IGR: 18-3)


71456 Predicting the Magnitude of Functional and Structural Damage in Glaucoma From Monocular Pupillary Light Responses Using Automated Pupillography
Rao HL
Journal of Glaucoma 2017; 26: 409-414 (IGR: 18-3)


71609 Short-duration transient visual evoked potentials and color reflectivity discretization analysis in glaucoma patients and suspects
Gensure RH
International Journal of Ophthalmology 2017; 10: 254-261 (IGR: 18-3)


71248 Evaluation of the Macular Ganglion Cell-Inner Plexiform Layer and the Circumpapillary Retinal Nerve Fiber Layer in Early to Severe Stages of Glaucoma: Correlation with Central Visual Function and Visual Field Indexes
Güerri N
Ophthalmic Research 2017; 57: 216-223 (IGR: 18-3)


71445 Transient Peripapillary Retinoschisis in Glaucomatous Eyes
Vermeer KA
Journal of Ophthalmology 2017; 2017: 1536030 (IGR: 18-3)


71323 Predicting conversion to glaucoma using standard automated perimetry and frequency doubling technology
Demirel S
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 797-803 (IGR: 18-3)


71262 Retinal Oximetry in Subjects With Glaucomatous Hemifield Asymmetry
Ong C
Journal of Glaucoma 2017; 26: 367-372 (IGR: 18-3)


71493 Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect
Zangwill LM
Ophthalmology 2017; 124: 709-719 (IGR: 18-3)


71364 Detecting change using standard global perimetric indices in glaucoma
Demirel S
American Journal of Ophthalmology 2017; 176: 148-156 (IGR: 18-3)


71581 Intraobserver and Interobserver Agreement of Structural and Functional Software Programs for Measuring Glaucoma Progression
Antón V
JAMA ophthalmology 2017; 135: 313-319 (IGR: 18-3)


71261 Comparison of Impact of Monocular and Integrated Binocular Visual Fields on Vision-related Quality of Life
Lee DI
Journal of Glaucoma 2017; 26: 283-291 (IGR: 18-3)


71494 The Proportion of Individuals Likely to Benefit from Customized Optic Nerve Head Structure-Function Mapping
Denniss J
Ophthalmology 2017; 124: 554-561 (IGR: 18-3)


71424 Reclaiming the Periphery: Automated Kinetic Perimetry for Measuring Peripheral Visual Fields in Patients With Glaucoma
Crabb DP
Investigative Ophthalmology and Visual Science 2017; 58: 868-875 (IGR: 18-3)


71451 Ultra-high resolution profiles of macular intra-retinal layer thicknesses and associations with visual field defects in primary open angle glaucoma
Huang S
Scientific reports 2017; 7: 41100 (IGR: 18-3)


71258 The relationship between central visual field sensitivity and macular ganglion cell/inner plexiform layer thickness in glaucoma
Morales E
British Journal of Ophthalmology 2017; 101: 1052-1058 (IGR: 18-3)


71637 Relationship between visual field index and visual field morphological stages of glaucoma and their diagnostic value
Qin JY
Chinese Journal of Ophthalmology 2017; 53: 92-97 (IGR: 18-3)


71389 A New Glaucoma Severity Score Combining Structural and Functional Defects
Töteberg-Harms M
Klinische Monatsblätter für Augenheilkunde 2017; 234: 468-473 (IGR: 18-3)


71289 Relationship between Central Retinal Vessel Trunk Location and Visual Field Loss in Glaucoma
Wang H
American Journal of Ophthalmology 2017; 176: 53-60 (IGR: 18-3)


71248 Evaluation of the Macular Ganglion Cell-Inner Plexiform Layer and the Circumpapillary Retinal Nerve Fiber Layer in Early to Severe Stages of Glaucoma: Correlation with Central Visual Function and Visual Field Indexes
Ferrandez B
Ophthalmic Research 2017; 57: 216-223 (IGR: 18-3)


71445 Transient Peripapillary Retinoschisis in Glaucomatous Eyes
Lemij HG
Journal of Ophthalmology 2017; 2017: 1536030 (IGR: 18-3)


71451 Ultra-high resolution profiles of macular intra-retinal layer thicknesses and associations with visual field defects in primary open angle glaucoma
Ma Q
Scientific reports 2017; 7: 41100 (IGR: 18-3)


71494 The Proportion of Individuals Likely to Benefit from Customized Optic Nerve Head Structure-Function Mapping
Wang YX
Ophthalmology 2017; 124: 554-561 (IGR: 18-3)


71424 Reclaiming the Periphery: Automated Kinetic Perimetry for Measuring Peripheral Visual Fields in Patients With Glaucoma
Artes PH
Investigative Ophthalmology and Visual Science 2017; 58: 868-875 (IGR: 18-3)


71258 The relationship between central visual field sensitivity and macular ganglion cell/inner plexiform layer thickness in glaucoma
Sharifipour F
British Journal of Ophthalmology 2017; 101: 1052-1058 (IGR: 18-3)


71515 A comparison of Goldmann III, V and spatially equated test stimuli in visual field testing: the importance of complete and partial spatial summation
Zangerl B
Ophthalmic and Physiological Optics 2017; 37: 160-176 (IGR: 18-3)


71581 Intraobserver and Interobserver Agreement of Structural and Functional Software Programs for Measuring Glaucoma Progression
Antón A
JAMA ophthalmology 2017; 135: 313-319 (IGR: 18-3)


71261 Comparison of Impact of Monocular and Integrated Binocular Visual Fields on Vision-related Quality of Life
Kwon J
Journal of Glaucoma 2017; 26: 283-291 (IGR: 18-3)


71637 Relationship between visual field index and visual field morphological stages of glaucoma and their diagnostic value
Ren ZQ
Chinese Journal of Ophthalmology 2017; 53: 92-97 (IGR: 18-3)


71411 Bayesian hierarchical modeling of longitudinal glaucomatous visual fields using a two-stage approach
Rosmalen JV
Statistics in Medicine 2017; 36: 1735-1753 (IGR: 18-3)


71606 Properties of pattern standard deviation in open-angle glaucoma patients with hemi-optic neuropathy and bi-optic neuropathy
Lee MW
PLoS ONE 2017; 12: e0171960 (IGR: 18-3)


71289 Relationship between Central Retinal Vessel Trunk Location and Visual Field Loss in Glaucoma
Pasquale LR
American Journal of Ophthalmology 2017; 176: 53-60 (IGR: 18-3)


71262 Retinal Oximetry in Subjects With Glaucomatous Hemifield Asymmetry
Lee YF
Journal of Glaucoma 2017; 26: 367-372 (IGR: 18-3)


71323 Predicting conversion to glaucoma using standard automated perimetry and frequency doubling technology
Johnson CA
Graefe's Archive for Clinical and Experimental Ophthalmology 2017; 255: 797-803 (IGR: 18-3)


71389 A New Glaucoma Severity Score Combining Structural and Functional Defects
Frimmel S
Klinische Monatsblätter für Augenheilkunde 2017; 234: 468-473 (IGR: 18-3)


71493 Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect
Diniz-Filho A
Ophthalmology 2017; 124: 709-719 (IGR: 18-3)


71456 Predicting the Magnitude of Functional and Structural Damage in Glaucoma From Monocular Pupillary Light Responses Using Automated Pupillography
Puttaiah NK
Journal of Glaucoma 2017; 26: 409-414 (IGR: 18-3)


71609 Short-duration transient visual evoked potentials and color reflectivity discretization analysis in glaucoma patients and suspects
Aminlari A
International Journal of Ophthalmology 2017; 10: 254-261 (IGR: 18-3)


71261 Comparison of Impact of Monocular and Integrated Binocular Visual Fields on Vision-related Quality of Life
Park IK
Journal of Glaucoma 2017; 26: 283-291 (IGR: 18-3)


71493 Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect
Saunders LJ
Ophthalmology 2017; 124: 709-719 (IGR: 18-3)


71456 Predicting the Magnitude of Functional and Structural Damage in Glaucoma From Monocular Pupillary Light Responses Using Automated Pupillography
Kadambi SV
Journal of Glaucoma 2017; 26: 409-414 (IGR: 18-3)


71289 Relationship between Central Retinal Vessel Trunk Location and Visual Field Loss in Glaucoma
Baniasadi N
American Journal of Ophthalmology 2017; 176: 53-60 (IGR: 18-3)


71389 A New Glaucoma Severity Score Combining Structural and Functional Defects
Kniestedt C
Klinische Monatsblätter für Augenheilkunde 2017; 234: 468-473 (IGR: 18-3)


71606 Properties of pattern standard deviation in open-angle glaucoma patients with hemi-optic neuropathy and bi-optic neuropathy
Lee SB
PLoS ONE 2017; 12: e0171960 (IGR: 18-3)


71248 Evaluation of the Macular Ganglion Cell-Inner Plexiform Layer and the Circumpapillary Retinal Nerve Fiber Layer in Early to Severe Stages of Glaucoma: Correlation with Central Visual Function and Visual Field Indexes
Cameo B
Ophthalmic Research 2017; 57: 216-223 (IGR: 18-3)


71258 The relationship between central visual field sensitivity and macular ganglion cell/inner plexiform layer thickness in glaucoma
Amini N
British Journal of Ophthalmology 2017; 101: 1052-1058 (IGR: 18-3)


71451 Ultra-high resolution profiles of macular intra-retinal layer thicknesses and associations with visual field defects in primary open angle glaucoma
Lin H
Scientific reports 2017; 7: 41100 (IGR: 18-3)


71515 A comparison of Goldmann III, V and spatially equated test stimuli in visual field testing: the importance of complete and partial spatial summation
Kalloniatis M
Ophthalmic and Physiological Optics 2017; 37: 160-176 (IGR: 18-3)


71411 Bayesian hierarchical modeling of longitudinal glaucomatous visual fields using a two-stage approach
Rizopoulos D
Statistics in Medicine 2017; 36: 1735-1753 (IGR: 18-3)


71609 Short-duration transient visual evoked potentials and color reflectivity discretization analysis in glaucoma patients and suspects
Shah SB
International Journal of Ophthalmology 2017; 10: 254-261 (IGR: 18-3)


71581 Intraobserver and Interobserver Agreement of Structural and Functional Software Programs for Measuring Glaucoma Progression
Larrosa JM
JAMA ophthalmology 2017; 135: 313-319 (IGR: 18-3)


71262 Retinal Oximetry in Subjects With Glaucomatous Hemifield Asymmetry
Tsai A
Journal of Glaucoma 2017; 26: 367-372 (IGR: 18-3)


71494 The Proportion of Individuals Likely to Benefit from Customized Optic Nerve Head Structure-Function Mapping
Jonas JB
Ophthalmology 2017; 124: 554-561 (IGR: 18-3)


71411 Bayesian hierarchical modeling of longitudinal glaucomatous visual fields using a two-stage approach
Vermeer KA
Statistics in Medicine 2017; 36: 1735-1753 (IGR: 18-3)


71581 Intraobserver and Interobserver Agreement of Structural and Functional Software Programs for Measuring Glaucoma Progression
Martinez-de-la-Casa JM
JAMA ophthalmology 2017; 135: 313-319 (IGR: 18-3)


71456 Predicting the Magnitude of Functional and Structural Damage in Glaucoma From Monocular Pupillary Light Responses Using Automated Pupillography
Dasari S
Journal of Glaucoma 2017; 26: 409-414 (IGR: 18-3)


71494 The Proportion of Individuals Likely to Benefit from Customized Optic Nerve Head Structure-Function Mapping
Turpin A
Ophthalmology 2017; 124: 554-561 (IGR: 18-3)


71289 Relationship between Central Retinal Vessel Trunk Location and Visual Field Loss in Glaucoma
Shen LQ
American Journal of Ophthalmology 2017; 176: 53-60 (IGR: 18-3)


71451 Ultra-high resolution profiles of macular intra-retinal layer thicknesses and associations with visual field defects in primary open angle glaucoma
Pan M
Scientific reports 2017; 7: 41100 (IGR: 18-3)


71609 Short-duration transient visual evoked potentials and color reflectivity discretization analysis in glaucoma patients and suspects
Khanna N
International Journal of Ophthalmology 2017; 10: 254-261 (IGR: 18-3)


71248 Evaluation of the Macular Ganglion Cell-Inner Plexiform Layer and the Circumpapillary Retinal Nerve Fiber Layer in Early to Severe Stages of Glaucoma: Correlation with Central Visual Function and Visual Field Indexes
Fuertes I
Ophthalmic Research 2017; 57: 216-223 (IGR: 18-3)


71258 The relationship between central visual field sensitivity and macular ganglion cell/inner plexiform layer thickness in glaucoma
Yu F
British Journal of Ophthalmology 2017; 101: 1052-1058 (IGR: 18-3)


71606 Properties of pattern standard deviation in open-angle glaucoma patients with hemi-optic neuropathy and bi-optic neuropathy
Kim CS
PLoS ONE 2017; 12: e0171960 (IGR: 18-3)


71493 Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect
Suh MH
Ophthalmology 2017; 124: 709-719 (IGR: 18-3)


71262 Retinal Oximetry in Subjects With Glaucomatous Hemifield Asymmetry
Cheng C
Journal of Glaucoma 2017; 26: 367-372 (IGR: 18-3)


71248 Evaluation of the Macular Ganglion Cell-Inner Plexiform Layer and the Circumpapillary Retinal Nerve Fiber Layer in Early to Severe Stages of Glaucoma: Correlation with Central Visual Function and Visual Field Indexes
Polo V
Ophthalmic Research 2017; 57: 216-223 (IGR: 18-3)


71451 Ultra-high resolution profiles of macular intra-retinal layer thicknesses and associations with visual field defects in primary open angle glaucoma
Liu X
Scientific reports 2017; 7: 41100 (IGR: 18-3)


71262 Retinal Oximetry in Subjects With Glaucomatous Hemifield Asymmetry
Nongpiur ME
Journal of Glaucoma 2017; 26: 367-372 (IGR: 18-3)


71456 Predicting the Magnitude of Functional and Structural Damage in Glaucoma From Monocular Pupillary Light Responses Using Automated Pupillography
Reddy HB
Journal of Glaucoma 2017; 26: 409-414 (IGR: 18-3)


71581 Intraobserver and Interobserver Agreement of Structural and Functional Software Programs for Measuring Glaucoma Progression
Rebolleda G
JAMA ophthalmology 2017; 135: 313-319 (IGR: 18-3)


71609 Short-duration transient visual evoked potentials and color reflectivity discretization analysis in glaucoma patients and suspects
Sood N
International Journal of Ophthalmology 2017; 10: 254-261 (IGR: 18-3)


71289 Relationship between Central Retinal Vessel Trunk Location and Visual Field Loss in Glaucoma
Bex PJ
American Journal of Ophthalmology 2017; 176: 53-60 (IGR: 18-3)


71258 The relationship between central visual field sensitivity and macular ganglion cell/inner plexiform layer thickness in glaucoma
Afifi AA
British Journal of Ophthalmology 2017; 101: 1052-1058 (IGR: 18-3)


71411 Bayesian hierarchical modeling of longitudinal glaucomatous visual fields using a two-stage approach
Lemij HG
Statistics in Medicine 2017; 36: 1735-1753 (IGR: 18-3)


71493 Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect
Wu Z
Ophthalmology 2017; 124: 709-719 (IGR: 18-3)


71258 The relationship between central visual field sensitivity and macular ganglion cell/inner plexiform layer thickness in glaucoma
Coleman AL
British Journal of Ophthalmology 2017; 101: 1052-1058 (IGR: 18-3)


71609 Short-duration transient visual evoked potentials and color reflectivity discretization analysis in glaucoma patients and suspects
Molineaux J
International Journal of Ophthalmology 2017; 10: 254-261 (IGR: 18-3)


71262 Retinal Oximetry in Subjects With Glaucomatous Hemifield Asymmetry
Perera SA
Journal of Glaucoma 2017; 26: 367-372 (IGR: 18-3)


71493 Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect
Manalastas PI
Ophthalmology 2017; 124: 709-719 (IGR: 18-3)


71581 Intraobserver and Interobserver Agreement of Structural and Functional Software Programs for Measuring Glaucoma Progression
Ussa F
JAMA ophthalmology 2017; 135: 313-319 (IGR: 18-3)


71451 Ultra-high resolution profiles of macular intra-retinal layer thicknesses and associations with visual field defects in primary open angle glaucoma
Lu F
Scientific reports 2017; 7: 41100 (IGR: 18-3)


71411 Bayesian hierarchical modeling of longitudinal glaucomatous visual fields using a two-stage approach
Lesaffre EM
Statistics in Medicine 2017; 36: 1735-1753 (IGR: 18-3)


71456 Predicting the Magnitude of Functional and Structural Damage in Glaucoma From Monocular Pupillary Light Responses Using Automated Pupillography
Palakurthy M
Journal of Glaucoma 2017; 26: 409-414 (IGR: 18-3)


71248 Evaluation of the Macular Ganglion Cell-Inner Plexiform Layer and the Circumpapillary Retinal Nerve Fiber Layer in Early to Severe Stages of Glaucoma: Correlation with Central Visual Function and Visual Field Indexes
Garcia-Martin E
Ophthalmic Research 2017; 57: 216-223 (IGR: 18-3)


71289 Relationship between Central Retinal Vessel Trunk Location and Visual Field Loss in Glaucoma
Elze T
American Journal of Ophthalmology 2017; 176: 53-60 (IGR: 18-3)


71258 The relationship between central visual field sensitivity and macular ganglion cell/inner plexiform layer thickness in glaucoma
Caprioli J
British Journal of Ophthalmology 2017; 101: 1052-1058 (IGR: 18-3)


71493 Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect
Akagi T
Ophthalmology 2017; 124: 709-719 (IGR: 18-3)


71581 Intraobserver and Interobserver Agreement of Structural and Functional Software Programs for Measuring Glaucoma Progression
García-Granero M
JAMA ophthalmology 2017; 135: 313-319 (IGR: 18-3)


71609 Short-duration transient visual evoked potentials and color reflectivity discretization analysis in glaucoma patients and suspects
Gonzalez A
International Journal of Ophthalmology 2017; 10: 254-261 (IGR: 18-3)


71451 Ultra-high resolution profiles of macular intra-retinal layer thicknesses and associations with visual field defects in primary open angle glaucoma
Shen M
Scientific reports 2017; 7: 41100 (IGR: 18-3)


71456 Predicting the Magnitude of Functional and Structural Damage in Glaucoma From Monocular Pupillary Light Responses Using Automated Pupillography
Riyazuddin M; Rao DA
Journal of Glaucoma 2017; 26: 409-414 (IGR: 18-3)


71493 Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect
Medeiros FA
Ophthalmology 2017; 124: 709-719 (IGR: 18-3)


71258 The relationship between central visual field sensitivity and macular ganglion cell/inner plexiform layer thickness in glaucoma
Nouri-Mahdavi K
British Journal of Ophthalmology 2017; 101: 1052-1058 (IGR: 18-3)


71609 Short-duration transient visual evoked potentials and color reflectivity discretization analysis in glaucoma patients and suspects
Myers JS; Katz LJ
International Journal of Ophthalmology 2017; 10: 254-261 (IGR: 18-3)


71493 Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect
Weinreb RN
Ophthalmology 2017; 124: 709-719 (IGR: 18-3)


69832 Detectability of Visual Field Defects in Glaucoma With High-resolution Perimetry
Numata T
Journal of Glaucoma 2016; 25: 847-853 (IGR: 18-2)


70761 Comparing the Performance of Compass Perimetry With Humphrey Field Analyzer in Eyes With Glaucoma
Rao HL
Journal of Glaucoma 2017; 26: 292-297 (IGR: 18-2)


70019 Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects
Zhang C
PLoS ONE 2016; 11: e0160549 (IGR: 18-2)


70412 Detection and measurement of clinically meaningful visual field progression in clinical trials for glaucoma
De Moraes CG
Progress in Retinal and Eye Research 2017; 56: 107-147 (IGR: 18-2)


69956 Changes of visual-field global indices after cataract surgery in primary open-angle glaucoma patients
Seol BR
Japanese Journal of Ophthalmology 2016; 60: 439-445 (IGR: 18-2)


70713 Structural and functional assessment of macula to diagnose glaucoma
Rao HL
Eye 2017; 31: 593-600 (IGR: 18-2)


70720 Improvement of the visual field index in clinical glaucoma care
Cohen SL
Canadian Journal of Ophthalmology 2016; 51: 445-451 (IGR: 18-2)


70404 Lack of Visual Field Improvement After Initiation of Intraocular Pressure Reducing Treatment in the Early Manifest Glaucoma Trial
Bengtsson B
Investigative Ophthalmology and Visual Science 2016; 57: 5611-5615 (IGR: 18-2)


70122 The retest distribution of the visual field summary index mean deviation is close to normal
Anderson AJ
Ophthalmic and Physiological Optics 2016; 36: 558-565 (IGR: 18-2)


70419 Detection of glaucoma progression by perimetry and optic disc photography at different stages of the disease: results from the Early Manifest Glaucoma Trial
Öhnell H
Acta Ophthalmologica 2017; 95: 281-287 (IGR: 18-2)


70524 Diagnostic ability of Humphrey perimetry, Octopus perimetry, and optical coherence tomography for glaucomatous optic neuropathy
Monsalve B
Eye 2017; 31: 443-451 (IGR: 18-2)


70552 A Comparison of Perimetric Results from a Tablet Perimeter and Humphrey Field Analyzer in Glaucoma Patients
Kong YX
Translational vision science & technology 2016; 5: 2 (IGR: 18-2)


70381 Optic Disc Characteristics and Visual Field Progression in Normal Tension Glaucoma Patients With Tilted Optic Discs
Kwun Y
Journal of Glaucoma 2016; 25: 901-907 (IGR: 18-2)


70769 Macular Ganglion Cell Layer Assessment to Detect Glaucomatous Central Visual Field Progression
Moon H
Korean Journal of Ophthalmology 2016; 30: 451-458 (IGR: 18-2)


70927 Assessing Precision of Hodapp-Parrish-Anderson Criteria for Staging Early Glaucomatous Damage in an Ocular Hypertension Cohort: A Retrospective Study
Chakravarti T
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2017; 6: 21-27 (IGR: 18-2)


70551 Significant Glaucomatous Visual Field Progression in the First Two Years: What Does It Mean?
Anderson AJ
Translational vision science & technology 2016; 5: 1 (IGR: 18-2)


70089 A novel method to predict visual field progression more accurately, using intraocular pressure measurements in glaucoma patients

Scientific reports 2016; 6: 31728 (IGR: 18-2)


69945 Clinical Correlates of Computationally Derived Visual Field Defect Archetypes in Patients from a Glaucoma Clinic
Cai S
Current Eye Research 2016; 0: 1-7 (IGR: 18-2)


70590 "Point by point" approach to structure-function correlation of glaucoma on the ganglion cell complex in the posterior pole
Zeitoun M
Journal Français d'Ophtalmologie 2017; 40: 44-60 (IGR: 18-2)


70389 Relationship between visual field changes and optical coherence tomography measurements in advanced open-angle glaucoma
Kostianeva SS
Folia Medica 2016; 58: 174-181 (IGR: 18-2)


70496 The Relation of White-on-White Standard Automated Perimetry, Short Wavelength Perimetry, and Optic Coherence Tomography Parameters in Ocular Hypertension
Başkan C
Journal of Glaucoma 2016; 25: 939-945 (IGR: 18-2)


70212 Macular SD-OCT Outcome Measures: Comparison of Local Structure-Function Relationships and Dynamic Range
Miraftabi A
Investigative Ophthalmology and Visual Science 2016; 57: 4815-4823 (IGR: 18-2)


70676 Comparison of retinal vessel diameter between open-angle glaucoma patients with initial parafoveal scotoma and peripheral nasal step
Yoo E
American Journal of Ophthalmology 2017; 175: 30-36 (IGR: 18-2)


70174 Evaluation of the progression of visual field damage in patients suffering from early manifest glaucoma
Perdicchi A
Clinical Ophthalmology 2016; 10: 1647-1651 (IGR: 18-2)


70568 Macular Thickness Assessment in Patients with Glaucoma and Its Correlation with Visual Fields
Mota M
Journal of Current Glaucoma Practice 2016; 10: 85-90 (IGR: 18-2)


70899 Association of Myopic Deformation of Optic Disc with Visual Field Progression in Paired Eyes with Open-Angle Glaucoma
Sawada Y
PLoS ONE 2017; 12: e0170733 (IGR: 18-2)


70478 Rates of glaucomatous visual field change after trabeculectomy
Baril C
British Journal of Ophthalmology 2017; 101: 874-878 (IGR: 18-2)


70623 Evaluation of Visual Field Test Parameters after Artificial Tear Administration in Patients with Glaucoma and Dry Eye
Özyol P
Seminars in Ophthalmology 2016; 0: 1-5 (IGR: 18-2)


70916 Corneal Biomechanical Parameters and Asymmetric Visual Field Damage in Patients with Untreated Normal Tension Glaucoma
Li BB
Chinese Medical Journal 2017; 130: 334-339 (IGR: 18-2)


70693 Idiopathic Acquired Temporal Wedge Visual Field Defects
Gilhooley MJ
Neuro-Ophthalmology 2016; 40: 157-164 (IGR: 18-2)


70079 Association between Intraocular Pressure and Rates of Retinal Nerve Fiber Layer Loss Measured by Optical Coherence Tomography
Diniz-Filho A
Ophthalmology 2016; 123: 2058-2065 (IGR: 18-2)


70562 The evaluation of binocular visual field and clinical application of glaucoma
Wu YL
Chinese Journal of Ophthalmology 2016; 52: 872-875 (IGR: 18-2)


70349 Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma
Yarmohammadi A
Ophthalmology 2016; 123: 2498-2508 (IGR: 18-2)


70106 Association of Myopic Optic Disc Deformation with Visual Field Defects in Paired Eyes with Open-Angle Glaucoma: A Cross-Sectional Study
Sawada Y
PLoS ONE 2016; 11: e0161961 (IGR: 18-2)


69949 Difference in glaucoma progression between the first and second eye after consecutive bilateral glaucoma surgery in patients with bilateral uveitic glaucoma
Din NM
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2439-2448 (IGR: 18-2)


70703 Relationship between Psychophysical Measures of Retinal Ganglion Cell Density and In Vivo Measures of Cone Density in Glaucoma
Matlach J
Ophthalmology 2017; 124: 310-319 (IGR: 18-2)


70842 Comparison of Visual Field Measurement with Heidelberg Edge Perimeter and Humphrey Visual Field Analyzer in Patients with Ocular Hypertension
Kaczorowski K
Advances in clinical and experimental medicine : official organ Wroclaw Medical University 2016; 25: 937-944 (IGR: 18-2)


69957 Early changes of brain connectivity in primary open angle glaucoma
Frezzotti P
Human Brain Mapping 2016; 37: 4581-4596 (IGR: 18-2)


70091 Visual Field Testing with Head-Mounted Perimeter 'imo'
Matsumoto C
PLoS ONE 2016; 11: e0161974 (IGR: 18-2)


70228 Central Field Index Versus Visual Field Index for Central Visual Function in Stable Glaucoma
Rao A
Journal of Glaucoma 2017; 26: 1-7 (IGR: 18-2)


69790 Influence of Test Strategy on Octopus Perimeter Cluster Mean Defect Values: Adaptive Bracketing Normal Strategy Versus Tendency-oriented Perimetry
Holló G
Journal of Glaucoma 2016; 25: 830-834 (IGR: 18-2)


70713 Structural and functional assessment of macula to diagnose glaucoma
Hussain RS
Eye 2017; 31: 593-600 (IGR: 18-2)


70349 Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma
Zangwill LM
Ophthalmology 2016; 123: 2498-2508 (IGR: 18-2)


70079 Association between Intraocular Pressure and Rates of Retinal Nerve Fiber Layer Loss Measured by Optical Coherence Tomography
Abe RY
Ophthalmology 2016; 123: 2058-2065 (IGR: 18-2)


70562 The evaluation of binocular visual field and clinical application of glaucoma
Zhong H
Chinese Journal of Ophthalmology 2016; 52: 872-875 (IGR: 18-2)


70212 Macular SD-OCT Outcome Measures: Comparison of Local Structure-Function Relationships and Dynamic Range
Amini N
Investigative Ophthalmology and Visual Science 2016; 57: 4815-4823 (IGR: 18-2)


70842 Comparison of Visual Field Measurement with Heidelberg Edge Perimeter and Humphrey Visual Field Analyzer in Patients with Ocular Hypertension
Mulak M
Advances in clinical and experimental medicine : official organ Wroclaw Medical University 2016; 25: 937-944 (IGR: 18-2)


70676 Comparison of retinal vessel diameter between open-angle glaucoma patients with initial parafoveal scotoma and peripheral nasal step
Yoo C
American Journal of Ophthalmology 2017; 175: 30-36 (IGR: 18-2)


70524 Diagnostic ability of Humphrey perimetry, Octopus perimetry, and optical coherence tomography for glaucomatous optic neuropathy
Ferreras A
Eye 2017; 31: 443-451 (IGR: 18-2)


70568 Macular Thickness Assessment in Patients with Glaucoma and Its Correlation with Visual Fields
Vaz FT
Journal of Current Glaucoma Practice 2016; 10: 85-90 (IGR: 18-2)


70381 Optic Disc Characteristics and Visual Field Progression in Normal Tension Glaucoma Patients With Tilted Optic Discs
Han G
Journal of Glaucoma 2016; 25: 901-907 (IGR: 18-2)


70769 Macular Ganglion Cell Layer Assessment to Detect Glaucomatous Central Visual Field Progression
Lee JY
Korean Journal of Ophthalmology 2016; 30: 451-458 (IGR: 18-2)


70899 Association of Myopic Deformation of Optic Disc with Visual Field Progression in Paired Eyes with Open-Angle Glaucoma
Hangai M
PLoS ONE 2017; 12: e0170733 (IGR: 18-2)


70174 Evaluation of the progression of visual field damage in patients suffering from early manifest glaucoma
Abdolrahimzadeh S
Clinical Ophthalmology 2016; 10: 1647-1651 (IGR: 18-2)


69926 Structure-Functional Parameters in Differentiating Between Patients With Different Degrees of Glaucoma
Montorio D
Journal of Glaucoma 2016; 25: e884-e888 (IGR: 18-2)


70106 Association of Myopic Optic Disc Deformation with Visual Field Defects in Paired Eyes with Open-Angle Glaucoma: A Cross-Sectional Study
Hangai M
PLoS ONE 2016; 11: e0161961 (IGR: 18-2)


70916 Corneal Biomechanical Parameters and Asymmetric Visual Field Damage in Patients with Untreated Normal Tension Glaucoma
Cai Y
Chinese Medical Journal 2017; 130: 334-339 (IGR: 18-2)


70478 Rates of glaucomatous visual field change after trabeculectomy
Vianna JR
British Journal of Ophthalmology 2017; 101: 874-878 (IGR: 18-2)


70412 Detection and measurement of clinically meaningful visual field progression in clinical trials for glaucoma
Liebmann JM
Progress in Retinal and Eye Research 2017; 56: 107-147 (IGR: 18-2)


70122 The retest distribution of the visual field summary index mean deviation is close to normal
Cheng AC
Ophthalmic and Physiological Optics 2016; 36: 558-565 (IGR: 18-2)


70019 Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects
Tatham AJ
PLoS ONE 2016; 11: e0160549 (IGR: 18-2)


70419 Detection of glaucoma progression by perimetry and optic disc photography at different stages of the disease: results from the Early Manifest Glaucoma Trial
Heijl A
Acta Ophthalmologica 2017; 95: 281-287 (IGR: 18-2)


70720 Improvement of the visual field index in clinical glaucoma care
Rosen AI
Canadian Journal of Ophthalmology 2016; 51: 445-451 (IGR: 18-2)


69945 Clinical Correlates of Computationally Derived Visual Field Defect Archetypes in Patients from a Glaucoma Clinic
Elze T
Current Eye Research 2016; 0: 1-7 (IGR: 18-2)


69956 Changes of visual-field global indices after cataract surgery in primary open-angle glaucoma patients
Jeoung JW
Japanese Journal of Ophthalmology 2016; 60: 439-445 (IGR: 18-2)


70703 Relationship between Psychophysical Measures of Retinal Ganglion Cell Density and In Vivo Measures of Cone Density in Glaucoma
Mulholland PJ
Ophthalmology 2017; 124: 310-319 (IGR: 18-2)


70228 Central Field Index Versus Visual Field Index for Central Visual Function in Stable Glaucoma
Padhy D
Journal of Glaucoma 2017; 26: 1-7 (IGR: 18-2)


69832 Detectability of Visual Field Defects in Glaucoma With High-resolution Perimetry
Matsumoto C
Journal of Glaucoma 2016; 25: 847-853 (IGR: 18-2)


70761 Comparing the Performance of Compass Perimetry With Humphrey Field Analyzer in Eyes With Glaucoma
Raveendran S
Journal of Glaucoma 2017; 26: 292-297 (IGR: 18-2)


70389 Relationship between visual field changes and optical coherence tomography measurements in advanced open-angle glaucoma
Konareva-Kostianeva MI
Folia Medica 2016; 58: 174-181 (IGR: 18-2)


70552 A Comparison of Perimetric Results from a Tablet Perimeter and Humphrey Field Analyzer in Glaucoma Patients
He M
Translational vision science & technology 2016; 5: 2 (IGR: 18-2)


70091 Visual Field Testing with Head-Mounted Perimeter 'imo'
Yamao S
PLoS ONE 2016; 11: e0161974 (IGR: 18-2)


70623 Evaluation of Visual Field Test Parameters after Artificial Tear Administration in Patients with Glaucoma and Dry Eye
Özyol E
Seminars in Ophthalmology 2016; 0: 1-5 (IGR: 18-2)


70404 Lack of Visual Field Improvement After Initiation of Intraocular Pressure Reducing Treatment in the Early Manifest Glaucoma Trial
Heijl A
Investigative Ophthalmology and Visual Science 2016; 57: 5611-5615 (IGR: 18-2)


69949 Difference in glaucoma progression between the first and second eye after consecutive bilateral glaucoma surgery in patients with bilateral uveitic glaucoma
Talat L
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2439-2448 (IGR: 18-2)


70496 The Relation of White-on-White Standard Automated Perimetry, Short Wavelength Perimetry, and Optic Coherence Tomography Parameters in Ocular Hypertension
Köz ÖG
Journal of Glaucoma 2016; 25: 939-945 (IGR: 18-2)


70693 Idiopathic Acquired Temporal Wedge Visual Field Defects
Fraser CL
Neuro-Ophthalmology 2016; 40: 157-164 (IGR: 18-2)


69957 Early changes of brain connectivity in primary open angle glaucoma
Giorgio A
Human Brain Mapping 2016; 37: 4581-4596 (IGR: 18-2)


70389 Relationship between visual field changes and optical coherence tomography measurements in advanced open-angle glaucoma
Atanassov MA
Folia Medica 2016; 58: 174-181 (IGR: 18-2)


70106 Association of Myopic Optic Disc Deformation with Visual Field Defects in Paired Eyes with Open-Angle Glaucoma: A Cross-Sectional Study
Ishikawa M
PLoS ONE 2016; 11: e0161961 (IGR: 18-2)


70228 Central Field Index Versus Visual Field Index for Central Visual Function in Stable Glaucoma
Mudunuri H
Journal of Glaucoma 2017; 26: 1-7 (IGR: 18-2)


70079 Association between Intraocular Pressure and Rates of Retinal Nerve Fiber Layer Loss Measured by Optical Coherence Tomography
Zangwill LM
Ophthalmology 2016; 123: 2058-2065 (IGR: 18-2)


70552 A Comparison of Perimetric Results from a Tablet Perimeter and Humphrey Field Analyzer in Glaucoma Patients
Crowston JG
Translational vision science & technology 2016; 5: 2 (IGR: 18-2)


69926 Structure-Functional Parameters in Differentiating Between Patients With Different Degrees of Glaucoma
Romano MR
Journal of Glaucoma 2016; 25: e884-e888 (IGR: 18-2)


69945 Clinical Correlates of Computationally Derived Visual Field Defect Archetypes in Patients from a Glaucoma Clinic
Bex PJ
Current Eye Research 2016; 0: 1-7 (IGR: 18-2)


70623 Evaluation of Visual Field Test Parameters after Artificial Tear Administration in Patients with Glaucoma and Dry Eye
Karalezli A
Seminars in Ophthalmology 2016; 0: 1-5 (IGR: 18-2)


70693 Idiopathic Acquired Temporal Wedge Visual Field Defects
Wong S
Neuro-Ophthalmology 2016; 40: 157-164 (IGR: 18-2)


70842 Comparison of Visual Field Measurement with Heidelberg Edge Perimeter and Humphrey Visual Field Analyzer in Patients with Ocular Hypertension
Szumny D
Advances in clinical and experimental medicine : official organ Wroclaw Medical University 2016; 25: 937-944 (IGR: 18-2)


70720 Improvement of the visual field index in clinical glaucoma care
Tan X
Canadian Journal of Ophthalmology 2016; 51: 445-451 (IGR: 18-2)


70349 Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma
Diniz-Filho A
Ophthalmology 2016; 123: 2498-2508 (IGR: 18-2)


69956 Changes of visual-field global indices after cataract surgery in primary open-angle glaucoma patients
Park KH
Japanese Journal of Ophthalmology 2016; 60: 439-445 (IGR: 18-2)


69832 Detectability of Visual Field Defects in Glaucoma With High-resolution Perimetry
Okuyama S
Journal of Glaucoma 2016; 25: 847-853 (IGR: 18-2)


70568 Macular Thickness Assessment in Patients with Glaucoma and Its Correlation with Visual Fields
Ramalho M
Journal of Current Glaucoma Practice 2016; 10: 85-90 (IGR: 18-2)


70091 Visual Field Testing with Head-Mounted Perimeter 'imo'
Nomoto H
PLoS ONE 2016; 11: e0161974 (IGR: 18-2)


69949 Difference in glaucoma progression between the first and second eye after consecutive bilateral glaucoma surgery in patients with bilateral uveitic glaucoma
Isa H
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2439-2448 (IGR: 18-2)


70916 Corneal Biomechanical Parameters and Asymmetric Visual Field Damage in Patients with Untreated Normal Tension Glaucoma
Pan YZ
Chinese Medical Journal 2017; 130: 334-339 (IGR: 18-2)


70524 Diagnostic ability of Humphrey perimetry, Octopus perimetry, and optical coherence tomography for glaucomatous optic neuropathy
Calvo P
Eye 2017; 31: 443-451 (IGR: 18-2)


70761 Comparing the Performance of Compass Perimetry With Humphrey Field Analyzer in Eyes With Glaucoma
James V
Journal of Glaucoma 2017; 26: 292-297 (IGR: 18-2)


70412 Detection and measurement of clinically meaningful visual field progression in clinical trials for glaucoma
Levin LA
Progress in Retinal and Eye Research 2017; 56: 107-147 (IGR: 18-2)


70122 The retest distribution of the visual field summary index mean deviation is close to normal
Lau S
Ophthalmic and Physiological Optics 2016; 36: 558-565 (IGR: 18-2)


70174 Evaluation of the progression of visual field damage in patients suffering from early manifest glaucoma
Cutini A
Clinical Ophthalmology 2016; 10: 1647-1651 (IGR: 18-2)


69957 Early changes of brain connectivity in primary open angle glaucoma
Toto F
Human Brain Mapping 2016; 37: 4581-4596 (IGR: 18-2)


70713 Structural and functional assessment of macula to diagnose glaucoma
Januwada M
Eye 2017; 31: 593-600 (IGR: 18-2)


70496 The Relation of White-on-White Standard Automated Perimetry, Short Wavelength Perimetry, and Optic Coherence Tomography Parameters in Ocular Hypertension
Duman R
Journal of Glaucoma 2016; 25: 939-945 (IGR: 18-2)


70212 Macular SD-OCT Outcome Measures: Comparison of Local Structure-Function Relationships and Dynamic Range
Morales E
Investigative Ophthalmology and Visual Science 2016; 57: 4815-4823 (IGR: 18-2)


70676 Comparison of retinal vessel diameter between open-angle glaucoma patients with initial parafoveal scotoma and peripheral nasal step
Lee TE
American Journal of Ophthalmology 2017; 175: 30-36 (IGR: 18-2)


70381 Optic Disc Characteristics and Visual Field Progression in Normal Tension Glaucoma Patients With Tilted Optic Discs
Choy YJ
Journal of Glaucoma 2016; 25: 901-907 (IGR: 18-2)


70478 Rates of glaucomatous visual field change after trabeculectomy
Shuba LM
British Journal of Ophthalmology 2017; 101: 874-878 (IGR: 18-2)


70769 Macular Ganglion Cell Layer Assessment to Detect Glaucomatous Central Visual Field Progression
Sung KR
Korean Journal of Ophthalmology 2016; 30: 451-458 (IGR: 18-2)


70899 Association of Myopic Deformation of Optic Disc with Visual Field Progression in Paired Eyes with Open-Angle Glaucoma
Ishikawa M
PLoS ONE 2017; 12: e0170733 (IGR: 18-2)


70703 Relationship between Psychophysical Measures of Retinal Ganglion Cell Density and In Vivo Measures of Cone Density in Glaucoma
Cilkova M
Ophthalmology 2017; 124: 310-319 (IGR: 18-2)


70019 Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects
Abe RY
PLoS ONE 2016; 11: e0160549 (IGR: 18-2)


70419 Detection of glaucoma progression by perimetry and optic disc photography at different stages of the disease: results from the Early Manifest Glaucoma Trial
Anderson H
Acta Ophthalmologica 2017; 95: 281-287 (IGR: 18-2)


69945 Clinical Correlates of Computationally Derived Visual Field Defect Archetypes in Patients from a Glaucoma Clinic
Wiggs JL
Current Eye Research 2016; 0: 1-7 (IGR: 18-2)


70916 Corneal Biomechanical Parameters and Asymmetric Visual Field Damage in Patients with Untreated Normal Tension Glaucoma
Li M
Chinese Medical Journal 2017; 130: 334-339 (IGR: 18-2)


69949 Difference in glaucoma progression between the first and second eye after consecutive bilateral glaucoma surgery in patients with bilateral uveitic glaucoma
Tomkins-Netzer O
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2439-2448 (IGR: 18-2)


70478 Rates of glaucomatous visual field change after trabeculectomy
Rafuse PE
British Journal of Ophthalmology 2017; 101: 874-878 (IGR: 18-2)


70496 The Relation of White-on-White Standard Automated Perimetry, Short Wavelength Perimetry, and Optic Coherence Tomography Parameters in Ocular Hypertension
Gökçe SE
Journal of Glaucoma 2016; 25: 939-945 (IGR: 18-2)


70212 Macular SD-OCT Outcome Measures: Comparison of Local Structure-Function Relationships and Dynamic Range
Henry S
Investigative Ophthalmology and Visual Science 2016; 57: 4815-4823 (IGR: 18-2)


70079 Association between Intraocular Pressure and Rates of Retinal Nerve Fiber Layer Loss Measured by Optical Coherence Tomography
Gracitelli CP
Ophthalmology 2016; 123: 2058-2065 (IGR: 18-2)


69832 Detectability of Visual Field Defects in Glaucoma With High-resolution Perimetry
Tanabe F
Journal of Glaucoma 2016; 25: 847-853 (IGR: 18-2)


70676 Comparison of retinal vessel diameter between open-angle glaucoma patients with initial parafoveal scotoma and peripheral nasal step
Kim YY
American Journal of Ophthalmology 2017; 175: 30-36 (IGR: 18-2)


70122 The retest distribution of the visual field summary index mean deviation is close to normal
Le-Pham A
Ophthalmic and Physiological Optics 2016; 36: 558-565 (IGR: 18-2)


70899 Association of Myopic Deformation of Optic Disc with Visual Field Progression in Paired Eyes with Open-Angle Glaucoma
Yoshitomi T
PLoS ONE 2017; 12: e0170733 (IGR: 18-2)


70693 Idiopathic Acquired Temporal Wedge Visual Field Defects
Hickman SJ
Neuro-Ophthalmology 2016; 40: 157-164 (IGR: 18-2)


70713 Structural and functional assessment of macula to diagnose glaucoma
Pillutla LN
Eye 2017; 31: 593-600 (IGR: 18-2)


70349 Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma
Suh MH
Ophthalmology 2016; 123: 2498-2508 (IGR: 18-2)


70703 Relationship between Psychophysical Measures of Retinal Ganglion Cell Density and In Vivo Measures of Cone Density in Glaucoma
Chopra R
Ophthalmology 2017; 124: 310-319 (IGR: 18-2)


69957 Early changes of brain connectivity in primary open angle glaucoma
De Leucio A
Human Brain Mapping 2016; 37: 4581-4596 (IGR: 18-2)


70552 A Comparison of Perimetric Results from a Tablet Perimeter and Humphrey Field Analyzer in Glaucoma Patients
Vingrys AJ
Translational vision science & technology 2016; 5: 2 (IGR: 18-2)


70091 Visual Field Testing with Head-Mounted Perimeter 'imo'
Takada S
PLoS ONE 2016; 11: e0161974 (IGR: 18-2)


70381 Optic Disc Characteristics and Visual Field Progression in Normal Tension Glaucoma Patients With Tilted Optic Discs
Han JC
Journal of Glaucoma 2016; 25: 901-907 (IGR: 18-2)


70106 Association of Myopic Optic Disc Deformation with Visual Field Defects in Paired Eyes with Open-Angle Glaucoma: A Cross-Sectional Study
Yoshitomi T
PLoS ONE 2016; 11: e0161961 (IGR: 18-2)


70769 Macular Ganglion Cell Layer Assessment to Detect Glaucomatous Central Visual Field Progression
Lee JE
Korean Journal of Ophthalmology 2016; 30: 451-458 (IGR: 18-2)


70524 Diagnostic ability of Humphrey perimetry, Octopus perimetry, and optical coherence tomography for glaucomatous optic neuropathy
Urcola JA
Eye 2017; 31: 443-451 (IGR: 18-2)


70019 Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects
Hammel N
PLoS ONE 2016; 11: e0160549 (IGR: 18-2)


70419 Detection of glaucoma progression by perimetry and optic disc photography at different stages of the disease: results from the Early Manifest Glaucoma Trial
Bengtsson B
Acta Ophthalmologica 2017; 95: 281-287 (IGR: 18-2)


70228 Central Field Index Versus Visual Field Index for Central Visual Function in Stable Glaucoma
Roy AK
Journal of Glaucoma 2017; 26: 1-7 (IGR: 18-2)


70720 Improvement of the visual field index in clinical glaucoma care
Kingdom FA
Canadian Journal of Ophthalmology 2016; 51: 445-451 (IGR: 18-2)


69926 Structure-Functional Parameters in Differentiating Between Patients With Different Degrees of Glaucoma
Cardone DM
Journal of Glaucoma 2016; 25: e884-e888 (IGR: 18-2)


70761 Comparing the Performance of Compass Perimetry With Humphrey Field Analyzer in Eyes With Glaucoma
Dasari S
Journal of Glaucoma 2017; 26: 292-297 (IGR: 18-2)


70568 Macular Thickness Assessment in Patients with Glaucoma and Its Correlation with Visual Fields
Pedrosa C
Journal of Current Glaucoma Practice 2016; 10: 85-90 (IGR: 18-2)


70842 Comparison of Visual Field Measurement with Heidelberg Edge Perimeter and Humphrey Visual Field Analyzer in Patients with Ocular Hypertension
Baranowska M
Advances in clinical and experimental medicine : official organ Wroclaw Medical University 2016; 25: 937-944 (IGR: 18-2)


70174 Evaluation of the progression of visual field damage in patients suffering from early manifest glaucoma
Ciarnella A
Clinical Ophthalmology 2016; 10: 1647-1651 (IGR: 18-2)


69949 Difference in glaucoma progression between the first and second eye after consecutive bilateral glaucoma surgery in patients with bilateral uveitic glaucoma
Barton K
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2439-2448 (IGR: 18-2)


70122 The retest distribution of the visual field summary index mean deviation is close to normal
Liu V
Ophthalmic and Physiological Optics 2016; 36: 558-565 (IGR: 18-2)


69832 Detectability of Visual Field Defects in Glaucoma With High-resolution Perimetry
Hashimoto S
Journal of Glaucoma 2016; 25: 847-853 (IGR: 18-2)


70019 Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects
Belghith A
PLoS ONE 2016; 11: e0160549 (IGR: 18-2)


70693 Idiopathic Acquired Temporal Wedge Visual Field Defects
Plant GT
Neuro-Ophthalmology 2016; 40: 157-164 (IGR: 18-2)


69957 Early changes of brain connectivity in primary open angle glaucoma
De Stefano N
Human Brain Mapping 2016; 37: 4581-4596 (IGR: 18-2)


70091 Visual Field Testing with Head-Mounted Perimeter 'imo'
Okuyama S
PLoS ONE 2016; 11: e0161974 (IGR: 18-2)


70761 Comparing the Performance of Compass Perimetry With Humphrey Field Analyzer in Eyes With Glaucoma
Palakurthy M
Journal of Glaucoma 2017; 26: 292-297 (IGR: 18-2)


70568 Macular Thickness Assessment in Patients with Glaucoma and Its Correlation with Visual Fields
Lisboa M
Journal of Current Glaucoma Practice 2016; 10: 85-90 (IGR: 18-2)


70703 Relationship between Psychophysical Measures of Retinal Ganglion Cell Density and In Vivo Measures of Cone Density in Glaucoma
Shah N
Ophthalmology 2017; 124: 310-319 (IGR: 18-2)


70381 Optic Disc Characteristics and Visual Field Progression in Normal Tension Glaucoma Patients With Tilted Optic Discs
Kee C
Journal of Glaucoma 2016; 25: 901-907 (IGR: 18-2)


70713 Structural and functional assessment of macula to diagnose glaucoma
Begum VU
Eye 2017; 31: 593-600 (IGR: 18-2)


70228 Central Field Index Versus Visual Field Index for Central Visual Function in Stable Glaucoma
Sarangi SP
Journal of Glaucoma 2017; 26: 1-7 (IGR: 18-2)


69926 Structure-Functional Parameters in Differentiating Between Patients With Different Degrees of Glaucoma
Minervino C
Journal of Glaucoma 2016; 25: e884-e888 (IGR: 18-2)


70496 The Relation of White-on-White Standard Automated Perimetry, Short Wavelength Perimetry, and Optic Coherence Tomography Parameters in Ocular Hypertension
Yarangümeli AA
Journal of Glaucoma 2016; 25: 939-945 (IGR: 18-2)


70842 Comparison of Visual Field Measurement with Heidelberg Edge Perimeter and Humphrey Visual Field Analyzer in Patients with Ocular Hypertension
Jakubaszko-Jabłońska J
Advances in clinical and experimental medicine : official organ Wroclaw Medical University 2016; 25: 937-944 (IGR: 18-2)


70478 Rates of glaucomatous visual field change after trabeculectomy
Chauhan BC
British Journal of Ophthalmology 2017; 101: 874-878 (IGR: 18-2)


69945 Clinical Correlates of Computationally Derived Visual Field Defect Archetypes in Patients from a Glaucoma Clinic
Pasquale LR
Current Eye Research 2016; 0: 1-7 (IGR: 18-2)


70916 Corneal Biomechanical Parameters and Asymmetric Visual Field Damage in Patients with Untreated Normal Tension Glaucoma
Qiao RH
Chinese Medical Journal 2017; 130: 334-339 (IGR: 18-2)


70174 Evaluation of the progression of visual field damage in patients suffering from early manifest glaucoma
Scuderi GL
Clinical Ophthalmology 2016; 10: 1647-1651 (IGR: 18-2)


70524 Diagnostic ability of Humphrey perimetry, Octopus perimetry, and optical coherence tomography for glaucomatous optic neuropathy
Figus M
Eye 2017; 31: 443-451 (IGR: 18-2)


70079 Association between Intraocular Pressure and Rates of Retinal Nerve Fiber Layer Loss Measured by Optical Coherence Tomography
Weinreb RN
Ophthalmology 2016; 123: 2058-2065 (IGR: 18-2)


70349 Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma
Yousefi S
Ophthalmology 2016; 123: 2498-2508 (IGR: 18-2)


70212 Macular SD-OCT Outcome Measures: Comparison of Local Structure-Function Relationships and Dynamic Range
Yu F
Investigative Ophthalmology and Visual Science 2016; 57: 4815-4823 (IGR: 18-2)


70524 Diagnostic ability of Humphrey perimetry, Octopus perimetry, and optical coherence tomography for glaucomatous optic neuropathy
Monsalve J
Eye 2017; 31: 443-451 (IGR: 18-2)


70703 Relationship between Psychophysical Measures of Retinal Ganglion Cell Density and In Vivo Measures of Cone Density in Glaucoma
Redmond T
Ophthalmology 2017; 124: 310-319 (IGR: 18-2)


70496 The Relation of White-on-White Standard Automated Perimetry, Short Wavelength Perimetry, and Optic Coherence Tomography Parameters in Ocular Hypertension
Kural G
Journal of Glaucoma 2016; 25: 939-945 (IGR: 18-2)


70349 Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma
Saunders LJ
Ophthalmology 2016; 123: 2498-2508 (IGR: 18-2)


70916 Corneal Biomechanical Parameters and Asymmetric Visual Field Damage in Patients with Untreated Normal Tension Glaucoma
Fang Y
Chinese Medical Journal 2017; 130: 334-339 (IGR: 18-2)


70713 Structural and functional assessment of macula to diagnose glaucoma
Chaitanya A
Eye 2017; 31: 593-600 (IGR: 18-2)


69949 Difference in glaucoma progression between the first and second eye after consecutive bilateral glaucoma surgery in patients with bilateral uveitic glaucoma
Lightman S
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2439-2448 (IGR: 18-2)


70212 Macular SD-OCT Outcome Measures: Comparison of Local Structure-Function Relationships and Dynamic Range
Afifi A
Investigative Ophthalmology and Visual Science 2016; 57: 4815-4823 (IGR: 18-2)


70228 Central Field Index Versus Visual Field Index for Central Visual Function in Stable Glaucoma
Das G
Journal of Glaucoma 2017; 26: 1-7 (IGR: 18-2)


70478 Rates of glaucomatous visual field change after trabeculectomy
Nicolela MT
British Journal of Ophthalmology 2017; 101: 874-878 (IGR: 18-2)


70761 Comparing the Performance of Compass Perimetry With Humphrey Field Analyzer in Eyes With Glaucoma
Reddy HB
Journal of Glaucoma 2017; 26: 292-297 (IGR: 18-2)


70842 Comparison of Visual Field Measurement with Heidelberg Edge Perimeter and Humphrey Visual Field Analyzer in Patients with Ocular Hypertension
Misiuk-Hojło M
Advances in clinical and experimental medicine : official organ Wroclaw Medical University 2016; 25: 937-944 (IGR: 18-2)


69832 Detectability of Visual Field Defects in Glaucoma With High-resolution Perimetry
Nomoto H
Journal of Glaucoma 2016; 25: 847-853 (IGR: 18-2)


70019 Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects
Weinreb RN
PLoS ONE 2016; 11: e0160549 (IGR: 18-2)


70079 Association between Intraocular Pressure and Rates of Retinal Nerve Fiber Layer Loss Measured by Optical Coherence Tomography
Girkin CA
Ophthalmology 2016; 123: 2058-2065 (IGR: 18-2)


69926 Structure-Functional Parameters in Differentiating Between Patients With Different Degrees of Glaucoma
Reibaldi M
Journal of Glaucoma 2016; 25: e884-e888 (IGR: 18-2)


70091 Visual Field Testing with Head-Mounted Perimeter 'imo'
Kimura S
PLoS ONE 2016; 11: e0161974 (IGR: 18-2)


70568 Macular Thickness Assessment in Patients with Glaucoma and Its Correlation with Visual Fields
Kaku P
Journal of Current Glaucoma Practice 2016; 10: 85-90 (IGR: 18-2)


69945 Clinical Correlates of Computationally Derived Visual Field Defect Archetypes in Patients from a Glaucoma Clinic
Shen LQ
Current Eye Research 2016; 0: 1-7 (IGR: 18-2)


70122 The retest distribution of the visual field summary index mean deviation is close to normal
Rahman F
Ophthalmic and Physiological Optics 2016; 36: 558-565 (IGR: 18-2)


70568 Macular Thickness Assessment in Patients with Glaucoma and Its Correlation with Visual Fields
Esperancinha F
Journal of Current Glaucoma Practice 2016; 10: 85-90 (IGR: 18-2)


70091 Visual Field Testing with Head-Mounted Perimeter 'imo'
Yamanaka K
PLoS ONE 2016; 11: e0161974 (IGR: 18-2)


70019 Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects
Medeiros FA
PLoS ONE 2016; 11: e0160549 (IGR: 18-2)


70703 Relationship between Psychophysical Measures of Retinal Ganglion Cell Density and In Vivo Measures of Cone Density in Glaucoma
Dakin SC
Ophthalmology 2017; 124: 310-319 (IGR: 18-2)


70713 Structural and functional assessment of macula to diagnose glaucoma
Senthil S
Eye 2017; 31: 593-600 (IGR: 18-2)


70524 Diagnostic ability of Humphrey perimetry, Octopus perimetry, and optical coherence tomography for glaucomatous optic neuropathy
Frezzotti P
Eye 2017; 31: 443-451 (IGR: 18-2)


70212 Macular SD-OCT Outcome Measures: Comparison of Local Structure-Function Relationships and Dynamic Range
Coleman AL
Investigative Ophthalmology and Visual Science 2016; 57: 4815-4823 (IGR: 18-2)


69926 Structure-Functional Parameters in Differentiating Between Patients With Different Degrees of Glaucoma
Cennamo G
Journal of Glaucoma 2016; 25: e884-e888 (IGR: 18-2)


70761 Comparing the Performance of Compass Perimetry With Humphrey Field Analyzer in Eyes With Glaucoma
Pradhan ZS
Journal of Glaucoma 2017; 26: 292-297 (IGR: 18-2)


70079 Association between Intraocular Pressure and Rates of Retinal Nerve Fiber Layer Loss Measured by Optical Coherence Tomography
Liebmann JM
Ophthalmology 2016; 123: 2058-2065 (IGR: 18-2)


70349 Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma
Belghith A
Ophthalmology 2016; 123: 2498-2508 (IGR: 18-2)


69832 Detectability of Visual Field Defects in Glaucoma With High-resolution Perimetry
Shimomura Y
Journal of Glaucoma 2016; 25: 847-853 (IGR: 18-2)


70916 Corneal Biomechanical Parameters and Asymmetric Visual Field Damage in Patients with Untreated Normal Tension Glaucoma
Tian T
Chinese Medical Journal 2017; 130: 334-339 (IGR: 18-2)


70349 Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma
Manalastas PI
Ophthalmology 2016; 123: 2498-2508 (IGR: 18-2)


70761 Comparing the Performance of Compass Perimetry With Humphrey Field Analyzer in Eyes With Glaucoma
Rao DA
Journal of Glaucoma 2017; 26: 292-297 (IGR: 18-2)


70091 Visual Field Testing with Head-Mounted Perimeter 'imo'
Aihara M
PLoS ONE 2016; 11: e0161974 (IGR: 18-2)


70019 Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects
Liebmann JM
PLoS ONE 2016; 11: e0160549 (IGR: 18-2)


70079 Association between Intraocular Pressure and Rates of Retinal Nerve Fiber Layer Loss Measured by Optical Coherence Tomography
Medeiros FA
Ophthalmology 2016; 123: 2058-2065 (IGR: 18-2)


70703 Relationship between Psychophysical Measures of Retinal Ganglion Cell Density and In Vivo Measures of Cone Density in Glaucoma
Garway-Heath DF
Ophthalmology 2017; 124: 310-319 (IGR: 18-2)


70212 Macular SD-OCT Outcome Measures: Comparison of Local Structure-Function Relationships and Dynamic Range
Caprioli J
Investigative Ophthalmology and Visual Science 2016; 57: 4815-4823 (IGR: 18-2)


70713 Structural and functional assessment of macula to diagnose glaucoma
Garudadri CS
Eye 2017; 31: 593-600 (IGR: 18-2)


70091 Visual Field Testing with Head-Mounted Perimeter 'imo'
Shimomura Y
PLoS ONE 2016; 11: e0161974 (IGR: 18-2)


70212 Macular SD-OCT Outcome Measures: Comparison of Local Structure-Function Relationships and Dynamic Range
Nouri-Mahdavi K
Investigative Ophthalmology and Visual Science 2016; 57: 4815-4823 (IGR: 18-2)


70349 Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma
Medeiros FA
Ophthalmology 2016; 123: 2498-2508 (IGR: 18-2)


70019 Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects
Girkin CA
PLoS ONE 2016; 11: e0160549 (IGR: 18-2)


70761 Comparing the Performance of Compass Perimetry With Humphrey Field Analyzer in Eyes With Glaucoma
Puttaiah NK
Journal of Glaucoma 2017; 26: 292-297 (IGR: 18-2)


70703 Relationship between Psychophysical Measures of Retinal Ganglion Cell Density and In Vivo Measures of Cone Density in Glaucoma
Anderson RS
Ophthalmology 2017; 124: 310-319 (IGR: 18-2)


70761 Comparing the Performance of Compass Perimetry With Humphrey Field Analyzer in Eyes With Glaucoma
Devi S
Journal of Glaucoma 2017; 26: 292-297 (IGR: 18-2)


70349 Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma
Weinreb RN
Ophthalmology 2016; 123: 2498-2508 (IGR: 18-2)


70019 Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects
Zangwill LM
PLoS ONE 2016; 11: e0160549 (IGR: 18-2)


69051 Visual outcome in Sturge-Weber syndrome: a systematic review and Dutch multicentre cohort
Koenraads Y
Acta Ophthalmologica 2016; 94: 638-645 (IGR: 18-1)


69284 Lamina depth and thickness correlate with glaucoma severity
Kim M
Indian Journal of Ophthalmology 2016; 64: 358-363 (IGR: 18-1)


69160 Retinal Nerve Fiber Layer Damage in Young Myopic Eyes With Optic Disc Torsion and Glaucomatous Hemifield Defect
Lee JE
Journal of Glaucoma 2017; 26: 77-86 (IGR: 18-1)


68759 The Optic Nerve Head in Primary Open-Angle Glaucoma Eyes With High Myopia: Characteristics and Association With Visual Field Defects
Chen LW
Journal of Glaucoma 2016; 25: e569-e575 (IGR: 18-1)


69470 Effect of Glaucoma Surgery on the Progression Rate and Pattern in Glaucoma Patients With Myopia
Park HY
Investigative Ophthalmology and Visual Science 2016; 57: 4170-4179 (IGR: 18-1)


68946 Prevalence, Features, and Severity of Glaucomatous Visual Field Loss Measured With the 10-2 Achromatic Threshold Visual Field Test
Sullivan-Mee M
American Journal of Ophthalmology 2016; 168: 40-51 (IGR: 18-1)


69493 A Statistical Model to Analyze Clinician Expert Consensus on Glaucoma Progression using Spatially Correlated Visual Field Data
Warren JL
Translational vision science & technology 2016; 5: 14 (IGR: 18-1)


69028 Relationship between oxygen saturation of the retinal vessels and visual field defect in glaucoma patients: comparison with each hemifield
Shimazaki T
Acta Ophthalmologica 2016; 94: e683-e687 (IGR: 18-1)


69002 Assessing Precision of Hodapp-Parrish-Anderson Criteria for Staging Early Glaucomatous Damage in an Ocular Hypertension Cohort: A Retrospective Study
Chakravarti T
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2016; 0: (IGR: 18-1)


69385 Integrating independent spatio-temporal replications to assess population trends in disease spread
VanBuren J
Statistics in Medicine 2016; 35: 5210-5221 (IGR: 18-1)


69276 Comparison of Compass and Humphrey perimeters in detecting glaucomatous defects
Fogagnolo P
European Journal of Ophthalmology 2016; 0: 0 (IGR: 18-1)


68910 Comparison of size modulation and conventional standard automated perimetry with the 24-2 test protocol in glaucoma patients
Hirasawa K
Scientific reports 2016; 6: 25563 (IGR: 18-1)


69447 Comparison of Peristat Online Perimetry with the Humphrey Perimetry in a Clinic-Based Setting
Lowry EA
Translational vision science & technology 2016; 5: 4 (IGR: 18-1)


69169 Clustering of Combined 24-2 and 10-2 Visual Field Grids and Their Relationship With Circumpapillary Retinal Nerve Fiber Layer Thickness
Nakanishi H
Investigative Ophthalmology and Visual Science 2016; 57: 3203-3210 (IGR: 18-1)


69003 Effect of Cataract Opacity Type and Glaucoma Severity on Visual Field Index
Chung HJ
Optometry and Vision Science 2016; 93: 575-578 (IGR: 18-1)


69357 Eyes with Suspicious Appearance of the Optic Disc and Normal Intraocular Pressure: Using Clinical and Epidemiological Characteristics to Differentiate Those with and without Glaucoma
Dias DT
PLoS ONE 2016; 11: e0158983 (IGR: 18-1)


69446 Inter-eye comparison of retinal oximetry and vessel caliber between eyes with asymmetrical glaucoma severity in different glaucoma subtypes
Cheng CS
Clinical Ophthalmology 2016; 10: 1315-1321 (IGR: 18-1)


68938 Association between systemic oxidative stress and visual field damage in open-angle glaucoma
Tanito M
Scientific reports 2016; 6: 25792 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Moore NA
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


68943 Depressed visual field and mood are associated with sleep disorder in glaucoma patients
Ayaki M
Scientific reports 2016; 6: 25699 (IGR: 18-1)


69197 Estimating the Binocular Visual Field of Glaucoma Patients With an Adjustment for Ocular Dominance
Matsuura M
Investigative Ophthalmology and Visual Science 2016; 57: 3276-3281 (IGR: 18-1)


69320 Technology and the Glaucoma Suspect
Blumberg DM
Investigative Ophthalmology and Visual Science 2016; 57: OCT80-5 (IGR: 18-1)


69420 Estimating the rate of retinal ganglion cell loss to detect glaucoma progression: An observational cohort study
Hirooka K
Medicine 2016; 95: e4209 (IGR: 18-1)


69126 Association of Fast Visual Field Loss With Risk of Falling in Patients With Glaucoma
Baig S
JAMA ophthalmology 2016; 134: 880-886 (IGR: 18-1)


69337 Factors Associated with Loss of Visual Function in Medically Treated Advanced Normal Tension Glaucoma
Kim S
Current Eye Research 2016; 0: 1-7 (IGR: 18-1)


68986 Equating spatial summation in visual field testing reveals greater loss in optic nerve disease
Kalloniatis M
Ophthalmic and Physiological Optics 2016; 36: 439-452 (IGR: 18-1)


69301 Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier
Asaoka R
Ophthalmology 2016; 123: 1974-1980 (IGR: 18-1)


69343 Pattern of Visual Field Loss in Primary Angle-Closure Glaucoma Across Different Severity Levels
Atalay E
Ophthalmology 2016; 123: 1957-1964 (IGR: 18-1)


69030 Topiramate associated non-glaucomatous visual field defects
Haque S
Journal of Clinical Neuroscience 2016; 31: 210-213 (IGR: 18-1)


69452 Localized Changes in Retinal Nerve Fiber Layer Thickness as a Predictor of Localized Functional Change in Glaucoma
Gardiner SK
American Journal of Ophthalmology 2016; 170: 75-82 (IGR: 18-1)


69126 Association of Fast Visual Field Loss With Risk of Falling in Patients With Glaucoma
Diniz-Filho A
JAMA ophthalmology 2016; 134: 880-886 (IGR: 18-1)


69357 Eyes with Suspicious Appearance of the Optic Disc and Normal Intraocular Pressure: Using Clinical and Epidemiological Characteristics to Differentiate Those with and without Glaucoma
Ushida M
PLoS ONE 2016; 11: e0158983 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Harris A
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69343 Pattern of Visual Field Loss in Primary Angle-Closure Glaucoma Across Different Severity Levels
Nongpiur ME
Ophthalmology 2016; 123: 1957-1964 (IGR: 18-1)


69003 Effect of Cataract Opacity Type and Glaucoma Severity on Visual Field Index
Choi JH
Optometry and Vision Science 2016; 93: 575-578 (IGR: 18-1)


69470 Effect of Glaucoma Surgery on the Progression Rate and Pattern in Glaucoma Patients With Myopia
Yi R
Investigative Ophthalmology and Visual Science 2016; 57: 4170-4179 (IGR: 18-1)


69320 Technology and the Glaucoma Suspect
De Moraes CG
Investigative Ophthalmology and Visual Science 2016; 57: OCT80-5 (IGR: 18-1)


69160 Retinal Nerve Fiber Layer Damage in Young Myopic Eyes With Optic Disc Torsion and Glaucomatous Hemifield Defect
Lee JY
Journal of Glaucoma 2017; 26: 77-86 (IGR: 18-1)


68946 Prevalence, Features, and Severity of Glaucomatous Visual Field Loss Measured With the 10-2 Achromatic Threshold Visual Field Test
Karin Tran MT
American Journal of Ophthalmology 2016; 168: 40-51 (IGR: 18-1)


69051 Visual outcome in Sturge-Weber syndrome: a systematic review and Dutch multicentre cohort
van Egmond-Ebbeling MB
Acta Ophthalmologica 2016; 94: 638-645 (IGR: 18-1)


68759 The Optic Nerve Head in Primary Open-Angle Glaucoma Eyes With High Myopia: Characteristics and Association With Visual Field Defects
Lan YW
Journal of Glaucoma 2016; 25: e569-e575 (IGR: 18-1)


69284 Lamina depth and thickness correlate with glaucoma severity
Bojikian KD
Indian Journal of Ophthalmology 2016; 64: 358-363 (IGR: 18-1)


69493 A Statistical Model to Analyze Clinician Expert Consensus on Glaucoma Progression using Spatially Correlated Visual Field Data
Mwanza JC
Translational vision science & technology 2016; 5: 14 (IGR: 18-1)


69337 Factors Associated with Loss of Visual Function in Medically Treated Advanced Normal Tension Glaucoma
Sung KR
Current Eye Research 2016; 0: 1-7 (IGR: 18-1)


68986 Equating spatial summation in visual field testing reveals greater loss in optic nerve disease
Khuu SK
Ophthalmic and Physiological Optics 2016; 36: 439-452 (IGR: 18-1)


69385 Integrating independent spatio-temporal replications to assess population trends in disease spread
Oleson JJ
Statistics in Medicine 2016; 35: 5210-5221 (IGR: 18-1)


69420 Estimating the rate of retinal ganglion cell loss to detect glaucoma progression: An observational cohort study
Izumibata S
Medicine 2016; 95: e4209 (IGR: 18-1)


69276 Comparison of Compass and Humphrey perimeters in detecting glaucomatous defects
Modarelli A
European Journal of Ophthalmology 2016; 0: 0 (IGR: 18-1)


69301 Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier
Murata H
Ophthalmology 2016; 123: 1974-1980 (IGR: 18-1)


69447 Comparison of Peristat Online Perimetry with the Humphrey Perimetry in a Clinic-Based Setting
Hou J
Translational vision science & technology 2016; 5: 4 (IGR: 18-1)


69030 Topiramate associated non-glaucomatous visual field defects
Shaffi M
Journal of Clinical Neuroscience 2016; 31: 210-213 (IGR: 18-1)


69452 Localized Changes in Retinal Nerve Fiber Layer Thickness as a Predictor of Localized Functional Change in Glaucoma
Fortune B
American Journal of Ophthalmology 2016; 170: 75-82 (IGR: 18-1)


68943 Depressed visual field and mood are associated with sleep disorder in glaucoma patients
Shiba D
Scientific reports 2016; 6: 25699 (IGR: 18-1)


69197 Estimating the Binocular Visual Field of Glaucoma Patients With an Adjustment for Ocular Dominance
Hirasawa K
Investigative Ophthalmology and Visual Science 2016; 57: 3276-3281 (IGR: 18-1)


68910 Comparison of size modulation and conventional standard automated perimetry with the 24-2 test protocol in glaucoma patients
Shoji N
Scientific reports 2016; 6: 25563 (IGR: 18-1)


69446 Inter-eye comparison of retinal oximetry and vessel caliber between eyes with asymmetrical glaucoma severity in different glaucoma subtypes
Lee YF
Clinical Ophthalmology 2016; 10: 1315-1321 (IGR: 18-1)


68938 Association between systemic oxidative stress and visual field damage in open-angle glaucoma
Kaidzu S
Scientific reports 2016; 6: 25792 (IGR: 18-1)


69169 Clustering of Combined 24-2 and 10-2 Visual Field Grids and Their Relationship With Circumpapillary Retinal Nerve Fiber Layer Thickness
Akagi T
Investigative Ophthalmology and Visual Science 2016; 57: 3203-3210 (IGR: 18-1)


69028 Relationship between oxygen saturation of the retinal vessels and visual field defect in glaucoma patients: comparison with each hemifield
Hirooka K
Acta Ophthalmologica 2016; 94: e683-e687 (IGR: 18-1)


69385 Integrating independent spatio-temporal replications to assess population trends in disease spread
Zamba GK
Statistics in Medicine 2016; 35: 5210-5221 (IGR: 18-1)


68910 Comparison of size modulation and conventional standard automated perimetry with the 24-2 test protocol in glaucoma patients
Kasahara M
Scientific reports 2016; 6: 25563 (IGR: 18-1)


68943 Depressed visual field and mood are associated with sleep disorder in glaucoma patients
Negishi K
Scientific reports 2016; 6: 25699 (IGR: 18-1)


69028 Relationship between oxygen saturation of the retinal vessels and visual field defect in glaucoma patients: comparison with each hemifield
Nakano Y
Acta Ophthalmologica 2016; 94: e683-e687 (IGR: 18-1)


69051 Visual outcome in Sturge-Weber syndrome: a systematic review and Dutch multicentre cohort
de Boer JH
Acta Ophthalmologica 2016; 94: 638-645 (IGR: 18-1)


69447 Comparison of Peristat Online Perimetry with the Humphrey Perimetry in a Clinic-Based Setting
Hennein L
Translational vision science & technology 2016; 5: 4 (IGR: 18-1)


69446 Inter-eye comparison of retinal oximetry and vessel caliber between eyes with asymmetrical glaucoma severity in different glaucoma subtypes
Ong C
Clinical Ophthalmology 2016; 10: 1315-1321 (IGR: 18-1)


69301 Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier
Iwase A
Ophthalmology 2016; 123: 1974-1980 (IGR: 18-1)


69343 Pattern of Visual Field Loss in Primary Angle-Closure Glaucoma Across Different Severity Levels
Yap SC
Ophthalmology 2016; 123: 1957-1964 (IGR: 18-1)


69452 Localized Changes in Retinal Nerve Fiber Layer Thickness as a Predictor of Localized Functional Change in Glaucoma
Demirel S
American Journal of Ophthalmology 2016; 170: 75-82 (IGR: 18-1)


69030 Topiramate associated non-glaucomatous visual field defects
Tang KC
Journal of Clinical Neuroscience 2016; 31: 210-213 (IGR: 18-1)


69276 Comparison of Compass and Humphrey perimeters in detecting glaucomatous defects
Oddone F
European Journal of Ophthalmology 2016; 0: 0 (IGR: 18-1)


69320 Technology and the Glaucoma Suspect
Liebmann JM
Investigative Ophthalmology and Visual Science 2016; 57: OCT80-5 (IGR: 18-1)


68938 Association between systemic oxidative stress and visual field damage in open-angle glaucoma
Takai Y
Scientific reports 2016; 6: 25792 (IGR: 18-1)


69470 Effect of Glaucoma Surgery on the Progression Rate and Pattern in Glaucoma Patients With Myopia
Jung Y
Investigative Ophthalmology and Visual Science 2016; 57: 4170-4179 (IGR: 18-1)


69160 Retinal Nerve Fiber Layer Damage in Young Myopic Eyes With Optic Disc Torsion and Glaucomatous Hemifield Defect
Kook MS
Journal of Glaucoma 2017; 26: 77-86 (IGR: 18-1)


69357 Eyes with Suspicious Appearance of the Optic Disc and Normal Intraocular Pressure: Using Clinical and Epidemiological Characteristics to Differentiate Those with and without Glaucoma
Sousa MC
PLoS ONE 2016; 11: e0158983 (IGR: 18-1)


69197 Estimating the Binocular Visual Field of Glaucoma Patients With an Adjustment for Ocular Dominance
Yanagisawa M
Investigative Ophthalmology and Visual Science 2016; 57: 3276-3281 (IGR: 18-1)


68759 The Optic Nerve Head in Primary Open-Angle Glaucoma Eyes With High Myopia: Characteristics and Association With Visual Field Defects
Hsieh JW
Journal of Glaucoma 2016; 25: e569-e575 (IGR: 18-1)


69284 Lamina depth and thickness correlate with glaucoma severity
Slabaugh MA
Indian Journal of Ophthalmology 2016; 64: 358-363 (IGR: 18-1)


69493 A Statistical Model to Analyze Clinician Expert Consensus on Glaucoma Progression using Spatially Correlated Visual Field Data
Tanna AP
Translational vision science & technology 2016; 5: 14 (IGR: 18-1)


69126 Association of Fast Visual Field Loss With Risk of Falling in Patients With Glaucoma
Wu Z
JAMA ophthalmology 2016; 134: 880-886 (IGR: 18-1)


69420 Estimating the rate of retinal ganglion cell loss to detect glaucoma progression: An observational cohort study
Ukegawa K
Medicine 2016; 95: e4209 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Wentz S
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


68946 Prevalence, Features, and Severity of Glaucomatous Visual Field Loss Measured With the 10-2 Achromatic Threshold Visual Field Test
Pensyl D
American Journal of Ophthalmology 2016; 168: 40-51 (IGR: 18-1)


69169 Clustering of Combined 24-2 and 10-2 Visual Field Grids and Their Relationship With Circumpapillary Retinal Nerve Fiber Layer Thickness
Suda K
Investigative Ophthalmology and Visual Science 2016; 57: 3203-3210 (IGR: 18-1)


69003 Effect of Cataract Opacity Type and Glaucoma Severity on Visual Field Index
Lee YC
Optometry and Vision Science 2016; 93: 575-578 (IGR: 18-1)


69446 Inter-eye comparison of retinal oximetry and vessel caliber between eyes with asymmetrical glaucoma severity in different glaucoma subtypes
Yap ZL
Clinical Ophthalmology 2016; 10: 1315-1321 (IGR: 18-1)


69301 Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier
Araie M
Ophthalmology 2016; 123: 1974-1980 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Verticchio Vercellin AC
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69493 A Statistical Model to Analyze Clinician Expert Consensus on Glaucoma Progression using Spatially Correlated Visual Field Data
Budenz DL
Translational vision science & technology 2016; 5: 14 (IGR: 18-1)


69357 Eyes with Suspicious Appearance of the Optic Disc and Normal Intraocular Pressure: Using Clinical and Epidemiological Characteristics to Differentiate Those with and without Glaucoma
Dorairaj S
PLoS ONE 2016; 11: e0158983 (IGR: 18-1)


68946 Prevalence, Features, and Severity of Glaucomatous Visual Field Loss Measured With the 10-2 Achromatic Threshold Visual Field Test
Tsan G
American Journal of Ophthalmology 2016; 168: 40-51 (IGR: 18-1)


69420 Estimating the rate of retinal ganglion cell loss to detect glaucoma progression: An observational cohort study
Nitta E
Medicine 2016; 95: e4209 (IGR: 18-1)


69276 Comparison of Compass and Humphrey perimeters in detecting glaucomatous defects
Digiuni M
European Journal of Ophthalmology 2016; 0: 0 (IGR: 18-1)


69284 Lamina depth and thickness correlate with glaucoma severity
Ding L
Indian Journal of Ophthalmology 2016; 64: 358-363 (IGR: 18-1)


68938 Association between systemic oxidative stress and visual field damage in open-angle glaucoma
Ohira A
Scientific reports 2016; 6: 25792 (IGR: 18-1)


69126 Association of Fast Visual Field Loss With Risk of Falling in Patients With Glaucoma
Abe RY
JAMA ophthalmology 2016; 134: 880-886 (IGR: 18-1)


68943 Depressed visual field and mood are associated with sleep disorder in glaucoma patients
Tsubota K
Scientific reports 2016; 6: 25699 (IGR: 18-1)


69197 Estimating the Binocular Visual Field of Glaucoma Patients With an Adjustment for Ocular Dominance
Hirasawa H
Investigative Ophthalmology and Visual Science 2016; 57: 3276-3281 (IGR: 18-1)


69447 Comparison of Peristat Online Perimetry with the Humphrey Perimetry in a Clinic-Based Setting
Chang RT
Translational vision science & technology 2016; 5: 4 (IGR: 18-1)


69169 Clustering of Combined 24-2 and 10-2 Visual Field Grids and Their Relationship With Circumpapillary Retinal Nerve Fiber Layer Thickness
Hasegawa T
Investigative Ophthalmology and Visual Science 2016; 57: 3203-3210 (IGR: 18-1)


69051 Visual outcome in Sturge-Weber syndrome: a systematic review and Dutch multicentre cohort
Imhof SM
Acta Ophthalmologica 2016; 94: 638-645 (IGR: 18-1)


69343 Pattern of Visual Field Loss in Primary Angle-Closure Glaucoma Across Different Severity Levels
Wong TT
Ophthalmology 2016; 123: 1957-1964 (IGR: 18-1)


69003 Effect of Cataract Opacity Type and Glaucoma Severity on Visual Field Index
Kim SY
Optometry and Vision Science 2016; 93: 575-578 (IGR: 18-1)


68910 Comparison of size modulation and conventional standard automated perimetry with the 24-2 test protocol in glaucoma patients
Matsumura K
Scientific reports 2016; 6: 25563 (IGR: 18-1)


69028 Relationship between oxygen saturation of the retinal vessels and visual field defect in glaucoma patients: comparison with each hemifield
Nitta E
Acta Ophthalmologica 2016; 94: e683-e687 (IGR: 18-1)


69385 Integrating independent spatio-temporal replications to assess population trends in disease spread
Wall M
Statistics in Medicine 2016; 35: 5210-5221 (IGR: 18-1)


69470 Effect of Glaucoma Surgery on the Progression Rate and Pattern in Glaucoma Patients With Myopia
Park CK
Investigative Ophthalmology and Visual Science 2016; 57: 4170-4179 (IGR: 18-1)


69320 Technology and the Glaucoma Suspect
Garg R
Investigative Ophthalmology and Visual Science 2016; 57: OCT80-5 (IGR: 18-1)


69446 Inter-eye comparison of retinal oximetry and vessel caliber between eyes with asymmetrical glaucoma severity in different glaucoma subtypes
Tsai A
Clinical Ophthalmology 2016; 10: 1315-1321 (IGR: 18-1)


69447 Comparison of Peristat Online Perimetry with the Humphrey Perimetry in a Clinic-Based Setting
Lin S
Translational vision science & technology 2016; 5: 4 (IGR: 18-1)


69320 Technology and the Glaucoma Suspect
Chen C
Investigative Ophthalmology and Visual Science 2016; 57: OCT80-5 (IGR: 18-1)


69357 Eyes with Suspicious Appearance of the Optic Disc and Normal Intraocular Pressure: Using Clinical and Epidemiological Characteristics to Differentiate Those with and without Glaucoma
Biteli LG
PLoS ONE 2016; 11: e0158983 (IGR: 18-1)


69197 Estimating the Binocular Visual Field of Glaucoma Patients With an Adjustment for Ocular Dominance
Murata H
Investigative Ophthalmology and Visual Science 2016; 57: 3276-3281 (IGR: 18-1)


69051 Visual outcome in Sturge-Weber syndrome: a systematic review and Dutch multicentre cohort
Braun KP
Acta Ophthalmologica 2016; 94: 638-645 (IGR: 18-1)


69284 Lamina depth and thickness correlate with glaucoma severity
Chen PP
Indian Journal of Ophthalmology 2016; 64: 358-363 (IGR: 18-1)


69420 Estimating the rate of retinal ganglion cell loss to detect glaucoma progression: An observational cohort study
Tsujikawa A
Medicine 2016; 95: e4209 (IGR: 18-1)


69028 Relationship between oxygen saturation of the retinal vessels and visual field defect in glaucoma patients: comparison with each hemifield
Ukegawa K
Acta Ophthalmologica 2016; 94: e683-e687 (IGR: 18-1)


69126 Association of Fast Visual Field Loss With Risk of Falling in Patients With Glaucoma
Gracitelli CP
JAMA ophthalmology 2016; 134: 880-886 (IGR: 18-1)


68910 Comparison of size modulation and conventional standard automated perimetry with the 24-2 test protocol in glaucoma patients
Shimizu K
Scientific reports 2016; 6: 25563 (IGR: 18-1)


69343 Pattern of Visual Field Loss in Primary Angle-Closure Glaucoma Across Different Severity Levels
Goh D
Ophthalmology 2016; 123: 1957-1964 (IGR: 18-1)


68946 Prevalence, Features, and Severity of Glaucomatous Visual Field Loss Measured With the 10-2 Achromatic Threshold Visual Field Test
Katiyar S
American Journal of Ophthalmology 2016; 168: 40-51 (IGR: 18-1)


69169 Clustering of Combined 24-2 and 10-2 Visual Field Grids and Their Relationship With Circumpapillary Retinal Nerve Fiber Layer Thickness
Yamada H
Investigative Ophthalmology and Visual Science 2016; 57: 3203-3210 (IGR: 18-1)


69276 Comparison of Compass and Humphrey perimeters in detecting glaucomatous defects
Montesano G
European Journal of Ophthalmology 2016; 0: 0 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Parekh P
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69276 Comparison of Compass and Humphrey perimeters in detecting glaucomatous defects
Orzalesi N
European Journal of Ophthalmology 2016; 0: 0 (IGR: 18-1)


69169 Clustering of Combined 24-2 and 10-2 Visual Field Grids and Their Relationship With Circumpapillary Retinal Nerve Fiber Layer Thickness
Yokota S
Investigative Ophthalmology and Visual Science 2016; 57: 3203-3210 (IGR: 18-1)


69320 Technology and the Glaucoma Suspect
Theventhiran A
Investigative Ophthalmology and Visual Science 2016; 57: OCT80-5 (IGR: 18-1)


69197 Estimating the Binocular Visual Field of Glaucoma Patients With an Adjustment for Ocular Dominance
Sawamura H
Investigative Ophthalmology and Visual Science 2016; 57: 3276-3281 (IGR: 18-1)


69028 Relationship between oxygen saturation of the retinal vessels and visual field defect in glaucoma patients: comparison with each hemifield
Sato S
Acta Ophthalmologica 2016; 94: e683-e687 (IGR: 18-1)


69126 Association of Fast Visual Field Loss With Risk of Falling in Patients With Glaucoma
Cabezas E
JAMA ophthalmology 2016; 134: 880-886 (IGR: 18-1)


69447 Comparison of Peristat Online Perimetry with the Humphrey Perimetry in a Clinic-Based Setting
Keenan J
Translational vision science & technology 2016; 5: 4 (IGR: 18-1)


69446 Inter-eye comparison of retinal oximetry and vessel caliber between eyes with asymmetrical glaucoma severity in different glaucoma subtypes
Mohla A
Clinical Ophthalmology 2016; 10: 1315-1321 (IGR: 18-1)


69051 Visual outcome in Sturge-Weber syndrome: a systematic review and Dutch multicentre cohort
Porro GL
Acta Ophthalmologica 2016; 94: 638-645 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Gross J
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69357 Eyes with Suspicious Appearance of the Optic Disc and Normal Intraocular Pressure: Using Clinical and Epidemiological Characteristics to Differentiate Those with and without Glaucoma
Leite MT
PLoS ONE 2016; 11: e0158983 (IGR: 18-1)


69343 Pattern of Visual Field Loss in Primary Angle-Closure Glaucoma Across Different Severity Levels
Husain R
Ophthalmology 2016; 123: 1957-1964 (IGR: 18-1)


69126 Association of Fast Visual Field Loss With Risk of Falling in Patients With Glaucoma
Medeiros FA
JAMA ophthalmology 2016; 134: 880-886 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Hussain RM
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69169 Clustering of Combined 24-2 and 10-2 Visual Field Grids and Their Relationship With Circumpapillary Retinal Nerve Fiber Layer Thickness
Yoshikawa M
Investigative Ophthalmology and Visual Science 2016; 57: 3203-3210 (IGR: 18-1)


69343 Pattern of Visual Field Loss in Primary Angle-Closure Glaucoma Across Different Severity Levels
Perera SA
Ophthalmology 2016; 123: 1957-1964 (IGR: 18-1)


69028 Relationship between oxygen saturation of the retinal vessels and visual field defect in glaucoma patients: comparison with each hemifield
Tsujikawa A
Acta Ophthalmologica 2016; 94: e683-e687 (IGR: 18-1)


69276 Comparison of Compass and Humphrey perimeters in detecting glaucomatous defects
Rossetti L
European Journal of Ophthalmology 2016; 0: 0 (IGR: 18-1)


69446 Inter-eye comparison of retinal oximetry and vessel caliber between eyes with asymmetrical glaucoma severity in different glaucoma subtypes
Nongpiur ME
Clinical Ophthalmology 2016; 10: 1315-1321 (IGR: 18-1)


69320 Technology and the Glaucoma Suspect
Hood DC
Investigative Ophthalmology and Visual Science 2016; 57: OCT80-5 (IGR: 18-1)


69357 Eyes with Suspicious Appearance of the Optic Disc and Normal Intraocular Pressure: Using Clinical and Epidemiological Characteristics to Differentiate Those with and without Glaucoma
Paranhos A
PLoS ONE 2016; 11: e0158983 (IGR: 18-1)


69447 Comparison of Peristat Online Perimetry with the Humphrey Perimetry in a Clinic-Based Setting
Wang SK
Translational vision science & technology 2016; 5: 4 (IGR: 18-1)


69051 Visual outcome in Sturge-Weber syndrome: a systematic review and Dutch multicentre cohort

Acta Ophthalmologica 2016; 94: 638-645 (IGR: 18-1)


69197 Estimating the Binocular Visual Field of Glaucoma Patients With an Adjustment for Ocular Dominance
Mayama C
Investigative Ophthalmology and Visual Science 2016; 57: 3276-3281 (IGR: 18-1)


69447 Comparison of Peristat Online Perimetry with the Humphrey Perimetry in a Clinic-Based Setting
Ianchulev S
Translational vision science & technology 2016; 5: 4 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Thieme C
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69343 Pattern of Visual Field Loss in Primary Angle-Closure Glaucoma Across Different Severity Levels
Aung T
Ophthalmology 2016; 123: 1957-1964 (IGR: 18-1)


69446 Inter-eye comparison of retinal oximetry and vessel caliber between eyes with asymmetrical glaucoma severity in different glaucoma subtypes
Aung T
Clinical Ophthalmology 2016; 10: 1315-1321 (IGR: 18-1)


69357 Eyes with Suspicious Appearance of the Optic Disc and Normal Intraocular Pressure: Using Clinical and Epidemiological Characteristics to Differentiate Those with and without Glaucoma
Prata TS
PLoS ONE 2016; 11: e0158983 (IGR: 18-1)


69197 Estimating the Binocular Visual Field of Glaucoma Patients With an Adjustment for Ocular Dominance
Asaoka R
Investigative Ophthalmology and Visual Science 2016; 57: 3276-3281 (IGR: 18-1)


69169 Clustering of Combined 24-2 and 10-2 Visual Field Grids and Their Relationship With Circumpapillary Retinal Nerve Fiber Layer Thickness
Iida Y
Investigative Ophthalmology and Visual Science 2016; 57: 3203-3210 (IGR: 18-1)


69446 Inter-eye comparison of retinal oximetry and vessel caliber between eyes with asymmetrical glaucoma severity in different glaucoma subtypes
Perera SA
Clinical Ophthalmology 2016; 10: 1315-1321 (IGR: 18-1)


69169 Clustering of Combined 24-2 and 10-2 Visual Field Grids and Their Relationship With Circumpapillary Retinal Nerve Fiber Layer Thickness
Ikeda HO
Investigative Ophthalmology and Visual Science 2016; 57: 3203-3210 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Siesky B
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69447 Comparison of Peristat Online Perimetry with the Humphrey Perimetry in a Clinic-Based Setting
Pasquale LR
Translational vision science & technology 2016; 5: 4 (IGR: 18-1)


69169 Clustering of Combined 24-2 and 10-2 Visual Field Grids and Their Relationship With Circumpapillary Retinal Nerve Fiber Layer Thickness
Morooka S
Investigative Ophthalmology and Visual Science 2016; 57: 3203-3210 (IGR: 18-1)


69447 Comparison of Peristat Online Perimetry with the Humphrey Perimetry in a Clinic-Based Setting
Han Y
Translational vision science & technology 2016; 5: 4 (IGR: 18-1)


69169 Clustering of Combined 24-2 and 10-2 Visual Field Grids and Their Relationship With Circumpapillary Retinal Nerve Fiber Layer Thickness
Ishihara K; Yoshimura N
Investigative Ophthalmology and Visual Science 2016; 57: 3203-3210 (IGR: 18-1)


67193 Visual field defect classification in the Zhongshan Ophthalmic Center-Brien Holden Vision Institute High Myopia Registry Study
Ding X
British Journal of Ophthalmology 2016; 100: 1697-1702 (IGR: 17-4)


66687 Incorporating Spatial Models in Visual Field Test Procedures
Rubinstein NJ
Translational vision science & technology 2016; 5: 7 (IGR: 17-4)


66669 Enhancement of Visual Field Predictions with Pointwise Exponential Regression (PER) and Pointwise Linear Regression (PLR)
Morales E
Translational vision science & technology 2016; 5: 12 (IGR: 17-4)


67428 Evaluation of Central and Peripheral Visual Field Concordance in Glaucoma
Odden JL
Investigative Ophthalmology and Visual Science 2016; 57: 2797-2804 (IGR: 17-4)


67177 Differences in Relationship Between Macular Inner Retinal Layer Thickness and Retinal Sensitivity in Eyes With Early and Progressed Glaucoma
Araie M
Investigative Ophthalmology and Visual Science 2016; 57: 1588-1594 (IGR: 17-4)


67171 Prelamina and Lamina Cribrosa in Glaucoma Patients With Unilateral Visual Field Loss
Kim DW
Investigative Ophthalmology and Visual Science 2016; 57: 1662-1670 (IGR: 17-4)


67306 Structural and Functional Progression in the Early Manifest Glaucoma Trial
Öhnell H
Ophthalmology 2016; 123: 1173-1180 (IGR: 17-4)


66795 Association between Corneal Deformation Amplitude and Posterior Pole Profiles in Primary Open-Angle Glaucoma
Jung Y
Ophthalmology 2016; 123: 959-964 (IGR: 17-4)


67614 Arteriolar Diameters in Glaucomatous Eyes with Single-Hemifield Damage
Russo A
Optometry and Vision Science 2016; 93: 504-509 (IGR: 17-4)


67434 Development of Visual Field Screening Procedures: A Case Study of the Octopus Perimeter
Turpin A
Translational vision science & technology 2016; 5: 3 (IGR: 17-4)


67514 Comparison of structure-function relationship between corresponding retinal nerve fibre layer thickness and Octopus visual field cluster defect values determined by normal and tendency-oriented strategies
Holló G
British Journal of Ophthalmology 2017; 101: 150-154 (IGR: 17-4)


67260 Comparison of Macular Integrity Assessment (MAIA ™), MP-3, and the Humphrey Field Analyzer in the Evaluation of the Relationship between the Structure and Function of the Macula
Hirooka K
PLoS ONE 2016; 11: e0151000 (IGR: 17-4)


67125 The 24-2 Visual Field Test Misses Central Macular Damage Confirmed by the 10-2 Visual Field Test and Optical Coherence Tomography
Grillo LM
Translational vision science & technology 2016; 5: 15 (IGR: 17-4)


67229 Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study
Yu M
Ophthalmology 2016; 123: 1201-1210 (IGR: 17-4)


66680 Suitability of the Visual Field Index according to Glaucoma Severity
Sousa MC
Journal of Current Glaucoma Practice 2015; 9: 65-68 (IGR: 17-4)


66696 Association Between Peripheral Vascular Endothelial Function and Progression of Open-Angle Glaucoma
Liu CH
Medicine 2016; 95: e3055 (IGR: 17-4)


67454 Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
Yousefi S
Translational vision science & technology 2016; 5: 2 (IGR: 17-4)


66795 Association between Corneal Deformation Amplitude and Posterior Pole Profiles in Primary Open-Angle Glaucoma
Park HY
Ophthalmology 2016; 123: 959-964 (IGR: 17-4)


67177 Differences in Relationship Between Macular Inner Retinal Layer Thickness and Retinal Sensitivity in Eyes With Early and Progressed Glaucoma
Murata H
Investigative Ophthalmology and Visual Science 2016; 57: 1588-1594 (IGR: 17-4)


67171 Prelamina and Lamina Cribrosa in Glaucoma Patients With Unilateral Visual Field Loss
Jeoung JW
Investigative Ophthalmology and Visual Science 2016; 57: 1662-1670 (IGR: 17-4)


67454 Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
Balasubramanian M
Translational vision science & technology 2016; 5: 2 (IGR: 17-4)


67125 The 24-2 Visual Field Test Misses Central Macular Damage Confirmed by the 10-2 Visual Field Test and Optical Coherence Tomography
Wang DL
Translational vision science & technology 2016; 5: 15 (IGR: 17-4)


67434 Development of Visual Field Screening Procedures: A Case Study of the Octopus Perimeter
Myers JS
Translational vision science & technology 2016; 5: 3 (IGR: 17-4)


67614 Arteriolar Diameters in Glaucomatous Eyes with Single-Hemifield Damage
Costagliola C
Optometry and Vision Science 2016; 93: 504-509 (IGR: 17-4)


67428 Evaluation of Central and Peripheral Visual Field Concordance in Glaucoma
Mihailovic A
Investigative Ophthalmology and Visual Science 2016; 57: 2797-2804 (IGR: 17-4)


67193 Visual field defect classification in the Zhongshan Ophthalmic Center-Brien Holden Vision Institute High Myopia Registry Study
Chang RT
British Journal of Ophthalmology 2016; 100: 1697-1702 (IGR: 17-4)


66669 Enhancement of Visual Field Predictions with Pointwise Exponential Regression (PER) and Pointwise Linear Regression (PLR)
De Leon JM
Translational vision science & technology 2016; 5: 12 (IGR: 17-4)


67229 Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study
Lin C
Ophthalmology 2016; 123: 1201-1210 (IGR: 17-4)


66687 Incorporating Spatial Models in Visual Field Test Procedures
McKendrick AM
Translational vision science & technology 2016; 5: 7 (IGR: 17-4)


67260 Comparison of Macular Integrity Assessment (MAIA ™), MP-3, and the Humphrey Field Analyzer in the Evaluation of the Relationship between the Structure and Function of the Macula
Misaki K
PLoS ONE 2016; 11: e0151000 (IGR: 17-4)


66680 Suitability of the Visual Field Index according to Glaucoma Severity
Biteli LG
Journal of Current Glaucoma Practice 2015; 9: 65-68 (IGR: 17-4)


66696 Association Between Peripheral Vascular Endothelial Function and Progression of Open-Angle Glaucoma
Su WW
Medicine 2016; 95: e3055 (IGR: 17-4)


67306 Structural and Functional Progression in the Early Manifest Glaucoma Trial
Heijl A
Ophthalmology 2016; 123: 1173-1180 (IGR: 17-4)


67614 Arteriolar Diameters in Glaucomatous Eyes with Single-Hemifield Damage
Rizzoni D
Optometry and Vision Science 2016; 93: 504-509 (IGR: 17-4)


67428 Evaluation of Central and Peripheral Visual Field Concordance in Glaucoma
Boland MV
Investigative Ophthalmology and Visual Science 2016; 57: 2797-2804 (IGR: 17-4)


67229 Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study
Weinreb RN
Ophthalmology 2016; 123: 1201-1210 (IGR: 17-4)


67193 Visual field defect classification in the Zhongshan Ophthalmic Center-Brien Holden Vision Institute High Myopia Registry Study
Guo X
British Journal of Ophthalmology 2016; 100: 1697-1702 (IGR: 17-4)


66680 Suitability of the Visual Field Index according to Glaucoma Severity
Dorairaj S
Journal of Current Glaucoma Practice 2015; 9: 65-68 (IGR: 17-4)


66687 Incorporating Spatial Models in Visual Field Test Procedures
Turpin A
Translational vision science & technology 2016; 5: 7 (IGR: 17-4)


66696 Association Between Peripheral Vascular Endothelial Function and Progression of Open-Angle Glaucoma
Shie SS
Medicine 2016; 95: e3055 (IGR: 17-4)


67125 The 24-2 Visual Field Test Misses Central Macular Damage Confirmed by the 10-2 Visual Field Test and Optical Coherence Tomography
Ramachandran R
Translational vision science & technology 2016; 5: 15 (IGR: 17-4)


67171 Prelamina and Lamina Cribrosa in Glaucoma Patients With Unilateral Visual Field Loss
Kim YW
Investigative Ophthalmology and Visual Science 2016; 57: 1662-1670 (IGR: 17-4)


66795 Association between Corneal Deformation Amplitude and Posterior Pole Profiles in Primary Open-Angle Glaucoma
Park CK
Ophthalmology 2016; 123: 959-964 (IGR: 17-4)


67454 Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
Goldbaum MH
Translational vision science & technology 2016; 5: 2 (IGR: 17-4)


67177 Differences in Relationship Between Macular Inner Retinal Layer Thickness and Retinal Sensitivity in Eyes With Early and Progressed Glaucoma
Iwase A
Investigative Ophthalmology and Visual Science 2016; 57: 1588-1594 (IGR: 17-4)


66669 Enhancement of Visual Field Predictions with Pointwise Exponential Regression (PER) and Pointwise Linear Regression (PLR)
Abdollahi N
Translational vision science & technology 2016; 5: 12 (IGR: 17-4)


67260 Comparison of Macular Integrity Assessment (MAIA ™), MP-3, and the Humphrey Field Analyzer in the Evaluation of the Relationship between the Structure and Function of the Macula
Nitta E
PLoS ONE 2016; 11: e0151000 (IGR: 17-4)


67306 Structural and Functional Progression in the Early Manifest Glaucoma Trial
Brenner L
Ophthalmology 2016; 123: 1173-1180 (IGR: 17-4)


67434 Development of Visual Field Screening Procedures: A Case Study of the Octopus Perimeter
McKendrick AM
Translational vision science & technology 2016; 5: 3 (IGR: 17-4)


67229 Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study
Lai G
Ophthalmology 2016; 123: 1201-1210 (IGR: 17-4)


67125 The 24-2 Visual Field Test Misses Central Macular Damage Confirmed by the 10-2 Visual Field Test and Optical Coherence Tomography
Ehrlich AC
Translational vision science & technology 2016; 5: 15 (IGR: 17-4)


66680 Suitability of the Visual Field Index according to Glaucoma Severity
Maslin JS
Journal of Current Glaucoma Practice 2015; 9: 65-68 (IGR: 17-4)


67306 Structural and Functional Progression in the Early Manifest Glaucoma Trial
Anderson H
Ophthalmology 2016; 123: 1173-1180 (IGR: 17-4)


67614 Arteriolar Diameters in Glaucomatous Eyes with Single-Hemifield Damage
Ghilardi N
Optometry and Vision Science 2016; 93: 504-509 (IGR: 17-4)


67260 Comparison of Macular Integrity Assessment (MAIA ™), MP-3, and the Humphrey Field Analyzer in the Evaluation of the Relationship between the Structure and Function of the Macula
Ukegawa K
PLoS ONE 2016; 11: e0151000 (IGR: 17-4)


67171 Prelamina and Lamina Cribrosa in Glaucoma Patients With Unilateral Visual Field Loss
Girard MJ
Investigative Ophthalmology and Visual Science 2016; 57: 1662-1670 (IGR: 17-4)


67193 Visual field defect classification in the Zhongshan Ophthalmic Center-Brien Holden Vision Institute High Myopia Registry Study
Liu X
British Journal of Ophthalmology 2016; 100: 1697-1702 (IGR: 17-4)


66696 Association Between Peripheral Vascular Endothelial Function and Progression of Open-Angle Glaucoma
Cheng ST
Medicine 2016; 95: e3055 (IGR: 17-4)


67177 Differences in Relationship Between Macular Inner Retinal Layer Thickness and Retinal Sensitivity in Eyes With Early and Progressed Glaucoma
Hangai M
Investigative Ophthalmology and Visual Science 2016; 57: 1588-1594 (IGR: 17-4)


67454 Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
Medeiros FA
Translational vision science & technology 2016; 5: 2 (IGR: 17-4)


67428 Evaluation of Central and Peripheral Visual Field Concordance in Glaucoma
Friedman DS
Investigative Ophthalmology and Visual Science 2016; 57: 2797-2804 (IGR: 17-4)


66669 Enhancement of Visual Field Predictions with Pointwise Exponential Regression (PER) and Pointwise Linear Regression (PLR)
Yu F
Translational vision science & technology 2016; 5: 12 (IGR: 17-4)


67306 Structural and Functional Progression in the Early Manifest Glaucoma Trial
Bengtsson B
Ophthalmology 2016; 123: 1173-1180 (IGR: 17-4)


67614 Arteriolar Diameters in Glaucomatous Eyes with Single-Hemifield Damage
Turano R
Optometry and Vision Science 2016; 93: 504-509 (IGR: 17-4)


67260 Comparison of Macular Integrity Assessment (MAIA ™), MP-3, and the Humphrey Field Analyzer in the Evaluation of the Relationship between the Structure and Function of the Macula
Sato S
PLoS ONE 2016; 11: e0151000 (IGR: 17-4)


67229 Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study
Chiu V
Ophthalmology 2016; 123: 1201-1210 (IGR: 17-4)


67454 Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
Zangwill LM
Translational vision science & technology 2016; 5: 2 (IGR: 17-4)


67428 Evaluation of Central and Peripheral Visual Field Concordance in Glaucoma
West SK
Investigative Ophthalmology and Visual Science 2016; 57: 2797-2804 (IGR: 17-4)


66680 Suitability of the Visual Field Index according to Glaucoma Severity
Leite MT
Journal of Current Glaucoma Practice 2015; 9: 65-68 (IGR: 17-4)


66696 Association Between Peripheral Vascular Endothelial Function and Progression of Open-Angle Glaucoma
Su CW
Medicine 2016; 95: e3055 (IGR: 17-4)


67125 The 24-2 Visual Field Test Misses Central Macular Damage Confirmed by the 10-2 Visual Field Test and Optical Coherence Tomography
De Moraes CG
Translational vision science & technology 2016; 5: 15 (IGR: 17-4)


67193 Visual field defect classification in the Zhongshan Ophthalmic Center-Brien Holden Vision Institute High Myopia Registry Study
Johnson CA
British Journal of Ophthalmology 2016; 100: 1697-1702 (IGR: 17-4)


67171 Prelamina and Lamina Cribrosa in Glaucoma Patients With Unilateral Visual Field Loss
Mari JM
Investigative Ophthalmology and Visual Science 2016; 57: 1662-1670 (IGR: 17-4)


67177 Differences in Relationship Between Macular Inner Retinal Layer Thickness and Retinal Sensitivity in Eyes With Early and Progressed Glaucoma
Sugiyama K
Investigative Ophthalmology and Visual Science 2016; 57: 1588-1594 (IGR: 17-4)


66669 Enhancement of Visual Field Predictions with Pointwise Exponential Regression (PER) and Pointwise Linear Regression (PLR)
Nouri-Mahdavi K
Translational vision science & technology 2016; 5: 12 (IGR: 17-4)


66680 Suitability of the Visual Field Index according to Glaucoma Severity
Prata TS
Journal of Current Glaucoma Practice 2015; 9: 65-68 (IGR: 17-4)


67454 Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
Weinreb RN
Translational vision science & technology 2016; 5: 2 (IGR: 17-4)


66696 Association Between Peripheral Vascular Endothelial Function and Progression of Open-Angle Glaucoma
Ho WJ
Medicine 2016; 95: e3055 (IGR: 17-4)


67171 Prelamina and Lamina Cribrosa in Glaucoma Patients With Unilateral Visual Field Loss
Kim YK
Investigative Ophthalmology and Visual Science 2016; 57: 1662-1670 (IGR: 17-4)


66669 Enhancement of Visual Field Predictions with Pointwise Exponential Regression (PER) and Pointwise Linear Regression (PLR)
Caprioli J
Translational vision science & technology 2016; 5: 12 (IGR: 17-4)


67229 Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study
Leung CK
Ophthalmology 2016; 123: 1201-1210 (IGR: 17-4)


67260 Comparison of Macular Integrity Assessment (MAIA ™), MP-3, and the Humphrey Field Analyzer in the Evaluation of the Relationship between the Structure and Function of the Macula
Tsujikawa A
PLoS ONE 2016; 11: e0151000 (IGR: 17-4)


67177 Differences in Relationship Between Macular Inner Retinal Layer Thickness and Retinal Sensitivity in Eyes With Early and Progressed Glaucoma
Yoshimura N
Investigative Ophthalmology and Visual Science 2016; 57: 1588-1594 (IGR: 17-4)


67193 Visual field defect classification in the Zhongshan Ophthalmic Center-Brien Holden Vision Institute High Myopia Registry Study
Holden BA
British Journal of Ophthalmology 2016; 100: 1697-1702 (IGR: 17-4)


67428 Evaluation of Central and Peripheral Visual Field Concordance in Glaucoma
Ramulu PY
Investigative Ophthalmology and Visual Science 2016; 57: 2797-2804 (IGR: 17-4)


67614 Arteriolar Diameters in Glaucomatous Eyes with Single-Hemifield Damage
Semeraro F
Optometry and Vision Science 2016; 93: 504-509 (IGR: 17-4)


67125 The 24-2 Visual Field Test Misses Central Macular Damage Confirmed by the 10-2 Visual Field Test and Optical Coherence Tomography
Ritch R
Translational vision science & technology 2016; 5: 15 (IGR: 17-4)


67193 Visual field defect classification in the Zhongshan Ophthalmic Center-Brien Holden Vision Institute High Myopia Registry Study
He M
British Journal of Ophthalmology 2016; 100: 1697-1702 (IGR: 17-4)


67125 The 24-2 Visual Field Test Misses Central Macular Damage Confirmed by the 10-2 Visual Field Test and Optical Coherence Tomography
Hood DC
Translational vision science & technology 2016; 5: 15 (IGR: 17-4)


67454 Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
Liebmann JM
Translational vision science & technology 2016; 5: 2 (IGR: 17-4)


67171 Prelamina and Lamina Cribrosa in Glaucoma Patients With Unilateral Visual Field Loss
Park KH
Investigative Ophthalmology and Visual Science 2016; 57: 1662-1670 (IGR: 17-4)


67454 Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
Girkin CA
Translational vision science & technology 2016; 5: 2 (IGR: 17-4)


67171 Prelamina and Lamina Cribrosa in Glaucoma Patients With Unilateral Visual Field Loss
Kim DM
Investigative Ophthalmology and Visual Science 2016; 57: 1662-1670 (IGR: 17-4)


67454 Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
Bowd C
Translational vision science & technology 2016; 5: 2 (IGR: 17-4)


65794 Comparing the Structure-Function Relationship at the Macula With Standard Automated Perimetry and Microperimetry
Rao HL
Investigative Ophthalmology and Visual Science 2015; 56: 8063-8068 (IGR: 17-3)


66578 Retest Variability in the Medmont M700 Automated Perimeter
Pearce JG
Optometry and Vision Science 2016; 93: 272-280 (IGR: 17-3)


66291 Structure/Function relationship and retinal ganglion cells counts to discriminate glaucomatous damages
Distante P
BMC Ophthalmology 2015; 15: 185 (IGR: 17-3)


65855 Differences between Non-arteritic Anterior Ischemic Optic Neuropathy and Open Angle Glaucoma with Altitudinal Visual Field Defect
Han S
Korean Journal of Ophthalmology 2015; 29: 418-423 (IGR: 17-3)


65801 Location of Initial Visual Field Defects in Glaucoma and Their Modes of Deterioration
Kim JM
Investigative Ophthalmology and Visual Science 2015; 56: 7956-7962 (IGR: 17-3)


65886 Anxiety in visual field testing
Chew SS
British Journal of Ophthalmology 2016; 100: 1128-1133 (IGR: 17-3)


66475 Comparison of Standard Automated Perimetry, Short-Wavelength Automated Perimetry, and Frequency-Doubling Technology Perimetry to Monitor Glaucoma Progression
Hu R
Medicine 2016; 95: e2618 (IGR: 17-3)


65862 Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography
Zhang X
American Journal of Ophthalmology 2016; 163: 29-37 (IGR: 17-3)


66353 Rates of glaucomatous visual field change before and after transscleral cyclophotocoagulation: a retrospective case series
Bleisch D
BMC Ophthalmology 2015; 15: 179 (IGR: 17-3)


66238 The Effect of Limiting the Range of Perimetric Sensitivities on Pointwise Assessment of Visual Field Progression in Glaucoma
Gardiner SK
Investigative Ophthalmology and Visual Science 2016; 57: 288-294 (IGR: 17-3)


65838 Optimizing the Detection of Preperimetric Glaucoma by Combining Structural and Functional Tests
Sriram P
Investigative Ophthalmology and Visual Science 2015; 56: 7794-7800 (IGR: 17-3)


66477 Between-Subject Variability in Healthy Eyes as a Primary Source of Structural-Functional Discordance in Patients With Glaucoma
Ashimatey BS
Investigative Ophthalmology and Visual Science 2016; 57: 502-507 (IGR: 17-3)


66229 Visual Field Change and 24-Hour IOP-Related Profile with a Contact Lens Sensor in Treated Glaucoma Patients
De Moraes CG
Ophthalmology 2016; 123: 744-753 (IGR: 17-3)


66583 Comparison between visual field defect in pigmentary glaucoma and primary open-angle glaucoma
Nilforushan N
International Ophthalmology 2016; 36: 637-642 (IGR: 17-3)


65837 Estimating the Usefulness of Humphrey Perimetry Gaze Tracking for Evaluating Structure-Function Relationship in Glaucoma
Ishiyama Y
Investigative Ophthalmology and Visual Science 2015; 56: 7801-7805 (IGR: 17-3)


66491 Structure-Function Relationship in Glaucoma Patients With Parafoveal Versus Peripheral Nasal Scotoma
Jung KI
Investigative Ophthalmology and Visual Science 2016; 57: 420-428 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Kostanyan T
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


66555 Efficacy of the Amsler Grid Test in Evaluating Glaucomatous Central Visual Field Defects
Su D
Ophthalmology 2016; 123: 737-743 (IGR: 17-3)


66305 The Impact of Visual Field Clusters on Performance-Based Measures and Vision-Related Quality of Life in Patients with Glaucoma
Sun Y
American Journal of Ophthalmology 2016; 163: 45-52 (IGR: 17-3)


65809 Local Relationship between Global-Flash Multifocal Electroretinogram Optic Nerve Head Components and Visual Field Defects in Patients with Glaucoma
Moon CH
Journal of Ophthalmology 2015; 2015: 397495 (IGR: 17-3)


66477 Between-Subject Variability in Healthy Eyes as a Primary Source of Structural-Functional Discordance in Patients With Glaucoma
Swanson WH
Investigative Ophthalmology and Visual Science 2016; 57: 502-507 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Sung KR
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


65809 Local Relationship between Global-Flash Multifocal Electroretinogram Optic Nerve Head Components and Visual Field Defects in Patients with Glaucoma
Han J
Journal of Ophthalmology 2015; 2015: 397495 (IGR: 17-3)


65838 Optimizing the Detection of Preperimetric Glaucoma by Combining Structural and Functional Tests
Klistorner A
Investigative Ophthalmology and Visual Science 2015; 56: 7794-7800 (IGR: 17-3)


66491 Structure-Function Relationship in Glaucoma Patients With Parafoveal Versus Peripheral Nasal Scotoma
Kang MK
Investigative Ophthalmology and Visual Science 2016; 57: 420-428 (IGR: 17-3)


66578 Retest Variability in the Medmont M700 Automated Perimeter
Maddess T
Optometry and Vision Science 2016; 93: 272-280 (IGR: 17-3)


66555 Efficacy of the Amsler Grid Test in Evaluating Glaucomatous Central Visual Field Defects
Greenberg A
Ophthalmology 2016; 123: 737-743 (IGR: 17-3)


65837 Estimating the Usefulness of Humphrey Perimetry Gaze Tracking for Evaluating Structure-Function Relationship in Glaucoma
Murata H
Investigative Ophthalmology and Visual Science 2015; 56: 7801-7805 (IGR: 17-3)


65886 Anxiety in visual field testing
Kerr NM
British Journal of Ophthalmology 2016; 100: 1128-1133 (IGR: 17-3)


66229 Visual Field Change and 24-Hour IOP-Related Profile with a Contact Lens Sensor in Treated Glaucoma Patients
Jasien JV
Ophthalmology 2016; 123: 744-753 (IGR: 17-3)


66583 Comparison between visual field defect in pigmentary glaucoma and primary open-angle glaucoma
Yadgari M
International Ophthalmology 2016; 36: 637-642 (IGR: 17-3)


66475 Comparison of Standard Automated Perimetry, Short-Wavelength Automated Perimetry, and Frequency-Doubling Technology Perimetry to Monitor Glaucoma Progression
Wang C
Medicine 2016; 95: e2618 (IGR: 17-3)


65801 Location of Initial Visual Field Defects in Glaucoma and Their Modes of Deterioration
Kyung H
Investigative Ophthalmology and Visual Science 2015; 56: 7956-7962 (IGR: 17-3)


65794 Comparing the Structure-Function Relationship at the Macula With Standard Automated Perimetry and Microperimetry
Januwada M
Investigative Ophthalmology and Visual Science 2015; 56: 8063-8068 (IGR: 17-3)


66305 The Impact of Visual Field Clusters on Performance-Based Measures and Vision-Related Quality of Life in Patients with Glaucoma
Lin C
American Journal of Ophthalmology 2016; 163: 45-52 (IGR: 17-3)


66353 Rates of glaucomatous visual field change before and after transscleral cyclophotocoagulation: a retrospective case series
Furrer S
BMC Ophthalmology 2015; 15: 179 (IGR: 17-3)


66291 Structure/Function relationship and retinal ganglion cells counts to discriminate glaucomatous damages
Lombardo S
BMC Ophthalmology 2015; 15: 185 (IGR: 17-3)


65855 Differences between Non-arteritic Anterior Ischemic Optic Neuropathy and Open Angle Glaucoma with Altitudinal Visual Field Defect
Jung JJ
Korean Journal of Ophthalmology 2015; 29: 418-423 (IGR: 17-3)


65862 Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography
Loewen N
American Journal of Ophthalmology 2016; 163: 29-37 (IGR: 17-3)


66238 The Effect of Limiting the Range of Perimetric Sensitivities on Pointwise Assessment of Visual Field Progression in Glaucoma
Swanson WH
Investigative Ophthalmology and Visual Science 2016; 57: 288-294 (IGR: 17-3)


65838 Optimizing the Detection of Preperimetric Glaucoma by Combining Structural and Functional Tests
Graham S
Investigative Ophthalmology and Visual Science 2015; 56: 7794-7800 (IGR: 17-3)


66353 Rates of glaucomatous visual field change before and after transscleral cyclophotocoagulation: a retrospective case series
Funk J
BMC Ophthalmology 2015; 15: 179 (IGR: 17-3)


66305 The Impact of Visual Field Clusters on Performance-Based Measures and Vision-Related Quality of Life in Patients with Glaucoma
Waisbourd M
American Journal of Ophthalmology 2016; 163: 45-52 (IGR: 17-3)


65837 Estimating the Usefulness of Humphrey Perimetry Gaze Tracking for Evaluating Structure-Function Relationship in Glaucoma
Hirasawa H
Investigative Ophthalmology and Visual Science 2015; 56: 7801-7805 (IGR: 17-3)


66491 Structure-Function Relationship in Glaucoma Patients With Parafoveal Versus Peripheral Nasal Scotoma
Choi JA
Investigative Ophthalmology and Visual Science 2016; 57: 420-428 (IGR: 17-3)


66229 Visual Field Change and 24-Hour IOP-Related Profile with a Contact Lens Sensor in Treated Glaucoma Patients
Simon-Zoula S
Ophthalmology 2016; 123: 744-753 (IGR: 17-3)


66583 Comparison between visual field defect in pigmentary glaucoma and primary open-angle glaucoma
Jazayeri A
International Ophthalmology 2016; 36: 637-642 (IGR: 17-3)


65801 Location of Initial Visual Field Defects in Glaucoma and Their Modes of Deterioration
Shim SH
Investigative Ophthalmology and Visual Science 2015; 56: 7956-7962 (IGR: 17-3)


66238 The Effect of Limiting the Range of Perimetric Sensitivities on Pointwise Assessment of Visual Field Progression in Glaucoma
Demirel S
Investigative Ophthalmology and Visual Science 2016; 57: 288-294 (IGR: 17-3)


66291 Structure/Function relationship and retinal ganglion cells counts to discriminate glaucomatous damages
Verticchio Vercellin AC
BMC Ophthalmology 2015; 15: 185 (IGR: 17-3)


65809 Local Relationship between Global-Flash Multifocal Electroretinogram Optic Nerve Head Components and Visual Field Defects in Patients with Glaucoma
Ohn YH
Journal of Ophthalmology 2015; 2015: 397495 (IGR: 17-3)


65855 Differences between Non-arteritic Anterior Ischemic Optic Neuropathy and Open Angle Glaucoma with Altitudinal Visual Field Defect
Kim US
Korean Journal of Ophthalmology 2015; 29: 418-423 (IGR: 17-3)


65862 Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography
Tan O
American Journal of Ophthalmology 2016; 163: 29-37 (IGR: 17-3)


66555 Efficacy of the Amsler Grid Test in Evaluating Glaucomatous Central Visual Field Defects
Simonson JL
Ophthalmology 2016; 123: 737-743 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Schuman JS
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


66475 Comparison of Standard Automated Perimetry, Short-Wavelength Automated Perimetry, and Frequency-Doubling Technology Perimetry to Monitor Glaucoma Progression
Gu Y
Medicine 2016; 95: e2618 (IGR: 17-3)


65886 Anxiety in visual field testing
Wong AB
British Journal of Ophthalmology 2016; 100: 1128-1133 (IGR: 17-3)


65794 Comparing the Structure-Function Relationship at the Macula With Standard Automated Perimetry and Microperimetry
Hussain RS
Investigative Ophthalmology and Visual Science 2015; 56: 8063-8068 (IGR: 17-3)


65801 Location of Initial Visual Field Defects in Glaucoma and Their Modes of Deterioration
Azarbod P
Investigative Ophthalmology and Visual Science 2015; 56: 7956-7962 (IGR: 17-3)


66229 Visual Field Change and 24-Hour IOP-Related Profile with a Contact Lens Sensor in Treated Glaucoma Patients
Liebmann JM
Ophthalmology 2016; 123: 744-753 (IGR: 17-3)


66475 Comparison of Standard Automated Perimetry, Short-Wavelength Automated Perimetry, and Frequency-Doubling Technology Perimetry to Monitor Glaucoma Progression
Racette L
Medicine 2016; 95: e2618 (IGR: 17-3)


66555 Efficacy of the Amsler Grid Test in Evaluating Glaucomatous Central Visual Field Defects
Teng CC
Ophthalmology 2016; 123: 737-743 (IGR: 17-3)


66291 Structure/Function relationship and retinal ganglion cells counts to discriminate glaucomatous damages
Raimondi M
BMC Ophthalmology 2015; 15: 185 (IGR: 17-3)


65794 Comparing the Structure-Function Relationship at the Macula With Standard Automated Perimetry and Microperimetry
Pillutla LN
Investigative Ophthalmology and Visual Science 2015; 56: 8063-8068 (IGR: 17-3)


65838 Optimizing the Detection of Preperimetric Glaucoma by Combining Structural and Functional Tests
Grigg J
Investigative Ophthalmology and Visual Science 2015; 56: 7794-7800 (IGR: 17-3)


66491 Structure-Function Relationship in Glaucoma Patients With Parafoveal Versus Peripheral Nasal Scotoma
Shin HY
Investigative Ophthalmology and Visual Science 2016; 57: 420-428 (IGR: 17-3)


65837 Estimating the Usefulness of Humphrey Perimetry Gaze Tracking for Evaluating Structure-Function Relationship in Glaucoma
Asaoka R
Investigative Ophthalmology and Visual Science 2015; 56: 7801-7805 (IGR: 17-3)


65862 Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography
Greenfield DS
American Journal of Ophthalmology 2016; 163: 29-37 (IGR: 17-3)


65886 Anxiety in visual field testing
Craig JP
British Journal of Ophthalmology 2016; 100: 1128-1133 (IGR: 17-3)


65809 Local Relationship between Global-Flash Multifocal Electroretinogram Optic Nerve Head Components and Visual Field Defects in Patients with Glaucoma
Park TK
Journal of Ophthalmology 2015; 2015: 397495 (IGR: 17-3)


66305 The Impact of Visual Field Clusters on Performance-Based Measures and Vision-Related Quality of Life in Patients with Glaucoma
Ekici F
American Journal of Ophthalmology 2016; 163: 45-52 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Ling Y
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


65862 Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography
Schuman JS
American Journal of Ophthalmology 2016; 163: 29-37 (IGR: 17-3)


66291 Structure/Function relationship and retinal ganglion cells counts to discriminate glaucomatous damages
Rolando M
BMC Ophthalmology 2015; 15: 185 (IGR: 17-3)


66305 The Impact of Visual Field Clusters on Performance-Based Measures and Vision-Related Quality of Life in Patients with Glaucoma
Erdem E
American Journal of Ophthalmology 2016; 163: 45-52 (IGR: 17-3)


66229 Visual Field Change and 24-Hour IOP-Related Profile with a Contact Lens Sensor in Treated Glaucoma Patients
Ritch R
Ophthalmology 2016; 123: 744-753 (IGR: 17-3)


66491 Structure-Function Relationship in Glaucoma Patients With Parafoveal Versus Peripheral Nasal Scotoma
Park CK
Investigative Ophthalmology and Visual Science 2016; 57: 420-428 (IGR: 17-3)


65794 Comparing the Structure-Function Relationship at the Macula With Standard Automated Perimetry and Microperimetry
Begum VU
Investigative Ophthalmology and Visual Science 2015; 56: 8063-8068 (IGR: 17-3)


65838 Optimizing the Detection of Preperimetric Glaucoma by Combining Structural and Functional Tests
Arvind H
Investigative Ophthalmology and Visual Science 2015; 56: 7794-7800 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Lucy KA
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


65886 Anxiety in visual field testing
Chou CY
British Journal of Ophthalmology 2016; 100: 1128-1133 (IGR: 17-3)


66555 Efficacy of the Amsler Grid Test in Evaluating Glaucomatous Central Visual Field Defects
Liebmann JM
Ophthalmology 2016; 123: 737-743 (IGR: 17-3)


65801 Location of Initial Visual Field Defects in Glaucoma and Their Modes of Deterioration
Caprioli J
Investigative Ophthalmology and Visual Science 2015; 56: 7956-7962 (IGR: 17-3)


66555 Efficacy of the Amsler Grid Test in Evaluating Glaucomatous Central Visual Field Defects
Ritch R
Ophthalmology 2016; 123: 737-743 (IGR: 17-3)


65886 Anxiety in visual field testing
Danesh-Meyer HV
British Journal of Ophthalmology 2016; 100: 1128-1133 (IGR: 17-3)


65794 Comparing the Structure-Function Relationship at the Macula With Standard Automated Perimetry and Microperimetry
Chaitanya A
Investigative Ophthalmology and Visual Science 2015; 56: 8063-8068 (IGR: 17-3)


66305 The Impact of Visual Field Clusters on Performance-Based Measures and Vision-Related Quality of Life in Patients with Glaucoma
Wizov SS
American Journal of Ophthalmology 2016; 163: 45-52 (IGR: 17-3)


65862 Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography
Varma R
American Journal of Ophthalmology 2016; 163: 29-37 (IGR: 17-3)


66291 Structure/Function relationship and retinal ganglion cells counts to discriminate glaucomatous damages
Tinelli C
BMC Ophthalmology 2015; 15: 185 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Bilonick RA
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


65862 Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography
Huang D
American Journal of Ophthalmology 2016; 163: 29-37 (IGR: 17-3)


65794 Comparing the Structure-Function Relationship at the Macula With Standard Automated Perimetry and Microperimetry
Senthil S
Investigative Ophthalmology and Visual Science 2015; 56: 8063-8068 (IGR: 17-3)


66555 Efficacy of the Amsler Grid Test in Evaluating Glaucomatous Central Visual Field Defects
Park SC
Ophthalmology 2016; 123: 737-743 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Ishikawa H
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


66305 The Impact of Visual Field Clusters on Performance-Based Measures and Vision-Related Quality of Life in Patients with Glaucoma
Hark LA
American Journal of Ophthalmology 2016; 163: 45-52 (IGR: 17-3)


66291 Structure/Function relationship and retinal ganglion cells counts to discriminate glaucomatous damages
Milano G
BMC Ophthalmology 2015; 15: 185 (IGR: 17-3)


66305 The Impact of Visual Field Clusters on Performance-Based Measures and Vision-Related Quality of Life in Patients with Glaucoma
Spaeth GL
American Journal of Ophthalmology 2016; 163: 45-52 (IGR: 17-3)


65862 Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography

American Journal of Ophthalmology 2016; 163: 29-37 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Kagemann L
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


65794 Comparing the Structure-Function Relationship at the Macula With Standard Automated Perimetry and Microperimetry
Garudadri CS
Investigative Ophthalmology and Visual Science 2015; 56: 8063-8068 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Lee JY; Wollstein G
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


61807 Dependence of diameters and oxygen saturation of retinal vessels on visual field damage and age in primary open-angle glaucoma
Ramm L
Acta Ophthalmologica 2016; 94: 276-281 (IGR: 17-1)


61581 Ganglion Cell Complex Map for Detecting Early Damage in High Tension and Normal Tension Glaucoma
Vidinova CN
Klinische Monatsblätter für Augenheilkunde 2016; 233: 72-78 (IGR: 17-1)


61037 Imaging Glaucomatous Damage Across the Temporal Raphe
Huang G
Investigative Ophthalmology and Visual Science 2015; 56: 3496-3504 (IGR: 17-1)


61685 Structure-Function Relationship Between Bruch's Membrane Opening-Based Optic Nerve Head Parameters and Visual Field Defects in Glaucoma
Muth DR
Investigative Ophthalmology and Visual Science 2015; 56: 3320-3328 (IGR: 17-1)


61548 Diagnostic Power of Macular Retinal Thickness Analysis and Structure-Function Relationship in Glaucoma Diagnosis Using SPECTRALIS OCT
Rolle T
Current Eye Research 2015; 0: 1-9 (IGR: 17-1)


61553 Estimating the Lead Time Gained by Optical Coherence Tomography in Detecting Glaucoma before Development of Visual Field Defects
Kuang TM
Ophthalmology 2015; 122: 2002-2009 (IGR: 17-1)


61718 Structural Differences in the Optic Nerve Head of Glaucoma Patients With and Without Disc Hemorrhages
Chin YC
Journal of Glaucoma 2016; 25: e76-e81 (IGR: 17-1)


61680 Relationship Between Motor Vehicle Collisions and Results of Perimetry, Useful Field of View, and Driving Simulation in Drivers With Glaucoma
Tatham AJ
Translational vision science & technology 2015; 4: 5 (IGR: 17-1)


61259 Comparison of Three Parametric Models for Glaucomatous Visual Field Progression Rate Distributions
Anderson AJ
Translational vision science & technology 2015; 4: 2 (IGR: 17-1)


61745 Glaucomatous visual field defect severity and the prevalence of motor vehicle collisions in Japanese: a hospital/clinic-based cross-sectional study
Ono T
Journal of Ophthalmology 2015; 2015: 497067 (IGR: 17-1)


61609 Diagnostic Consistency and Relation Between Optical Coherence Tomography and Standard Automated Perimetry in Primary Open-Angle Glaucoma
Toprak I
Seminars in Ophthalmology 2015; 0: 1-6 (IGR: 17-1)


61382 Enhancing Structure-Function Correlations in Glaucoma with Customized Spatial Mapping
Ballae Ganeshrao S
Ophthalmology 2015; 122: 1695-1705 (IGR: 17-1)


61050 Correlation of Macular Ganglion Cell Complex Thickness With Frequency-doubling Technology Perimetry in Open-angle Glaucoma With Hemifield Defects
Hayashi K
Journal of Glaucoma 2016; 25: 426-432 (IGR: 17-1)


61124 Comparing glaucoma progression on 24-2 and 10-2 visual field examinations
Rao HL
PLoS ONE 2015; 10: e0127233 (IGR: 17-1)


61755 Methodology and reporting of diagnostic accuracy studies of automated perimetry in glaucoma: evaluation using a standardised approach
Fidalgo BM
Ophthalmic and Physiological Optics 2015; 35: 315-323 (IGR: 17-1)


61294 Global Visit Effects in Point-Wise Longitudinal Modeling of Glaucomatous Visual Fields
Bryan SR
Investigative Ophthalmology and Visual Science 2015; 56: 4283-4289 (IGR: 17-1)


60988 How Many Visual Fields Are Required to Precisely Predict Future Test Results in Glaucoma Patients When Using Different Trend Analyses?
Taketani Y
Investigative Ophthalmology and Visual Science 2015; 56: 4076-4082 (IGR: 17-1)


61529 Axial Myopia Is Associated with Visual Field Prognosis of Primary Open-Angle Glaucoma
Qiu C
PLoS ONE 2015; 10: e0133189 (IGR: 17-1)


61809 Comparison of Matrix with Humphrey Field Analyzer II with SITA
Fredette MJ
Optometry and Vision Science 2015; 92: 527-536 (IGR: 17-1)


61066 Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma
Banegas SA
Journal of Glaucoma 2016; 25: e229-e235 (IGR: 17-1)


61589 Diagnostic Value of Ganglion Cell-Inner Plexiform Layer Thickness in Glaucoma With Superior or Inferior Visual Hemifield Defects
Kim HS
Journal of Glaucoma 2016; 25: 472-476 (IGR: 17-1)


61380 Reproducibility in the global indices for multifocal visual evoked potentials and Humphrey visual fields in controls and glaucomatous eyes within a 2-year period
Inoue Y
Documenta Ophthalmologica 2015; 131: 115-124 (IGR: 17-1)


61407 Physical activity restriction in age-related eye disease: a cross-sectional study exploring fear of falling as a potential mediator
Nguyen AM
BMC geriatrics 2015; 15: 64 (IGR: 17-1)


61483 Flicker defined form, standard perimetry and Heidelberg retinal tomography: Structure-function relationships
Ichhpujani P
Canadian Journal of Ophthalmology 2015; 50: 290-296 (IGR: 17-1)


61492 Relationship between Peripapillary Retinal Nerve Fiber Layer Thickness Measured by Optical Coherence Tomography and Visual Field Severity Indices
Kang EM
Korean Journal of Ophthalmology 2015; 29: 263-269 (IGR: 17-1)


61001 Structure-Function Relationship in Glaucoma Using Ganglion Cell-Inner Plexiform Layer Thickness Measurements
Rao HL
Investigative Ophthalmology and Visual Science 2015; 56: 3883-3888 (IGR: 17-1)


61487 Correlation of morphological and functional glaucoma diagnostics with macular OCT and perimetry with centrally condensed stimuli : German version
Sturm A
Ophthalmologe 2015; 112: 626-638 (IGR: 17-1)


61822 Characteristic correlations of the structure-function relationship in different glaucomatous disc types
Omodaka K
Japanese Journal of Ophthalmology 2015; 59: 223-229 (IGR: 17-1)


61287 Does Posterior Capsule Opacification Affect the Results of Diagnostic Technologies to Evaluate the Retina and the Optic Disc?
Garcia-Medina JJ
BioMed research international 2015; 2015: 813242 (IGR: 17-1)


61755 Methodology and reporting of diagnostic accuracy studies of automated perimetry in glaucoma: evaluation using a standardised approach
Crabb DP
Ophthalmic and Physiological Optics 2015; 35: 315-323 (IGR: 17-1)


61001 Structure-Function Relationship in Glaucoma Using Ganglion Cell-Inner Plexiform Layer Thickness Measurements
Qasim M
Investigative Ophthalmology and Visual Science 2015; 56: 3883-3888 (IGR: 17-1)


61609 Diagnostic Consistency and Relation Between Optical Coherence Tomography and Standard Automated Perimetry in Primary Open-Angle Glaucoma
Yaylalı V
Seminars in Ophthalmology 2015; 0: 1-6 (IGR: 17-1)


61050 Correlation of Macular Ganglion Cell Complex Thickness With Frequency-doubling Technology Perimetry in Open-angle Glaucoma With Hemifield Defects
Araie M
Journal of Glaucoma 2016; 25: 426-432 (IGR: 17-1)


61294 Global Visit Effects in Point-Wise Longitudinal Modeling of Glaucomatous Visual Fields
Eilers PH
Investigative Ophthalmology and Visual Science 2015; 56: 4283-4289 (IGR: 17-1)


61487 Correlation of morphological and functional glaucoma diagnostics with macular OCT and perimetry with centrally condensed stimuli : German version
Noske W
Ophthalmologe 2015; 112: 626-638 (IGR: 17-1)


61407 Physical activity restriction in age-related eye disease: a cross-sectional study exploring fear of falling as a potential mediator
Arora KS
BMC geriatrics 2015; 15: 64 (IGR: 17-1)


61548 Diagnostic Power of Macular Retinal Thickness Analysis and Structure-Function Relationship in Glaucoma Diagnosis Using SPECTRALIS OCT
Manerba L
Current Eye Research 2015; 0: 1-9 (IGR: 17-1)


61287 Does Posterior Capsule Opacification Affect the Results of Diagnostic Technologies to Evaluate the Retina and the Optic Disc?
Del Rio-Vellosillo M
BioMed research international 2015; 2015: 813242 (IGR: 17-1)


60988 How Many Visual Fields Are Required to Precisely Predict Future Test Results in Glaucoma Patients When Using Different Trend Analyses?
Murata H
Investigative Ophthalmology and Visual Science 2015; 56: 4076-4082 (IGR: 17-1)


61807 Dependence of diameters and oxygen saturation of retinal vessels on visual field damage and age in primary open-angle glaucoma
Jentsch S
Acta Ophthalmologica 2016; 94: 276-281 (IGR: 17-1)


61809 Comparison of Matrix with Humphrey Field Analyzer II with SITA
Giguère A
Optometry and Vision Science 2015; 92: 527-536 (IGR: 17-1)


61685 Structure-Function Relationship Between Bruch's Membrane Opening-Based Optic Nerve Head Parameters and Visual Field Defects in Glaucoma
Hirneiß CW
Investigative Ophthalmology and Visual Science 2015; 56: 3320-3328 (IGR: 17-1)


61483 Flicker defined form, standard perimetry and Heidelberg retinal tomography: Structure-function relationships
Lo DC
Canadian Journal of Ophthalmology 2015; 50: 290-296 (IGR: 17-1)


61589 Diagnostic Value of Ganglion Cell-Inner Plexiform Layer Thickness in Glaucoma With Superior or Inferior Visual Hemifield Defects
Yang H
Journal of Glaucoma 2016; 25: 472-476 (IGR: 17-1)


61066 Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma
Antón A
Journal of Glaucoma 2016; 25: e229-e235 (IGR: 17-1)


61124 Comparing glaucoma progression on 24-2 and 10-2 visual field examinations
Begum VU
PLoS ONE 2015; 10: e0127233 (IGR: 17-1)


61581 Ganglion Cell Complex Map for Detecting Early Damage in High Tension and Normal Tension Glaucoma
Gouguchkova PT
Klinische Monatsblätter für Augenheilkunde 2016; 233: 72-78 (IGR: 17-1)


61380 Reproducibility in the global indices for multifocal visual evoked potentials and Humphrey visual fields in controls and glaucomatous eyes within a 2-year period
Kato K
Documenta Ophthalmologica 2015; 131: 115-124 (IGR: 17-1)


61492 Relationship between Peripapillary Retinal Nerve Fiber Layer Thickness Measured by Optical Coherence Tomography and Visual Field Severity Indices
Hong S
Korean Journal of Ophthalmology 2015; 29: 263-269 (IGR: 17-1)


61822 Characteristic correlations of the structure-function relationship in different glaucomatous disc types
Takada N
Japanese Journal of Ophthalmology 2015; 59: 223-229 (IGR: 17-1)


61680 Relationship Between Motor Vehicle Collisions and Results of Perimetry, Useful Field of View, and Driving Simulation in Drivers With Glaucoma
Boer ER
Translational vision science & technology 2015; 4: 5 (IGR: 17-1)


61718 Structural Differences in the Optic Nerve Head of Glaucoma Patients With and Without Disc Hemorrhages
Perera SA
Journal of Glaucoma 2016; 25: e76-e81 (IGR: 17-1)


61529 Axial Myopia Is Associated with Visual Field Prognosis of Primary Open-Angle Glaucoma
Qian S
PLoS ONE 2015; 10: e0133189 (IGR: 17-1)


61037 Imaging Glaucomatous Damage Across the Temporal Raphe
Luo T
Investigative Ophthalmology and Visual Science 2015; 56: 3496-3504 (IGR: 17-1)


61553 Estimating the Lead Time Gained by Optical Coherence Tomography in Detecting Glaucoma before Development of Visual Field Defects
Zhang C
Ophthalmology 2015; 122: 2002-2009 (IGR: 17-1)


61382 Enhancing Structure-Function Correlations in Glaucoma with Customized Spatial Mapping
Turpin A
Ophthalmology 2015; 122: 1695-1705 (IGR: 17-1)


61745 Glaucomatous visual field defect severity and the prevalence of motor vehicle collisions in Japanese: a hospital/clinic-based cross-sectional study
Yuki K
Journal of Ophthalmology 2015; 2015: 497067 (IGR: 17-1)


61492 Relationship between Peripapillary Retinal Nerve Fiber Layer Thickness Measured by Optical Coherence Tomography and Visual Field Severity Indices
Kim CY
Korean Journal of Ophthalmology 2015; 29: 263-269 (IGR: 17-1)


61287 Does Posterior Capsule Opacification Affect the Results of Diagnostic Technologies to Evaluate the Retina and the Optic Disc?
Zanon-Moreno V
BioMed research international 2015; 2015: 813242 (IGR: 17-1)


61809 Comparison of Matrix with Humphrey Field Analyzer II with SITA
Anderson DR
Optometry and Vision Science 2015; 92: 527-536 (IGR: 17-1)


61822 Characteristic correlations of the structure-function relationship in different glaucomatous disc types
Yamaguchi T
Japanese Journal of Ophthalmology 2015; 59: 223-229 (IGR: 17-1)


61037 Imaging Glaucomatous Damage Across the Temporal Raphe
Gast TJ
Investigative Ophthalmology and Visual Science 2015; 56: 3496-3504 (IGR: 17-1)


61529 Axial Myopia Is Associated with Visual Field Prognosis of Primary Open-Angle Glaucoma
Sun X
PLoS ONE 2015; 10: e0133189 (IGR: 17-1)


61581 Ganglion Cell Complex Map for Detecting Early Damage in High Tension and Normal Tension Glaucoma
Vidinov KN
Klinische Monatsblätter für Augenheilkunde 2016; 233: 72-78 (IGR: 17-1)


61718 Structural Differences in the Optic Nerve Head of Glaucoma Patients With and Without Disc Hemorrhages
Tun TA
Journal of Glaucoma 2016; 25: e76-e81 (IGR: 17-1)


61380 Reproducibility in the global indices for multifocal visual evoked potentials and Humphrey visual fields in controls and glaucomatous eyes within a 2-year period
Kamata S
Documenta Ophthalmologica 2015; 131: 115-124 (IGR: 17-1)


61001 Structure-Function Relationship in Glaucoma Using Ganglion Cell-Inner Plexiform Layer Thickness Measurements
Hussain RS
Investigative Ophthalmology and Visual Science 2015; 56: 3883-3888 (IGR: 17-1)


61548 Diagnostic Power of Macular Retinal Thickness Analysis and Structure-Function Relationship in Glaucoma Diagnosis Using SPECTRALIS OCT
Lanzafame P
Current Eye Research 2015; 0: 1-9 (IGR: 17-1)


61807 Dependence of diameters and oxygen saturation of retinal vessels on visual field damage and age in primary open-angle glaucoma
Peters S
Acta Ophthalmologica 2016; 94: 276-281 (IGR: 17-1)


61609 Diagnostic Consistency and Relation Between Optical Coherence Tomography and Standard Automated Perimetry in Primary Open-Angle Glaucoma
Yildirim C
Seminars in Ophthalmology 2015; 0: 1-6 (IGR: 17-1)


61382 Enhancing Structure-Function Correlations in Glaucoma with Customized Spatial Mapping
Denniss J
Ophthalmology 2015; 122: 1695-1705 (IGR: 17-1)


61050 Correlation of Macular Ganglion Cell Complex Thickness With Frequency-doubling Technology Perimetry in Open-angle Glaucoma With Hemifield Defects
Konno S
Journal of Glaucoma 2016; 25: 426-432 (IGR: 17-1)


61745 Glaucomatous visual field defect severity and the prevalence of motor vehicle collisions in Japanese: a hospital/clinic-based cross-sectional study
Asaoka R
Journal of Ophthalmology 2015; 2015: 497067 (IGR: 17-1)


61483 Flicker defined form, standard perimetry and Heidelberg retinal tomography: Structure-function relationships
Cvintal V
Canadian Journal of Ophthalmology 2015; 50: 290-296 (IGR: 17-1)


61755 Methodology and reporting of diagnostic accuracy studies of automated perimetry in glaucoma: evaluation using a standardised approach
Lawrenson JG
Ophthalmic and Physiological Optics 2015; 35: 315-323 (IGR: 17-1)


61553 Estimating the Lead Time Gained by Optical Coherence Tomography in Detecting Glaucoma before Development of Visual Field Defects
Zangwill LM
Ophthalmology 2015; 122: 2002-2009 (IGR: 17-1)


60988 How Many Visual Fields Are Required to Precisely Predict Future Test Results in Glaucoma Patients When Using Different Trend Analyses?
Fujino Y
Investigative Ophthalmology and Visual Science 2015; 56: 4076-4082 (IGR: 17-1)


61066 Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma
Morilla A
Journal of Glaucoma 2016; 25: e229-e235 (IGR: 17-1)


61124 Comparing glaucoma progression on 24-2 and 10-2 visual field examinations
Khadka D
PLoS ONE 2015; 10: e0127233 (IGR: 17-1)


61294 Global Visit Effects in Point-Wise Longitudinal Modeling of Glaucomatous Visual Fields
Lesaffre EM
Investigative Ophthalmology and Visual Science 2015; 56: 4283-4289 (IGR: 17-1)


61589 Diagnostic Value of Ganglion Cell-Inner Plexiform Layer Thickness in Glaucoma With Superior or Inferior Visual Hemifield Defects
Lee TH
Journal of Glaucoma 2016; 25: 472-476 (IGR: 17-1)


61680 Relationship Between Motor Vehicle Collisions and Results of Perimetry, Useful Field of View, and Driving Simulation in Drivers With Glaucoma
Gracitelli CP
Translational vision science & technology 2015; 4: 5 (IGR: 17-1)


61407 Physical activity restriction in age-related eye disease: a cross-sectional study exploring fear of falling as a potential mediator
Swenor BK
BMC geriatrics 2015; 15: 64 (IGR: 17-1)


60988 How Many Visual Fields Are Required to Precisely Predict Future Test Results in Glaucoma Patients When Using Different Trend Analyses?
Mayama C
Investigative Ophthalmology and Visual Science 2015; 56: 4076-4082 (IGR: 17-1)


61380 Reproducibility in the global indices for multifocal visual evoked potentials and Humphrey visual fields in controls and glaucomatous eyes within a 2-year period
Ishikawa K
Documenta Ophthalmologica 2015; 131: 115-124 (IGR: 17-1)


61407 Physical activity restriction in age-related eye disease: a cross-sectional study exploring fear of falling as a potential mediator
Friedman DS
BMC geriatrics 2015; 15: 64 (IGR: 17-1)


61589 Diagnostic Value of Ganglion Cell-Inner Plexiform Layer Thickness in Glaucoma With Superior or Inferior Visual Hemifield Defects
Lee KH
Journal of Glaucoma 2016; 25: 472-476 (IGR: 17-1)


61382 Enhancing Structure-Function Correlations in Glaucoma with Customized Spatial Mapping
McKendrick AM
Ophthalmology 2015; 122: 1695-1705 (IGR: 17-1)


61001 Structure-Function Relationship in Glaucoma Using Ganglion Cell-Inner Plexiform Layer Thickness Measurements
Januwada M
Investigative Ophthalmology and Visual Science 2015; 56: 3883-3888 (IGR: 17-1)


61483 Flicker defined form, standard perimetry and Heidelberg retinal tomography: Structure-function relationships
Waisbourd M
Canadian Journal of Ophthalmology 2015; 50: 290-296 (IGR: 17-1)


61492 Relationship between Peripapillary Retinal Nerve Fiber Layer Thickness Measured by Optical Coherence Tomography and Visual Field Severity Indices
Seong GJ
Korean Journal of Ophthalmology 2015; 29: 263-269 (IGR: 17-1)


61066 Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma
Bogado M
Journal of Glaucoma 2016; 25: e229-e235 (IGR: 17-1)


61529 Axial Myopia Is Associated with Visual Field Prognosis of Primary Open-Angle Glaucoma
Zhou C
PLoS ONE 2015; 10: e0133189 (IGR: 17-1)


61553 Estimating the Lead Time Gained by Optical Coherence Tomography in Detecting Glaucoma before Development of Visual Field Defects
Weinreb RN
Ophthalmology 2015; 122: 2002-2009 (IGR: 17-1)


61809 Comparison of Matrix with Humphrey Field Analyzer II with SITA
Budenz DL
Optometry and Vision Science 2015; 92: 527-536 (IGR: 17-1)


61680 Relationship Between Motor Vehicle Collisions and Results of Perimetry, Useful Field of View, and Driving Simulation in Drivers With Glaucoma
Rosen PN
Translational vision science & technology 2015; 4: 5 (IGR: 17-1)


61037 Imaging Glaucomatous Damage Across the Temporal Raphe
Burns SA
Investigative Ophthalmology and Visual Science 2015; 56: 3496-3504 (IGR: 17-1)


61287 Does Posterior Capsule Opacification Affect the Results of Diagnostic Technologies to Evaluate the Retina and the Optic Disc?
Santos-Bueso E
BioMed research international 2015; 2015: 813242 (IGR: 17-1)


61294 Global Visit Effects in Point-Wise Longitudinal Modeling of Glaucomatous Visual Fields
Lemij HG
Investigative Ophthalmology and Visual Science 2015; 56: 4283-4289 (IGR: 17-1)


61807 Dependence of diameters and oxygen saturation of retinal vessels on visual field damage and age in primary open-angle glaucoma
Sauer L
Acta Ophthalmologica 2016; 94: 276-281 (IGR: 17-1)


61822 Characteristic correlations of the structure-function relationship in different glaucomatous disc types
Takahashi H
Japanese Journal of Ophthalmology 2015; 59: 223-229 (IGR: 17-1)


61745 Glaucomatous visual field defect severity and the prevalence of motor vehicle collisions in Japanese: a hospital/clinic-based cross-sectional study
Kouyama K
Journal of Ophthalmology 2015; 2015: 497067 (IGR: 17-1)


61548 Diagnostic Power of Macular Retinal Thickness Analysis and Structure-Function Relationship in Glaucoma Diagnosis Using SPECTRALIS OCT
Grignolo FM
Current Eye Research 2015; 0: 1-9 (IGR: 17-1)


61718 Structural Differences in the Optic Nerve Head of Glaucoma Patients With and Without Disc Hemorrhages
Teh GH
Journal of Glaucoma 2016; 25: e76-e81 (IGR: 17-1)


61124 Comparing glaucoma progression on 24-2 and 10-2 visual field examinations
Mandal AK
PLoS ONE 2015; 10: e0127233 (IGR: 17-1)


61050 Correlation of Macular Ganglion Cell Complex Thickness With Frequency-doubling Technology Perimetry in Open-angle Glaucoma With Hemifield Defects
Tomidokoro A
Journal of Glaucoma 2016; 25: 426-432 (IGR: 17-1)


61553 Estimating the Lead Time Gained by Optical Coherence Tomography in Detecting Glaucoma before Development of Visual Field Defects
Medeiros FA
Ophthalmology 2015; 122: 2002-2009 (IGR: 17-1)


61294 Global Visit Effects in Point-Wise Longitudinal Modeling of Glaucomatous Visual Fields
Vermeer KA
Investigative Ophthalmology and Visual Science 2015; 56: 4283-4289 (IGR: 17-1)


61807 Dependence of diameters and oxygen saturation of retinal vessels on visual field damage and age in primary open-angle glaucoma
Augsten R
Acta Ophthalmologica 2016; 94: 276-281 (IGR: 17-1)


61380 Reproducibility in the global indices for multifocal visual evoked potentials and Humphrey visual fields in controls and glaucomatous eyes within a 2-year period
Nakamura M
Documenta Ophthalmologica 2015; 131: 115-124 (IGR: 17-1)


61037 Imaging Glaucomatous Damage Across the Temporal Raphe
Malinovsky VE
Investigative Ophthalmology and Visual Science 2015; 56: 3496-3504 (IGR: 17-1)


61822 Characteristic correlations of the structure-function relationship in different glaucomatous disc types
Araie M
Japanese Journal of Ophthalmology 2015; 59: 223-229 (IGR: 17-1)


61407 Physical activity restriction in age-related eye disease: a cross-sectional study exploring fear of falling as a potential mediator
Ramulu PY
BMC geriatrics 2015; 15: 64 (IGR: 17-1)


60988 How Many Visual Fields Are Required to Precisely Predict Future Test Results in Glaucoma Patients When Using Different Trend Analyses?
Asaoka R
Investigative Ophthalmology and Visual Science 2015; 56: 4076-4082 (IGR: 17-1)


61124 Comparing glaucoma progression on 24-2 and 10-2 visual field examinations
Senthil S
PLoS ONE 2015; 10: e0127233 (IGR: 17-1)


61680 Relationship Between Motor Vehicle Collisions and Results of Perimetry, Useful Field of View, and Driving Simulation in Drivers With Glaucoma
Medeiros FA
Translational vision science & technology 2015; 4: 5 (IGR: 17-1)


61745 Glaucomatous visual field defect severity and the prevalence of motor vehicle collisions in Japanese: a hospital/clinic-based cross-sectional study
Abe T
Journal of Ophthalmology 2015; 2015: 497067 (IGR: 17-1)


61287 Does Posterior Capsule Opacification Affect the Results of Diagnostic Technologies to Evaluate the Retina and the Optic Disc?
Gallego-Pinazo R
BioMed research international 2015; 2015: 813242 (IGR: 17-1)


61809 Comparison of Matrix with Humphrey Field Analyzer II with SITA
McSoley J
Optometry and Vision Science 2015; 92: 527-536 (IGR: 17-1)


61001 Structure-Function Relationship in Glaucoma Using Ganglion Cell-Inner Plexiform Layer Thickness Measurements
Pillutla LN
Investigative Ophthalmology and Visual Science 2015; 56: 3883-3888 (IGR: 17-1)


61718 Structural Differences in the Optic Nerve Head of Glaucoma Patients With and Without Disc Hemorrhages
Cheung CY
Journal of Glaucoma 2016; 25: e76-e81 (IGR: 17-1)


61483 Flicker defined form, standard perimetry and Heidelberg retinal tomography: Structure-function relationships
Averbuch A
Canadian Journal of Ophthalmology 2015; 50: 290-296 (IGR: 17-1)


61066 Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma
Ayala EM
Journal of Glaucoma 2016; 25: e229-e235 (IGR: 17-1)


61529 Axial Myopia Is Associated with Visual Field Prognosis of Primary Open-Angle Glaucoma
Meng F
PLoS ONE 2015; 10: e0133189 (IGR: 17-1)


61822 Characteristic correlations of the structure-function relationship in different glaucomatous disc types
Nakazawa T
Japanese Journal of Ophthalmology 2015; 59: 223-229 (IGR: 17-1)


61124 Comparing glaucoma progression on 24-2 and 10-2 visual field examinations
Garudadri CS
PLoS ONE 2015; 10: e0127233 (IGR: 17-1)


61066 Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma
Fernandez-Guardiola A
Journal of Glaucoma 2016; 25: e229-e235 (IGR: 17-1)


61001 Structure-Function Relationship in Glaucoma Using Ganglion Cell-Inner Plexiform Layer Thickness Measurements
Begum VU
Investigative Ophthalmology and Visual Science 2015; 56: 3883-3888 (IGR: 17-1)


61483 Flicker defined form, standard perimetry and Heidelberg retinal tomography: Structure-function relationships
Leiby BE
Canadian Journal of Ophthalmology 2015; 50: 290-296 (IGR: 17-1)


61745 Glaucomatous visual field defect severity and the prevalence of motor vehicle collisions in Japanese: a hospital/clinic-based cross-sectional study
Tanabe S
Journal of Ophthalmology 2015; 2015: 497067 (IGR: 17-1)


61037 Imaging Glaucomatous Damage Across the Temporal Raphe
Swanson WH
Investigative Ophthalmology and Visual Science 2015; 56: 3496-3504 (IGR: 17-1)


61287 Does Posterior Capsule Opacification Affect the Results of Diagnostic Technologies to Evaluate the Retina and the Optic Disc?
Ferreras A
BioMed research international 2015; 2015: 813242 (IGR: 17-1)


61718 Structural Differences in the Optic Nerve Head of Glaucoma Patients With and Without Disc Hemorrhages
Aung T
Journal of Glaucoma 2016; 25: e76-e81 (IGR: 17-1)


61807 Dependence of diameters and oxygen saturation of retinal vessels on visual field damage and age in primary open-angle glaucoma
Hammer M
Acta Ophthalmologica 2016; 94: 276-281 (IGR: 17-1)


61483 Flicker defined form, standard perimetry and Heidelberg retinal tomography: Structure-function relationships
Myers JS
Canadian Journal of Ophthalmology 2015; 50: 290-296 (IGR: 17-1)


61066 Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma
Moreno-Montañes J
Journal of Glaucoma 2016; 25: e229-e235 (IGR: 17-1)


61745 Glaucomatous visual field defect severity and the prevalence of motor vehicle collisions in Japanese: a hospital/clinic-based cross-sectional study
Fukagawa K
Journal of Ophthalmology 2015; 2015: 497067 (IGR: 17-1)


61287 Does Posterior Capsule Opacification Affect the Results of Diagnostic Technologies to Evaluate the Retina and the Optic Disc?
Pinazo-Duran MD
BioMed research international 2015; 2015: 813242 (IGR: 17-1)


61718 Structural Differences in the Optic Nerve Head of Glaucoma Patients With and Without Disc Hemorrhages
Wong TY
Journal of Glaucoma 2016; 25: e76-e81 (IGR: 17-1)


61001 Structure-Function Relationship in Glaucoma Using Ganglion Cell-Inner Plexiform Layer Thickness Measurements
Chaitanya A; Senthil S
Investigative Ophthalmology and Visual Science 2015; 56: 3883-3888 (IGR: 17-1)


61718 Structural Differences in the Optic Nerve Head of Glaucoma Patients With and Without Disc Hemorrhages
Baskaran M
Journal of Glaucoma 2016; 25: e76-e81 (IGR: 17-1)


61745 Glaucomatous visual field defect severity and the prevalence of motor vehicle collisions in Japanese: a hospital/clinic-based cross-sectional study
Uchino M
Journal of Ophthalmology 2015; 2015: 497067 (IGR: 17-1)


61483 Flicker defined form, standard perimetry and Heidelberg retinal tomography: Structure-function relationships
Spaeth GL; Katz LJ
Canadian Journal of Ophthalmology 2015; 50: 290-296 (IGR: 17-1)


61745 Glaucomatous visual field defect severity and the prevalence of motor vehicle collisions in Japanese: a hospital/clinic-based cross-sectional study
Shimoyama M
Journal of Ophthalmology 2015; 2015: 497067 (IGR: 17-1)


61001 Structure-Function Relationship in Glaucoma Using Ganglion Cell-Inner Plexiform Layer Thickness Measurements
Garudadri CS
Investigative Ophthalmology and Visual Science 2015; 56: 3883-3888 (IGR: 17-1)


61745 Glaucomatous visual field defect severity and the prevalence of motor vehicle collisions in Japanese: a hospital/clinic-based cross-sectional study
Ozawa Y; Ozeki N; Shiba D; Tsubota K
Journal of Ophthalmology 2015; 2015: 497067 (IGR: 17-1)


60564 Glaucoma morphologic damage estimated from functional tests
de la Rosa MG
European Journal of Ophthalmology 2015; 0: 0 (IGR: 16-4)


60393 The Correlation Between Glaucomatous Visual Field Loss and Vision-related Quality of Life
Orta AÖ
Journal of Glaucoma 2015; 24: e121-e127 (IGR: 16-4)


60116 Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement
Danthurebandara VM
Investigative Ophthalmology and Visual Science 2015; 56: 98-105 (IGR: 16-4)


60193 Disease severity in newly diagnosed glaucoma patients with visual field loss: trends from more than a decade of data
Boodhna T
Ophthalmic and Physiological Optics 2015; 35: 225-230 (IGR: 16-4)


60799 Visual field loss in primary congenital glaucoma
Sinha G
Journal of AAPOS 2015; 19: 124-129 (IGR: 16-4)


60256 Is Myopic Optic Disc Appearance a Risk Factor for Rapid Progression in Medically Treated Glaucomatous Eyes With Confirmed Visual Field Progression?
Lee JR
Journal of Glaucoma 2016; 25: 330-337 (IGR: 16-4)


60738 Chromatic-achromatic perimetry in four clinic cases: Glaucoma and diabetes
Cabezos I
Indian Journal of Ophthalmology 2015; 63: 146-151 (IGR: 16-4)


60361 Correlation of localized glaucomatous visual field defects and spectral domain optical coherence tomography retinal nerve fiber layer thinning using a modified structure-function map for OCT
Wu H
Eye 2015; 29: 525-533 (IGR: 16-4)


60388 Binocular visual field impairment in glaucoma and at-fault motor vehicle collisions
McGwin G
Journal of Glaucoma 2015; 24: 138-143 (IGR: 16-4)


60653 The relationship between structure and function as measured by OCT and Octopus perimetry
Monsalve B
British Journal of Ophthalmology 2015; 99: 1230-1235 (IGR: 16-4)


60461 Estimating the true distribution of visual field progression rates in glaucoma
Anderson AJ
Investigative Ophthalmology and Visual Science 2015; 56: 1603-1608 (IGR: 16-4)


60121 Comparison study of OCT, HRT and VF findings among normal controls and patients with pseudoexfoliation, with or without increased IOP
Riga F
Clinical Ophthalmology 2014; 8: 2441-2447 (IGR: 16-4)


60743 Comparison of Risk Factors for Initial Central Scotoma versus Initial Peripheral Scotoma in Normal-tension Glaucoma
Kang JW
Korean Journal of Ophthalmology 2015; 29: 102-108 (IGR: 16-4)


60679 Do pattern deviation values accurately estimate glaucomatous visual field damage in eyes with glaucoma and cataract?
Matsuda A
British Journal of Ophthalmology 2015; 99: 1240-1244 (IGR: 16-4)


60119 Patterns of functional vision loss in glaucoma determined with archetypal analysis
Elze T
Journal of the Royal Society, Interface / the Royal Society 2015; 12: (IGR: 16-4)


60497 Applying 'Lasso' regression to predict future visual field progression in glaucoma patients
Fujino Y
Investigative Ophthalmology and Visual Science 2015; 56: 2334-2339 (IGR: 16-4)


60404 Detecting the progression of normal tension glaucoma: a comparison of perimetry, optic coherence tomography, and Heidelberg retinal tomography
Yoon JY
Korean Journal of Ophthalmology 2015; 29: 31-39 (IGR: 16-4)


60115 Comparison of event-based analysis of glaucoma progression assessed subjectively on visual fields and retinal nerve fibre layer attenuation measured by optical coherence tomography
Kaushik S
International Ophthalmology 2014; 0: (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Khachatryan N
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


60742 Macular structure-function relationship at various spatial locations in glaucoma
Kim S
British Journal of Ophthalmology 2015; 99: 1412-1418 (IGR: 16-4)


60451 Evaluation of a One-Page Report to Aid in Detecting Glaucomatous Damage
Hood DC
Translational vision science & technology 2014; 3: 8 (IGR: 16-4)


60691 Choosing two points to add to the 24-2 pattern to better describe macular visual field damage due to glaucoma
Chen S
British Journal of Ophthalmology 2015; 99: 1236-1239 (IGR: 16-4)


60491 Nonlinear Trend Analysis of Longitudinal Pointwise Visual Field Sensitivity in Suspected and Early Glaucoma
Pathak M
Translational vision science & technology 2015; 4: 8 (IGR: 16-4)


60551 Structure-Function Correlation Using Confocal Laser Ophthalmoscope in Primary Open-Angle Glaucoma and Pseudoexfoliative Glaucoma
Pappas T
Journal of Glaucoma 2016; 25: 377-382 (IGR: 16-4)


60304 Assessing assumptions of a combined structure-function index
Swanson WH
Ophthalmic and Physiological Optics 2015; 35: 186-193 (IGR: 16-4)


60796 The Effect of Stimulus Size on the Reliable Stimulus Range of Perimetry
Gardiner SK
Translational vision science & technology 2015; 4: 10 (IGR: 16-4)


60353 Agreement among spectral-domain optical coherence tomography, standard automated perimetry, and stereophotography in the detection of glaucoma progression
Banegas SA
Investigative Ophthalmology and Visual Science 2015; 56: 1253-1260 (IGR: 16-4)


59662 Temporal retinal thickness in eyes with glaucomatous visual field defects using optical coherence tomography
Sihota R
Journal of Glaucoma 2015; 24: 257-261 (IGR: 16-4)


60693 Compass: clinical evaluation of a new instrument for the diagnosis of glaucoma
Rossetti L
PLoS ONE 2015; 10: e0122157 (IGR: 16-4)


60192 The relationship between central visual field damage and motor vehicle collisions in primary open-angle glaucoma patients
Yuki K
PLoS ONE 2014; 9: e115572 (IGR: 16-4)


60090 Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma
Mwanza JC
British Journal of Ophthalmology 2015; 99: 732-737 (IGR: 16-4)


60723 Correlation of papillomacular nerve fiber bundle thickness with central visual function in open-angle glaucoma
Kobayashi W
Journal of Ophthalmology 2015; 2015: 460918 (IGR: 16-4)


60103 Comparison of lamina cribrosa thickness in normal tension glaucoma patients with unilateral visual field defect
Kwun Y
American Journal of Ophthalmology 2015; 159: 512-8.e1 (IGR: 16-4)


60737 Evaluation of Quality of Life in Japanese Glaucoma Patients and its Relationship With Visual Function
Takahashi GI
Journal of Glaucoma 2016; 25: e150-e156 (IGR: 16-4)


60424 Modifying the Conventional Visual Field Test Pattern to Improve the Detection of Early Glaucomatous Defects in the Central 10°
Ehrlich AC
Translational vision science & technology 2014; 3: 6 (IGR: 16-4)


60172 Areas of the visual field important during reading in patients with glaucoma
Burton R
Japanese Journal of Ophthalmology 2015; 59: 94-102 (IGR: 16-4)


59987 Selecting visual field tests and assessing visual field deterioration in glaucoma
Nouri-Mahdavi K
Canadian Journal of Ophthalmology 2014; 49: 497-505 (IGR: 16-4)


60387 Quantitative measurement of fixation stability during RareBit perimetry and Humphrey visual field testing
Lin SR
Journal of Glaucoma 2015; 24: 100-104 (IGR: 16-4)


60225 Comparison of rates of change between binocular and monocular visual fields
Chun YS
Investigative Ophthalmology and Visual Science 2015; 56: 451-457 (IGR: 16-4)


60086 Relationships of retinal structure and humphrey 24-2 visual field thresholds in patients with glaucoma
Bogunović H
Investigative Ophthalmology and Visual Science 2015; 56: 259-271 (IGR: 16-4)


60623 Comparison of risk factor profiles for primary open angle glaucoma subtypes defined by pattern of visual field loss: a prospective study
Kang JH
Investigative Ophthalmology and Visual Science 2015; 0: (IGR: 16-4)


60409 CLOCK CHART(®): a novel multi-stimulus self-check visual field screener
Matsumoto C
Japanese Journal of Ophthalmology 2015; 59: 187-193 (IGR: 16-4)


60302 Evaluation of a Method for Estimating Retinal Ganglion Cell Counts Using Visual Fields and Optical Coherence Tomography
Raza AS
Investigative Ophthalmology and Visual Science 2015; 56: 2254-2268 (IGR: 16-4)


60685 Morphological features and important parameters of large optic discs for diagnosing glaucoma
Okimoto S
PLoS ONE 2015; 10: e0118920 (IGR: 16-4)


60322 Structural and functional changes in glaucoma: comparing the two-flash multifocal electroretinogram to optical coherence tomography and visual fields
Ledolter AA
Documenta Ophthalmologica 2015; 130: 197-209 (IGR: 16-4)


60551 Structure-Function Correlation Using Confocal Laser Ophthalmoscope in Primary Open-Angle Glaucoma and Pseudoexfoliative Glaucoma
Founti P
Journal of Glaucoma 2016; 25: 377-382 (IGR: 16-4)


60103 Comparison of lamina cribrosa thickness in normal tension glaucoma patients with unilateral visual field defect
Han JC
American Journal of Ophthalmology 2015; 159: 512-8.e1 (IGR: 16-4)


60424 Modifying the Conventional Visual Field Test Pattern to Improve the Detection of Early Glaucomatous Defects in the Central 10°
Raza AS
Translational vision science & technology 2014; 3: 6 (IGR: 16-4)


60691 Choosing two points to add to the 24-2 pattern to better describe macular visual field damage due to glaucoma
McKendrick AM
British Journal of Ophthalmology 2015; 99: 1236-1239 (IGR: 16-4)


59662 Temporal retinal thickness in eyes with glaucomatous visual field defects using optical coherence tomography
Naithani P
Journal of Glaucoma 2015; 24: 257-261 (IGR: 16-4)


60387 Quantitative measurement of fixation stability during RareBit perimetry and Humphrey visual field testing
Lai IN
Journal of Glaucoma 2015; 24: 100-104 (IGR: 16-4)


60693 Compass: clinical evaluation of a new instrument for the diagnosis of glaucoma
Digiuni M
PLoS ONE 2015; 10: e0122157 (IGR: 16-4)


60404 Detecting the progression of normal tension glaucoma: a comparison of perimetry, optic coherence tomography, and Heidelberg retinal tomography
Na JK
Korean Journal of Ophthalmology 2015; 29: 31-39 (IGR: 16-4)


60302 Evaluation of a Method for Estimating Retinal Ganglion Cell Counts Using Visual Fields and Optical Coherence Tomography
Hood DC
Investigative Ophthalmology and Visual Science 2015; 56: 2254-2268 (IGR: 16-4)


60451 Evaluation of a One-Page Report to Aid in Detecting Glaucomatous Damage
Raza AS
Translational vision science & technology 2014; 3: 8 (IGR: 16-4)


60322 Structural and functional changes in glaucoma: comparing the two-flash multifocal electroretinogram to optical coherence tomography and visual fields
Monhart M
Documenta Ophthalmologica 2015; 130: 197-209 (IGR: 16-4)


60119 Patterns of functional vision loss in glaucoma determined with archetypal analysis
Pasquale LR
Journal of the Royal Society, Interface / the Royal Society 2015; 12: (IGR: 16-4)


60192 The relationship between central visual field damage and motor vehicle collisions in primary open-angle glaucoma patients
Asaoka R
PLoS ONE 2014; 9: e115572 (IGR: 16-4)


60225 Comparison of rates of change between binocular and monocular visual fields
Shin JH
Investigative Ophthalmology and Visual Science 2015; 56: 451-457 (IGR: 16-4)


60090 Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma
Budenz DL
British Journal of Ophthalmology 2015; 99: 732-737 (IGR: 16-4)


60723 Correlation of papillomacular nerve fiber bundle thickness with central visual function in open-angle glaucoma
Kunikata H
Journal of Ophthalmology 2015; 2015: 460918 (IGR: 16-4)


60564 Glaucoma morphologic damage estimated from functional tests
Gonzalez-Hernandez M
European Journal of Ophthalmology 2015; 0: 0 (IGR: 16-4)


60623 Comparison of risk factor profiles for primary open angle glaucoma subtypes defined by pattern of visual field loss: a prospective study
Loomis SJ
Investigative Ophthalmology and Visual Science 2015; 0: (IGR: 16-4)


60115 Comparison of event-based analysis of glaucoma progression assessed subjectively on visual fields and retinal nerve fibre layer attenuation measured by optical coherence tomography
Mulkutkar S
International Ophthalmology 2014; 0: (IGR: 16-4)


60304 Assessing assumptions of a combined structure-function index
Horner DG
Ophthalmic and Physiological Optics 2015; 35: 186-193 (IGR: 16-4)


60796 The Effect of Stimulus Size on the Reliable Stimulus Range of Perimetry
Demirel S
Translational vision science & technology 2015; 4: 10 (IGR: 16-4)


60685 Morphological features and important parameters of large optic discs for diagnosing glaucoma
Yamashita K
PLoS ONE 2015; 10: e0118920 (IGR: 16-4)


60193 Disease severity in newly diagnosed glaucoma patients with visual field loss: trends from more than a decade of data
Crabb DP
Ophthalmic and Physiological Optics 2015; 35: 225-230 (IGR: 16-4)


60799 Visual field loss in primary congenital glaucoma
Patil B
Journal of AAPOS 2015; 19: 124-129 (IGR: 16-4)


60256 Is Myopic Optic Disc Appearance a Risk Factor for Rapid Progression in Medically Treated Glaucomatous Eyes With Confirmed Visual Field Progression?
Kim S
Journal of Glaucoma 2016; 25: 330-337 (IGR: 16-4)


60738 Chromatic-achromatic perimetry in four clinic cases: Glaucoma and diabetes
Luque MJ
Indian Journal of Ophthalmology 2015; 63: 146-151 (IGR: 16-4)


60653 The relationship between structure and function as measured by OCT and Octopus perimetry
Ferreras A
British Journal of Ophthalmology 2015; 99: 1230-1235 (IGR: 16-4)


60361 Correlation of localized glaucomatous visual field defects and spectral domain optical coherence tomography retinal nerve fiber layer thinning using a modified structure-function map for OCT
de Boer JF
Eye 2015; 29: 525-533 (IGR: 16-4)


60172 Areas of the visual field important during reading in patients with glaucoma
Saunders LJ
Japanese Journal of Ophthalmology 2015; 59: 94-102 (IGR: 16-4)


60086 Relationships of retinal structure and humphrey 24-2 visual field thresholds in patients with glaucoma
Kwon YH
Investigative Ophthalmology and Visual Science 2015; 56: 259-271 (IGR: 16-4)


60737 Evaluation of Quality of Life in Japanese Glaucoma Patients and its Relationship With Visual Function
Otori Y
Journal of Glaucoma 2016; 25: e150-e156 (IGR: 16-4)


60116 Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement
Sharpe GP
Investigative Ophthalmology and Visual Science 2015; 56: 98-105 (IGR: 16-4)


60743 Comparison of Risk Factors for Initial Central Scotoma versus Initial Peripheral Scotoma in Normal-tension Glaucoma
Park B
Korean Journal of Ophthalmology 2015; 29: 102-108 (IGR: 16-4)


60353 Agreement among spectral-domain optical coherence tomography, standard automated perimetry, and stereophotography in the detection of glaucoma progression
Antón A
Investigative Ophthalmology and Visual Science 2015; 56: 1253-1260 (IGR: 16-4)


60388 Binocular visual field impairment in glaucoma and at-fault motor vehicle collisions
Huisingh C
Journal of Glaucoma 2015; 24: 138-143 (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Medeiros FA
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


60742 Macular structure-function relationship at various spatial locations in glaucoma
Lee JY
British Journal of Ophthalmology 2015; 99: 1412-1418 (IGR: 16-4)


60679 Do pattern deviation values accurately estimate glaucomatous visual field damage in eyes with glaucoma and cataract?
Hara T
British Journal of Ophthalmology 2015; 99: 1240-1244 (IGR: 16-4)


60491 Nonlinear Trend Analysis of Longitudinal Pointwise Visual Field Sensitivity in Suspected and Early Glaucoma
Demirel S
Translational vision science & technology 2015; 4: 8 (IGR: 16-4)


60393 The Correlation Between Glaucomatous Visual Field Loss and Vision-related Quality of Life
Öztürker ZK
Journal of Glaucoma 2015; 24: e121-e127 (IGR: 16-4)


60409 CLOCK CHART(®): a novel multi-stimulus self-check visual field screener
Eura M
Japanese Journal of Ophthalmology 2015; 59: 187-193 (IGR: 16-4)


60121 Comparison study of OCT, HRT and VF findings among normal controls and patients with pseudoexfoliation, with or without increased IOP
Georgalas I
Clinical Ophthalmology 2014; 8: 2441-2447 (IGR: 16-4)


60497 Applying 'Lasso' regression to predict future visual field progression in glaucoma patients
Murata H
Investigative Ophthalmology and Visual Science 2015; 56: 2334-2339 (IGR: 16-4)


60693 Compass: clinical evaluation of a new instrument for the diagnosis of glaucoma
Rosso A
PLoS ONE 2015; 10: e0122157 (IGR: 16-4)


60796 The Effect of Stimulus Size on the Reliable Stimulus Range of Perimetry
Goren D
Translational vision science & technology 2015; 4: 10 (IGR: 16-4)


60491 Nonlinear Trend Analysis of Longitudinal Pointwise Visual Field Sensitivity in Suspected and Early Glaucoma
Gardiner SK
Translational vision science & technology 2015; 4: 8 (IGR: 16-4)


60172 Areas of the visual field important during reading in patients with glaucoma
Crabb DP
Japanese Journal of Ophthalmology 2015; 59: 94-102 (IGR: 16-4)


60086 Relationships of retinal structure and humphrey 24-2 visual field thresholds in patients with glaucoma
Rashid A
Investigative Ophthalmology and Visual Science 2015; 56: 259-271 (IGR: 16-4)


60090 Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma
Warren JL
British Journal of Ophthalmology 2015; 99: 732-737 (IGR: 16-4)


60742 Macular structure-function relationship at various spatial locations in glaucoma
Kim SO
British Journal of Ophthalmology 2015; 99: 1412-1418 (IGR: 16-4)


60799 Visual field loss in primary congenital glaucoma
Sihota R
Journal of AAPOS 2015; 19: 124-129 (IGR: 16-4)


60393 The Correlation Between Glaucomatous Visual Field Loss and Vision-related Quality of Life
Erkul SÖ
Journal of Glaucoma 2015; 24: e121-e127 (IGR: 16-4)


60103 Comparison of lamina cribrosa thickness in normal tension glaucoma patients with unilateral visual field defect
Kee C
American Journal of Ophthalmology 2015; 159: 512-8.e1 (IGR: 16-4)


60737 Evaluation of Quality of Life in Japanese Glaucoma Patients and its Relationship With Visual Function
Urashima M
Journal of Glaucoma 2016; 25: e150-e156 (IGR: 16-4)


60409 CLOCK CHART(®): a novel multi-stimulus self-check visual field screener
Okuyama S
Japanese Journal of Ophthalmology 2015; 59: 187-193 (IGR: 16-4)


60424 Modifying the Conventional Visual Field Test Pattern to Improve the Detection of Early Glaucomatous Defects in the Central 10°
Ritch R
Translational vision science & technology 2014; 3: 6 (IGR: 16-4)


59662 Temporal retinal thickness in eyes with glaucomatous visual field defects using optical coherence tomography
Sony P
Journal of Glaucoma 2015; 24: 257-261 (IGR: 16-4)


60387 Quantitative measurement of fixation stability during RareBit perimetry and Humphrey visual field testing
Dutta S
Journal of Glaucoma 2015; 24: 100-104 (IGR: 16-4)


60451 Evaluation of a One-Page Report to Aid in Detecting Glaucomatous Damage
De Moraes CG
Translational vision science & technology 2014; 3: 8 (IGR: 16-4)


60353 Agreement among spectral-domain optical coherence tomography, standard automated perimetry, and stereophotography in the detection of glaucoma progression
Morilla-Grasa A
Investigative Ophthalmology and Visual Science 2015; 56: 1253-1260 (IGR: 16-4)


60388 Binocular visual field impairment in glaucoma and at-fault motor vehicle collisions
Jain SG
Journal of Glaucoma 2015; 24: 138-143 (IGR: 16-4)


60322 Structural and functional changes in glaucoma: comparing the two-flash multifocal electroretinogram to optical coherence tomography and visual fields
Schoetzau A
Documenta Ophthalmologica 2015; 130: 197-209 (IGR: 16-4)


60225 Comparison of rates of change between binocular and monocular visual fields
Park IK
Investigative Ophthalmology and Visual Science 2015; 56: 451-457 (IGR: 16-4)


60723 Correlation of papillomacular nerve fiber bundle thickness with central visual function in open-angle glaucoma
Omodaka K
Journal of Ophthalmology 2015; 2015: 460918 (IGR: 16-4)


60551 Structure-Function Correlation Using Confocal Laser Ophthalmoscope in Primary Open-Angle Glaucoma and Pseudoexfoliative Glaucoma
Yin XJ
Journal of Glaucoma 2016; 25: 377-382 (IGR: 16-4)


60623 Comparison of risk factor profiles for primary open angle glaucoma subtypes defined by pattern of visual field loss: a prospective study
Rosner BA
Investigative Ophthalmology and Visual Science 2015; 0: (IGR: 16-4)


60738 Chromatic-achromatic perimetry in four clinic cases: Glaucoma and diabetes
de Fez D
Indian Journal of Ophthalmology 2015; 63: 146-151 (IGR: 16-4)


60685 Morphological features and important parameters of large optic discs for diagnosing glaucoma
Shibata T
PLoS ONE 2015; 10: e0118920 (IGR: 16-4)


60121 Comparison study of OCT, HRT and VF findings among normal controls and patients with pseudoexfoliation, with or without increased IOP
Tsikripis P
Clinical Ophthalmology 2014; 8: 2441-2447 (IGR: 16-4)


60679 Do pattern deviation values accurately estimate glaucomatous visual field damage in eyes with glaucoma and cataract?
Miyata K
British Journal of Ophthalmology 2015; 99: 1240-1244 (IGR: 16-4)


60119 Patterns of functional vision loss in glaucoma determined with archetypal analysis
Shen LQ
Journal of the Royal Society, Interface / the Royal Society 2015; 12: (IGR: 16-4)


60497 Applying 'Lasso' regression to predict future visual field progression in glaucoma patients
Mayama C
Investigative Ophthalmology and Visual Science 2015; 56: 2334-2339 (IGR: 16-4)


60256 Is Myopic Optic Disc Appearance a Risk Factor for Rapid Progression in Medically Treated Glaucomatous Eyes With Confirmed Visual Field Progression?
Lee JY
Journal of Glaucoma 2016; 25: 330-337 (IGR: 16-4)


60564 Glaucoma morphologic damage estimated from functional tests
Alayon S
European Journal of Ophthalmology 2015; 0: 0 (IGR: 16-4)


60404 Detecting the progression of normal tension glaucoma: a comparison of perimetry, optic coherence tomography, and Heidelberg retinal tomography
Park CK
Korean Journal of Ophthalmology 2015; 29: 31-39 (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Sharpsten L
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


60691 Choosing two points to add to the 24-2 pattern to better describe macular visual field damage due to glaucoma
Turpin A
British Journal of Ophthalmology 2015; 99: 1236-1239 (IGR: 16-4)


60361 Correlation of localized glaucomatous visual field defects and spectral domain optical coherence tomography retinal nerve fiber layer thinning using a modified structure-function map for OCT
Chen L
Eye 2015; 29: 525-533 (IGR: 16-4)


60115 Comparison of event-based analysis of glaucoma progression assessed subjectively on visual fields and retinal nerve fibre layer attenuation measured by optical coherence tomography
Pandav SS
International Ophthalmology 2014; 0: (IGR: 16-4)


60653 The relationship between structure and function as measured by OCT and Octopus perimetry
Khawaja AP
British Journal of Ophthalmology 2015; 99: 1230-1235 (IGR: 16-4)


60116 Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement
Hutchison DM
Investigative Ophthalmology and Visual Science 2015; 56: 98-105 (IGR: 16-4)


60743 Comparison of Risk Factors for Initial Central Scotoma versus Initial Peripheral Scotoma in Normal-tension Glaucoma
Cho BJ
Korean Journal of Ophthalmology 2015; 29: 102-108 (IGR: 16-4)


60192 The relationship between central visual field damage and motor vehicle collisions in primary open-angle glaucoma patients
Tsubota K
PLoS ONE 2014; 9: e115572 (IGR: 16-4)


60742 Macular structure-function relationship at various spatial locations in glaucoma
Kook MS
British Journal of Ophthalmology 2015; 99: 1412-1418 (IGR: 16-4)


60679 Do pattern deviation values accurately estimate glaucomatous visual field damage in eyes with glaucoma and cataract?
Matsuo H
British Journal of Ophthalmology 2015; 99: 1240-1244 (IGR: 16-4)


60361 Correlation of localized glaucomatous visual field defects and spectral domain optical coherence tomography retinal nerve fiber layer thinning using a modified structure-function map for OCT
Chen TC
Eye 2015; 29: 525-533 (IGR: 16-4)


60723 Correlation of papillomacular nerve fiber bundle thickness with central visual function in open-angle glaucoma
Togashi K
Journal of Ophthalmology 2015; 2015: 460918 (IGR: 16-4)


60796 The Effect of Stimulus Size on the Reliable Stimulus Range of Perimetry
Mansberger SL
Translational vision science & technology 2015; 4: 10 (IGR: 16-4)


60685 Morphological features and important parameters of large optic discs for diagnosing glaucoma
Kiuchi Y
PLoS ONE 2015; 10: e0118920 (IGR: 16-4)


60121 Comparison study of OCT, HRT and VF findings among normal controls and patients with pseudoexfoliation, with or without increased IOP
Papaconstantinou D
Clinical Ophthalmology 2014; 8: 2441-2447 (IGR: 16-4)


60653 The relationship between structure and function as measured by OCT and Octopus perimetry
Calvo P
British Journal of Ophthalmology 2015; 99: 1230-1235 (IGR: 16-4)


60497 Applying 'Lasso' regression to predict future visual field progression in glaucoma patients
Asaoka R
Investigative Ophthalmology and Visual Science 2015; 56: 2334-2339 (IGR: 16-4)


60086 Relationships of retinal structure and humphrey 24-2 visual field thresholds in patients with glaucoma
Lee K
Investigative Ophthalmology and Visual Science 2015; 56: 259-271 (IGR: 16-4)


60693 Compass: clinical evaluation of a new instrument for the diagnosis of glaucoma
Riva R
PLoS ONE 2015; 10: e0122157 (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Bowd C
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


60738 Chromatic-achromatic perimetry in four clinic cases: Glaucoma and diabetes
Moncho V
Indian Journal of Ophthalmology 2015; 63: 146-151 (IGR: 16-4)


60116 Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement
Denniss J
Investigative Ophthalmology and Visual Science 2015; 56: 98-105 (IGR: 16-4)


60353 Agreement among spectral-domain optical coherence tomography, standard automated perimetry, and stereophotography in the detection of glaucoma progression
Bogado M
Investigative Ophthalmology and Visual Science 2015; 56: 1253-1260 (IGR: 16-4)


60623 Comparison of risk factor profiles for primary open angle glaucoma subtypes defined by pattern of visual field loss: a prospective study
Wiggs JL
Investigative Ophthalmology and Visual Science 2015; 0: (IGR: 16-4)


60119 Patterns of functional vision loss in glaucoma determined with archetypal analysis
Chen TC
Journal of the Royal Society, Interface / the Royal Society 2015; 12: (IGR: 16-4)


60799 Visual field loss in primary congenital glaucoma
Gupta V
Journal of AAPOS 2015; 19: 124-129 (IGR: 16-4)


60388 Binocular visual field impairment in glaucoma and at-fault motor vehicle collisions
Girkin CA
Journal of Glaucoma 2015; 24: 138-143 (IGR: 16-4)


60393 The Correlation Between Glaucomatous Visual Field Loss and Vision-related Quality of Life
Bayraktar Ş
Journal of Glaucoma 2015; 24: e121-e127 (IGR: 16-4)


60256 Is Myopic Optic Disc Appearance a Risk Factor for Rapid Progression in Medically Treated Glaucomatous Eyes With Confirmed Visual Field Progression?
Back S
Journal of Glaucoma 2016; 25: 330-337 (IGR: 16-4)


60090 Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma
Webel AD
British Journal of Ophthalmology 2015; 99: 732-737 (IGR: 16-4)


60409 CLOCK CHART(®): a novel multi-stimulus self-check visual field screener
Takada S
Japanese Journal of Ophthalmology 2015; 59: 187-193 (IGR: 16-4)


60115 Comparison of event-based analysis of glaucoma progression assessed subjectively on visual fields and retinal nerve fibre layer attenuation measured by optical coherence tomography
Verma N
International Ophthalmology 2014; 0: (IGR: 16-4)


60424 Modifying the Conventional Visual Field Test Pattern to Improve the Detection of Early Glaucomatous Defects in the Central 10°
Hood DC
Translational vision science & technology 2014; 3: 6 (IGR: 16-4)


60387 Quantitative measurement of fixation stability during RareBit perimetry and Humphrey visual field testing
Singh K
Journal of Glaucoma 2015; 24: 100-104 (IGR: 16-4)


60322 Structural and functional changes in glaucoma: comparing the two-flash multifocal electroretinogram to optical coherence tomography and visual fields
Todorova MG
Documenta Ophthalmologica 2015; 130: 197-209 (IGR: 16-4)


60551 Structure-Function Correlation Using Confocal Laser Ophthalmoscope in Primary Open-Angle Glaucoma and Pseudoexfoliative Glaucoma
Koskosas A
Journal of Glaucoma 2016; 25: 377-382 (IGR: 16-4)


60737 Evaluation of Quality of Life in Japanese Glaucoma Patients and its Relationship With Visual Function
Kuwayama Y
Journal of Glaucoma 2016; 25: e150-e156 (IGR: 16-4)


60451 Evaluation of a One-Page Report to Aid in Detecting Glaucomatous Damage
Alhadeff PA
Translational vision science & technology 2014; 3: 8 (IGR: 16-4)


59662 Temporal retinal thickness in eyes with glaucomatous visual field defects using optical coherence tomography
Gupta V
Journal of Glaucoma 2015; 24: 257-261 (IGR: 16-4)


60388 Binocular visual field impairment in glaucoma and at-fault motor vehicle collisions
Owsley C
Journal of Glaucoma 2015; 24: 138-143 (IGR: 16-4)


60737 Evaluation of Quality of Life in Japanese Glaucoma Patients and its Relationship With Visual Function

Journal of Glaucoma 2016; 25: e150-e156 (IGR: 16-4)


60322 Structural and functional changes in glaucoma: comparing the two-flash multifocal electroretinogram to optical coherence tomography and visual fields
Palmowski-Wolfe AM
Documenta Ophthalmologica 2015; 130: 197-209 (IGR: 16-4)


60393 The Correlation Between Glaucomatous Visual Field Loss and Vision-related Quality of Life
Yilmaz OF
Journal of Glaucoma 2015; 24: e121-e127 (IGR: 16-4)


60623 Comparison of risk factor profiles for primary open angle glaucoma subtypes defined by pattern of visual field loss: a prospective study
Pasquale LR
Investigative Ophthalmology and Visual Science 2015; 0: (IGR: 16-4)


60115 Comparison of event-based analysis of glaucoma progression assessed subjectively on visual fields and retinal nerve fibre layer attenuation measured by optical coherence tomography
Gupta A
International Ophthalmology 2014; 0: (IGR: 16-4)


60409 CLOCK CHART(®): a novel multi-stimulus self-check visual field screener
Arimura-Koike E
Japanese Journal of Ophthalmology 2015; 59: 187-193 (IGR: 16-4)


60116 Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement
Nicolela MT
Investigative Ophthalmology and Visual Science 2015; 56: 98-105 (IGR: 16-4)


60679 Do pattern deviation values accurately estimate glaucomatous visual field damage in eyes with glaucoma and cataract?
Murata H
British Journal of Ophthalmology 2015; 99: 1240-1244 (IGR: 16-4)


60551 Structure-Function Correlation Using Confocal Laser Ophthalmoscope in Primary Open-Angle Glaucoma and Pseudoexfoliative Glaucoma
Anastasopoulos E
Journal of Glaucoma 2016; 25: 377-382 (IGR: 16-4)


60086 Relationships of retinal structure and humphrey 24-2 visual field thresholds in patients with glaucoma
Critser DB
Investigative Ophthalmology and Visual Science 2015; 56: 259-271 (IGR: 16-4)


60653 The relationship between structure and function as measured by OCT and Octopus perimetry
Ara M
British Journal of Ophthalmology 2015; 99: 1230-1235 (IGR: 16-4)


60451 Evaluation of a One-Page Report to Aid in Detecting Glaucomatous Damage
Idiga J
Translational vision science & technology 2014; 3: 8 (IGR: 16-4)


60119 Patterns of functional vision loss in glaucoma determined with archetypal analysis
Wiggs JL
Journal of the Royal Society, Interface / the Royal Society 2015; 12: (IGR: 16-4)


60799 Visual field loss in primary congenital glaucoma
Nayak B
Journal of AAPOS 2015; 19: 124-129 (IGR: 16-4)


60693 Compass: clinical evaluation of a new instrument for the diagnosis of glaucoma
Barbaro G
PLoS ONE 2015; 10: e0122157 (IGR: 16-4)


60723 Correlation of papillomacular nerve fiber bundle thickness with central visual function in open-angle glaucoma
Ryu M
Journal of Ophthalmology 2015; 2015: 460918 (IGR: 16-4)


60256 Is Myopic Optic Disc Appearance a Risk Factor for Rapid Progression in Medically Treated Glaucomatous Eyes With Confirmed Visual Field Progression?
Lee KS
Journal of Glaucoma 2016; 25: 330-337 (IGR: 16-4)


60090 Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma
Reynolds CE
British Journal of Ophthalmology 2015; 99: 732-737 (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Sample PA
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


60796 The Effect of Stimulus Size on the Reliable Stimulus Range of Perimetry
Swanson WH
Translational vision science & technology 2015; 4: 10 (IGR: 16-4)


60353 Agreement among spectral-domain optical coherence tomography, standard automated perimetry, and stereophotography in the detection of glaucoma progression
Ayala EM
Investigative Ophthalmology and Visual Science 2015; 56: 1253-1260 (IGR: 16-4)


60738 Chromatic-achromatic perimetry in four clinic cases: Glaucoma and diabetes
Camps V
Indian Journal of Ophthalmology 2015; 63: 146-151 (IGR: 16-4)


60387 Quantitative measurement of fixation stability during RareBit perimetry and Humphrey visual field testing
Chang RT
Journal of Glaucoma 2015; 24: 100-104 (IGR: 16-4)


60256 Is Myopic Optic Disc Appearance a Risk Factor for Rapid Progression in Medically Treated Glaucomatous Eyes With Confirmed Visual Field Progression?
Kook MS
Journal of Glaucoma 2016; 25: 330-337 (IGR: 16-4)


60723 Correlation of papillomacular nerve fiber bundle thickness with central visual function in open-angle glaucoma
Akiba M
Journal of Ophthalmology 2015; 2015: 460918 (IGR: 16-4)


60409 CLOCK CHART(®): a novel multi-stimulus self-check visual field screener
Hashimoto S
Japanese Journal of Ophthalmology 2015; 59: 187-193 (IGR: 16-4)


60116 Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement
McKendrick AM
Investigative Ophthalmology and Visual Science 2015; 56: 98-105 (IGR: 16-4)


60551 Structure-Function Correlation Using Confocal Laser Ophthalmoscope in Primary Open-Angle Glaucoma and Pseudoexfoliative Glaucoma
Salonikiou A
Journal of Glaucoma 2016; 25: 377-382 (IGR: 16-4)


60353 Agreement among spectral-domain optical coherence tomography, standard automated perimetry, and stereophotography in the detection of glaucoma progression
Moreno-Montañes J
Investigative Ophthalmology and Visual Science 2015; 56: 1253-1260 (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Liebmann JM
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


60090 Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma
Barbosa DT
British Journal of Ophthalmology 2015; 99: 732-737 (IGR: 16-4)


60451 Evaluation of a One-Page Report to Aid in Detecting Glaucomatous Damage
Blumberg DM
Translational vision science & technology 2014; 3: 8 (IGR: 16-4)


60693 Compass: clinical evaluation of a new instrument for the diagnosis of glaucoma
Smolek MK
PLoS ONE 2015; 10: e0122157 (IGR: 16-4)


60653 The relationship between structure and function as measured by OCT and Octopus perimetry
Fogagnolo P
British Journal of Ophthalmology 2015; 99: 1230-1235 (IGR: 16-4)


60799 Visual field loss in primary congenital glaucoma
Sharma R
Journal of AAPOS 2015; 19: 124-129 (IGR: 16-4)


60679 Do pattern deviation values accurately estimate glaucomatous visual field damage in eyes with glaucoma and cataract?
Mayama C
British Journal of Ophthalmology 2015; 99: 1240-1244 (IGR: 16-4)


60119 Patterns of functional vision loss in glaucoma determined with archetypal analysis
Bex PJ
Journal of the Royal Society, Interface / the Royal Society 2015; 12: (IGR: 16-4)


60086 Relationships of retinal structure and humphrey 24-2 visual field thresholds in patients with glaucoma
Garvin MK
Investigative Ophthalmology and Visual Science 2015; 56: 259-271 (IGR: 16-4)


60090 Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma
Lin S
British Journal of Ophthalmology 2015; 99: 732-737 (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Girkin CA
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


60653 The relationship between structure and function as measured by OCT and Octopus perimetry
Iester M
British Journal of Ophthalmology 2015; 99: 1230-1235 (IGR: 16-4)


60551 Structure-Function Correlation Using Confocal Laser Ophthalmoscope in Primary Open-Angle Glaucoma and Pseudoexfoliative Glaucoma
Kilintzis V
Journal of Glaucoma 2016; 25: 377-382 (IGR: 16-4)


60723 Correlation of papillomacular nerve fiber bundle thickness with central visual function in open-angle glaucoma
Takeuchi G
Journal of Ophthalmology 2015; 2015: 460918 (IGR: 16-4)


60116 Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement
Turpin A
Investigative Ophthalmology and Visual Science 2015; 56: 98-105 (IGR: 16-4)


60409 CLOCK CHART(®): a novel multi-stimulus self-check visual field screener
Tanabe F
Japanese Journal of Ophthalmology 2015; 59: 187-193 (IGR: 16-4)


60679 Do pattern deviation values accurately estimate glaucomatous visual field damage in eyes with glaucoma and cataract?
Asaoka R
British Journal of Ophthalmology 2015; 99: 1240-1244 (IGR: 16-4)


60086 Relationships of retinal structure and humphrey 24-2 visual field thresholds in patients with glaucoma
Sonka M
Investigative Ophthalmology and Visual Science 2015; 56: 259-271 (IGR: 16-4)


60799 Visual field loss in primary congenital glaucoma
Sharma A
Journal of AAPOS 2015; 19: 124-129 (IGR: 16-4)


60451 Evaluation of a One-Page Report to Aid in Detecting Glaucomatous Damage
Liebmann JM
Translational vision science & technology 2014; 3: 8 (IGR: 16-4)


60693 Compass: clinical evaluation of a new instrument for the diagnosis of glaucoma
Orzalesi N
PLoS ONE 2015; 10: e0122157 (IGR: 16-4)


60723 Correlation of papillomacular nerve fiber bundle thickness with central visual function in open-angle glaucoma
Yuasa T
Journal of Ophthalmology 2015; 2015: 460918 (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Weinreb RN
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


60451 Evaluation of a One-Page Report to Aid in Detecting Glaucomatous Damage
Ritch R
Translational vision science & technology 2014; 3: 8 (IGR: 16-4)


60086 Relationships of retinal structure and humphrey 24-2 visual field thresholds in patients with glaucoma
Abràmoff MD
Investigative Ophthalmology and Visual Science 2015; 56: 259-271 (IGR: 16-4)


60693 Compass: clinical evaluation of a new instrument for the diagnosis of glaucoma
De Cilla' S
PLoS ONE 2015; 10: e0122157 (IGR: 16-4)


60409 CLOCK CHART(®): a novel multi-stimulus self-check visual field screener
Shimomura Y
Japanese Journal of Ophthalmology 2015; 59: 187-193 (IGR: 16-4)


60116 Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement
Chauhan BC
Investigative Ophthalmology and Visual Science 2015; 56: 98-105 (IGR: 16-4)


60551 Structure-Function Correlation Using Confocal Laser Ophthalmoscope in Primary Open-Angle Glaucoma and Pseudoexfoliative Glaucoma
Antoniadis A
Journal of Glaucoma 2016; 25: 377-382 (IGR: 16-4)


60799 Visual field loss in primary congenital glaucoma
Gupta N
Journal of AAPOS 2015; 19: 124-129 (IGR: 16-4)


60693 Compass: clinical evaluation of a new instrument for the diagnosis of glaucoma
Autelitano A
PLoS ONE 2015; 10: e0122157 (IGR: 16-4)


60723 Correlation of papillomacular nerve fiber bundle thickness with central visual function in open-angle glaucoma
Nakazawa T
Journal of Ophthalmology 2015; 2015: 460918 (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Miki A
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


60551 Structure-Function Correlation Using Confocal Laser Ophthalmoscope in Primary Open-Angle Glaucoma and Pseudoexfoliative Glaucoma
Ziakas N
Journal of Glaucoma 2016; 25: 377-382 (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Hammel N
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


60551 Structure-Function Correlation Using Confocal Laser Ophthalmoscope in Primary Open-Angle Glaucoma and Pseudoexfoliative Glaucoma
Topouzis F
Journal of Glaucoma 2016; 25: 377-382 (IGR: 16-4)


60693 Compass: clinical evaluation of a new instrument for the diagnosis of glaucoma
Fogagnolo P
PLoS ONE 2015; 10: e0122157 (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Zangwill LM
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


59574 Patient-Reported Vision-Related Quality of Life Differences Between Superior and Inferior Hemifield Visual Field Defects in Primary Open-Angle Glaucoma
Cheng HC; Guo CY; Chen MJ; Ko YC; Huang N; Liu CJ
JAMA ophthalmology 2015; 133: 269-275 (IGR: 16-3)


59596 Longitudinal Changes in Quality of Life and Rates of Progressive Visual Field Loss in Glaucoma Patients
Medeiros FA; Gracitelli CP; Boer ER; Weinreb RN; Zangwill LM; Rosen PN
Ophthalmology 2015; 122: 293-301 (IGR: 16-3)


59599 Glaucoma and Associated Visual Acuity and Field Loss Significantly Affect Glaucoma-Specific Psychosocial Functioning
Chan EW; Chiang PP; Liao J; Rees G; Wong TY; Lam JS; Aung T; Lamoureux E
Ophthalmology 2015; 122: 494-501 (IGR: 16-3)


58731 What do patients with glaucoma see? Visual symptoms reported by patients with glaucoma
Hu CX; Zangalli C; Hsieh M; Gupta L; Williams AL; Richman J; Spaeth GL
The American journal of the medical sciences 2014; 348: 403-409 (IGR: 16-3)


59142 How useful is visual field testing in an African glaucoma clinic?
Lenake M; Cook C; Mustak H; Du Toit N
Clinical Ophthalmology 2014; 8: 1767-1771 (IGR: 16-3)


59223 Correlation between central corneal thickness and visual field defect, cup to disc ratio and retinal nerve fiber layer thickness in primary open-angle glaucoma patients
Wangsupadilok B; Orapiriyakul L
Journal of the Medical Association of Thailand 2014; 97: 751-757 (IGR: 16-3)


59309 Relationship between macular inner retinal layer thickness and corresponding retinal sensitivity in normal eyes
Araie M; Saito H; Tomidokoro A; Murata H; Iwase A
Investigative Ophthalmology and Visual Science 2014; 55: 7199-7205 (IGR: 16-3)


58936 A topographical relationship between visual field defects and optic radiation changes in glaucoma
Kaushik M; Graham SL; Wang C; Klistorner A
Investigative Ophthalmology and Visual Science 2014; 55: 5770-5775 (IGR: 16-3)


59560 Correlation of intraocular pressure variation after visual field examination with 24-hour intraocular pressure variations in primary open-angle glaucoma
Noro T; Nakamoto K; Sato M; Yasuda N; Ito Y; Ogawa S; Nakano T; Tsuneoka H
Nippon Ganka Gakkai Zasshi 2014; 118: 831-837 (IGR: 16-3)


58741 Intraocular pressure alterations after visual field testing
Sawada A; Yamada H; Yamamoto Y; Yamamoto T
Japanese Journal of Ophthalmology 2014; 58: 429-434 (IGR: 16-3)


59597 Semi-automated kinetic perimetry provides additional information to static automated perimetry in the assessment of the remaining visual field in end-stage glaucoma
Nowomiejska K; Wrobel-Dudzinska D; Ksiazek K; Ksiazek P; Rejdak K; Maciejewski R; Juenemann AG; Rejdak R
Ophthalmic and Physiological Optics 2015; 35: 147-154 (IGR: 16-3)


58843 Glaucomatous retinal nerve fiber layer thickness loss is associated with slower reaction times under a divided attention task
Tatham AJ; Boer ER; Rosen PN; Della Penna M; Meira-Freitas D; Weinreb RN; Zangwill LM; Medeiros FA
American Journal of Ophthalmology 2014; 158: 1008-1017.e2 (IGR: 16-3)


59182 Role of Visual Field Reliability Indices in Ruling Out Glaucoma
Rao HL; Yadav RK; Begum VU; Addepalli UK; Choudhari NS; Senthil S; Garudadri CS
JAMA ophthalmology 2015; 133: 40-44 (IGR: 16-3)


59481 Models of glaucomatous visual field loss
Chen A; Nouri-Mahdavi K; Otarola FJ; Yu F; Afifi AA; Caprioli J
Investigative Ophthalmology and Visual Science 2014; 55: 7881-7887 (IGR: 16-3)


59368 Retinal nerve fiber layer thickness in glaucomatous Nepalese eyes and its relation with visual field sensitivity
Khanal S; Thapa M; Racette L; Johnson R; Davey PG; Joshi MR; Shrestha GS
Journal of optometry 2014; 7: 217-224 (IGR: 16-3)


59410 Measurement Precision in a Series of Visual Fields Acquired by the Standard and Fast Versions of the Swedish Interactive Thresholding Algorithm: Analysis of Large-Scale Data From Clinics
Saunders LJ; Russell RA; Crabb DP
JAMA ophthalmology 2015; 133: 74-80 (IGR: 16-3)


59468 Choice of Stimulus Range and Size Can Reduce Test-Retest Variability in Glaucomatous Visual Field Defects
Swanson WH; Horner DG; Dul MW; Malinovsky VE
Translational vision science & technology 2014; 3: 6 (IGR: 16-3)


59579 Prevalence and spatial concordance of visual field deterioration in fellow eyes of glaucoma patients
Kim MK; Lee JM; Morales E; Caprioli J
Korean Journal of Ophthalmology 2014; 28: 436-443 (IGR: 16-3)


58963 Multivariable logistic regression model: a novel mathematical model that predicts visual field sensitivity from macular ganglion cell complex thickness in glaucoma
Shiba D; Hatou S; Ono T; Hosoda S; Tanabe S; Ozeki N; Yuki K; Shimoyama M; Fukagawa K; Shimmura S; Tsubota K
PLoS ONE 2014; 9: e104126 (IGR: 16-3)


59506 An Objective Evaluation of Gaze Tracking in Humphrey Perimetry and the Relation With the Reproducibility of Visual Fields: A Pilot Study in Glaucoma
Ishiyama Y; Murata H; Mayama C; Asaoka R
Investigative Ophthalmology and Visual Science 2014; 55: 8149-8152 (IGR: 16-3)


59273 Visual Fields and OCT Role in Diagnosis of Glaucoma
Bae HW; Lee KH; Lee N; Hong S; Seong GJ; Kim CY
Optometry and Vision Science 2014; 0: (IGR: 16-3)


58869 Focal relationship between structure and function within the central 10 degrees in glaucoma
Ohkubo S; Higashide T; Udagawa S; Sugiyama K; Hangai M; Yoshimura N; Mayama C; Tomidokoro A; Araie M; Iwase A; Fujimura T
Investigative Ophthalmology and Visual Science 2014; 55: 5269-5277 (IGR: 16-3)


58857 Effect of cataract extraction on the visual field decay rate in patients with glaucoma
Lee JW; Morales E; Yu F; Afifi AA; Kim EA; Abdollahi N; Nouri-Mahdavi K; Caprioli J
JAMA ophthalmology 2014; 132: 1296-1302 (IGR: 16-3)


58847 Eye movements and reading in glaucoma: observations on patients with advanced visual field loss
Burton R; Smith ND; Crabb DP
Graefe's Archive for Clinical and Experimental Ophthalmology 2014; 252: 1621-1630 (IGR: 16-3)


59010 Binocular glaucomatous visual field loss and its impact on visual exploration--a supermarket study
Sippel K; Kasneci E; Aehling K; Heister M; Rosenstiel W; Schiefer U; Papageorgiou E
PLoS ONE 2014; 9: e106089 (IGR: 16-3)


58846 Correlation between early retinal nerve fiber layer loss and visual field loss determined by three different perimetric strategies: white-on-white, frequency-doubling, or flicker-defined form perimetry
Prokosch V; Eter N
Graefe's Archive for Clinical and Experimental Ophthalmology 2014; 252: 1599-1606 (IGR: 16-3)


59012 Comparison of regression models for serial visual field analysis
Lee JM; Nouri-Mahdavi K; Morales E; Afifi A; Yu F; Caprioli J
Japanese Journal of Ophthalmology 2014; 58: 504-514 (IGR: 16-3)


59486 Frequency doubling technology and standard automated perimetry in detection of glaucoma among glaucoma suspects
Patyal S; Kotwal A; Banarji A; Gurunadh VS
Medical Journal Armed Forces India 2014; 70: 332-337 (IGR: 16-3)


59413 Clustering visual field test points based on rates of progression to improve the prediction of future damage
Hirasawa K; Murata H; Hirasawa H; Mayama C; Asaoka R
Investigative Ophthalmology and Visual Science 2014; 55: 7681-7685 (IGR: 16-3)


59415 Identifying "preperimetric" glaucoma in standard automated perimetry visual fields
Asaoka R; Iwase A; Hirasawa K; Murata H; Araie M
Investigative Ophthalmology and Visual Science 2014; 55: 7814-7820 (IGR: 16-3)


59093 Flicker Defined Form Perimetry in Glaucoma Suspects with Normal Achromatic Visual Fields
Reznicek L; Lamparter J; Vogel M; Kampik A; Hirneiß C
Current Eye Research 2014; 0: 1-7 (IGR: 16-3)


58807 Validation of a new static perimetric thresholding strategy (GATE)
Luithardt AF; Meisner C; Monhart M; Krapp E; Mast A; Schiefer U
British Journal of Ophthalmology 2015; 99: 11-15 (IGR: 16-3)


59566 Impact of superior and inferior visual field loss on hazard detection in a computer-based driving test
Glen FC; Smith ND; Crabb DP
British Journal of Ophthalmology 2015; 99: 613-617 (IGR: 16-3)


59570 Structure-Function Relationship between Frequency-Doubling Technology Perimetry and Optical Coherence Tomography in Glaucoma
Fuertes-Lazaro I; Sanchez-Cano A; Ferreras A; Ferrandez B; Calvo P; Abadia B; Otin S; Pablo LE
Ophthalmologica 2014; 0: (IGR: 16-3)


59323 Confocal Laser Scanning Tomography to Predict Visual Field Conversion in Patients With Ocular Hypertension and Early Glaucoma
Schrems-Hoesl LM; Schrems WA; Laemmer R; Horn FK; Juenemann AG; Kruse FE; Mardin CY
Journal of Glaucoma 2016; 25: 371-376 (IGR: 16-3)


59603 Advanced Imaging for Glaucoma Study: Design, Baseline Characteristics, and Inter-Site Comparison
Le PV; Zhang X; Francis BA; Varma R; Greenfield DS; Schuman JS; Loewen N; Huang D;
American Journal of Ophthalmology 2015; 159: 393-403.e2 (IGR: 16-3)


58940 Depth and area of retinal nerve fiber layer damage and visual field correlation analysis
Suh W; Lee JM; Kee C
Korean Journal of Ophthalmology 2014; 28: 323-329 (IGR: 16-3)


58983 Comparing Spectral-Domain Optical Coherence Tomography and Standard Automated Perimetry to Diagnose Glaucomatous Optic Neuropathy
Rao HL; Yadav RK; Addepalli UK; Begum VU; Senthil S; Choudhari NS; Garudadri CS
Journal of Glaucoma 2015; 24: e69-e74 (IGR: 16-3)


59561 Correlation between the ganglion cell complex and functional measures in glaucoma patients and suspects
Teixeira IC; Bresciani-Battilana E; Barbosa DT; Caixeta-Umbelino C; Paolera MD; Kasahara N
International Ophthalmology 2014; 0: (IGR: 16-3)


59276 Use of the structure-function relationship in detecting glaucoma progression in early glaucoma
Hirooka K; Manabe S; Tenkumo K; Nitta E; Sato S; Tsujikawa A
BMC Ophthalmology 2014; 14: 118 (IGR: 16-3)


59542 A new approach to measure visual field progression in glaucoma patients using Variational Bayes linear regression
Murata H; Araie M; Asaoka R
Investigative Ophthalmology and Visual Science 2014; 0: (IGR: 16-3)


59330 Combined assessment of early-stage primary open-angle glaucoma progression
Shpak AA; Sevost'ianova MK; Usol'tseva EA; Abdusadykova AK
Vestnik Oftalmologii 2014; 130: 14-17 (IGR: 16-3)


59610 Long-Term Follow-up in Preperimetric Open-Angle Glaucoma: Progression Rates and Associated Factors
Kim KE; Jeoung JW; Kim DM; Ahn SJ; Park KH; Kim SH
American Journal of Ophthalmology 2015; 159: 160-168.e2 (IGR: 16-3)


59042 Perimetric progression using the Visual Field Index and the Advanced Glaucoma Intervention Study score and its clinical correlations
Gros-Otero J; Castejón M; Paz-Moreno J; Mikropoulos D; Teus M
Journal of optometry 2015; 8: 232-238 (IGR: 16-3)


59444 Prediction Accuracy of a Novel Dynamic Structure-Function Model for Glaucoma Progression
Hu R; Marín-Franch I; Racette L
Investigative Ophthalmology and Visual Science 2014; 55: 8086-8094 (IGR: 16-3)


58842 Cupping reversal in pediatric glaucoma-evaluation of the retinal nerve fiber layer and visual field
Ely AL; El-Dairi MA; Freedman SF
American Journal of Ophthalmology 2014; 158: 905-915.e1 (IGR: 16-3)


59659 Initial scotomas in normal tension glaucoma
Mizoue S; Iwase A; Matsumoto S; Yoshikawa K
Nippon Ganka Gakkai Zasshi 2014; 118: 826-830 (IGR: 16-3)


59102 Effect of dorzolamide/timolol combination on the visual field in glaucoma
Takeda S; Mimura T; Matsubara M
Clinical Ophthalmology 2014; 8: 1579-1590 (IGR: 16-3)


58770 The effect of cataract surgery on blue-yellow and standard-pattern visual-evoked potentials
Fuest M; Plange N; Jamali S; Schwarzer H; Roessler G; Walter P; Mazinani B
Graefe's Archive for Clinical and Experimental Ophthalmology 2014; 252: 1831-1837 (IGR: 16-3)


59209 Prediction of Glaucomatous Visual Field Progression Using Baseline Clinical Data
Ernest PJ; Schouten JS; Beckers HJ; Hendrikse F; Prins MH; Webers CA
Journal of Glaucoma 2016; 25: 228-235 (IGR: 16-3)


59604 Short-Term Enhancement of Visual Field Sensitivity in Glaucomatous Eyes Following Surgical Intraocular Pressure Reduction
Wright TM; Goharian I; Gardiner SK; Sehi M; Greenfield DS
American Journal of Ophthalmology 2015; 159: 378-85.e1 (IGR: 16-3)


57148 Evaluation of various machine learning methods to predict vision-related quality of life from visual field data and visual acuity in patients with glaucoma
Hirasawa H; Murata H; Mayama C; Araie M; Asaoka R
British Journal of Ophthalmology 2014; 98: 1230-1235 (IGR: 16-2)


57129 A comparative effectiveness analysis of visual field outcomes after projected glaucoma screening using SD-OCT in African American communities
Blumberg DM; Vaswani R; Nong E; Al-Aswad L; Cioffi GA
Investigative Ophthalmology and Visual Science 2014; 55: 3491-3500 (IGR: 16-2)


57483 Optic disc tilt direction determines the location of initial glaucomatous damage
Choi JA; Park HY; Shin HY; Park CK
Investigative Ophthalmology and Visual Science 2014; 55: 4991-4998 (IGR: 16-2)


57407 Refined Data Analysis Provides Clinical Evidence for Central Nervous System Control of Chronic Glaucomatous Neurodegeneration
Sponsel WE; Groth SL; Satsangi N; Maddess T; Reilly MA
Translational vision science & technology 2014; 3: 1 (IGR: 16-2)


57467 Reducing variability in visual field assessment for glaucoma through filtering that combines structural and functional information
Deng L; Demirel S; Gardiner SK
Investigative Ophthalmology and Visual Science 2014; 55: 4593-4602 (IGR: 16-2)


56939 A method to measure visual field sensitivity at the edges of glaucomatous scotomata
Aoyama Y; Murata H; Tahara M; Yanagisawa M; Hirasawa K; Mayama C; Asaoka R
Investigative Ophthalmology and Visual Science 2014; 55: 2584-2591 (IGR: 16-2)


57338 Prediction of glaucomatous visual field progression: pointwise analysis
Shon K; Wollstein G; Schuman JS; Sung KR
Current Eye Research 2014; 39: 705-710 (IGR: 16-2)


57032 A new index to monitor central visual field progression in glaucoma
De Moraes CG; Furlanetto RL; Ritch R; Liebmann JM
Ophthalmology 2014; 121: 1531-1538 (IGR: 16-2)


56978 Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements
Pollet-Villard F; Chiquet C; Romanet JP; Noel C; Aptel F
Investigative Ophthalmology and Visual Science 2014; 55: 2953-2962 (IGR: 16-2)


57477 Evaluation of Octopus Polar Trend Analysis for detection of glaucomatous progression
Holló G; Naghizadeh F
European Journal of Ophthalmology 2014; 24: 862-868 (IGR: 16-2)


57025 Structure-function correlations in glaucoma using matrix and standard automated perimetry versus time-domain and spectral-domain OCT devices
Pinto LM; Costa EF; Melo LA; Gross PB; Sato ET; Almeida AP; Maia A; Paranhos A
Investigative Ophthalmology and Visual Science 2014; 55: 3074-3080 (IGR: 16-2)


57436 Mapping glaucoma patients' 30-2 and 10-2 visual fields reveals clusters of test points damaged in the 10-2 grid that are not sampled in the sparse 30-2 grid
Asaoka R
PLoS ONE 2014; 9: e98525 (IGR: 16-2)


57219 Severity-dependent association between ganglion cell inner plexiform layer thickness and macular mean sensitivity in open-angle glaucoma
Kim KE; Park KH; Jeoung JW; Kim SH; Kim DM
Acta Ophthalmologica 2014; 92: e650-e656 (IGR: 16-2)


56938 Optimizing structure-function relationship by maximizing correspondence between glaucomatous visual fields and mathematical retinal nerve fiber models
Erler NS; Bryan SR; Eilers PH; Lesaffre EM; Lemij HG; Vermeer KA
Investigative Ophthalmology and Visual Science 2014; 55: 2350-2357 (IGR: 16-2)


57335 Detection of early glaucomatous progression with octopus cluster trend analysis
Naghizadeh F; Holló G
Journal of Glaucoma 2014; 23: 269-275 (IGR: 16-2)


57124 Reduction in mean deviation values in automated perimetry in eyes with multifocal compared to monofocal intraocular lens implants
Farid M; Chak G; Garg S; Steinert RF
American Journal of Ophthalmology 2014; 158: 227-231.e1 (IGR: 16-2)


56991 Visual impairment registration: evaluation of agreement among ophthalmologists
Guerin E; Bouliotis G; King A
Eye 2014; 28: 808-813 (IGR: 16-2)


57119 Customized, automated stimulus location choice for assessment of visual field defects
Chong LX; McKendrick AM; Ganeshrao SB; Turpin A
Investigative Ophthalmology and Visual Science 2014; 55: 3265-3274 (IGR: 16-2)


57532 Effect of yellow-tinted intraocular lens on standard automated perimetry and short wavelength automated perimetry in patients with glaucoma
Nilforushan N; Parsamanesh M; Yu F; Nassiri N; Miraftabi A; Coleman AL
Middle East African Journal of Ophthalmology 2014; 21: 216-219 (IGR: 16-2)


57378 Rates of glaucomatous visual field change in a large clinical population
Chauhan BC; Malik R; Shuba LM; Rafuse PE; Nicolela MT; Artes PH
Investigative Ophthalmology and Visual Science 2014; 55: 4135-4143 (IGR: 16-2)


57172 Exploring early glaucoma and the visual field test: classification and clustering using Bayesian networks
Ceccon S; Garway-Heath DF; Crabb DP; Tucker A
IEEE journal of biomedical and health informatics 2014; 18: 1008-1014 (IGR: 16-2)


56986 Identification of functional visual field loss by automated static perimetry
Frisén L
Acta Ophthalmologica 2014; 92: 805-809 (IGR: 16-2)


57016 Effect of a variability-adjusted algorithm on the efficiency of perimetric testing
Gardiner SK
Investigative Ophthalmology and Visual Science 2014; 55: 2983-2992 (IGR: 16-2)


57246 Applying theories and interventions from behavioral medicine to understand and reduce visual field variability in patients with vision loss
Rozanski C; Haythornthwaite JA; Dagnelie G; Bittner AK
Medical Hypotheses 2014; 83: 190-195 (IGR: 16-2)


56783 Perimetric measurements with flicker-defined form stimulation in comparison with conventional perimetry and retinal nerve fiber measurements
Horn FK; Tornow RP; Jünemann AG; Laemmer R; Kremers J
Investigative Ophthalmology and Visual Science 2014; 55: 2317-2323 (IGR: 16-2)


57448 A Test of a Model of Glaucomatous Damage of the Macula With High-Density Perimetry: Implications for the Locations of Visual Field Test Points
Hood DC; Nguyen M; Ehrlich AC; Raza AS; Sliesoraityte I; De Moraes CG; Ritch R; Schiefer U
Translational vision science & technology 2014; 3: 5 (IGR: 16-2)


57499 Relationship between Spectral-Domain Optical Coherence Tomography and Standard Automated Perimetry in Healthy and Glaucoma Patients
Abadia B; Ferreras A; Calvo P; Ara M; Ferrandez B; Otin S; Frezzotti P; Pablo LE; Figus M
BioMed research international 2014; 2014: 514948 (IGR: 16-2)


57498 Correlation between optic nerve head structural parameters and glaucomatous visual field indices
Mizumoto K; Gosho M; Zako M
Clinical Ophthalmology 2014; 8: 1203-1208 (IGR: 16-2)


57001 Using filtered forecasting techniques to determine personalized monitoring schedules for patients with open-angle glaucoma
Schell GJ; Lavieri MS; Helm JE; Liu X; Musch DC; Van Oyen MP; Stein JD
Ophthalmology 2014; 121: 1539-1546 (IGR: 16-2)


57118 Hierarchical cluster analysis of progression patterns in open-angle glaucoma patients with medical treatment
Bae HW; Rho S; Lee HS; Lee N; Hong S; Seong GJ; Sung KR; Kim CY
Investigative Ophthalmology and Visual Science 2014; 55: 3231-3236 (IGR: 16-2)


57293 Visual Field Progression in Glaucoma: What Is the Specificity of the Guided Progression Analysis?
Artes PH; O'Leary N; Nicolela MT; Chauhan BC; Crabb DP
Ophthalmology 2014; 121: 2023-2027 (IGR: 16-2)


57286 Portsmouth visual field database: an audit of glaucoma progression
Kirwan JF; Hustler A; Bobat H; Toms L; Crabb DP; McNaught AI
Eye 2014; 28: 974-979 (IGR: 16-2)


57474 Difference in the posterior pole profiles associated with the initial location of visual field defect in early-stage normal tension glaucoma
Choi JA; Park HY; Park CK
Acta Ophthalmologica 2015; 93: e94-e99 (IGR: 16-2)


56979 Central visual field progression in normal-tension glaucoma patients with autonomic dysfunction
Park HY; Park SH; Park CK
Investigative Ophthalmology and Visual Science 2014; 55: 2557-2563 (IGR: 16-2)


57485 Choroidal excavation in eye with normal tension glaucoma
Asao K; Morimoto T; Nakada A; Kawasaki Y
Case Reports in Ophthalmology 2014; 5: 144-149 (IGR: 16-2)


57171 Changes of visual field and optic nerve fiber layer in patients with OSAS
Xin C; Zhang W; Wang L; Yang D; Wang J
Sleep & breathing = Schlaf & Atmung 2015; 19: 129-134 (IGR: 16-2)


57202 Effect of Palmitoylethanolamide on Visual Field Damage Progression in Normal Tension Glaucoma Patients: Results of an Open-Label Six-Month Follow-Up
Costagliola C; Romano MR; dell'Omo R; Russo A; Mastropasqua R; Semeraro F
Journal of medicinal food 2014; 17: 949-954 (IGR: 16-2)


56821 Baseline prognostic factors predict rapid visual field deterioration in glaucoma
Lee JM; Caprioli J; Nouri-Mahdavi K; Afifi AA; Morales E; Ramanathan M; Yu F; Coleman AL
Investigative Ophthalmology and Visual Science 2014; 55: 2228-2236 (IGR: 16-2)


55997 Examining visual field loss in patients in glaucoma clinics during their predicted remaining lifetime
Saunders LJ; Russell RA; Kirwan JF; McNaught AI; Crabb DP
Investigative Ophthalmology and Visual Science 2014; 55: 102-109 (IGR: 16-1)


56069 Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region
Hood DC; Slobodnick A; Raza AS; De Moraes CG; Teng CC; Ritch R
Investigative Ophthalmology and Visual Science 2014; 55: 632-649 (IGR: 16-1)


56220 Correlation of retinal nerve fiber layer thickness and visual fields in glaucoma: a broken stick model
Alasil T; Wang K; Yu F; Field MG; Lee H; Baniasadi N; de Boer JF; Coleman AL; Chen TC
American Journal of Ophthalmology 2014; 157: 953-959 (IGR: 16-1)


56160 Development and validation of an improved neurological hemifield test to identify chiasmal and postchiasmal lesions by automated perimetry
McCoy AN; Quigley HA; Wang J; Miller NR; Subramanian PS; Ramulu PY; Boland MV
Investigative Ophthalmology and Visual Science 2014; 55: 1017-1023 (IGR: 16-1)


56440 Assessment of the Reliability of Standard Automated Perimetry in Regions of Glaucomatous Damage
Gardiner SK; Swanson WH; Goren D; Mansberger SL; Demirel S
Ophthalmology 2014; 121: 1359-1369 (IGR: 16-1)


56115 Prevalence and nature of early glaucomatous defects in the central 10° of the visual field
Traynis I; De Moraes CG; Raza AS; Liebmann JM; Ritch R; Hood DC
JAMA ophthalmology 2014; 132: 291-297 (IGR: 16-1)


56156 Paracentral scotoma in glaucoma detected by 10-2 but not by 24-2 perimetry
Hangai M; Ikeda HO; Akagi T; Yoshimura N
Japanese Journal of Ophthalmology 2014; 58: 188-196 (IGR: 16-1)


56126 A qualitative investigation into patients' views on visual field testing for glaucoma monitoring
Glen FC; Baker H; Crabb DP
BMJ open 2014; 4: e003996 (IGR: 16-1)


56135 Structure-function mapping: variability and conviction in tracing retinal nerve fiber bundles and comparison to a computational model
Denniss J; Turpin A; Tanabe F; Matsumoto C; McKendrick AM
Investigative Ophthalmology and Visual Science 2014; 55: 728-736 (IGR: 16-1)


56455 A novel strategy for the estimation of the general height of the visual field in patients with glaucoma
Marín-Franch I; Swanson WH; Malinovsky VE
Graefe's Archive for Clinical and Experimental Ophthalmology 2014; 252: 801-809 (IGR: 16-1)


56118 Improving glaucoma detection using spatially correspondent clusters of damage and by combining standard automated perimetry and optical coherence tomography
Raza AS; Zhang X; De Moraes CG; Reisman CA; Liebmann JM; Ritch R; Hood DC
Investigative Ophthalmology and Visual Science 2014; 55: 612-624 (IGR: 16-1)


56245 Psychomotor Vigilance and Visual Field Test Performance
Dersu II; Ali TK; Spencer HJ; Covey SM; Evans MS; Harper RA
Seminars in Ophthalmology 2015; 30: 289-296 (IGR: 16-1)


56255 Evaluation of hemifield sector analysis protocol in multifocal visual evoked potential objective perimetry for the diagnosis and early detection of glaucomatous field defects
Mousa MF; Cubbidge RP; Al-Mansouri F; Bener A
Korean Journal of Ophthalmology 2014; 28: 49-65 (IGR: 16-1)


56420 Effect of refractive errors on multifocal VEP responses and standard automated perimetry tests in a single population
Nakamura M; Kato K; Kamata S; Ishikawa K; Nagai T
Documenta Ophthalmologica 2014; 128: 179-189 (IGR: 16-1)


56287 Automatic method of analysis of OCT images in assessing the severity degree of glaucoma and the visual field loss
Koprowski R; Rzendkowski M; Wróbel Z
Biomedical engineering online 2014; 13: 16 (IGR: 16-1)


56331 Individualized structure-function mapping for glaucoma: practical constraints on map resolution for clinical and research applications
Denniss J; Turpin A; McKendrick AM
Investigative Ophthalmology and Visual Science 2014; 55: 1985-1993 (IGR: 16-1)


56081 Glaucoma diagnostic value of the total macular thickness and ganglion cell-inner plexiform layer thickness according to optic disc area
Yoon MH; Park SJ; Kim CY; Chin HS; Kim NR
British Journal of Ophthalmology 2014; 98: 315-321 (IGR: 16-1)


56552 Learning from data: Recognizing glaucomatous defect patterns and detecting progression from visual field measurements
Yousefi S; Goldbaum M; Balasubramanian M; Medeiros F; Zangwill L; Liebmann J; Girkin C; Weinreb R; Bowd C
IEEE Transactions on Bio-Medical Engineering 2014; 61: 2112-2124 (IGR: 16-1)


55996 Estimation of retinal ganglion cell loss in glaucomatous eyes with a relative afferent pupillary defect
Tatham AJ; Meira-Freitas D; Weinreb RN; Marvasti AH; Zangwill LM; Medeiros FA
Investigative Ophthalmology and Visual Science 2014; 55: 513-522 (IGR: 16-1)


56482 Glaucoma progression detection using structural retinal nerve fiber layer measurements and functional visual field points
Yousefi S; Goldbaum MH; Balasubramanian M; Jung TP; Weinreb RN; Medeiros FA; Zangwill LM; Liebmann JM; Girkin CA; Bowd C
IEEE Transactions on Bio-Medical Engineering 2014; 61: 1143-1154 (IGR: 16-1)


56237 Vision restoration training for glaucoma: a randomized clinical trial
Sabel BA; Gudlin J
JAMA ophthalmology 2014; 132: 381-389 (IGR: 16-1)


56192 Characteristics of undiagnosed primary open-angle glaucoma: the Tajimi Study
Iwase A; Suzuki Y; Araie M;
Ophthalmic Epidemiology 2014; 21: 39-44 (IGR: 16-1)


56589 Do optic nerve head and visual field parameters in patients with obstructive sleep apnea syndrome differ from those in control individuals?
Salzgeber R; Iliev ME; Mathis J
Klinische Monatsblätter für Augenheilkunde 2014; 231: 340-343 (IGR: 16-1)


55469 The impact of structural and functional parameters in glaucoma patients on patient-reported visual functioning
Hirneiß C; Reznicek L; Vogel M; Pesudovs K
PLoS ONE 2013; 8: e80757 (IGR: 15-4)


55714 Utility values for glaucoma in Brazil and their correlation with visual function
Paletta Guedes RA; Paletta Guedes VM; Freitas SM; Chaoubah A
Clinical Ophthalmology 2014; 8: 529-535 (IGR: 15-4)


55655 Transient elevation of intraocular pressure in primary open-angle glaucoma patients after automated visual field examination in the winter
Nishino K; Yoshida F; Nitta A; Saito M; Saito K
Nippon Ganka Gakkai Zasshi 2013; 117: 990-995 (IGR: 15-4)


55350 Practical aspects of glaucoma perimetry
Weber J
Ophthalmologe 2013; 110: 1045-1050 (IGR: 15-4)


55119 Difference in the properties of retinal nerve fiber layer defect between superior and inferior visual field loss in glaucoma
Choi JA; Park HY; Jung KI; Hong KH; Park CK
Investigative Ophthalmology and Visual Science 2013; 54: 6982-6990 (IGR: 15-4)


55622 Detecting changes in retinal function: Analysis with Non-Stationary Weibull Error Regression and Spatial enhancement (ANSWERS)
Zhu H; Russell RA; Saunders LJ; Ceccon S; Garway-Heath DF; Crabb DP
PLoS ONE 2014; 9: e85654 (IGR: 15-4)


55252 The relationship between visual field index and estimated number of retinal ganglion cells in glaucoma
Marvasti AH; Tatham AJ; Zangwill LM; Girkin CA; Liebmann JM; Weinreb RN; Medeiros FA
PLoS ONE 2013; 8: e76590 (IGR: 15-4)


55257 The association between visual field defect severity and fear of falling in primary open-angle glaucoma
Yuki K; Tanabe S; Kouyama K; Fukagawa K; Uchino M; Shimoyama M; Ozeki N; Shiba D; Ozawa Y; Abe T; Tsubota K
Investigative Ophthalmology and Visual Science 2013; 54: 7739-7745 (IGR: 15-4)


55312 Performance of the visual field index in glaucoma patients with moderately advanced visual field loss
Lee JM; Cirineo N; Ramanathan M; Nouri-Mahdavi K; Morales E; Coleman AL; Caprioli J
American Journal of Ophthalmology 2014; 157: 39-43 (IGR: 15-4)


55474 Structural and functional assessment by hemispheric asymmetry testing of the macular region in preperimetric glaucoma
Kawaguchi C; Nakatani Y; Ohkubo S; Higashide T; Kawaguchi I; Sugiyama K
Japanese Journal of Ophthalmology 2014; 58: 197-204 (IGR: 15-4)


55197 Correlating perimetric indices with three nerve fiber layer thickness measures
Goren D; Demirel S; Fortune B; Gardiner SK
Optometry and Vision Science 2013; 90: 1353-1360 (IGR: 15-4)


55218 A modified glaucoma staging system based on visual field index
Hirasawa K; Shoji N; Morita T; Shimizu K
Graefe's Archive for Clinical and Experimental Ophthalmology 2013; 251: 2747-2752 (IGR: 15-4)


55586 New insights into measurement variability in glaucomatous visual fields from computer modelling
Russell RA; Garway-Heath DF; Crabb DP
PLoS ONE 2013; 8: e83595 (IGR: 15-4)


55695 Current status of visual field examination in Andalusia, Spain: The SICVA Study
Benítez-Del-Castillo J; Regi T;
European Journal of Ophthalmology 2013; 0: 0 (IGR: 15-4)


55768 Comparison of relation between visual function index and retinal nerve fiber layer structure by optical coherence tomography among primary open angle glaucoma and primary angle closure glaucoma eyes
Rao A
Oman journal of ophthalmology 2014; 7: 9-12 (IGR: 15-4)


55585 Improving predictive models of glaucoma severity by incorporating quality indicators
Sacchi L; Tucker A; Counsell S; Garway-Heath D; Swift S
Artificial Intelligence in Medicine 2014; 60: 103-112 (IGR: 15-4)


55206 Comparative study of macular ganglion cell-inner plexiform layer and peripapillary retinal nerve fiber layer measurement: structure-function analysis
Shin HY; Park HY; Jung KI; Park CK
Investigative Ophthalmology and Visual Science 2013; 54: 7344-7353 (IGR: 15-4)


55598 Comparison between binocular and monocular reading ability and its relation with central visual field sensitivity in glaucoma patients
Ishii M; Seki M; Harigai R; Abe H; Fukuchi T
Nippon Ganka Gakkai Zasshi 2013; 117: 925-930 (IGR: 15-4)


55665 Monochromatic Pupillometry in Unilateral Glaucoma Discloses no Adaptive Changes Subserved by the ipRGCs
Nissen C; Sander B; Milea D; Kolko M; Herbst K; Hamard P; Lund-Andersen H
Frontiers in neurology 2014; 5: 15 (IGR: 15-4)


55284 Visual field progression with frequency-doubling matrix perimetry and standard automated perimetry in patients with glaucoma and in healthy controls
Redmond T; O'Leary N; Hutchison DM; Nicolela MT; Artes PH; Chauhan BC
JAMA ophthalmology 2013; 131: 1565-1572 (IGR: 15-4)


55763 Correlation of pattern reversal visual evoked potential parameters with the pattern standard deviation in primary open angle glaucoma
Kothari R; Bokariya P; Singh R; Singh S; Narang P
International Journal of Ophthalmology 2014; 7: 326-329 (IGR: 15-4)


55179 Cross-sectional study: Does combining optical coherence tomography measurements using the 'Random Forest' decision tree classifier improve the prediction of the presence of perimetric deterioration in glaucoma suspects?
Sugimoto K; Murata H; Hirasawa H; Aihara M; Mayama C; Asaoka R
BMJ open 2013; 3: e003114 (IGR: 15-4)


55425 Combining spectral domain optical coherence tomography structural parameters for the diagnosis of glaucoma with early visual field loss
Mwanza JC; Warren JL; Budenz DL;
Investigative Ophthalmology and Visual Science 2013; 54: 8393-8400 (IGR: 15-4)


55438 Retinal blood flow in glaucomatous eyes with single-hemifield damage
Sehi M; Goharian I; Konduru R; Tan O; Srinivas S; Sadda SR; Francis BA; Huang D; Greenfield DS
Ophthalmology 2014; 121: 750-758 (IGR: 15-4)


55120 Robust and censored modeling and prediction of progression in glaucomatous visual fields
Bryan SR; Vermeer KA; Eilers PH; Lemij HG; Lesaffre EM
Investigative Ophthalmology and Visual Science 2013; 54: 6694-6700 (IGR: 15-4)


55439 Defining 10-2 visual field progression criteria: exploratory and confirmatory factor analysis using pointwise linear regression
De Moraes CG; Song C; Liebmann JM; Simonson JL; Furlanetto RL; Ritch R
Ophthalmology 2014; 121: 741-749 (IGR: 15-4)


55396 Baseline thickness of macular ganglion cell complex predicts progression of visual field loss
Anraku A; Enomoto N; Takeyama A; Ito H; Tomita G
Graefe's Archive for Clinical and Experimental Ophthalmology 2014; 252: 109-115 (IGR: 15-4)


55320 Detection of progression of glaucomatous visual field damage using the point-wise method with the binomial test
Karakawa A; Murata H; Hirasawa H; Mayama C; Asaoka R
PLoS ONE 2013; 8: e78630 (IGR: 15-4)


55426 Arteriovenous passage times and visual field progression in normal tension glaucoma
Koch EC; Arend KO; Bienert M; Remky A; Plange N
TheScientificWorldJournal 2013; 2013: 726912 (IGR: 15-4)


55542 Initial central scotomas vs peripheral scotomas in normal-tension glaucoma: clinical characteristics and progression rates
Cho HK; Lee J; Lee M; Kee C
Eye 2014; 28: 303-311 (IGR: 15-4)


54578 Evaluation of Progressive Neuroretinal Rim Loss as a Surrogate End Point for Development of Visual Field Loss in Glaucoma
Medeiros FA; Lisboa R; Zangwill LM; Liebmann JM; Girkin CA; Bowd C; Weinreb RN
Ophthalmology 2014; 121: 100-109 (IGR: 15-3)


54826 Correlation of Magnetic Resonance Imaging optic nerve parameters to Optical Coherence Tomography and the visual field in glaucoma
Omodaka K; Murata T; Sato S; Takahashi M; Tatewaki Y; Nagasaka T; Doi H; Araie M; Takahashi S; Nakazawa T
Clinical and Experimental Ophthalmology 2014; 42: 360-368 (IGR: 15-3)


54602 Relationship between 24-hour mean ocular perfusion pressure fluctuation and rate of paracentral visual field progression in normal-tension glaucoma
Choi J; Lee JR; Lee Y; Lee KS; Na JH; Han S; Kook MS
Investigative Ophthalmology and Visual Science 2013; 54: 6150-6157 (IGR: 15-3)


54554 Applicability of standard parameters in diagnostics of primary open-angle glaucoma
Polaczek-Krupa B; Grabska-Liberek I
Medical Science Monitor 2013; 19: 657-660 (IGR: 15-3)


54398 Nonlinear, multilevel mixed-effects approach for modeling longitudinal standard automated perimetry data in glaucoma
Pathak M; Demirel S; Gardiner SK
Investigative Ophthalmology and Visual Science 2013; 54: 5505-5513 (IGR: 15-3)


54542 Comparison of automated and manual perimetry in patients with blepharoptosis
Alniemi ST; Pang NK; Woog JJ; Bradley EA
Ophthalmic Plastic and Reconstructive Surgery 2013; 29: 361-363 (IGR: 15-3)


54583 Measuring visual field progression in the central 10 degrees using additional information from central 24 degrees visual fields and 'lasso regression'
Asaoka R
PLoS ONE 2013; 8: e72199 (IGR: 15-3)


54726 Macular Ganglion Cell Complex Thickness in Glaucoma With Superior or Inferior Visual Hemifield Defects
Inuzuka H; Kawase K; Yamada H; Oie S; Kokuzawa S; Yamamoto T
Journal of Glaucoma 2014; 23: 145-149 (IGR: 15-3)


54660 The Relationship between Better-Eye and Integrated Visual Field Mean Deviation and Visual Disability
Arora KS; Boland MV; Friedman DS; Jefferys JL; West SK; Ramulu PY
Ophthalmology 2013; 120: 2476-2484 (IGR: 15-3)


54856 Signal-to-Noise Ratios for Structural and Functional Tests in Glaucoma
Gardiner SK; Fortune B; Demirel S
Translational vision science & technology 2013; 2: 3 (IGR: 15-3)


54453 Symmetry of the pupillary light reflex and its relationship to retinal nerve fiber layer thickness and visual field defect
Chang DS; Boland MV; Arora KS; Supakontanasan W; Chen BB; Friedman DS
Investigative Ophthalmology and Visual Science 2013; 54: 5596-5601 (IGR: 15-3)


54456 Risk factors for progressive visual field loss in primary angle-closure glaucoma: a retrospective cohort study
Fan NW; Hwang DK; Ko YC; Tseng FC; Hung KH; Liu CJ
PLoS ONE 2013; 8: e69772 (IGR: 15-3)


54789 Evaluating the accuracy of the visual field index for the humphrey visual field analyzer in patients with mild to moderate glaucoma
Talbot R; Goldberg I; Kelly P
American Journal of Ophthalmology 2013; 156: 1272-1276 (IGR: 15-3)


54803 Comparison of SWAP and SAP on the point of glaucoma conversion
Havvas I; Papaconstantinou D; Moschos MM; Theodossiadis PG; Andreanos V; Ekatomatis P; Vergados I; Andreanos D
Clinical Ophthalmology 2013; 7: 1805-1810 (IGR: 15-3)


54669 Comparison of Heidelberg retina tomography, optical coherence tomography and Humphrey visual field in early glaucoma diagnosis
Wang H; Tao Y; Sun XL; Zhuang K
Journal of International Medical Research 2013; 41: 1594-1605 (IGR: 15-3)


54600 Glaucoma Diagnostic Ability of Ganglion Cell-Inner Plexiform Layer Thickness Differs According to the Location of Visual Field Loss
Shin HY; Park HY; Jung KI; Choi JA; Park CK
Ophthalmology 2014; 121: 93-99 (IGR: 15-3)


54631 Macular structure parameters as an automated indicator of paracentral scotoma in early glaucoma
Kimura Y; Hangai M; Matsumoto A; Akagi T; Ikeda HO; Ohkubo S; Sugiyama K; Iwase A; Araie M; Yoshimura N
American Journal of Ophthalmology 2013; 156: 907-917 (IGR: 15-3)


54522 Refinement of pointwise linear regression criteria for determining glaucoma progression
Kummet CM; Zamba KD; Doyle CK; Johnson CA; Wall M
Investigative Ophthalmology and Visual Science 2013; 54: 6234-6241 (IGR: 15-3)


54797 Detecting the Progression of Eye Disease: CUSUM Charts for Assessing the Visual Field and Retinal Nerve Fiber Layer Thickness
Ledolter J; Kardon R
Translational vision science & technology 2013; 2: 2 (IGR: 15-3)


53824 Functional relationship between retinal sensitivity threshold values assessed by standard automated perimetry in glaucoma
Güerri N; Polo V; Larrosa JM; Egea C; Ferreras A; Pablo LE
Archivos de la Sociedad Española de Oftalmologia 2013; 88: 223-230 (IGR: 15-2)


53711 Correlation of Macular Thickness With Visual Fields in Glaucoma Patients and Suspects
Mathers K; Rosdahl JA; Asrani S
Journal of Glaucoma 2014; 23: e98-104 (IGR: 15-2)


53613 Measurement of macular ganglion cell layer and circumpapillary retinal nerve fiber layer to detect paracentral scotoma in early glaucoma
Lee J; Hangai M; Kimura Y; Takayama K; Kee C; Yoshimura N
Graefe's Archive for Clinical and Experimental Ophthalmology 2013; 251: 2003-2012 (IGR: 15-2)


54039 Visual field
Sidlová JS; Benes P; Holoubková Z
Collegium Antropologicum 2013; 37: 111-115 (IGR: 15-2)


53814 The Relationship Between the Mean Deviation (MD) Slope and Follow-up Intraocular Pressure (IOP) in Open-angle Glaucoma Patients
Fukuchi T; Yoshino T; Sawada H; Seki M; Togano T; Tanaka T; Ueda J; Abe H
Journal of Glaucoma 2013; 22: 689-697 (IGR: 15-2)


53798 Regional correlation among ganglion cell complex, nerve fiber layer, and visual field loss in glaucoma
Le PV; Tan O; Chopra V; Francis BA; Ragab O; Varma R; Huang D
Investigative Ophthalmology and Visual Science 2013; 54: 4287-4295 (IGR: 15-2)


53574 Detecting glaucoma with visual fields derived from frequency-domain optical coherence tomography
Zhang X; Raza AS; Hood DC
Investigative Ophthalmology and Visual Science 2013; 54: 3289-3296 (IGR: 15-2)


53651 Interocular Asymmetry of the Visual Field Defects in Newly Diagnosed Normal-tension Glaucoma, Primary Open-angle Glaucoma, and Chronic Angle-closure Glaucoma
Huang P; Shi Y; Wang X; Liu M; Zhang C
Journal of Glaucoma 2014; 23: 455-460 (IGR: 15-2)


53560 Point-wise Relationships Between Visual Field Sensitivity and Macular Thickness Determined by Spectral-domain Optical Coherence Tomography
Kim JM; Sung KR; Yoo YC; Kim CY
Current Eye Research 2013; 38: 894-901 (IGR: 15-2)


54008 Development of a new strategy of visual field testing for macular dysfunction in patients with open angle glaucoma
Omodaka K; Kunimatsu-Sanuki S; Morin R; Tsuda S; Yokoyama Y; Takahashi H; Maruyama K; Kunikata H; Nakazawa T
Japanese Journal of Ophthalmology 2013; 57: 457-462 (IGR: 15-2)


53600 Are practical recommendations practiced? A national multi-centre cross-sectional study on frequency of visual field testing in glaucoma
Fung SS; Lemer C; Russell RA; Malik R; Crabb DP
British Journal of Ophthalmology 2013; 97: 843-847 (IGR: 15-2)


53647 A Comparison of False-negative Responses for Full Threshold and SITA Standard Perimetry in Glaucoma Patients and Normal Observers
Johnson CA; Sherman K; Doyle C; Wall M
Journal of Glaucoma 2014; 23: 288-292 (IGR: 15-2)


53666 Size threshold perimetry performs as well as conventional automated perimetry with stimulus sizes III, V, and VI for glaucomatous loss
Wall M; Doyle CK; Eden T; Zamba KD; Johnson CA
Investigative Ophthalmology and Visual Science 2013; 54: 3975-3983 (IGR: 15-2)


53773 Parafoveal Scotoma Progression in Glaucoma: Humphrey 10-2 versus 24-2 Visual Field Analysis
Park SC; Kung Y; Su D; Simonson JL; Furlanetto RL; Liebmann JM; Ritch R
Ophthalmology 2013; 120: 1546-1550 (IGR: 15-2)


53963 Evaluation of relationship between retinal nerve fiber layer thickness progression and visual field progression in patients with glaucoma
Tenkumo K; Hirooka K; Baba T; Nitta E; Sato S; Shiraga F
Japanese Journal of Ophthalmology 2013; 0: (IGR: 15-2)


53570 Agreement between event-based and trend-based glaucoma progression analyses
Rao HL; Kumbar T; Kumar AU; Babu JG; Senthil S; Garudadri CS
Eye 2013; 27: 803-808 (IGR: 15-2)


53714 Predicting progression in glaucoma suspects with longitudinal estimates of retinal ganglion cell counts
Meira-Freitas D; Lisboa R; Tatham A; Zangwill LM; Weinreb RN; Girkin CA; Liebmann JM; Medeiros FA
Investigative Ophthalmology and Visual Science 2013; 54: 4174-4183 (IGR: 15-2)


53654 Optic Nerve Diffusion Tensor Imaging Parameters and Their Correlation With Optic Disc Topography and Disease Severity in Adult Glaucoma Patients and Controls
Chang ST; Xu J; Trinkaus K; Pekmezci M; Arthur SN; Song SK; Barnett EM
Journal of Glaucoma 2014; 23: 513-520 (IGR: 15-2)


53888 Comparison of Visual Field Progression Between Relatively Low and High Intraocular Pressure Groups in Normal Tension Glaucoma Patients
Lee J; Kong M; Kim J; Kee C
Journal of Glaucoma 2014; 23: 553-560 (IGR: 15-2)


53254 Visual field progression outcomes in glaucoma subtypes
De Moraes CG; Liebmann JM; Liebmann CA; Susanna R; Tello C; Ritch R
Acta Ophthalmologica 2013; 91: 288-293 (IGR: 15-2)


53568 How should we follow end-stage glaucoma?
Paletta Guedes RA; Paletta Guedes VM
Journal Français d'Ophtalmologie 2013; 36: 442-448 (IGR: 15-2)


53678 Choice of statistical method influences apparent association between structure and function in glaucoma
Marín-Franch I; Malik R; Crabb DP; Swanson WH
Investigative Ophthalmology and Visual Science 2013; 54: 4189-4196 (IGR: 15-2)


53238 Identifying areas of the visual field important for quality of life in patients with glaucoma
Murata H; Hirasawa H; Aoyama Y; Sugisaki K; Araie M; Mayama C; Aihara M; Asaoka R
PLoS ONE 2013; 8: e58695 (IGR: 15-1)


52995 Association between rates of binocular visual field loss and vision-related quality of life in patients with glaucoma
Lisboa R; Chun YS; Zangwill LM; Weinreb RN; Rosen PN; Liebmann JM; Girkin CA; Medeiros FA
JAMA ophthalmology 2013; 131: 486-494 (IGR: 15-1)


52556 Impact of glaucoma severity and laterality on vision-specific functioning: the Singapore Malay eye study
Chan EW; Chiang PP; Wong TY; Saw SM; Loon SC; Aung T; Lamoureux E
Investigative Ophthalmology and Visual Science 2013; 54: 1169-1175 (IGR: 15-1)


52756 Relating retinal nerve fiber layer thickness and functional estimates of ganglion cell sampling density in healthy eyes and in early glaucoma
Redmond T; Anderson RS; Russell RA; Garway-Heath DF
Investigative Ophthalmology and Visual Science 2013; 54: 2153-2162 (IGR: 15-1)


52809 Positive correlation between the degree of visual field defect and optic radiation damage in glaucoma patients
Murai H; Suzuki Y; Kiyosawa M; Tokumaru AM; Ishii K; Mochizuki M
Japanese Journal of Ophthalmology 2013; 57: 257-262 (IGR: 15-1)


53113 Seasonal changes in visual field sensitivity and intraocular pressure in the ocular hypertension treatment study
Gardiner SK; Demirel S; Gordon MO; Kass MA;
Ophthalmology 2013; 120: 724-730 (IGR: 15-1)


52609 The repeatability of mean defect with size III and size V standard automated perimetry
Wall M; Doyle CK; Zamba KD; Artes P; Johnson CA
Investigative Ophthalmology and Visual Science 2013; 54: 1345-1351 (IGR: 15-1)


53127 Diagnostic performance of visual field test using subsets of the 24-2 test pattern for early glaucomatous field loss
Wang Y; Henson DB
Investigative Ophthalmology and Visual Science 2013; 54: 756-761 (IGR: 15-1)


52965 Saccadic eye movements and face recognition performance in patients with central glaucomatous visual field defects
Glen FC; Smith ND; Crabb DP
Vision Research 2013; 82: 42-51 (IGR: 15-1)


52654 Spatial modeling of visual field data for assessing glaucoma progression
Betz-Stablein BD; Morgan WH; House PH; Hazelton ML
Investigative Ophthalmology and Visual Science 2013; 54: 1544-1553 (IGR: 15-1)


52465 A survey of attitudes of glaucoma subspecialists in England and Wales to visual field test intervals in relation to NICE guidelines
Malik R; Baker H; Russell RA; Crabb DP
BMJ open 2013; 3: (IGR: 15-1)


52529 Effect of artificial tears on automated visual field testing in patients with glaucoma and dry eye
Kocabeyoglu S; Cem Mocan M; Bozkurt B; Irkec M
Canadian Journal of Ophthalmology 2013; 48: 110-114 (IGR: 15-1)


52993 Influence of multifocal intraocular lenses on standard automated perimetry test results
Aychoua N; Junoy Montolio FG; Jansonius NM
JAMA ophthalmology 2013; 131: 481-485 (IGR: 15-1)


52571 Global and pointwise rates of decay in glaucoma eyes deteriorating according to pointwise event analysis
Nassiri N; Moghimi S; Coleman AL; Law SK; Caprioli J; Nouri-Mahdavi K
Investigative Ophthalmology and Visual Science 2013; 54: 1208-1213 (IGR: 15-1)


52671 Relationship of change in central corneal thickness to visual field progression in eyes with glaucoma
Viswanathan D; Goldberg I; Graham SL
Graefe's Archive for Clinical and Experimental Ophthalmology 2013; 251: 1593-1599 (IGR: 15-1)


52541 How does glaucoma look?: patient perception of visual field loss
Crabb DP; Smith ND; Glen FC; Burton R; Garway-Heath DF
Ophthalmology 2013; 120: 1120-1126 (IGR: 15-1)


52626 Sensitivity and specificity of flicker perimetry with Pulsar. Comparison with achromatic (white-on-white) perimetry in glaucoma patients
Göbel K; Erb C
Ophthalmologe 2013; 110: 141-145 (IGR: 15-1)


52601 Flicker and conventional perimetry in comparison with structural changes in glaucoma
Dannheim F
Ophthalmologe 2013; 110: 131-140 (IGR: 15-1)


53166 Current approach on various methods of detection glaucomatous visual field progression
Zhong H; Yuan YS
Chinese Journal of Ophthalmology 2013; 49: 84-87 (IGR: 15-1)


52876 Behavior of visual field index in advanced glaucoma
Rao HL; Senthil S; Choudhari NS; Mandal AK; Garudadri CS
Investigative Ophthalmology and Visual Science 2013; 54: 307-312 (IGR: 15-1)


53252 Optic disc progression and rates of visual field change in treated glaucoma
De Moraes CG; Liebmann JM; Park SC; Teng CC; Nemiroff J; Tello C; Ritch R
Acta Ophthalmologica 2013; 91: e86-e91 (IGR: 15-1)


52806 Contributing factors for progression of visual field loss in normal-tension glaucoma patients with medical treatment
Sakata R; Aihara M; Murata H; Mayama C; Tomidokoro A; Iwase A; Araie M
Journal of Glaucoma 2013; 22: 250-254 (IGR: 15-1)


52457 Morphological and functional differences between normal-tension and high-tension glaucoma
Häntzschel J; Terai N; Sorgenfrei F; Haustein M; Pillunat K; Pillunat LE
Acta Ophthalmologica 2013; 91: e386-e391 (IGR: 15-1)


53150 Optic disc size and progression of visual field damage in patients with normal-tension glaucoma
Hayamizu F; Yamazaki Y; Nakagami T; Mizuki K
Clinical Ophthalmology 2013; 7: 807-813 (IGR: 15-1)


52763 Citicoline oral solution in glaucoma: is there a role in slowing disease progression?
Ottobelli L; Manni GL; Centofanti M; Iester M; Allevena F; Rossetti L
Ophthalmologica 2013; 229: 219-226 (IGR: 15-1)


52403 Rates of visual field loss before and after trabeculectomy
Bertrand V; Fieuws S; Stalmans I; Zeyen T
Acta Ophthalmologica 2014; 92: 116-120 (IGR: 15-1)


51784 Position of the central retinal vessel trunk and pattern of remaining visual field in advanced glaucoma
Huang H; Jonas JB; Dai Y; Hong J; Wang M; Chen J; Wu J; Sun X
British Journal of Ophthalmology 2013; 97: 96-100 (IGR: 14-4)


51987 Effect of Lateral Decubitus Position on Intraocular Pressure in Glaucoma Patients with Asymmetric Visual Field Loss
Kim KN; Jeoung JW; Park KH; Lee DS; Kim DM
Ophthalmology 2013; 120: 731-735 (IGR: 14-4)


51635 Perimetric and retinal nerve fiber layer findings in patients with Parkinson's disease
Tsironi EE; Dastiridou A; Katsanos A; Dardiotis E; Veliki S; Patramani G; Zacharaki F; Ralli S; Hadjigeorgiou GM
BMC Ophthalmology 2012; 12: 54 (IGR: 14-4)


51818 Progression Pattern of Initial Parafoveal Scotomas in Glaucoma
Su D; Park SC; Simonson JL; Liebmann JM; Ritch R
Ophthalmology 2013; 120: 520-527 (IGR: 14-4)


51968 Retinal Ganglion Cell Count Estimates Associated with Early Development of Visual Field Defects in Glaucoma
Medeiros FA; Lisboa R; Weinreb RN; Liebmann JM; Girkin C; Zangwill LM
Ophthalmology 2013; 120: 736-744 (IGR: 14-4)


51828 A novel distribution of visual field test points to improve the correlation between structure-function measurements
Asaoka R; Russell RA; Malik R; Crabb DP; Garway-Heath DF
Investigative Ophthalmology and Visual Science 2012; 53: 8396-8404 (IGR: 14-4)


51681 A Strategy for Averaged Estimates of Visual Field Threshold: Spark
de la Rosa MG; Gonzalez-Hernandez M
Journal of Glaucoma 2013; 22: 284-289 (IGR: 14-4)


51710 Structure-function relationship between FDF, FDT, SAP, and scanning laser ophthalmoscopy in glaucoma patients
Lamparter J; Russell RA; Schulze A; Schuff AC; Pfeiffer N; Hoffmann EM
Investigative Ophthalmology and Visual Science 2012; 53: 7553-7559 (IGR: 14-4)


51704 Rates of visual field progression in clinical glaucoma care
Heijl A; Buchholz P; Norrgren G; Bengtsson B
Acta Ophthalmologica 2013; 91: 406-412 (IGR: 14-4)


51899 An Evidence-Based Review of Prognostic Factors for Glaucomatous Visual Field Progression
Ernest PJ; Schouten JS; Beckers HJ; Hendrikse F; Prins MH; Webers CA
Ophthalmology 2013; 120: 512-519 (IGR: 14-4)


51101 Impact of glaucoma on visual functioning in Indians
Gothwal VK; Reddy SP; Bharani S; Bagga DK; Sumalini R; Garudadri CS; Rao HL; Senthil S; Pathak-Ray V; Mandal AK
Investigative Ophthalmology and Visual Science 2012; 53: 6081-6092 (IGR: 14-3)


51350 The p53 codon 72 PRO/PRO genotype may be associated with initial central visual field defects in caucasians with primary open angle glaucoma
Wiggs JL; Hewitt AW; Fan BJ; Wang DY; Figueiredo Sena DR; O'Brien C; Realini A; Craig JE; Dimasi DP; Mackey DA; Haines JL; Pasquale LR
PLoS ONE 2012; 7: e45613 (IGR: 14-3)


50726 Comparison of global indices and test duration between two visual field analyzers: Octopus 300 and Topcon SBP-3000
Garcia-Medina JJ; Garcia-Medina M; Zanon-Moreno V; Garcia-Maturana C; Cruz-Espinosa FJ; Pinazo-Duran MD
Graefe's Archive for Clinical and Experimental Ophthalmology 2012; 250: 1347-1351 (IGR: 14-3)


50694 Comparison of visual field severity classification systems for glaucoma
Ng M; Sample PA; Pascual JP; Zangwill LM; Girkin CA; Liebmann JM; Weinreb RN; Racette L
Journal of Glaucoma 2012; 21: 551-561 (IGR: 14-3)


51099 The relationship between variability and sensitivity in large-scale longitudinal visual field data
Russell RA; Crabb DP; Malik R; Garway-Heath DF
Investigative Ophthalmology and Visual Science 2012; 53: 5985-5990 (IGR: 14-3)


51220 Structure-Function Relationship Between the Octopus Perimeter Cluster Mean Sensitivity and Sector Retinal Nerve Fiber Layer Thickness Measured With the RTVue Optical Coherence Tomography and Scanning Laser Polarimetry
Naghizadeh F; Garas A; Vargha P; Holló G
Journal of Glaucoma 2014; 23: 11-18 (IGR: 14-3)


51064 Comparison of the monocular Humphrey visual field and the binocular Humphrey esterman visual field test for driver licensing in glaucoma subjects in Sweden
Ayala M
BMC Ophthalmology 2012; 12: 35 (IGR: 14-3)


51057 Persistence, spatial distribution and implications for progression detection of blind parts of the visual field in glaucoma: a clinical cohort study
Junoy Montolio FG; Wesselink C; Jansonius NM
PLoS ONE 2012; 7: e41211 (IGR: 14-3)


51246 Distribution of damage to the entire retinal ganglion cell pathway: quantified using spectral-domain optical coherence tomography analysis in patients with glaucoma
Lee K; Kwon YH; Garvin MK; Niemeijer M; Sonka M; Abràmoff MD
Archives of Ophthalmology 2012; 130: 1118-1126 (IGR: 14-3)


50957 Progression of patterns (POP): a machine classifier algorithm to identify glaucoma progression in visual fields
Goldbaum MH; Lee I; Jang G; Balasubramanian M; Sample PA; Weinreb RN; Liebmann JM; Girkin CA; Anderson DR; Zangwill LM; Fredette MJ; Jung TP; Medeiros FA; Bowd C
Investigative Ophthalmology and Visual Science 2012; 53: 6557-6567 (IGR: 14-3)


50887 Structure-function relationship of the macular visual field sensitivity and the ganglion cell complex thickness in glaucoma
Na JH; Kook MS; Lee Y; Baek S
Investigative Ophthalmology and Visual Science 2012; 53: 5044-5051 (IGR: 14-3)


50941 Visual field progression in glaucoma: Cluster analysis
Bresson-Dumont H; Hatton J; Foucher J; Fonteneau M
Journal Français d'Ophtalmologie 2012; 35: 735-741 (IGR: 14-3)


51215 Factors that influence standard automated perimetry test results in glaucoma: test reliability, technician experience, time of day, and season
Junoy Montolio FG; Wesselink C; Gordijn M; Jansonius NM
Investigative Ophthalmology and Visual Science 2012; 53: 7010-7017 (IGR: 14-3)


50926 Validation of point-wise exponential regression to measure the decay rates of glaucomatous visual fields
Azarbod P; Mock D; Bitrian E; Afifi AA; Yu F; Nouri-Mahdavi K; Coleman AL; Caprioli J
Investigative Ophthalmology and Visual Science 2012; 53: 5403-5409 (IGR: 14-3)


50973 Practical landmarks for visual field disability in glaucoma
Saunders LJ; Russell RA; Crabb DP
British Journal of Ophthalmology 2012; 96: 1185-1189 (IGR: 14-3)


50899 Characteristics of optic disc morphology in glaucoma patients with parafoveal scotoma compared to peripheral scotoma
Jung KI; Park HY; Park CK
Investigative Ophthalmology and Visual Science 2012; 53: 4813-4820 (IGR: 14-3)


51039 Estimating the rate of retinal ganglion cell loss in glaucoma
Medeiros FA; Zangwill LM; Anderson DR; Liebmann JM; Girkin CA; Harwerth RS; Fredette MJ; Weinreb RN
American Journal of Ophthalmology 2012; 154: 814-824.e1 (IGR: 14-3)


51049 Comparison of Event-Based Methods Using Optical Coherence Tomography and Automated Perimetry to Detect the Progression of Glaucoma in Patients with Open-Angle Glaucoma
Lee M; Yang H; Kim J; Ahn J
Ophthalmologica 2013; 229: 106-112 (IGR: 14-3)


51118 The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change
Medeiros FA; Zangwill LM; Bowd C; Mansouri K; Weinreb RN
Investigative Ophthalmology and Visual Science 2012; 53: 6939-6946 (IGR: 14-3)


51347 Retinal Nerve Fiber Layer Atrophy Is Associated With Visual Field Loss Over Time in Glaucoma Suspect and Glaucomatous Eyes
Sehi M; Zhang X; Greenfield DS; Chung Y; Wollstein G; Francis BA; Schuman JS; Varma R; Huang D;
American Journal of Ophthalmology 2013; 155: 73-82.e1 (IGR: 14-3)


51362 Glaucoma progression detection: agreement, sensitivity, and specificity of expert visual field evaluation, event analysis, and trend analysis
Antón A; Pazos M; Martín B; Navero JM; Ayala ME; Castany M; Martínez P; Bardavío J
European Journal of Ophthalmology 2012; 0: 0 (IGR: 14-3)


51216 Visual field progression in glaucoma: estimating the overall significance of deterioration with permutation analyses of pointwise linear regression (PoPLR)
O'Leary N; Chauhan BC; Artes PH
Investigative Ophthalmology and Visual Science 2012; 53: 6776-6784 (IGR: 14-3)


51233 Comparison of the progression rates of the superior, inferior, and both hemifield defects in normal-tension glaucoma patients
Cho HK; Kee C
American Journal of Ophthalmology 2012; 154: 958-968.e1 (IGR: 14-3)


51027 Risk factors for visual field progression in the low-pressure glaucoma treatment study
De Moraes CG; Liebmann JM; Greenfield DS; Gardiner SK; Ritch R; Krupin T;
American Journal of Ophthalmology 2012; 154: 702-711 (IGR: 14-3)


50802 Comparison of optic nerve head topography and retinal nerve fiber layer in eyes with narrow angles versus eyes from a normal open angle cohort - a pilot study
Chen YC; Huang G; Kasuga T; Porco T; Hung PT; Lee R; Lin SC
Current Eye Research 2012; 37: 592-598 (IGR: 14-3)


50997 Diagnostic ability of retinal nerve fiber layer thickness measurements and neurologic hemifield test to detect chiasmal compression
Moon CH; Lee SH; Kim BT; Hwang SC; Ohn YH; Park TK
Investigative Ophthalmology and Visual Science 2012; 53: 5410-5415 (IGR: 14-3)


51286 The United Kingdom Glaucoma Treatment Study: A Multicenter, Randomized, Placebo-Controlled Clinical Trial: Design and Methodology
Garway-Heath DF; Lascaratos G; Bunce C; Crabb D; Russell R; Shah A;
Ophthalmology 2013; 120: 68-76 (IGR: 14-3)


50448 Visual Field Staging Systems in Glaucoma and the Activities of Daily Living
Kulkarni KM; Mayer JR; Lorenzana LL; Myers JS; Spaeth GL
American Journal of Ophthalmology 2012; 154: 445-451.e3 (IGR: 14-2)


50192 Fear of falling and visual field loss from glaucoma
Ramulu PY; van Landingham SW; Massof RW; Chan ES; Ferrucci L; Friedman DS
Ophthalmology 2012; 119: 1352-1358 (IGR: 14-2)


50381 Comparison of clinicians and an artificial neural network regarding accuracy and certainty in performance of visual field assessment for the diagnosis of glaucoma
Andersson S; Heijl A; Bizios D; Bengtsson B
Acta Ophthalmologica 2013; 91: 413-417 (IGR: 14-2)


50269 The effect of test variability on the structure-function relationship in early glaucoma
Gardiner SK; Johnson CA; Demirel S
Graefe's Archive for Clinical and Experimental Ophthalmology 2012; 250: 1851-1861 (IGR: 14-2)


50466 Characterization and comparison of the 10-2 SITA-standard and fast algorithms
Barkana Y; Bakshi E; Goldich Y; Morad Y; Kaplan A; Avni I; Zadok D
TheScientificWorldJournal 2012; 2012: 821802 (IGR: 14-2)


50650 A combined index of structure and function for staging glaucomatous damage
Medeiros FA; Lisboa R; Weinreb RN; Girkin CA; Liebmann JM; Zangwill LM
Archives of Ophthalmology 2012; 130: E1-10 (IGR: 14-2)


50629 Understanding disparities among diagnostic technologies in glaucoma
De Moraes CG; Liebmann JM; Ritch R; Hood DC
Archives of Ophthalmology 2012; 130: 833-840 (IGR: 14-2)


50657 Ganglion cell complex scan in the early prediction of glaucoma
Ganekal S
Nepalese journal of ophthalmology : a biannual peer-reviewed academic journal of the Nepal Ophthalmic Society : NEPJOPH 2012; 4: 236-241 (IGR: 14-2)


50587 Comparison Between MP-1 and Humphrey Visual Field Defects in Glaucoma and Retinitis Pigmentosa
Acton JH; Smith RT; Greenberg JP; Greenstein VC
Optometry and Vision Science 2012; 89: 1050-1058 (IGR: 14-2)


50382 Predictive value of confocal scanning laser for the onset of visual field loss in glaucoma suspects
Larrosa JM; Polo V; Ferreras A; Gil L; Fuertes I; Pablo LE
Ophthalmology 2012; 119: 1558-1562 (IGR: 14-2)


50628 Longitudinal structure-function relationships with scanning laser ophthalmoscopy and standard achromatic perimetry
Nassiri N; Nilforushan N; Coleman AL; Law SK; Caprioli J; Nouri-Mahdavi K
Archives of Ophthalmology 2012; 130: 826-832 (IGR: 14-2)


50600 Evaluation of the significance of some diagnostic parameters in making an early diagnose of primary open-angle glaucoma
Polaczek-Krupa B; Grabska-Liberek I
Medical Science Monitor 2012; 18: CR456-460 (IGR: 14-2)


50204 Localized Glaucomatous Change Detection within the Proper Orthogonal Decomposition Framework
Balasubramanian M; Kriegman DJ; Bowd C; Holst M; Weinreb RN; Sample PA; Zangwill LM
Investigative Ophthalmology and Visual Science 2012; 53: 3615-3628 (IGR: 14-2)


50540 Retinal ganglion cell and inner plexiform layer thickness measurements in regions of severe visual field sensitivity loss in patients with glaucoma
de A Moura AL; Raza AS; Lazow MA; De Moraes CG; Hood DC
Eye 2012; 26: 1188-1193 (IGR: 14-2)


50405 Relationship Between Intraocular Pressure and Rate of Visual Field Progression in Treated Glaucoma
Rao HL; Addepalli UK; Jonnadula GB; Kumbar T; Senthil S; Garudadri CS
Journal of Glaucoma 2013; 22: 719-724 (IGR: 14-2)


50265 The Impact of Surgical Intraocular Pressure Reduction on Visual Function Using Various Criteria to Define Visual Field Progression
Bhardwaj N; Niles PI; Greenfield DS; Hymowitz M; Sehi M; Feuer WJ; Budenz DL
Journal of Glaucoma 2013; 22: 632-637 (IGR: 14-2)


50316 Relationship between central corneal thickness and progression of visual field loss in patients with open-angle glaucoma
Cao KY; Kapasi M; Betchkal JA; Birt CM
Canadian Journal of Ophthalmology 2012; 47: 155-158 (IGR: 14-2)


50287 The Development of a Decision Analytic Model of Changes in Mean Deviation in People with Glaucoma: The COA Model
Kymes SM; Lambert DL; Lee PP; Musch DC; Siegfried CJ; Kotak SV; Stwalley DL; Fain J; Johnson C; Gordon MO
Ophthalmology 2012; 119: 1367-1374 (IGR: 14-2)


49941 Clinical characterization of young chinese myopes with optic nerve and visual field changes resembling glaucoma
Kumar RS; Baskaran M; Singh K; Aung T
Journal of Glaucoma 2012; 21: 281-286 (IGR: 14-2)


50546 Visual Field Characteristics in Normal-Tension Glaucoma Patients with Autonomic Dysfunction and Abnormal Peripheral Microcirculation
Park HY; Jung KI; Na KS; Park SH; Park CK
American Journal of Ophthalmology 2012; 154: 466-475.e1 (IGR: 14-2)


50302 Risk factors for progression of normal-tension glaucoma under β-blocker monotherapy
Araie M; Shirato S; Yamazaki Y; Matsumoto C; Kitazawa Y; Ohashi Y;
Acta Ophthalmologica 2012; 90: e337-e343 (IGR: 14-2)


48847 Variability in isopter position and fatigue during semi-automated kinetic perimetry
Nowomiejska K; Brzozowska A; Zarnowski T; Rejdak R; Weleber RG; Schiefer U
Ophthalmologica 2012; 227: 166-172 (IGR: 14-1)


49348 Functional diagnostic options for advanced and end stage glaucoma
Scheuerle AF; Schiefer U; Rohrschneider K
Ophthalmologe 2012; 109: 337-344 (IGR: 14-1)


49347 Conventional perimetry : Antiquated or indispensable for functional glaucoma diagnostics?
Tonagel F; Voykov B; Schiefer U
Ophthalmologe 2012; 109: 325-336 (IGR: 14-1)


48773 The rate of visual field change in the ocular hypertension treatment study
Demirel S; De Moraes CG; Gardiner SK; Liebmann JM; Cioffi GA; Ritch R; Gordon MO; Kass MA;
Investigative Ophthalmology and Visual Science 2012; 53: 224-227 (IGR: 14-1)


48738 Glaucoma Progression Analysis software compared with expert consensus opinion in the detection of visual field progression in glaucoma
Tanna AP; Budenz DL; Bandi J; Feuer WJ; Feldman RM; Herndon LW; Rhee DJ; Whiteside-De Vos J; Huang J; Anderson DR
Ophthalmology 2012; 119: 468-473 (IGR: 14-1)


48863 Trends in use of ancillary glaucoma tests for patients with open-angle glaucoma from 2001 to 2009
Stein JD; Talwar N; Laverne AM; Nan B; Lichter PR
Ophthalmology 2012; 119: 748-758 (IGR: 14-1)


48430 The influence of the assessment method on the incidence of visual field progression in glaucoma: a network meta-analysis
Ernest PJ; Viechtbauer W; Schouten JS; Beckers HJ; Hendrikse F; Prins MH; Webers CA
Acta Ophthalmologica 2012; 90: 10-19 (IGR: 14-1)


48936 Integrating event- and trend-based analyses to improve detection of glaucomatous visual field progression
Medeiros FA; Weinreb RN; Moore G; Liebmann JM; Girkin CA; Zangwill LM
Ophthalmology 2012; 119: 458-467 (IGR: 14-1)


49151 Comparison of moderate and advanced glaucoma patients in Ghana
Francis AW; Gyasi ME; Deng L; Gong H
Clinical Ophthalmology 2012; 6: 297-304 (IGR: 14-1)


49031 Associating the magnitude of relative afferent pupillary defect (RAPD) with visual field indices in glaucoma patients
Schiefer U; Dietzsch J; Dietz K; Wilhelm B; Bruckmann A; Wilhelm H; Kitiratschky V; Januschowski K
British Journal of Ophthalmology 2012; 96: 629-633 (IGR: 14-1)


49262 Structure-Function Relationships between Spectral-Domain OCT and Standard Achromatic Perimetry
Nilforushan N; Nassiri N; Moghimi S; Law SK; Giaconi J; Coleman A; Caprioli J; Nouri-Mahdavi K
Investigative Ophthalmology and Visual Science 2012; 53: 2740-2748 (IGR: 14-1)


48708 Objective perimetry using a four-channel multifocal VEP system: correlation with conventional perimetry and thickness of the retinal nerve fibre layer
Horn FK; Kaltwasser C; Jü,nemann AG; Kremers J; Tornow RP
British Journal of Ophthalmology 2012; 96: 554-559 (IGR: 14-1)


48569 Cup size predicts subsequent functional change in early glaucoma
Gardiner SK; Johnson CA; Demirel S
Optometry and Vision Science 2011; 88: 1470-1476 (IGR: 14-1)


48492 Detection of progressive retinal nerve fiber layer thickness loss with optical coherence tomography using 4 criteria for functional progression
Grewal DS; Sehi M; Paauw JD; Greenfield DS
Journal of Glaucoma 2012; 21: 214-220 (IGR: 14-1)


48852 Significant correlations between optic nerve head microcirculation and visual field defects and nerve fiber layer loss in glaucoma patients with myopic glaucomatous disk
Yokoyama Y; Aizawa N; Chiba N; Omodaka K; Nakamura M; Otomo T; Yokokura S; Fuse N; Nakazawa T
Clinical Ophthalmology 2011; 5: 1721-1727 (IGR: 14-1)


49261 Relationship among visual field, blood flow, and neural structure measurements in glaucoma
Hwang JC; Konduru R; Zhang X; Tan O; Francis BA; Varma R; Sehi M; Greenfield DS; Sadda SR; Huang D
Investigative Ophthalmology and Visual Science 2012; 53: 3020-3026 (IGR: 14-1)


48946 Subfoveal choroidal blood flow and central retinal function in early glaucoma
Marangoni D; Falsini B; Colotto A; Salgarello T; Anselmi G; Fadda A; Di Renzo A; Campos EC; Riva CE
Acta Ophthalmologica 2012; 90: e288-e294 (IGR: 14-1)


49288 Improved Estimates of Visual Field Progression Using Bayesian Linear Regression to Integrate Structural Information in Patients with Ocular Hypertension
Russell RA; Malik R; Chauhan BC; Crabb DP; Garway-Heath DF
Investigative Ophthalmology and Visual Science 2012; 53: 2760-2769 (IGR: 14-1)


49231 Predicting glaucomatous progression in glaucoma suspect eyes using relevance vector machine classifiers for combined structural and functional measurements
Bowd C; Lee I; Goldbaum MH; Balasubramanian M; Medeiros FA; Zangwill LM; Girkin CA; Liebmann JM; Weinreb RN
Investigative Ophthalmology and Visual Science 2012; 53: 2382-2389 (IGR: 14-1)


49240 Rates of visual field progression in distinct optic disc phenotypes
Schor KS; De Moraes CG; Teng CC; Tello C; Liebmann JM; Ritch R
Clinical and Experimental Ophthalmology 2012; 40: 706-712 (IGR: 14-1)


49230 Pointwise Rates of Visual Field Progression Cluster according to Retinal Nerve Fiber Layer Bundles
Nouri-Mahdavi K; Mock D; Hosseini H; Bitrian E; Yu F; Afifi A; Coleman AL; Caprioli J
Investigative Ophthalmology and Visual Science 2012; 53: 2390-2394 (IGR: 14-1)


49013 Combining Structural and Functional Measurements to Improve Estimates of Rates of Glaucomatous Progression
Medeiros FA; Zangwill LM; Girkin CA; Liebmann JM; Weinreb RN
American Journal of Ophthalmology 2012; 153: 1197-1205 (IGR: 14-1)


48846 Progression detection in different stages of glaucoma: mean deviation versus visual field index
Cho JW; Sung KR; Yun SC; Na JH; Lee Y; Kook MS
Japanese Journal of Ophthalmology 2012; 56: 128-133 (IGR: 14-1)


49166 Effect of Treatment on the Rate of Visual Field Change in the Ocular Hypertension Treatment Study Observation Group
De Moraes CG; Demirel S; Gardiner SK; Liebmann JM; Cioffi GA; Ritch R; Gordon MO; Kass MA;
Investigative Ophthalmology and Visual Science 2012; 53: 1704-1709 (IGR: 14-1)


49315 Visual field loss morphology in high- and normal-tension glaucoma
Iester M; De Feo F; Douglas GR
Journal of Ophthalmology 2012; 2012: 327326 (IGR: 14-1)


48938 Circadian (24-hour) pattern of intraocular pressure and visual field damage in eyes with normal-tension glaucoma
Lee YR; Kook MS; Joe SG; Na JH; Han S; Kim S; Shin CJ
Investigative Ophthalmology and Visual Science 2012; 53: 881-887 (IGR: 14-1)


49010 Progression of Visual Field Defects in Eyes With Different Optic Disc Appearances in Patients With Normal Tension Glaucoma
Nakazawa T; Shimura M; Ryu M; Himori N; Nitta F; Omodaka K; Doi H; Yasui T; Fuse N; Nishida K
Journal of Glaucoma 2012; 21: 426-430 (IGR: 14-1)


48993 Relationship between progression of visual field damage and choroidal thickness in eyes with normal-tension glaucoma
Hirooka K; Fujiwara A; Shiragami C; Baba T; Shiraga F
Clinical and Experimental Ophthalmology 2012; 40: 576-582 (IGR: 14-1)


48779 Use of microperimetry to compare macular light sensitivity in eyes with open-angle and angle-closure glaucoma
Huang P; Shi Y; Wang X; Zhang SS; Zhang C
Japanese Journal of Ophthalmology 2012; 56: 138-144 (IGR: 14-1)


49130 Two-Year Randomized, Placebo-Controlled Study of Black Currant Anthocyanins on Visual Field in Glaucoma
Ohguro H; Ohguro I; Katai M; Tanaka S
Ophthalmologica 2012; 228: 26-35 (IGR: 14-1)


48255 The Region of Largest ?-Zone Parapapillary Atrophy Area Predicts the Location of Most Rapid Visual Field Progression
Teng CC; De Moraes CG; Prata TS; Liebmann CA; Tello C; Ritch R; Liebmann JM
Ophthalmology 2011; 118: 2409-2413 (IGR: 13-4)


47505 Association Between Corneal Biomechanical Properties and Glaucoma Severity
Mansouri K; Leite MT; Weinreb RN; Tafreshi A; Zangwill LM; Medeiros FA
American Journal of Ophthalmology 2011; (IGR: 13-4)


47674 Differences of optic disc appearance between normal tension and high tension glaucoma patients
Stojcic M; Hentova-Sencic P; Stojcic B
Srpski Arhiv Celokupno Lekarstvo 2011; 139: 428-432 (IGR: 13-4)


48142 Relationships between Visual Field Sensitivity and Spectral Absorption Properties of the Neuroretinal Rim in Glaucoma by Multispectral Imaging
Denniss J; Schiessl I; Nourrit V; Fenerty CH; Gautam R; Henson DB
Investigative Ophthalmology and Visual Science 2011; 52: 8732-8738 (IGR: 13-4)


47541 Agreement to detect glaucomatous visual field progression by using three different methods: A multicentre study
Iester M; Capris E; De Feo F; Polvicino M; Brusini P; Capris P; Corallo G; Figus M; Fogagnolo P; Frezzotti P
British Journal of Ophthalmology 2011; 95: 1276-1283 (IGR: 13-4)


47978 Patients have two eyes!: binocular versus better eye visual field indices
Asaoka R; Crabb DP; Yamashita T; Russell RA; Wang YX; Garway-Heath DF
Investigative ophthalmology & visual science 2011; 52: 7007-7011 (IGR: 13-4)


47786 Effect of cataract extraction on visual field index in glaucoma
Rao HL; Jonnadula GB; Addepalli UK; Senthil S; Garudadri CS
Journal of Glaucoma 2011; (IGR: 13-4)


48060 Retinal Ganglion Cell Layer Thickness and Local Visual Field Sensitivity in Glaucoma
Raza AS; Cho J; De Moraes CGV; Wang M; Zhang X; Kardon RH; Liebmann JM; Ritch R; Hood DC
Archives of Ophthalmology 2011; 129: 1529-1536 (IGR: 13-4)


47908 Examination of the performance of different pointwise linear regression progression criteria to detect glaucomatous visual field change
De Moraes CG; Liebmann CA; Susanna Jr R; Ritch R; Liebmann JM
Clinical and Experimental Ophthalmology 2011; (IGR: 13-4)


48106 Evaluation of an algorithm for detecting visual field defects due to chiasmal and postchiasmal lesions: the neurological hemifield test
Boland MV; McCoy AN; Quigley HA; Miller NR; Subramanian PS; Ramulu PY; Murakami P; Danesh-Meyer HV
Investigative Ophthalmology and Visual Science 2011; 52: 7959-7965 (IGR: 13-4)


47962 Blink frequency and duration during perimetry and their relationship to test-retest threshold variability
Wang Y; Toor SS; Gautam R; Henson DB
Investigative ophthalmology & visual science 2011; 52: 4546-4550 (IGR: 13-4)


47593 Correlation between visual field index values and mean deviation values of Humphrey field analyzer
Kimura S; Kimura T; Ono K; Murakami A
Nippon Ganka Gakkai Zasshi 2011; 115: 686-692 (IGR: 13-4)


47765 African descent and glaucoma evaluation study: Asymmetry of structural measures in normal participants
Moore GH; Bowd C; Medeiros FA; Sample PA; Liebmann JM; Girkin CA; Leite MT; Weinreb RN; Zangwill LM
Journal of Glaucoma 2011; (IGR: 13-4)


48064 Comparison of different methods of inter-eye asymmetry of rim area and disc area analysis
Fansi AA; Boisjoly H; Chagnon M; Harasymowycz PJ
Eye 2011; 25: 1590-1597 (IGR: 13-4)


47675 Correlation between quantitative nerve fiber layer thickness and mean defect of visual field in primary open angle glaucoma
Chen JH; Xu L; Zhang RX
Zhonghua Yi Xue Za Zhi 2011; 91: 451-454 (IGR: 13-4)


47794 Structure-function relationships using the cirrus spectral domain optical coherence tomograph and standard automated perimetry
Leite MT; Zangwill LM; Weinreb RN; Rao HL; Alencar LM; Medeiros FA
Journal of Glaucoma 2011; (IGR: 13-4)


47804 Correlation between macular thickness and glaucomatous visual fields
Boling W; WuDunn D; Cantor LB; Hoop J; James M; Nukala V
Journal of Glaucoma 2011; (IGR: 13-4)


47874 Association between optic nerve blood flow and objective examinations in glaucoma patients with generalized enlargement disc type
Chiba N; Omodaka K; Yokoyama Y; Aizawa N; Tsuda S; Yasuda M; Otomo T; Yokokura S; Fuse N; Nakazawa T
Clinical Ophthalmology 2011; 5: 1549-1556 (IGR: 13-4)


47629 Rates of Change in the Visual Field and Optic Disc in Patients with Distinct Patterns of Glaucomatous Optic Disc Damage
Reis ASC; Artes PH; Belliveau AC; Leblanc RP; Shuba LM; Chauhan BC; Nicolela MT
Ophthalmology 2011; (IGR: 13-4)


47699 Longitudinal relationship between retinal nerve fiber layer thickness parameters assessed by scanning laser polarimetry (GDxVCC) and visual field in glaucoma
Makabe K; Takei K; Oshika T
Graefe's Archive for Clinical and Experimental Ophthalmology 2011; (IGR: 13-4)


47971 A method to measure and predict rates of regional visual field decay in glaucoma
Caprioli J; Mock D; Bitrian E; Afifi AA; Yu F; Nouri-Mahdavi K; Coleman AL
Investigative ophthalmology & visual science 2011; 52: 4765-4773 (IGR: 13-4)


47838 Visual field evolution in glaucoma patients presenting with different disease stages: Results from an observational study
Gerlier L; Shlaen R; Wolfram C; Lamotte M; Verboven Y
Value in Health 2011; 14: A502-A503 (IGR: 13-4)


47625 Reliability of Simultaneous Visual Field Testing
Kramer BC; Musch DC; Niziol LM; Weizer JS
Ophthalmology 2011; (IGR: 13-4)


46398 The impact of change in visual field on health-related quality of life the los angeles latino eye study
Patino CM; Varma R; Azen SP; Conti DV; Nichol MB; McKean-Cowdin R
Ophthalmology 2011; 118: 1310-1317 (IGR: 13-3)


46800 Lower corneal hysteresis is associated with more rapid glaucomatous visual field progression
de Moraes CVG; Hill V; Tello C; Liebmann JM; Ritch R
Journal of Glaucoma 2011; (IGR: 13-3)


46808 Elevation of intraocular pressure in glaucoma patients after automated visual field testing
Ni N; Tsai JC; Shields MB; Loewen NA
Journal of Glaucoma 2011; (IGR: 13-3)


46949 Correlation between humphrey visual field, optical coherence tomography and heidelberg retina tomograph parameters in primary open-angle glaucoma, normal-tension glaucoma and ocular hypertension
Ayhan Z; Arikan G; Gunenc U; Cingil G
Turk Oftalmoloiji Dergisi 2011; 41: 143-150 (IGR: 13-3)


47084 The evidence base to select a method for assessing glaucomatous visual field progression
Ernest PJG; Schouten JSAG; Beckers HJM; Hendrikse F; Prins MH; Webers CAB
Acta Ophthalmologica 2011; (IGR: 13-3)


47003 Inferior visual field reductions are associated with poorer functional status among older adults with glaucoma
Black AA; Wood JM; Lovie-Kitchin JE
Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians 2011; 31: 283-291 (IGR: 13-3)


46345 Relationship between standard automated perimetry and retinal nerve fiber layer parameters obtained with optical coherence tomography
Lopez-Peña MJ; Ferreras A; Larrosa JM; Polo V; Pablo LE
Journal of Glaucoma 2011; 20: 422-432 (IGR: 13-3)


46932 Modern assessment of perimetric progression in glaucoma
Feraru CI; Pantalon A
Oftalmologia 2010; 54: 97-102 (IGR: 13-3)


46733 Detection of visual field progression in glaucoma with standard achromatic perimetry: A review and practical implications
Nouri-Mahdavi K; Nassiri N; Giangiacomo A; Caprioli J
Graefe's Archive for Clinical and Experimental Ophthalmology 2011; (IGR: 13-3)


46558 Anderson criteria in early glaucomatous visual field defects with the SITA Standard
Suzumura H; Yoshikawa K; Kimura T; Yamazaki S
Nippon Ganka Gakkai Zasshi 2011; 115: 435-439 (IGR: 13-3)


46323 Influence of Visual Field Testing Frequency on Detection of Glaucoma Progression With Trend Analyses
Nouri-Mahdavi K; Zarei R; Caprioli J
Archives of Ophthalmology 2011; (IGR: 13-3)


46342 Initial parafoveal versus peripheral scotomas in glaucoma: risk factors and visual field characteristics
Park SC; De Moraes CG; Teng CC; Tello C; Liebmann JM; Ritch R
Ophthalmology 2011; 118: 1782-1789 (IGR: 13-3)


46597 Assessment of linear-scale indices for perimetry in terms of progression in early glaucoma
Gardiner SK; Demirel S; Johnson CA; Swanson WH
Vision Research 2011; 51: 1801-1810 (IGR: 13-3)


46947 Comparison of visual field results of humphrey matrix perimetry and standard automated perimetry with SITA strategy in glaucoma and ocular hypertension subjects
Yilmaz PT; Bozkurt B; Irkec M
Turk Oftalmoloiji Dergisi 2011; 41: 98-103 (IGR: 13-3)


46768 Central 10-degree visual field change following trabeculectomy in advanced open-angle glaucoma
Fujishiro T; Mayama C; Aihara M; Tomidokoro A; Araie M
Eye 2011; 25: 866-871 (IGR: 13-3)


46440 Automated perimetry: using gaze-direction data to improve the estimate of scotoma edges
Wyatt HJ
Investigative Ophthalmology and Visual Science 2011; 52: 5818-5823 (IGR: 13-3)


46644 The Region of Largest (beta)-Zone Parapapillary Atrophy Area Predicts the Location of Most Rapid Visual Field Progression
Teng CC; De Moraes CG; Prata TS; Liebmann CA; Tello C; Ritch R; Liebmann JM
Ophthalmology 2011; (IGR: 13-3)


46368 Peripheral visual field thresholds using Humphrey Field Analyzer program 60-4 in normal eyes
Berezina TL; Khouri AS; Kolomeyer AM; Clancy PS; Fechtner RD
European Journal of Ophthalmology 2011; 21: 415-421 (IGR: 13-3)


46892 Agreement in detecting glaucomatous visual field progression by using guided progression analysis and Humphrey overview printout
Iester M; Corallo G; Capris E; Capris P
European Journal of Ophthalmology 2011; 21: 573-579 (IGR: 13-3)


46731 Comparison of measurement error of Cirrus HD-OCT and Heidelberg Retina Tomograph 3 in patients with early glaucomatous visual field defect
Shpak AA; Sevostyanova MK; Ogorodnikova SN; Shormaz IN
Graefe's Archive for Clinical and Experimental Ophthalmology 2011; (IGR: 13-3)


46798 Comparison of retinal nerve fiber layer thickness measurements using time domain and spectral domain optical coherence tomography, and visual field sensitivity
Takagishi M; Hirooka K; Baba T; Mizote M; Shiraga F
Journal of Glaucoma 2011; 20: 383-387 (IGR: 13-3)


46476 Structure-function relationship in glaucoma using spectral-domain optical coherence tomography
Rao HL; Zangwill LM; Weinreb RN; Leite MT; Sample PA; Medeiros FA
Archives of Ophthalmology 2011; 129: 864-871 (IGR: 13-3)


46933 Increased ocular perfusion--visual field preservation
Stefan C; Cojocaru I; Pop A
Oftalmologia 2011; 55: 34-37 (IGR: 13-3)


46825 Risk factors for visual field progression in the groningen longitudinal glaucoma study: A comparison of different statistical approaches
Wesselink C; Marcus MW; Jansonius NM
Journal of Glaucoma 2011; (IGR: 13-3)


46389 Combining Structural and Functional Measurements to Improve Detection of Glaucoma Progression using Bayesian Hierarchical Models
Medeiros FA; Leite MT; Zangwill LM; Weinreb RN
Investigative Ophthalmology and Visual Science 2011; 52: 5794-5803 (IGR: 13-3)


46822 Detection of progressive retinal nerve fiber layer thicknessloss with optical coherence tomography using4 criteria for functional progression
Grewal DS; Sehi M; Paauw JD; Greenfield DS
Journal of Glaucoma 2011; (IGR: 13-3)


46630 Evaluation of retinal nerve fiber layer progression in glaucoma: A prospective analysis with neuroretinal rim and visual field progression
Leung CKS; Liu S; Weinreb RN; Lai G; Ye C; Cheung CYL; Pang CP; Tse KK; Lam DSC
Ophthalmology 2011; 118: 1551-1557 (IGR: 13-3)


46490 Humphrey visual fields and optical coherence tomography findings in patients with the Axenfeld-Rieger syndrome: a case series
Santiago-Caban LA; Colon-Casasnovas JE; Izquierdo NJ
Boletin de la Asociacion Medica de Puerto Rico 2010; 102: 9-14 (IGR: 13-3)


46559 Investigation of the correlation between the right-left differences of visual field defects and the right-left differences of ocular anatomical factors in patients with normal-tension glaucoma
Hayamizu F; Yamazaki Y; Nakagami T
Nippon Ganka Gakkai Zasshi 2011; 115: 362-367 (IGR: 13-3)


46642 The Relationship between Glaucoma Medication Adherence, Eye Drop Technique, and Visual Field Defect Severity
Sleath B; Blalock S; Covert D; Stone JL; Skinner AC; Muir K; Robin AL
Ophthalmology 2011; (IGR: 13-3)


46769 Short-term changes in the optic nerve head and visual field after trabeculectomy
Figus M; Lazzeri S; Nardi M; Bartolomei MP; Ferreras A; Fogagnolo P
Eye 2011; 25: 1057-1063 (IGR: 13-3)


46882 Glaucoma disease progression states: Establishing a direct, quantitative link between visual field defects and utility loss
Gerlier L; Lamotte M; Verboven Y
Value in Health 2010; 13: 248 (IGR: 13-3)


45473 Perimetry, tonometry and epidemiology: the fate of glaucoma management
Heijl A
Acta Ophthalmologica 2011; 89: 309-315 (IGR: 13-2)


45841 Evaluation of a glaucoma patient
Thomas R; Loibl K; Parikh R
Indian Journal of Ophthalmology 2011; 59: 43-52 (IGR: 13-2)


45825 The role of standard automated perimetry and newer functional methods for glaucoma diagnosis and follow-up
Alencar L; Medeiros F
Indian Journal of Ophthalmology 2011; 59: 53-58 (IGR: 13-2)


45450 Properties of the statpac visual field index
Artes PH; O'Leary N; Hutchison DM; Heckler L; Sharpe GP; Nicolela MT; Chauhan BC
Investigative Ophthalmology and Visual Science 2011; 52: 4030-4038 (IGR: 13-2)


45539 The effect of induced intraocular straylight on perimetric tests
Bergin C; Redmond T; Nathwani N; Verdon-Roe GM; Crabb DP; Anderson RS; Garway-Heath DF
Investigative Ophthalmology and Visual Science 2011; 52: 3676-3682 (IGR: 13-2)


46164 Evaluation of a combined index of optic nerve structure and function for glaucoma diagnosis
Boland MV; Quigley HA
BMC Ophthalmology 2011; 11: 6 (IGR: 13-2)


46204 Modeling the patterns of visual field loss in glaucoma
Carreras FJ; Rica R; Delgado AV
Optometry and Vision Science 2011; 88: 63-79 (IGR: 13-2)


45912 Baseline mean deviation and rates of visual field change in treated glaucoma patients
Forchheimer I; De Moraes CG; Teng CC; Folgar F; Tello C; Ritch R; Liebmann JM
Eye 2011; 25: 626-632 (IGR: 13-2)


46191 Perimetric indices as predictors of future glaucomatous functional change
Gardiner SK; Demirel S; Johnson CA
Optometry and Vision Science 2011; 88: 56-62 (IGR: 13-2)


45760 Assessment of visual function in glaucoma: A report by the American academy of ophthalmology
Jampel HD; Singh K; Lin SC; Chen TC; Francis BA; Hodapp E; Samples JR; Smith SD
Ophthalmology 2011; 118: 986-1002 (IGR: 13-2)


45885 Perimetric severity in hospital-based and population-based glaucoma patients
Ramesh SV; George R; Raju P; Sachi D; Sunil GT; Vijaya L
Clinical and Experimental Optometry 2010; 93: 349-353 (IGR: 13-2)


46196 Structure and function in patients with glaucomatous defects near fixation
Shafi A; Swanson WH; Dul MW
Optometry and Vision Science 2011; 88: 130-139 (IGR: 13-2)


46028 Macular retinal ganglion cell complex damage in the apparently normal visual field of glaucomatous eyes with hemifield defects
Takagi ST; Kita Y; Yagi F; Tomita G
Journal of Glaucoma 2011; (IGR: 13-2)


45457 What reduction in standard automated perimetry variability would improve the detection of visual field progression?
Turpin A; McKendrick AM
Investigative Ophthalmology and Visual Science 2011; 52: 3237-3245 (IGR: 13-2)


45981 Frequency doubling technology for earlier detection of functional damage in standard automated perimetry-normal hemifield in glaucoma with low-to-normal pressure
Nakagawa S; Murata H; Saito H; Nakahara H; Mataki N; Tomidokoro A; Iwase A; Araie M
Journal of Glaucoma 2011; (IGR: 13-2)


45552 Quantifying Discordance Between Structure and Function Measurements in the Clinical Assessment of Glaucoma
Zhu H; Crabb DP; Fredette MJ; Anderson DR; Garway-Heath DF
Archives of Ophthalmology 2011; 129: 1167-1174 (IGR: 13-2)


45878 Correlation between nerve fibre layer thickness measured with spectral domain OCT and visual field in patients with different stages of glaucoma
Cvenkel B; Sket Kontestabile A
Graefe's Archive for Clinical and Experimental Ophthalmology 2011; 249: 575-584 (IGR: 13-2)


45858 Prediction of glaucomatous optic nerve damage in ocular hypertension with optical coherence tomography
Popovic-Suic S; Cerovski B; Vidovic T; Ekert M; Petravic D
Neurologia Croatica 2010; 59: 121-126 (IGR: 13-2)


45901 The relationship between macular cell layer thickness and visual function in different stages of glaucoma
Vajaranant TS; Anderson RJ; Zelkha R; Zhang C; Wilensky JT; Edward DP; Shahidi M
Eye 2011; 25: 612-618 (IGR: 13-2)


45608 Retinal nerve fibre layer and visual function loss in glaucoma: The tipping point
Wollstein G; Kagemann L; Bilonick RA; Ishikawa H; Folio LS; Gabriele ML; Ungar AK; Duker JS; Fujimoto JG; Schuman JS
British Journal of Ophthalmology 2011; (IGR: 13-2)


45975 Perimetric progression in open angle glaucoma and the Visual Field Index (VFI)
Ang GS; Mustafa MS; Scott N; Diaz-Aleman VT; Azuara-Blanco A
Journal of Glaucoma 2011; 20: 223-227 (IGR: 13-2)


45589 Risk factors for visual field progression in treated glaucoma
De Moraes CGV; Juthani VJ; Liebmann JM; Teng CC; Tello C; Susanna Jr R; Ritch R
Archives of Ophthalmology 2011; 129: 562-568 (IGR: 13-2)


45667 Clinical evaluation of a novel population-based regression analysis for detecting glaucomatous visual field progression
Kovalska MP; Burki E; Schoetzau A; Orguel SF; Jflammer Orguel S; Grieshaber MC
Klinische Monatsblätter für Augenheilkunde 2011; 228: 311-317 (IGR: 13-2)


45765 Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma. A Prospective Analysis with Neuroretinal Rim and Visual Field Progression
Leung CKS; Liu S; Weinreb RN; Lai G; Ye C; Cheung CYL; Pang CP; Tse KK; Lam DSC
Ophthalmology 2011; (IGR: 13-2)


46031 Improved prediction of rates of visual field loss in glaucoma using empirical bayes estimates of slopes of change
Medeiros FA; Zangwill LM; Weinreb RN
Journal of Glaucoma 2011; (IGR: 13-2)


45902 Changes in retinal nerve fibre layer, optic nerve head morphology, and visual field after acute primary angle closure
Sng CCA; See JSL; Ngo CS; Singh M; Chan Y-H; Aquino MC; Tan AM; Shabana N; Chew PTK
Eye 2011; 25: 619-625 (IGR: 13-2)


45579 Patterns of Damage in Chronic Angle-Closure Glaucoma Compared to Primary Open-Angle Glaucoma
Nouri-Mahdavi K; Supawavej C; Bitrian E; Giaconi JA; Law SK; Coleman AL; Caprioli J
American Journal of Ophthalmology 2011; (IGR: 13-2)


45792 Pituitary tumour mimicking glaucoma: Two case reports
Ali H; Shibeb J
Neuro-Ophthalmology 2011; 35: 64 (IGR: 13-2)


45793 Bilateral supraclinoid aneurysms associated with progressive visual loss
Carmen Garcia M; Canovas D; Marco M; Hervas M; Estela J; Ribera G
Neuro-Ophthalmology 2011; 35: 43 (IGR: 13-2)


45791 Idiopathic acquired temporal sectoral visual field defects
Fraser C; Pellanda N; Plant GT
Neuro-Ophthalmology 2011; 35: 19 (IGR: 13-2)


46027 Clinical characterization of young Chinese myopes with optic nerve and visual field changes resembling glaucoma
Kumar RS; Baskaran M; Singh K; Aung T
Journal of Glaucoma 2011; (IGR: 13-2)


45689 Comparison of primary medicament therapy effects and primary argon laser trabeculoplasty on regulation of intraocular pressure and stability of perimetry findings in open angle glaucoma
Sreckovic S; Petrovic MJ; Petrovic N; Vukosavljevic M
Vojnosanitetski pregled. Military-medical and pharmaceutical review 2011; 68: 225-230 (IGR: 13-2)


45758 Intraocular Pressure Control and Long-term Visual Field Loss in the Collaborative Initial Glaucoma Treatment Study
Musch DC; Gillespie BW; Niziol LM; Lichter PR; Varma R
Ophthalmology 2011; 118: 1766-1773 (IGR: 13-2)


45509 Agreement of visual field interpretation among glaucoma specialists and comprehensive ophthalmologists: comparison of time and methods
Lin AP; Katz LJ; Spaeth GL; Moster MR; Henderer JD; Schmidt CM Jr; Myers JS
British Journal of Ophthalmology 2011; 95: 828-831 (IGR: 13-2)


46201 Imaging and Perimetry Society standards and guidelines
Sample PA; Dannheim F; Artes PH; Dietzsch J; Henson D; Johnson CA; Ng M; Schiefer U; Wall M; IPS Standards Group
Optometry and Vision Science 2011; 88: 4-7 (IGR: 13-2)


27751 Initial Arcuate Defects within the Central 10 Degrees in Glaucoma
Hood DC; Raza AS; De Moraes CGV; Odel JG; Greenstein VC; Liebmann JM; Ritch R
Investigative Ophthalmology and Visual Science 2011; 52: 940-946 (IGR: 13-1)


27736 The Influence of Sampling Errors on Test–Retest Variability in Perimetry
Maddess T
Investigative Ophthalmology and Visual Science 2011; 52: 1014-1022 (IGR: 13-1)


27829 Long-term perimetric fluctuation in patients with different stages of glaucoma
Fogagnolo P; Sangermani C; Oddone F; Frezzotti P; Iester M; Figus M; Ferreras A; Romano S; Gandolfi S; Centofanti M
British Journal of Ophthalmology 2011; 95: 189-193 (IGR: 13-1)


27919 Relationship between severity of visual field loss at presentation and rate of visual field progression in glaucoma
Rao HL; Kumar AU; Babu JG; Senthil S; Garudadri CS
Ophthalmology 2011; 118: 249-253 (IGR: 13-1)


28082 Comparison of matrix perimetry with octopus perimetry for assessing glaucomatous visual field defects
Lan Y-W; Hsieh J-W; Sun F-J
Journal of Glaucoma 2011; 20: 126-132 (IGR: 13-1)


27993 Relationship between standard automated perimetry and retinal nerve fiber layer parameters measured with laser polarimetry
Lopez-Pena MJ; Ferreras A; Polo V; Larrosa JM; Pablo LE; Honrubia FM
Archivos de la Sociedad Española de Oftalmologia 2010; 85: 22-31 (IGR: 13-1)


27770 Effect of Disease Severity and Optic Disc Size on Diagnostic Accuracy of RTVue Spectral Domain Optical Coherence Tomograph in Glaucoma
Rao HL; Leite MT; Weinreb RN; Zangwill LM; Alencar LM; Sample PA; Medeiros FA
Investigative Ophthalmology and Visual Science 2011; 52: 1290-1296 (IGR: 13-1)


28076 Correlating RNFL thickness by OCT with perimetric sensitivity in glaucoma patients
Wheat JL; Rangaswamy NV; Harwerth RS
Journal of Glaucoma 2011; Epub ahead of print (IGR: 13-1)


28142 Progression rate of total, and upper and lower visual field defects in open-angle glaucoma patients
Fukuchi T; Yoshino T; Sawada H; Seki M; Togano T; Tanaka T; Ueda J; Abe H
Clinical Ophthalmology 2010; 4: 1315-1323 (IGR: 13-1)


27931 Interobserver agreement and intraobserver reproducibility of the subjective determination of glaucomatous visual field progression
Tanna AP; Bandi JR; Budenz DL; Feuer WJ; Feldman RM; Herndon LW; Rhee DJ; Whiteside-De Vos J
Ophthalmology 2011; 118: 60-65 (IGR: 13-1)


27486 The role of clinical parapapillary atrophy evaluation in the diagnosis of open angle glaucoma
Ehrlich JR; Radcliffe NM
Clinical Ophthalmology 2010; 4: 971-976 (IGR: 12-4)


27571 Functional MRI signal changes in primary visual cortex corresponding to the central normal visual field of patients with primary open-angle glaucoma
Qing G; Zhang S; Wang B; Wang N
Investigative ophthalmology & visual science 2010; 51: 4627-4634 (IGR: 12-4)


27107 Agreement of visual field interpretation among glaucoma specialists and comprehensive ophthalmologists: Comparison of time and methods
Lin AP; Katz LJ; Spaeth GL; Moster MR; Henderer JD; Schmidt CM; Myers JS
British Journal of Ophthalmology 2010; (IGR: 12-4)


27206 The distribution of visual field defects per quadrant in standard automated perimetry as compared to frequency doubling technology perimetry
Zein WM; Bashshur ZF; Jaafar RF; Noureddin BN
International Ophthalmology 2010; (IGR: 12-4)


27066 The distribution of visual field defects per quadrant in standard automated perimetry as compared to frequency doubling technology perimetry.
Zein WM; Bashshur ZF; Jaafar RF; Noureddin BN
International Ophthalmology 2010; 30: 683-689 (IGR: 12-4)


27278 Characteristics of visual field defects in primary angle-closure glaucoma
Han F; Yuan Y-S
Chinese Journal of Ophthalmology 2009; 45: 14-20 (IGR: 12-4)


27310 A review of current technology used in evaluating visual function in glaucoma
Turalba AV; Grosskreutz C
Seminars in Ophthalmology 2010; 25: 309-316 (IGR: 12-4)


27499 Correlation between morphology of optic disc determined by heidelberg retina tomograph ii and visual function in eyes with open-angle glaucoma
Omodaka K; Nakazawa T; Otomo T; Nakamura M; Fuse N; Nishida K
Clinical Ophthalmology 2010; 4: 765-772 (IGR: 12-4)


27198 Determinants of agreement between the confocal scanning laser tomograph and standardized assessment of glaucomatous progression
Vizzeri G; Bowd C; Weinreb RN; Balasubramanian M; Medeiros FA; Sample PA; Zangwill LM
Ophthalmology 2010; 117: 1953-1959 (IGR: 12-4)


26963 Predicting visual function from the measurements of retinal nerve fiber layer structure.
Zhu H; Crabb DP; Schlottmann PG; Lemij HG; Reus NJ; Healey PR; Mitchell P; Ho T; Garway-Heath DF
Investigative Ophthalmology and Visual Science 2010; 51: 5657-5666 (IGR: 12-4)


27086 Structure-function relationships using spectral-domain optical coherence tomography: Comparison with scanning laser polarimetry
Aptel F; Sayous R; Fortoul V; Beccat S; Denis P
American Journal of Ophthalmology 2010; 150: 825-833 (IGR: 12-4)


27565 Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma
Kim NR; Lee ES; Seong GJ; Kim JH; An HG; Kim CY
Investigative ophthalmology & visual science 2010; 51: 4646-4651 (IGR: 12-4)


27607 Application of optical coherence tomography and standard automatic permetry in the early glaucoma
Wu F-F; Jia H-Q; Zhao Z-L
International Journal of Ophthalmology 2010; 10: 1760-1762 (IGR: 12-4)


27295 Correlation between nerve fibre layer thickness measured with spectral domain OCT and visual field in patients with different stages of glaucoma
Cvenkel B; Sket Kontestabile A
Graefe's Archive for Clinical and Experimental Ophthalmology 2010; 1-10 (IGR: 12-4)


27010 Structure-function relationships in normal and glaucomatous eyes determined by time- and spectral-domain optical coherence tomography.
Lee JR; Jeoung JW; Choi J; Choi JY; Park KH; Kim YD
Investigative Ophthalmology and Visual Science 2010; 51: 6424-6430 (IGR: 12-4)


26971 Relationship between Visual Field Sensitivity and Macular Ganglion Cell Complex Thickness as Measured by Spectral-Domain Optical Coherence Tomography.
Cho JW; Sung KR; Lee S; Yun SC; Kang SY; Choi J; Na JH; Lee Y; Kook MS
Investigative Ophthalmology and Visual Science 2010; 51: 6401-6407 (IGR: 12-4)


27199 The relationship between intraocular pressure reduction and rates of progressive visual field loss in eyes with optic disc hemorrhage
Medeiros FA; Alencar LM; Sample PA; Zangwill LM; Susanna Jr R; Weinreb RN
Ophthalmology 2010; 117: 2061-2066 (IGR: 12-4)


26940 Longitudinal and Cross-sectional Analyses of Visual Field Progression in Participants of the Ocular Hypertension Treatment Study
PH Artes; BC Chauhan; JL Keltner; KE Cello; CA Johnson; DR Anderson; MO Gordon; MA Kass
Archives of Ophthalmology 2010; 128: 1528-1532 (IGR: 12-4)


26992 Continued visual field progression in eyes with prior visual field progression in patients with open-angle glaucoma.
Chen PP; Cady RS; Mudumbai RC; Ngan R
Journal of Glaucoma 2010; 19: 598-603 (IGR: 12-4)


27489 Clinical distinction between nasal optic disc hypoplasia (NOH) and glaucoma with NOH-like temporal visual field defects
Ohguro H; Ohguro I; Tsuruta M; Katai M; Tanaka S
Clinical Ophthalmology 2010; 4: 547-555 (IGR: 12-4)


26988 Methodologic Quality of Studies on Prognostic Factors for Primary Open-angle Glaucoma Progression Measured by Visual Field Deterioration.
Júlvez LP; Del Castillo Sánchez JB; Feijoo JG; Rubio-Terrés C
Journal of Glaucoma 2010; 19: 587-591 (IGR: 12-4)


26840 Relationship between the thickness change of retinal nerve fiber layer and visual field damage in the primary open angle glaucoma for the syndrome differentiation of TCM
Chen Q; Cheng H-B; Zeng P; Liu J; Wen C; Zheng Y-Y
International Journal of Ophthalmology 2010; 10: 952-954 (IGR: 12-3)


26357 Optic disc damage staging system
Brusini P; Zeppieri M; Tosoni C; Parisi L; Salvetat ML
Journal of Glaucoma 2010; 19: 442-449 (IGR: 12-3)


26516 Neuro-imaging examination of glaucomatous visual field defects
Yoshida M; Boucard CC; Hernowo AT; Ida M; Nishio T; Nishimoto F; Kato M; Nguyen Th; Istoc A; Iba-Zizen MT
Neuro-Ophthalmology 2010; 34: 180-181 (IGR: 12-3)


26489 Impact of cataract and age-related macular denegeration on the results of various perimetry techniques
Simakova IL; Boiko EV
Vestnik Oftalmologii 2010; 126: 10-14 (IGR: 12-3)


26792 A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma
Alencar LM; Zangwill LM; Weinreb RN; Bowd C; Sample PA; Girkin CA; Liebmann JM; Medeiros FA
Investigative Ophthalmology and Visual Science 2010; 51: 3531-3539 (IGR: 12-3)


26807 Monitoring vigilance during perimetry by using pupillography
Henson DB; Emuh T
Investigative Ophthalmology and Visual Science 2010; 51: 3540-3543 (IGR: 12-3)


26907 Relationship between standard automated perimetry and optic nerve head topography performed with the Heidelberg Retina Tomograph
Lopez-Pena MJ; Ferreras A; Larrosa JM; Polo V; Fogagnolo P; Honrubia FM
Archivos de la Sociedad Espanola de Oftalmologia 2009; 84: 611-624 (IGR: 12-3)


26654 Modified visual field trend analysis
De Moraes CGV; Ritch R; Tello C; Liebmann JM
Journal of Glaucoma 2010; (IGR: 12-3)


26854 Correlation of disc damage likelihood scale with the structural and functional change in optic nerve with primary open-angle glaucoma
Cui M; Chen X-M; Huang Y-Z
International Journal of Ophthalmology 2010; 10: 1140-1142 (IGR: 12-3)


26458 Optic disc analysis with heidelberg retina tomography III in glaucoma with unilateral visual field defects
Xiao G-G; Wu L-L
Japanese Journal of Ophthalmology 2010; 54: 305-309 (IGR: 12-3)


26387 Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma
Kim NR; Lee ES; Seong GJ; Kim JH; An HG; Kim CY
Investigative Ophthalmology and Visual Science 2010; 51: 4646-4651 (IGR: 12-3)


26474 Study on relationship between control of intraocular pressure and systemic risk factor for visual field progression in normal-tension glaucoma
Nakagami T; Yamazaki Y; Hayamizu F
Nippon Ganka Gakkai Zasshi 2010; 114: 592-597 (IGR: 12-3)


26455 Visual field loss in patients with normal-tension glaucoma under topical nipradilol or timolol: Subgroup and subfield analyses of the nipradilol-timolol study
Araie M; Shirato S; Yamazaki Y; Kitazawa Y; Ohashi Y
Japanese Journal of Ophthalmology 2010; 54: 278-285 (IGR: 12-3)


26737 The influence of carteolol and pentoxyphylin on the visual field in glaucoma patients - Case reports of selected patients
Machu V
?eska a Slovenska Oftalmologie 2010; 66: 39-42 (IGR: 12-3)


26895 Improved automated perimetry performance in elderly subjects after listening to Mozart
Marques JC; Vanessa ACO; Fiorelli MB; Kasahara N
Clinics 2009; 64: 665-667 (IGR: 12-3)


26213 African Descent and Glaucoma Evaluation Study (ADAGES): III. Ancestry differences in visual function in healthy eyes
Racette L; Liebmann JM; Girkin CA; Zangwill LM; Jain S; Becerra LM; Medeiros FA; Bowd C; Weinreb RN; Boden C
Archives of Ophthalmology 2010; 128: 551-559 (IGR: 12-2)


26190 Specificity of the program threshold noiseless trend for perimetric progression analysis
de la Rosa MG; Diaz-Aleman T; Gonzalez-Hernandez M; Jerez-Fidalgo M
Current Eye Research 2010; 35: 302-307 (IGR: 12-2)


25983 Patterns of glaucomatous visual field loss in sita fields automatically identified using independent component analysis
Goldbaum MH; Jang G-J; Bowd C; Hao J; Zangwill LM; Liebmann J; Girkin C; Jung T-P; Weinreb RN; Sample PA
Transactions of the American Ophthalmological Society 2009; 107: 136-144 (IGR: 12-2)


26081 The effect of myopic optical defocus on the humphrey matrix 30-2 threshold test
Kim JH; Kee C
Journal of Glaucoma 2010; 19: 257-263 (IGR: 12-2)


26183 Comparison of visual field sensitivities between the Medmont automated perimeter and the Humphrey field analyser
Landers J; Sharma A; Goldberg I; Graham SL
Clinical and Experimental Ophthalmology 2010; 38: 273-276 (IGR: 12-2)


26176 Comparison of Damato campimetry and Humphrey automated perimetry results in a clinical population
Rowe FJ; Sueke H; Gawley SD
British Journal of Ophthalmology 2010; 94: 757-762 (IGR: 12-2)


26198 The effective dynamic ranges of standard automated perimetry sizes III and V and motion and matrix perimetry
Wall M; Woodward KR; Doyle CK; Zamba G
Archives of Ophthalmology 2010; 128: 570-576 (IGR: 12-2)


26023 Correlation between the thickness of RNFL detected by OCT3 and visual field defect in Uygur patients with glaucoma
Li X-J; Kadir J; Zhu G-W
International Journal of Ophthalmology 2010; 10: 674-676 (IGR: 12-2)


26131 Target intraocular pressure for stability of visual field loss progression in normal-tension glaucoma
Aoyama A; Ishida K; Sawada A; Yamamoto T
Japanese Journal of Ophthalmology 2010; 54: 117-123 (IGR: 12-2)


26186 Detection of morphological and functional progression in initial glaucoma
Gonzalez de la Rosa M; Gonzalez-Hernandez M; Sanchez-Mendez M; Medina-Mesa E; Rodriguez de la Vega R
British Journal of Ophthalmology 2010; 94: 414-418 (IGR: 12-2)


26109 Postural Response of Intraocular Pressure and Visual Field Damage in Patients With Untreated Normal-tension Glaucoma
Kiuchi T; Motoyama Y; Oshika T
Journal of Glaucoma 2010; 19: 191-193 (IGR: 12-2)


25723 Topical carbonic anhydrase inhibitors and visual function in glaucoma and ocular hypertension
Gugleta K
Current Medical Research and Opinion 2010; 26: 1255-1267 (IGR: 12-2)


26078 Effect of cataract extraction on the glaucoma progression index (GPI) in glaucoma patients
Ang GS; Shunmugam M; Azuara-Blanco A
Journal of Glaucoma 2010; 19: 275-278 (IGR: 12-2)


26243 Improved retinal function after trabeculectomy in glaucoma patients
Wittström E; Schatz P; Lövestam-Adrian M; Ponjavic V; Bergström A; Andréasson S
Graefe's Archive for Clinical and Experimental Ophthalmology 2010; 248: 485-495 (IGR: 12-2)


26003 The pseudotemporal bootstrap for predicting glaucoma from cross-sectional visual field data
Tucker A; Garway-Heath D
IEEE transactions on information technology in biomedicine: a publication of the IEEE Engineering in Medicine and Biology Society 2010; 14: 79-85 (IGR: 12-2)


25624 Octopus(trademark) type automated perimetry and glaucoma
Bazalgette C; Navarre S
Revue Francophone d'Orthoptie 2009; 2: 68-72 (IGR: 12-1)


25403 Structural and functional relationships in glaucoma using standard automated perimetry and the Humphrey Matrix.
Park S B; Nam Y P; Sung K R; Kook M S
Korean Journal of Ophthalmology 2009; 23: 176-182 (IGR: 12-1)


25055 A Comparison between Microperimetry and Standard Achromatic Perimetry of the Central Visual Field in Eyes with Glaucomatous Paracentral Visual Field Defects
Lima VC; Prata TS; De Moraes CG; Kim J; Seiple W; Rosen RB; Liebmann JM; Ritch R
British Journal of Ophthalmology 2010; 94: 64-67 (IGR: 12-1)


25177 Analysis of a new visual field index, the VFI, in Ocular Hypertension and Glaucoma
Giraud JM; Fenolland JR; May F; Hammam O; Sadat AM; Boumezrag AB; Renard JP
Journal Français d'Ophtalmologie 2010; 33: 2-9 (IGR: 12-1)


25205 Comparison of advanced visual field defects measured with the Tübingen Mobile Campimeter and the Octopus 101 perimeter
Bruckmann A; Volpe NJ; Paetzold J; Vonthein R; Schiefer U
European Journal of Ophthalmology 2010; 20: 149-157 (IGR: 12-1)


25195 Pattern electroretinogram and psychophysical tests of visual function for discriminating between healthy and glaucoma eyes
Tafreshi A; Racette L; Weinreb RN; Sample PA; Zangwill LM; Medeiros FA; Bowd C
American Journal of Ophthalmology 2010; 149: 488-495 (IGR: 12-1)


25122 Correlation of Disc Morphology Quantified on Stereophotographs to Results by Heidelberg Retina Tomograph II, GDx Variable Corneal Compensation, and Visual Field Tests
Saito H; Tsutsumi T; Iwase A; Tomidokoro A; Araie M
Ophthalmology 2010; 117: 282-289 (IGR: 12-1)


25394 Correlation between neuroretinal rim area/retinal nerve fiber layer thickness and differential light sensitivity in visual field in primary open angle glaucoma
Li L; Zhao J -L; Liu X -L
Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2009; 31: 607-611 (IGR: 12-1)


25128 Factors affecting rates of visual field progression in glaucoma patients with optic disc hemorrhage
Prata TS; De Moraes CG; Teng CC; Tello C; Ritch R; Liebmann JM
Ophthalmology 2010; 117: 24-29 (IGR: 12-1)


25244 Agreement for Detecting Glaucoma Progression with the GDx Guided Progression Analysis, Automated Perimetry, and Optic Disc Photography
Alencar LM; Zangwill LM; Weinreb RN; Bowd C; Vizzeri G; Sample PA; Susanna R Jr; Medeiros FA
Ophthalmology 2010; 117: 462-470 (IGR: 12-1)


25473 Acquired color vision and visual field defects in patients with ocular hypertension and early glaucoma
Papaconstantinou D; Georgalas I; Kalantzis G; Karmiris E; Koutsandrea C; Diagourtas A; Ladas I; Georgopoulos G
Clinical Ophthalmology 2009; 3: 251-257 (IGR: 12-1)


25221 Visual Field Progression Differences between Normal-Tension and Exfoliative High-Tension Glaucoma
Ahrlich KG; De Moraes CG; Teng CC; Prata TS; Tello C; Ritch R; Liebmann JM
Investigative Ophthalmology and Visual Science 2010; 51: 1458-1463 (IGR: 12-1)


24964 Driving cessation and driving limitation in glaucoma: the Salisbury Eye Evaluation Project
Ramulu PY; West SK; Munoz B; Jampel HD; Friedman DS
Ophthalmology 2009; 116: 1846-1853 (IGR: 11-4)


24728 Relationship between visual field defect score and retinal nerve fiber layer thickness measured by OCT
Zhao W; Lu Y
International Journal of Ophthalmology 2009; 9: 1310-1312 (IGR: 11-4)


24902 Visual field index rate and event-based glaucoma progression analysis: comparison in a glaucoma population
Casas-Llera P; Rebolleda G; Muñoz-Negrete FJ; Arnalich-Montiel F; Pérez-López M; Fernández-Buenaga R
British Journal of Ophthalmology 2009; 93: 1576-1579 (IGR: 11-4)


24973 Glaucoma diagnostic performance of humphrey matrix and standard automated perimetry
Nam YP; Park SB; Kang SY; Sung KR; Kook MS
Japanese Journal of Ophthalmology 2009; 53: 482-485 (IGR: 11-4)


24974 Relationship between central corneal thickness and visual field defect in open-angle glaucoma
Lin W; Aoyama Y; Kawase K; Yamamoto T
Japanese Journal of Ophthalmology 2009; 53: 477-481 (IGR: 11-4)


24828 Signal/noise analysis to compare tests for measuring visual field loss and its progression
Artes PH; Chauhan BC
Investigative Ophthalmology and Visual Science 2009; 50: 4700-4708 (IGR: 11-4)


24898 Diffuse glaucomatous structural and functional damage in the hemifield without significant pattern loss
Grewal DS; Sehi M; Greenfield DS
Archives of Ophthalmology 2009; 127: 1442-1448 (IGR: 11-4)


24982 Specification of progression in glaucomatous visual field loss, applying locally condensed stimulus arrangements
Nevalainen J; Paetzold J; Papageorgiou E; Sample PA; Pascual JP; Krapp E; Selig B; Vonthein R; Schiefer U
Graefe's Archive for Clinical and Experimental Ophthalmology 2009; 247: 1659-1669 (IGR: 11-4)


24876 Glaucoma detection and evaluation through pattern recognition in standard automated perimetry data
Wroblewski D; Francis BA; Chopra V; Kawji AS; Quiros P; Dustin L; Massengill RK
Graefe's Archive for Clinical and Experimental Ophthalmology 2009; 247: 1517-1530 (IGR: 11-4)


24812 Relationship between pattern electroretinogram, standard automated perimetry, and optic nerve structural assessments
Sehi M; Pinzon-Plazas M; Feuer WJ; Greenfield DS
Journal of Glaucoma 2009; 18: 608-617 (IGR: 11-4)


24965 Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma
Chauhan BC; Nicolela MT; Artes PH
Ophthalmology 2009; 116: 2110-2118 (IGR: 11-4)


24813 Quantifying retinal nerve fiber layer loss in glaucoma using a model of unilateral hypertensive pseudoexfoliation syndrome
Barkana Y; Burgansky-Eliash Z; Kaplan-Messas A; Eshkoli M; Avni I; Zadok D
Journal of Glaucoma 2009; 18: 601-607 (IGR: 11-4)


24635 Relationship between visual field severity and response to fixed combination dorzolamide/timolol or timolol alone
Olander KW; Galet VA; Jia G; Smugar SS; Stewart WC
Journal of Ocular Pharmacology and Therapeutics 2009; 25: 357-363 (IGR: 11-4)


24788 Visual function, optic nerve structure, and ocular blood flow parameters after 1 year of glaucoma treatment with fixed combinations
Januleviciene I; Ehrlich R; Siesky B; Nedzelskiené I; Harris A
European Journal of Ophthalmology 2009; 9: 790-797 (IGR: 11-4)


24975 Prediction of glaucomatous visual field loss by extrapolation of linear trends
Bengtsson B; Patella VM; Heijl A
Archives of Ophthalmology 2009; 127: 1610-1615 (IGR: 11-4)


24617 Perimetry change of primary chronic glaucoma after intraocular pressure reduction
Wang L; Wang N; Liang Y; Chen Y; Lin Z; Peng Y
Chinese Ophthalmic Research 2009; 27: 792-795 (IGR: 11-4)


24272 Relationship between central corneal thickness, intraocular pressure and severity of glaucomatous visual field loss
Jimenez-Rodriguez E; Lopez-de-Cobos M; Luque-Aranda R; Lopez-Egea-Bueno MA; Vazquez-Salvi AI; Garcia-Campos JM
Archivos de la Sociedad Española de Oftalmologia 2009; 84: 139-143 (IGR: 11-3)


24496 Glaucoma: an area of darkness
Hitchings RA
Eye 2009; 23: 1764-1774 (IGR: 11-3)


24114 The robustness of various forms of perimetry to different levels of induced intraocular stray light
Anderson RS; Redmond T; McDowell DR; Breslin KM; Zlatkova MB
Investigative Ophthalmology and Visual Science 2009; 50: 4022-4028 (IGR: 11-3)


24493 Glaucoma with early visual field loss affecting both hemifields and the risk of disease progression
De Moraes CG; Prata TS; Tello C; Ritch R; Liebmann JM
Archives of Ophthalmology 2009; 127: 1129-1134 (IGR: 11-3)


24295 Functional glaucoma diagnosis
Erb C; Gobel K
Ophthalmologe 2009; 106: 375-386 (IGR: 11-3)


24138 Structure-function relationship depends on glaucoma severity
Gonzalez-Hernandez M; Pablo LE; Armas-Dominguez K; De La Vega RR; Ferreras A; de la Rosa MG
British Journal of Ophthalmology 2009; 93: 1195-1199 (IGR: 11-3)


24265 Comparison of Humphrey MATRIX and Swedish interactive threshold algorithm standard strategy in detecting early glaucomatous visual field loss
Prema R; George R; Hemamalini A; Sathyamangalam Ve RS; Baskaran M; Vijaya L
Indian Journal of Ophthalmology 2009; 57: 207-211 (IGR: 11-3)


24473 Comparison of different analytic algorithms for interpretation of the Swedish interactive threshold algorithm strategy
Takahashi GS; Kasahara N
Clinics 2008; 63: 333-338 (IGR: 11-3)


24491 Visual field progression after trabeculectomy in primary open-angle glaucoma: preliminary results
Dieng M; Wane A; Ba E; Roth PN; Demeideros M; Ndiaye M; Ndiaye P; Wade A
Journal Français d'Ophtalmologie 2009; 32: 474-480 (IGR: 11-3)


23976 Comparison of mean deviation with AGIS and CIGTS scores in association with structural parameters in glaucomatous eyes
Naka M; Kanamori A; Tatsumi Y; Fujioka M; Nagai-Kusuhara A; Nakamura M; Negi A
Journal of Glaucoma 2009; 18: 379-384 (IGR: 11-2)


23928 Linear regression analysis of the cumulative defect curve by sectors and other criteria of glaucomatous visual field progression
Gonzalez de la Rosa M; Gonzalez-Hernandez M; Diaz-Aleman T
European Journal of Ophthalmology 2009; 19: 416-424 (IGR: 11-2)


23765 The Groningen Longitudinal Glaucoma Study. II. A prospective comparison of frequency doubling perimetry, the GDx nerve fibre analyser and standard automated perimetry in glaucoma suspect patients
Jansonius NM; Heeg GP
Acta Ophthalmologica 2009; 87: 429-432 (IGR: 11-2)


23958 Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT
Horn FK; Mardin CY; Laemmer R; Baleanu D; Juenemann AM; Kruse FE; Tornow RP
Investigative Ophthalmology and Visual Science 2009; 50: 1971-1977 (IGR: 11-2)


23618 Visual field analysis in primary open angle glaucoma with high myopia
Li Y-Q; Fan F; Tang L-S; Zhong H; Zhao T-T; Tian R
International Journal of Ophthalmology 2009; 9: 623-626 (IGR: 11-2)


23891 Changes in visual function after intraocular pressure reduction using antiglaucoma medications
Prata TS; Piassi MV; Melo LA Jr
Eye 2009; 23: 1081-1085 (IGR: 11-2)


24003 The relationship of mean deviation scores and resource utilization among patients with glaucoma: a retrospective United States and European chart review analysis
Berenson K; Kymes S; Walt JG; Siegartel LR
Journal of Glaucoma 2009; 18: 390-394 (IGR: 11-2)


23435 Language of instruction and the effect on visual field results
Zborowski L; Kaleb-Landoy M; Luski M; Boaz M; Gaton D
Harefuah 2008; 147: 855-857 (IGR: 11-2)


23909 The influence of socioeconomic and clinical factors upon the presenting visual field status of patients with glaucoma
Sukumar S; Spencer F; Fenerty C; Harper R; Henson D
Eye 2009; 23: 1038-1044 (IGR: 11-2)


23869 Franz fankhauser: the father of the automated perimeter
Gloor BP
Survey of Ophthalmology 2009; 54: 417-425 (IGR: 11-2)


23653 The effect of aerobic exercises on the ocular parameters and the psychic state of glaucoma patients
Lipkova J; Gregor T; Kyselovicova O; Skodova M
Activitas Nervosa Superior 2008; 50:-2 15-17 (IGR: 11-2)


22536 Predicting progressive glaucomatous optic neuropathy using baseline standard automated perimetry data
Demirel S; Fortune B; Fan J; Levine RA; Torres R; Nguyen H; Mansberger SL; Gardiner SK; Cioffi GA; Johnson CA
Investigative Ophthalmology and Visual Science 2009; 50: 674-680 (IGR: 11-1)


22731 Interpretation of the Humphrey Matrix 24-2 test in the diagnosis of preperimetric glaucoma
Choi JA; Lee NY; Park CK
Japanese Journal of Ophthalmology 2009; 53: 24-30 (IGR: 11-1)


22626 Association of optic disc configuration and clustered visual field sensitivity in glaucomatous eyes with hemifield visual field defects
Nagai-Kusuhara A; Nakamura M; Kanamori A; Negi A
Journal of Glaucoma 2009; 18: 62-68 (IGR: 11-1)


23008 Effect of prophylactic surgeries on HRT-II parameters and visual field of preclinical primary closed-angle glaucoma patients
Guo B; Yang X-G; Fan Q-H; Liu Z; Yu J-N; Chen L; Ai H
International Journal of Ophthalmology 2008; 8: 2244-2247 (IGR: 11-1)


23007 Clinical analysis of the parameters detected by HRT-II and Humphrey perimetry in the new international classification of angle-closure glaucoma
Yang X-G; Guo B; Liu Z; Yu J-N; Li P; Liu J-R; Li H-M; Ma Q-L
International Journal of Ophthalmology 2008; 8: 2239-2243 (IGR: 11-1)


22765 Sensitivity of size I stimulus in achromatic automated perimetry for detection of glaucomatous visual field defects: a comparative analysis with short wavelength automated perimetry and standard automated perimetry (SITA)
Mattos TC; Kasahara N; Della Paolera M; Cohen R; Mandia Junior C; Almeida GV
Arquivos Brasileiros de Oftalmologia 2008; 71: 142-148 (IGR: 11-1)


22522 Comparison of glaucoma probability score and Moorfields regression analysis to discriminate glaucomatous and healthy eyes
Takmaz T; Can I
European Journal of Ophthalmology 2009; 19: 207-213 (IGR: 11-1)


22986 Ganglion cell loss and dysfunction: relationship to perimetric sensitivity
Drasdo N; Mortlock KE; North RV
Optometry and Vision Science 2008; 85: 1036-1042 (IGR: 11-1)


22987 Is there evidence for continued learning over multiple years in perimetry?
Gardiner SK; Demirel S; Johnson CA
Optometry and Vision Science 2008; 85: 1043-1048 (IGR: 11-1)


22712 Repeatability of automated perimetry: a comparison between standard automated perimetry with stimulus size III and V, matrix, and motion perimetry
Wall M; Woodward KR; Doyle CK; Artes PH
Investigative Ophthalmology and Visual Science 2009; 50: 974-979 (IGR: 11-1)


22906 Correlation analysis of GDxVCC parameters and visual field indices in early open-angle glaucoma
Zhang Q; Xia X; Wang P; Yang C; Zhou M
Chinese Ophthalmic Research 2008; 26: 860-864 (IGR: 11-1)


22766 Clinical correlation between structural and functional assessment in glaucoma: Armaly cup to disk ratio and Brusini glaucoma staging system
Oliveira AC; Oliveira FC; Villa Albers MB; Cohen R; Kasahara N
Arquivos Brasileiros de Oftalmologia 2008; 71: 242-245 (IGR: 11-1)


22805 Comparison of the Humphrey Field Analyser and Humphrey Matrix Perimeter for the evaluation of glaucoma patients
Chen Y-H; Wu J-N; Chen J-T; Lu D-W
Ophthalmologica 2008; 222: 400-407 (IGR: 11-1)


22854 Common visual field defect in the open angle glaucoma eyes
Alipanahi R; Sayyahmelli M; Ghojazadeh L; Sayyahmelli S
Rawal Medical Journal 2008; 33: 98-100 (IGR: 11-1)


22698 Comparison of the new perimetric GATE strategy with conventional full-threshold and SITA standard strategies
Schiefer U; Pascual JP; Edmunds B; Feudner E; Hoffmann EM; Johnson CA; Lagrèze WA; Pfeiffer N; Sample PA; Staubach F
Investigative Ophthalmology and Visual Science 2009; 50: 488-494 (IGR: 11-1)


22627 The correlation between visual field defects and focal nerve fiber layer thickness measured with optical coherence tomography in the evaluation of glaucoma
Yalvac IS; Altunsoy M; Cansever S; Satana B; Eksioglu U; Duman S
Journal of Glaucoma 2009; 18: 53-61 (IGR: 11-1)


22948 Correlation between structural and functional analysis in glaucoma suspects
Chiselita D; Danielescu C; Apostol A
Oftalmologia 2008; 52: 111-118 (IGR: 11-1)


22622 Detection of visual-field deterioration by Glaucoma Progression Analysis and Threshold Noiseless Trend programs
Diaz-Aleman VT; Anton A; de la Rosa MG; Johnson ZK; McLeod S; Azuara-Blanco A
British Journal of Ophthalmology 2009; 93: 322-328 (IGR: 11-1)


22884 Computer based vision restoration therapy in glaucoma patients: A small open pilot study
Gudlin J; Mueller I; Thanos S; Sabel BA
Restorative Neurology and Neuroscience 2008; 26: 403-412 (IGR: 11-1)


21796 Correlation between retinal nerve fibre layer thickness and retinal sensitivity
Sato S; Hirooka K; Baba T; Yano I; Shiraga F
Acta Ophthalmologica 2008; 86: 609-613 (IGR: 10-3)


21820 Latent asymmetric intraocular pressure as a predictor of visual field defects
Hong S; Kang SY; Ma KT; Seong GJ; Kim CY
Archives of Ophthalmology 2008; 126: 1211-1215 (IGR: 10-3)


21671 Assessment of an effective visual field testing strategy for a normal pediatric population
Akar Y; Yilmaz A; Yucel I
Ophthalmologica 2008; 222: 329-333 (IGR: 10-3)


21755 Mapping standard automated perimetry to the peripapillary retinal nerve fiber layer in glaucoma
Ferreras A; Pablo LE; Garway-Heath DF; Fogagnolo P; García-Feijoo J
Investigative Ophthalmology and Visual Science 2008; 49: 3018-3025 (IGR: 10-3)


21862 A comparison of visual field progression criteria of 3 major glaucoma trials in early manifest glaucoma trial patients
Heijl A; Bengtsson B; Chauhan BC; Lieberman MF; Cunliffe I; Hyman L; Leske MC
Ophthalmology 2008; 115: 1557-1565 (IGR: 10-3)


21714 Long-term survival of central visual field in end-stage glaucoma
Much JW; Liu C; Piltz-Seymour JR
Ophthalmology 2008; 115: 1162-1166 (IGR: 10-3)


21516 Rapid pupil-based assessment of glaucomatous damage
Chen Y; Wyatt HJ; Swanson WH; Dul MW
Optometry and Vision Science 2008; 85: 471-481 (IGR: 10-3)


21616 Correlation between quadrant specific automatic visual field defect and retinal nerve fiber layer thickness as measured by scanning laser polarimetry in patients with primary open-angle glaucoma
Chang Y-C; Tsai R-K
The Kaohsiung Journal of Medical Sciences 2008; 24: 233-239 (IGR: 10-3)


21741 Relationship between retinal nerve fibre layer measurements and retinal sensitivity by scanning laser polarimetry with variable and enhanced corneal compensation
Choi J; Kim KH; Lee CH; Cho H; Sung KR; Choi JY; Cho BJ; Kook MS
British Journal of Ophthalmology 2008; 92: 906-911 (IGR: 10-3)


21682 Long-term relationship between intraocular pressure and visual field loss in primary open-angle glaucoma
Inatani M; Iwao K; Inoue T; Awai M; Muto T; Koga T; Ogata-Iwao M; Hara R; Futa R; Tanihara H
Journal of Glaucoma 2008; 17: 275-279 (IGR: 10-3)


21824 Clinical efficacy of topical nipradilol and timolol on visual field performance in normal-tension glaucoma: A multi-center, randomized, double-masked comparative study
Araie M; Shirato S; Yamazaki Y; Kitazawa Y; Ohashi Y; the Nipradilol-Timolol Study Group
Japanese Journal of Ophthalmology 2008; 52: 255-264 (IGR: 10-3)


21386 The effect of peripheral visual field loss on representations of space: Evidence for distortion and adaptation
Fortenbaugh FC; Hicks JC; Turano KA
Investigative Ophthalmology and Visual Science 2008; 49: 2765-2772 (IGR: 10-2)


21402 Impact of visual field loss on health-related quality of life in glaucoma: The Los Angeles Latino Eye Study
McKean-Cowdin R; Wang Y; Wu J; Azen SP; Varma R; Los Angeles Latino Eye Study Group
Ophthalmology 2008; 115: 941-948 (IGR: 10-2)


21373 Glaucoma and fitness to drive: using binocular visual fields to predict a milestone to blindness
Owen VM; Crabb DP; White ET; Viswanathan AC; Garway-Heath DF; Hitchings RA
Investigative Ophthalmology and Visual Science 2008; 49: 2449-2455 (IGR: 10-2)


20911 Total deviation probability plots for stimulus size v perimetry: A comparison with size III stimuli
Wall M; Brito CF; Woodward KR; Doyle CK; Kardon RH; Johnson CA
Archives of Ophthalmology 2008; 126: 473-479 (IGR: 10-2)


20940 Practical recommendations for measuring rates of visual field change in glaucoma
Chauhan BC; Garway-Heath DF; Goñi FJ; Rossetti L; Bengtsson B; Viswanathan AC; Heijl A
British Journal of Ophthalmology 2008; 92: 569-573 (IGR: 10-2)


21262 Analysis of 120 cases with primary open angle glaucoma in 6-year follow-up
Ai F-R; Li Y; Zhang X; Zhao J-L
International Journal of Ophthalmology 2008; 8: 753-755 (IGR: 10-2)


20976 Relationship between Humphrey 30-2 SITA standard test, Matrix 30-2 threshold test, and Heidelberg Retina Tomograph in ocular hypertensive and glaucoma patients
Bozkurt B; Ylmaz PT; Irkec M
Journal of Glaucoma 2008; 17: 203-210 (IGR: 10-2)


21187 Visual field analysis in patients with Parkinson's disease
Yenice O; Onal S; Midi I; Ozcan E; Temel A; I-Gunal D
Parkinsonism and Related Disorders 2008; 14: 193-198 (IGR: 10-2)


21070 Correlation of age and intraocular pressure with visual field damage in patients with normal-tension glaucoma
Nakamoto K; Yasuda N; Fukuda T
Nippon Ganka Gakkai Zasshi 2008; 112: 371-375 (IGR: 10-2)


20954 Visual field changes after transient elevation of intraocular pressure in eyes with and without glaucoma
Chan KC; Poostchi A; Wong T; Insull EA; Sachdev N; Wells AP
Ophthalmology 2008; 115: 667-672 (IGR: 10-2)


21423 Age-dependent normative values for differential luminance sensitivity in automated static perimetry using the Octopus 101
Hermann A; Paetzold J; Vonthein R; Krapp E; Rauscher S; Schiefer U
Acta Ophthalmologica 2008; 86: 446-455 (IGR: 10-2)


21001 Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes
Machida S; Gotoh Y; Toba Y; Ohtaki A; Kaneko M; Kurosaka D
Investigative Ophthalmology and Visual Science 2008; 49: 2201-2207 (IGR: 10-2)


20890 Correlation between ocular pulse amplitude measured by dynamic contour tonometer and visual field defects
Vulsteke C; Stalmans I; Fieuws S; Zeyen T
Graefe's Archive for Clinical and Experimental Ophthalmology 2008; 246: 559-565 (IGR: 10-2)


21102 Reduced choroidal blood flow can induce visual field defect in open angle glaucoma patients without intraocular pressure elevation following encircling scleral buckling
Sato EA; Shinoda K; Inoue M; Ohtake Y; Kimura I
Retina (Philadelphia, Pa.) 2008; 28: 493-497 (IGR: 10-2)


20967 Detection of visual field progression in glaucoma
Kovalska M; Grieshaber MC; Schötzau A; Katamay R; Hauenstein D; Flammer J; Orgül S
Klinische Monatsblätter für Augenheilkunde 2008; 225: 342-345 (IGR: 10-2)


20886 Visual field defects in acute optic neuritis - distribution of different types of defect pattern, assessed with threshold-related supraliminal perimetry, ensuring high spatial resolution
Nevalainen J; Krapp E; Paetzold J; Mildenberger I; Besch D; Vonthein R; Keltner JL; Johnson CA; Schiefer U
Graefe's Archive for Clinical and Experimental Ophthalmology 2008; 246: 599-607 (IGR: 10-2)


21112 Concept of the segmental optic nerve hypoplasia
Takagi M; Abe H
Neuro-Ophthalmology Japan 2007; 24: 379-388 (IGR: 10-2)


20985 Retinal nerve fiber structure versus visual field function in patients with ischemic optic neuropathy. A test of a linear model
Hood DC; Anderson S; Rouleau J; Wenick AS; Grover LK; Behrens MM; Odel JG; Lee AG; Kardon RH
Ophthalmology 2008; 115: 904-910 (IGR: 10-2)


20605 Traffic gap judgment in people with significant peripheral field loss
Cheong AMY; Geruschat DR; Congdon N
Optometry and Vision Science 2008; 85: 26-36 (IGR: 10-1)


20853 Optic Nerve Head Drusen and Visual Field Loss in Normotensive and Hypertensive Eyes
Grippo TM; Shihadeh WA; Schargus M; Gramer E; Tello C; Liebmann JM; Ritch R
Journal of Glaucoma 2008; 17: 100-104 (IGR: 10-1)


20851 A Comparison of Semiautomated Versus Manual Goldmann Kinetic Perimetry in Patients With Visually Significant Glaucoma
Ramirez AM; Chaya CJ; Gordon LK; Giaconi JA
Journal of Glaucoma 2008; 17: 111-117 (IGR: 10-1)


20583 Update on the natural history of glaucoma
Hitchings R
Eye 2007; 21: S2-S5 (IGR: 10-1)


20593 Spatio-temporal modeling of perimetric test data
Ibanez MV; Simo A
Statistical Methods in Medical Research 2007; 16: 497-522 (IGR: 10-1)


20725 Effect of optical media changes on white-on-white Humphry field analyser perimetry and frequency doubling technology perimetry
Shen J-Q; Hitchings RA; Fitzke FW
International Journal of Ophthalmology 2008; 8: 10-12 (IGR: 10-1)


20698 The effect of ocular hypotensive agents on macula
Ozturk F; Yavas GF; Kusbeci T
Annals of ophthalmology (Skokie, Ill.) 2007; 39: 302-306 (IGR: 10-1)


20850 A Comparison Among Humphrey Field Analyzer, Microperimetry, and Heidelberg Retina Tomograph in the Evaluation of Macula in Primary Open Angle Glaucoma
Öztürk F; Fatma Yavas G; Küsbeci T; Samet Ermis S
Journal of Glaucoma 2008; 17: 118-121 (IGR: 10-1)


20803 Humphrey Matrix Perimetry in Optic Nerve and Chiasmal Disorders: Comparison with Humphrey SITA Standard 24-2
Huang CQ; Carolan J; Redline D; Taravati P; Woodward KR; Johnson CA; Wall M; Keltner JL
Investigative Ophthalmology and Visual Science 2008; 49: 917-923 (IGR: 10-1)


20819 Evaluation of threshold estimation and learning effect of two perimetric strategies, SITA Fast and CLIP, in damaged visual fields
Capris P; Autuori S; Capris E; Papadia M
European Journal of Ophthalmology 2008; 18: 182-190 (IGR: 10-1)


20793 Diagnostic accuracy of the matrix 24-2 and original N-30 frequency-doubling technology tests compared with standard automated perimetry
Racette L; Medeiros FA; Zangwill LM; Ng D; Weinreb RN; Sample PA
Investigative Ophthalmology and Visual Science 2008; 49: 954-960 (IGR: 10-1)


20830 Sensitivity and specificity of the humphrey matrix to detect homonymous hemianopias
Taravati P; Woodward KR; Keltner JL; Johnson CA; Redline D; Carolan J; Huang CQ; Wall M
Investigative Ophthalmology and Visual Science 2008; 49: 924-928 (IGR: 10-1)


20699 Comparison between indices of Humphrey matrix and Humphrey perimetry in early glaucoma patients and normal subjects
Hong S; Yeom HY; Kim CY; Seong GJ
Annals of ophthalmology (Skokie, Ill.) 2007; 39: 318-320 (IGR: 10-1)


20697 Comparison of an automated confrontation testing device versus finger counting in the detection of field loss
Bass SJ; Cooper J; Feldman J; Horn D
Optometry 2007; 78: 390-395 (IGR: 10-1)


20303 Relationship between second-generation frequency doubling technology and standard automated perimetry in patients with glaucoma
Zarkovic A; Mora J; McKelvie J; Gamble G
Clinical and Experimental Ophthalmology 2007; 35: 808-811 (IGR: 10-1)


20645 Correlation of the Heidelberg retinal tomograph, evaluation of the retinal nerve fiber layer and perimetry in the diagnosis of glaucoma
Skorkovska S; Michalek J; Sedlacik M; Maskova Z; Koci J
?eska a Slovenska Oftalmologie 2007; 63: 403-414 (IGR: 10-1)


20395 Comparison of optic nerve head topography and visual field in eyes with open-angle and angle-closure glaucoma
Boland MV; Zhang L; Broman AT; Jampel HD; Quigley HA
Ophthalmology 2008; 115: 239-245e2 (IGR: 10-1)


20467 Automated perimetry in patients with primary congenital glaucoma
Lopes Filho JGG; Betinjane AJ; de Carvalho CA
Arquivos Brasileiros de Oftalmologia 2007; 70: 37-40 (IGR: 10-1)


20815 Differential diagnosis in visual field defects of glaucoma patients
Brunotte I; Haubitz B; Winter R; Meyer MW
Klinische Monatsblätter für Augenheilkunde 2008; 225: 169-172 (IGR: 10-1)


20427 Estimating the rate of progressive visual field damage in those with open-angle glaucoma, from cross-sectional data
Broman AT; Quigley HA; West SK; Katz J; Munoz B; Bandeen-Roche K; Tielsch JM; Friedman DS; Crowston J; Taylor HR
Investigative Ophthalmology and Visual Science 2008; 49: 66-76 (IGR: 10-1)


20340 A visual field index for calculation of glaucoma rate of progression
Bengtsson B; Heijl A
American Journal of Ophthalmology 2008; 145: 343-353 (IGR: 10-1)


20792 Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes
Bowd C; Hao J; Tavares IM; Medeiros FA; Zangwill LM; Lee TW; Sample PA; Weinreb RN; Goldbaum MH
Investigative Ophthalmology and Visual Science 2008; 49: 945-953 (IGR: 10-1)


20081 Visual field loss increases the risk of falls in older adults: the Salisbury eye evaluation
Freeman EE; Muñoz B; Rubin G; West SK
Investigative Ophthalmology and Visual Science 2007; 48: 4445-44450 (IGR: 9-4)


19992 Intraocular pressure before and after visual field examination
Martin L
Eye 2007; 21: 1479-1481 (IGR: 9-4)


20107 Assessing visual field clustering schemes using machine learning classifiers in standard perimetry
Boden C; Chan K; Sample PA; Hao J; Lee TW; Zangwill LM; Weinreb RN; Goldbaum MH
Investigative Ophthalmology and Visual Science 2007; 48: 5582-5590 (IGR: 9-4)


19974 Reproducibility of visual field end point criteria for standard automated perimetry, full-threshold, and Swedish interactive thresholding algorithm strategies: diagnostic innovations in glaucoma study
Bourne RR; Jahanbakhsh K; Boden C; Zangwill LM; Hoffmann EM; Medeiros FA; Weinreb RN; Sample PA
American Journal of Ophthalmology 2007; 144: 908-913 (IGR: 9-4)


20095 The effects of intraocular pressure reduction on perimetric variability in glaucomatous eyes
Fogagnolo P; McNaught A; Centofanti M; Rossetti L; Orzalesi N
Investigative Ophthalmology and Visual Science 2007; 48: 4557-4563 (IGR: 9-4)


19720 Diagnostic capability of PULSAR, FDT y HRT-II in glaucoma suspects
Gonzalez de la Rosa M; Gonzalez Hernandez M; Aguilar Estevez J; Diaz Aleman T; Armas Plasencia R
Archivos de la Sociedad Española de Oftalmologia 2007; 82: 413-422 (IGR: 9-4)


20014 Long-term fluctuation of standard automatic perimetry, pulsar perimetry and frequency-doubling technology in early glaucoma diagnosis
Gonzalez-Hernandez M; Gonzalez de la Rosa M; Rodriguez de la Vega R; Hernandez-Vidal A
Ophthalmic Research 2007; 39: 338-343 (IGR: 9-4)


20023 A framework for comparing structural and functional measures of glaucomatous damage
Hood DC; Kardon RH
Progress in Retinal and Eye Research 2007; 26: 688-710 (IGR: 9-4)


20131 Visual field quality control in the Ocular Hypertension Treatment Study (OHTS)
Keltner JL; Johnson CA; Cello KE; Bandermann SE; Fan J; Levine RA; Kass MA; Gordon MO; Ocular Hypertension Treatment Study Group
Journal of Glaucoma 2007; 16: 665-669 (IGR: 9-4)


19725 Assessment of glaucomatous visual field loss by local fluctuation of visual field
Koike T; Takahashi G; Urashima M
Tokyo Jikeikai Medical Journal 2007; 122: 73-78 (IGR: 9-4)


19929 A comparison of global indices between the Medmont Automated Perimeter and the Humphrey Field Analyzer
Landers J; Sharma A; Goldberg I; Graham S
British Journal of Ophthalmology 2007; 91: 1285-1287 (IGR: 9-4)


19968 Retinal sensitivity and retinal nerve fiber layer thickness measured by optical coherence tomography in glaucoma
Miglior S; Riva I; Guareschi M; Di Matteo F; Romanazzi F; Buffagni L; Rulli E
American Journal of Ophthalmology 2007; 144: 733-740 (IGR: 9-4)


19721 Correlation between standard automated perimetry global indices and Heidelberg Retina Tomograph II parameters
Perez-Inigo A; Polo V; Larrosa JM; Ferreras A; Sanchez-Cano A; Martinez-de-la-Casa JM; Honrubia FM
Archivos de la Sociedad Española de Oftalmologia 2007; 82: 401-411 (IGR: 9-4)


20129 The impact of the perimetric measurement scale, sample composition, and statistical method on the structure-function relationship in glaucoma
Racette L; Medeiros FA; Bowd C; Zangwill LM; Weinreb RN; Sample PA
Journal of Glaucoma 2007; 16: 676-684 (IGR: 9-4)


19931 Influence of ageing on visual field defects due to stable lesions
Rudolph T; Frisén L
British Journal of Ophthalmology 2007; 91: 1276-1278 (IGR: 9-4)


20091 Dichoptic stimulation improves detection of glaucoma with multifocal visual evoked potentials
Arvind H; Klistorner A; Graham S; Grigg J; Goldberg I; Billson FA
Investigative Ophthalmology and Visual Science 2007; 48: 4590-4596 (IGR: 9-4)


19794 The importance of HRT II and perimeter octopus 101 in glaucoma diseases
Ferkova S; Chynoransky M; Krasnik V; Terek M
?eska a Slovenska Oftalmologie 2007; 63: 325-334 (IGR: 9-4)


19792 Importance of structural examination methods in the follow-up of patients with ocular hypertension
Skorkovska K
?eska a Slovenska Oftalmologie 2007; 63: 335-349 (IGR: 9-4)


19865 Recognizing the pitfalls. Pseudoglaucomatous visual fields
Laloum L
Journal Français d'Ophtalmologie 2007; 30: 5 Pt 2 3S22-30 (IGR: 9-4)


19799 Effect of cataract surgery for visual field in glaucoma patients
Chiselita D; Marcu C; Apostol A; Nitu M
Oftalmologia 2007; 51: 73-80 (IGR: 9-4)


19464 Corneal thickness and visual field damage in glaucoma patients
Papadia M; Sofianos C; Iester M; Bricola G; Mete M; Traverso CE
Eye 2007; 21: 943-947 (IGR: 9-3)


19616 Stabilization and comparison of TOP and Bracketing perimetric strategies using a threshold spatial filter
Gonzalez de la Rosa M; Gonzalez-Hernandez M; Diaz Aleman T; Sanchez Mendez M
Graefe's Archive for Clinical and Experimental Ophthalmology 2007; 245: 1303-1309 (IGR: 9-3)


19337 Application of octopus 101 GKP kinetic and static automated perimetry in the diagnosis of the primary open angle glaucoma
Zhong Y; Shi W; Zhao P; Ai F-R; Wang R-Y
Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2007; 29: 413-417 (IGR: 9-3)


19644 Structure versus function in glaucoma: An application of a linear model
Hood DC; Anderson SC; Wall M; Kardon RH
Investigative Ophthalmology and Visual Science 2007; 48: 3662-3668 (IGR: 9-3)


19307 Relationship between standard automated perimetry and HRT, OCT and GDx in normal, ocular hypertensive and glaucomatous subjects
Lopez-Pena MJ; Ferreras A; Polo V; Larrosa JM; Honrubia FM
Archivos de la Sociedad Española de Oftalmologia 2007; 82: 197-208 (IGR: 9-3)


18059 Severity of visual field loss and health-related quality of life
McKean-Cowdin R; Varma R; Wu J; Hays RD; Azen SP; Los Angeles Latino Eye Study Group
American Journal of Ophthalmology 2007; 143: 1013-1023 (IGR: 9-2)


18110 The normal age-corrected and reaction time-corrected isopter derived by semi-automated kinetic perimetry
Vonthein R; Rauscher S; Paetzold J; Nowomiejska K; Krapp E; Hermann A; Sadowski B; Chaumette C; Wild JM; Schiefer U
Ophthalmology 2007; 114: 1065-1072 (IGR: 9-2)


18051 Relationship between foveal threshold and visual acuity using the Humphrey visual field analyzer
Flaxel CJ; Samples JR; Dustin L
American Journal of Ophthalmology 2007; 143: 875-877 (IGR: 9-2)


18031 Comparison of a five-degree visual field between two programs of different testing field range
Fujimoto N
American Journal of Ophthalmology 2007; 143: 866-867 (IGR: 9-2)


18106 Discriminating ability of Humphrey matrix perimetry in early glaucoma patients
Hong S; Chung W; Hong YJ; Seong GJ
Ophthalmologica 2007; 21: 195-199 (IGR: 9-2)


18102 Comparison of tendency-oriented perimetry and dynamic strategy in octopus perimetry as a screening tool in a clinical setting: a prospective study
Scherrer M; Fleischhauer JC; Helbig H; Johann Auf der Heide K; Sutter FK
Klinische Monatsblätter für Augenheilkunde 2007; 224: 252-254 (IGR: 9-2)


18239 Retesting visual fields: utilizing prior information to decrease test-retest variability in glaucoma
Turpin A; Jankovic D; McKendrick AM
Investigative Ophthalmology and Visual Science 2007; 48: 1627-1634 (IGR: 9-2)


17585 Variability of visual field measurements is correlated with the gradient of visual sensitivity
Wyatt HJ; Dul MW; Swanson WH
Vision Research 2007; 47: 925-936 (IGR: 9-2)


18113 Retinal nerve fiber layer damage as assessed by optical coherence tomography in eyes with a visual field defect detected by frequency doubling technology perimetry but not by standard automated perimetry
Kim TW; Zangwill LM; Bowd C; Sample PA; Shah N; Weinreb RN
Ophthalmology 2007; 114: 1053-1057 (IGR: 9-2)


17588 Changes in the visual field following laser in situ keratomileusis for myopia
Lleo-Perez A; Sanchis Gimeno J
Ophthalmic and Physiological Optics 2007; 27: 201-209 (IGR: 9-2)


17573 Visual field defects in high myopic glaucoma compared with moderate myopic glaucoma
Morishita S; Tanabe T; Yu S; Ojima T; Nukata M; Yoshimura N
Nippon Ganka Gakkai Zasshi 2007; 111: 89-94 (IGR: 9-2)


16860 Central corneal thickness and visual field loss in fellow eyes of patients with open-angle glaucoma
Rogers DL; Cantor RN; Catoira Y; Cantor LB; WuDunn D
American Journal of Ophthalmology 2007; 143: 159-161 (IGR: 9-1)


17045 Optic disc tomography and perimetry in controls, glaucoma suspects, and early and established glaucomas
de la Rosa MG; Gonzalez-Hernandez M; Lozano-Lopez V; Mendez MS; De La Vega RR
Optometry and Vision Science 2007; 84: 33-41 (IGR: 9-1)


16936 Retinotopic organization of primary visual cortex in glaucoma: Comparing fMRI measurements of cortical function with visual field loss
Duncan RO; Sample PA; Weinreb RN; Bowd C; Zangwill LM
Progress in Retinal and Eye Research 2007; 26: 38-56 (IGR: 9-1)


16900 Trained artificial neural network for glaucoma diagnosis using visual field data: a comparison with conventional algorithms
Bizios D; Heijl A; Bengtsson B
Journal of Glaucoma 2007; 16: 20-28 (IGR: 9-1)


16967 The relationship between nerve fiber layer and perimetry measurements
Harwerth RS; Vilupuru AS; Rangaswamy NV; Smith EL 3rd
Investigative Ophthalmology and Visual Science 2007; 48: 763-773 (IGR: 9-1)


16831 A new method for eyelid elevation in glaucoma patients with ptosis during automated perimetry testing
Nesher R; Almog Y; Gorck L; Epstein E; Trick GL
Journal of Glaucoma 2007; 16: 260-263 (IGR: 9-1)


17096 A cortical pooling model of spatial summation for perimetric stimuli
Pan F; Swanson WH
Journal of Vision 2006; 6: 1159-1171 (IGR: 9-1)


16876 Effect of cataract extraction on SITA perimetry in patients with glaucoma
Rehman Siddiqui MA; Khairy HA; Azuara-Blanco A
Journal of Glaucoma 2007; 16: 205-208 (IGR: 9-1)


16905 Classifying patterns of localized glaucomatous visual field defects on automated perimetry
Sihota R; Gupta V; Tuli D; Sharma A; Sony P; Srinivasan G
Journal of Glaucoma 2007; 16: 146-152 (IGR: 9-1)


16802 The effect of artificial tear administration on visual field testing in patients with glaucoma and dry eye
Yenice O; Temel A; Orum O
Eye 2007; 21: 214-217 (IGR: 9-1)


17067 Effects of lens opacity on AccuMap multifocal objective perimetry in glaucoma
Cai Y; Lim BA; Chi L; Por Y; Oen F; Chew P; Seah S
Chinese Journal of Ophthalmology 2006; 42: 972-976 (IGR: 9-1)


16962 Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertension and early glaucoma
Fortune B; Demirel S; Zhang X; Hood DC; Patterson E; Jamil A; Mansberger SL; Cioffi GA; Johnson CA
Investigative Ophthalmology and Visual Science 2007; 48: 1173-1180 (IGR: 9-1)


17011 Relationship between visual field sensitivity and retinal nerve fiber layer thickness as measured by optical coherence tomography
Ajtony C; Balla Z; Somoskeoy S; Kovacs B
Investigative Ophthalmology and Visual Science 2007; 48: 258-263 (IGR: 9-1)


16921 Relationship of cerebral blood flow and central visual function in primary open-angle glaucoma
Harris A; Siesky B; Zarfati D; Haine CL; Catoira Y; Sines DT; McCranor L; Garzozi HJ
Journal of Glaucoma 2007; 16: 159-163 (IGR: 9-1)


16971 No apparent association between ocular perfusion pressure and visual field damage in normal-tension glaucoma patients
Kurita N; Tomidokoro A; Mayama C; Aihara M; Araie M
Japanese Journal of Ophthalmology 2006; 50: 547-549 (IGR: 9-1)


16924 Nonprogressive glaucomatous cupping and visual field abnormalities in young Chinese males
Doshi A; Kreidl KO; Lombardi L; Sakamoto DK; Singh K
Ophthalmology 2007; 114: 472-479 (IGR: 9-1)


16922 Predictive factors for open-angle glaucoma among patients with ocular hypertension in the European Glaucoma Prevention Study
European Glaucoma Prevention Study (EGPS) Group; Miglior S; Pfeiffer N; Torri V; Zeyen T; Cunha-Vaz J; Adamsons I
Ophthalmology 2007; 114: 3-9 (IGR: 9-1)


16953 Visual field and intraocular pressure asymmetry in the low-pressure glaucoma treatment study
Greenfield DS; Liebmann JM; Ritch R; Krupin T; Low-Pressure Glaucoma Study Group
Ophthalmology 2007; 114: 460-465 (IGR: 9-1)


16868 Correlations between retinal nerve fiber layer and visual field in eyes with nonarteritic anterior ischemic optic neuropathy
Deleon-Ortega J; Carroll KE; Arthur SN; Girkin CA
American Journal of Ophthalmology 2007; 143: 288-294 (IGR: 9-1)


16830 Atypical retinitis pigmentosa masquerading as primary open-angle glaucoma
Lin J -C; Vander JF; Martin M; Katz J
Journal of Glaucoma 2007; 16: 268-270 (IGR: 9-1)


17012 Monitoring glaucomatous visual field progression: the effect of a novel spatial filter
Strouthidis NG; Scott A; Viswanathan AC; Crabb DP; Garway-Heath DF
Investigative Ophthalmology and Visual Science 2007; 48: 251-257 (IGR: 9-1)


16798 Mean deviation fluctuation in eyes with stable Humphrey 24-2 visual fields
Tattersall CL; Vernon SA; Menon GJ
Eye 2007; 21: 362-366 (IGR: 9-1)


14459 Relationship between corneal thickness and severity of visual field loss in primary open-angle glaucoma
Meirelles SHS; Alvares RM; Botelho PB; Morais FB; Moreira PB; de Maalhaes Villela AC
Arquivos Brasileiros de Oftalmologia 2006; 69: 313-317 (IGR: 8-4)


15184 A comparison of algorithms for calculating glaucoma change probability confidence intervals
Meng S; Turpin A; Lazarescu M; Ivins J
Journal of Glaucoma 2006; 15: 405-413 (IGR: 8-4)


15129 Assessment of false positives with the Humphrey Field Analyzer II perimeter with the SITA Algorithm
Newkirk MR; Gardiner SK; Demirel S; Johnson CA
Investigative Ophthalmology and Visual Science 2006; 47: 4632-4637 (IGR: 8-4)


15302 K-Train-a computer-based, interactive training program with an incorporated certification system for practicing kinetic perimetry: evaluation of acceptance and success rate
Schiefer U; Nowomiejska K; Krapp E; Patzold J; Johnson CA
Graefe's Archive for Clinical and Experimental Ophthalmology 2006; 244: 1300-1309 (IGR: 8-4)


14917 Full threshold vs. SITA in glaucomatous patients undergoing automated perimetry for the first time
Schimiti RB; Arcieri ES; Avelino RR; Matsuo T; Costa VP
Arquivos Brasileiros de Oftalmologia 2006; 69: 145-150 (IGR: 8-4)


15093 Structure and function in glaucoma: The relationship between a functional visual field map and an anatomic retinal map
Strouthidis NG; Vinciotti V; Tucker AJ; Gardiner SK; Crabb DP; Garway-Heath DF
Investigative Ophthalmology and Visual Science 2006; 47: 5356-5362 (IGR: 8-4)


15076 How to assess the stability of glaucoma? Visual field
Nordmann J-P
Journal Français d'Ophtalmologie 2006; 29: 22-26 (IGR: 8-4)


14915 Sector-based analysis of the distribution of the neuroretinal rim by confocal scanning laser in the diagnosis of glaucoma
Pueyo V; Larrosa JM; Polo V; Perez Inigo A; Ferreras A; Honrubia FM
Archivos de la Sociedad Española de Oftalmologia 2006; 81: 135-140 (IGR: 8-4)


15258 Relative risk of progressive glaucomatous visual field loss in patients enrolled and not enrolled in a prospective longitudinal study
Henson DB; Shambhu S
Archives of Ophthalmology 2006; 124: 1405-1408 (IGR: 8-4)


14445 Improvement in glaucomatous visual field thresholds after reduction of intraocular pressure: Clinical vs. surgical treatment
Magacho L; Queiroz CF; Medeiros M; Lima FE; Magacho B; Avila M
Arquivos Brasileiros de Oftalmologia 2006; 69: 51-55 (IGR: 8-4)


14301 Is it possible to compensate for visual field defects?
Lachenmayr B
Ophthalmologe 2006; 103: 382-386 (IGR: 8-3)


14037 The relationship between retinal ganglion cell function and retinal nerve fiber thickness in early glaucoma
Ventura LM; Sorokac N; Santos Rde L; Feuer WJ; Porciatti V
Investigative Ophthalmology and Visual Science 2006; 47: 3904-3911 (IGR: 8-3)


14326 The relationship between peripapillary choroidal atrophy and visual field defects in open angle glaucoma
Duan X; Wang M; Jiang Y; Jiang B; Shi J; Tang C
Eye Science 2006; 22: 71-75 (IGR: 8-3)


13974 Correlation between hemifield visual field damage and corresponding parapapillary atrophy in normal-tension glaucoma
Kawano J; Tomidokoro A; Mayama C; Kunimatsu S; Tomita G; Araie M
American Journal of Ophthalmology 2006; 142: 40-45 (IGR: 8-3)


14295 Correlating structure with function in end-stage glaucoma
Blumenthal EZ; Horani A; Sasikumar R; Garudadri C; Udaykumar A; Thomas R
Ophthalmic Surgery Lasers and Imaging 2006; 37: 218-223 (IGR: 8-3)


14100 The association between glaucomatous visual fields and optic nerve head features in the Ocular Hypertension Treatment Study
Keltner JL; Johnson CA; Anderson DR; Levine RA; Fan J; Cello KE; Quigley HA; Budenz DL; Parrish RK; Kass MA
Ophthalmology 2006; 113: 1603-1612 (IGR: 8-3)


14325 Development and evaluation of a linear staircase strategy for the measurement of perimetric sensitivity
Malik R; Swanson WH; Garway-Heath DF
Vision Research 2006; 46: 2956-2967 (IGR: 8-3)


13959 Agreement and repeatability for standard automated perimetry and confocal scanning laser ophthalmoscopy in the diagnostic innovations in glaucoma study
Ng D; Zangwill LM; Racette L; Bowd C; Pascual JP; Bourne RR; Boden C; Weinreb RN; Sample PA
American Journal of Ophthalmology 2006; 142: 381-386 (IGR: 8-3)


14052 Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study
Sample PA; Medeiros FA; Racette L; Pascual JP; Boden C; Zangwill LM; Bowd C; Weinreb RN
Investigative Ophthalmology and Visual Science 2006; 47: 3381-3389 (IGR: 8-3)


14025 Decreased blood flow at neuroretinal rim of optic nerve head corresponds with visual field deficit in eyes with normal tension glaucoma
Sato EA; Ohtake Y; Shinoda K; Mashima Y; Kimura I
Graefe's Archive for Clinical and Experimental Ophthalmology 2006; 244: 795-801 (IGR: 8-3)


14101 Combining structural and functional testing for detection of glaucoma
Shah NN; Bowd C; Medeiros FA; Weinreb RN; Sample PA; Hoffmann EM; Zangwill LM
Ophthalmology 2006; 113: 1593-1602 (IGR: 8-3)


14147 Evaluation of a two-stage neural model of glaucomatous defect: an approach to reduce test-retest variability
Pan F; Swanson WH; Dul MW
Optometry and Vision Science 2006; 83: 499-511 (IGR: 8-3)


13716 Relationship between central corneal thickness and severity of glaucomatous visual field loss in a primary care population
Sullivan-Mee M; Halverson KD; Saxon GB; Saxon MC; Qualls C
Optometry 2006; 77: 40-46 (IGR: 8-2)


13798 Visual field defects and retinal ganglion cell losses in patients with glaucoma
Harwerth RS; Quigley HA
Archives of Ophthalmology 2006; 124: 853-859 (IGR: 8-2)


13810 Effect of eye testing order on automated perimetry results using the Swedish Interactive Threshold Algorithm standard 24-2
Barkana Y; Gerber Y; Mora R; Liebmann JM; Ritch R
Archives of Ophthalmology 2006; 124: 781-784 (IGR: 8-2)


13811 Intereye concordance in locations of visual field defects in primary open-angle glaucoma: diagnostic innovations in glaucoma study
Boden C; Hoffmann EM; Medeiros FA; Zangwill LM; Weinreb RN; Sample PA
Ophthalmology 2006; 113: 918-923 (IGR: 8-2)


13732 Improved automated perimetry performance following exposure to Mozart
Fiorelli VM; Kasahara N; Cohen R; Franca AS; Della Paolera M; Mandia C Jr; de Almeida GV
British Journal of Ophthalmology 2006; 90: 543-545 (IGR: 8-2)


13653 Modeling the sensitivity to variability relationship in perimetry
Gardiner SK; Demirel S; Johnson CA
Vision Research 2006; 46: 1732-1745 (IGR: 8-2)


13812 Test-retest variability in structural and functional parameters of glaucoma damage in the glaucoma imaging longitudinal study
Jampel HD; Vitale S; Ding Y; Quigley H; Friedman D; Congdon N; Zeimer R
Journal of Glaucoma 2006; 15: 152-157 (IGR: 8-2)


13813 A statistical approach to the evaluation of covariate effects on the receiver operating characteristic curves of diagnostic tests in glaucoma
Medeiros FA; Sample PA; Zangwill LM; Liebmann JM; Girkin CA; Weinreb RN
Investigative Ophthalmology and Visual Science 2006; 47: 2520-2527 (IGR: 8-2)


13573 The interrelationship between the sectorial disc and the visual field changes in patients with normal tension glaucoma
Ren ZQ; Qiao RH; Liu LN
Chinese Journal of Ophthalmology 2006; 42: 204-208 (IGR: 8-2)


13520 Enhanced Glaucoma Staging System (GSS 2) for classifying functional damage in glaucoma
Brusini P; Filacorda S
Journal of Glaucoma 2006; 15: 40-46 (IGR: 8-1)


13257 Correlation between glaucomatous hemifield scotomas and measurements of nerve fiber layer thickness using scanning laser polarimetry
Denk PO; Markovic M; Knorr M
Ophthalmologe 2005; 102: 957-967 (IGR: 8-1)


13352 Unsupervised learning with independent component analysis can identify patterns of glaucomatous visual field defects
Goldbaum MH
Transactions of the American Ophthalmological Society 2005; 103: 270-280 (IGR: 8-1)


13421 Relationship between patterns of visual field loss and retinal nerve fiber layer thickness measurements
Hoffmann EM; Medeiros FA; Sample PA; Boden C; Bowd C; Bourne RR; Zangwill LM; Weinreb RN
American Journal of Ophthalmology 2006; 141: 463-471 (IGR: 8-1)


13030 Normal values for Octopus tendency oriented perimetry in children 7 through 13 years old
Brown SM; Bradley JC; Monhart MJ; Baker DK
Graefe's Archive for Clinical and Experimental Ophthalmology 2005; 243: 886-893 (IGR: 7-3)


13183 Evaluation of the structure-function relationship in glaucoma
Gardiner SK; Johnson CA; Cioffi GA
Investigative Ophthalmology and Visual Science 2005; 46: 3712-3717 (IGR: 7-3)


13190 Association between localized visual field losses and thickness deviation of the nerve fiber layer in glaucoma
Horn FK; Mardin CY; Viestenz A; Junemann AG
Journal of Glaucoma 2005; 14: 419-425 (IGR: 7-3)


13054 Normal visual field test results following glaucomatous visual field end points in the Ocular Hypertension Treatment Study
Keltner JL; Johnson CA; Levine RA; Fan J; Cello KE; Kass MA; Gordon MO
Archives of Ophthalmology 2005; 123: 1201-1206 (IGR: 7-3)


12724 Early detection of glaucomatous visual field loss: why, what, where, and how
Mansberger SL; Demirel S
Ophthalmology Clinics of North America 2005; 18: 365-373 (IGR: 7-3)


13168 Scoring of visual field measured through Humphrey perimetry: principal component varimax rotation followed by validated cluster analysis
Nordmann JP; Mesbah M; Berdeaux G
Investigative Ophthalmology and Visual Science 2005; 46: 3169-3176 (IGR: 7-3)


13043 Differences in visual function and optic nerve structure between healthy eyes of blacks and whites
Racette L; Boden C; Kleinhandler SL; Girkin CA; Liebmann JM; Zangwill LM; Medeiros FA; Bowd C; Weinreb RN; Wilson MR
Archives of Ophthalmology 2005; 123:1547-1553 (IGR: 7-3)


13013 Relationships between standard automated perimetry, HRT confocal scanning laser ophthalmoscopy, and GDx VCC scanning laser polarimetry
Reus NJ; Lemij HG
Investigative Ophthalmology and Visual Science 2005; 46: 4182-4188 (IGR: 7-3)


12723 Relationship between findings by GDxVCC and Humphery Field Analyzer
Shimamura T; Umeda T; Izawa Y; Nagayama M; Ohtsuki H
Japanese Journal of Clinical Ophthalmology 2005; 59: 835-838 (IGR: 7-3)


13064 Feasibility and outcome of automated static perimetry in children using continuous light increment perimetry (CLIP) and fast threshold strategy
Wabbels BK; Wilscher S
Acta Ophthalmologica Scandinavica 2005; 83: 664-669 (IGR: 7-3)


12721 Post-examination processing in the SITA standard algorithm compromises the advantage of a faster patient testing time
Carrillo MM; Trope GE; Flanagan JG; Buys YM
Annals of ophthalmology (Skokie, Ill.) 2005; 37: 91-94 (IGR: 7-3)


12722 Influence of age, race, sex, and socioeconomic status on false-negative rates of visual fields in glaucoma
Song J; Lee PP; Stinnett SS; Allingham RR; Kooner KS
Asian Journal of Ophthalmology 2005; 7: 101-107 (IGR: 7-3)


13002 Continuous light increment perimetry compared to full threshold strategy in glaucoma
Wabbels BK; Diehm S; Kolling G
European Journal of Ophthalmology 2005; 15: 722-729 (IGR: 7-3)


12533 Relationship of SITA and full-threshold standard perimetry to frequency-doubling technology perimetry in glaucoma
Boden C; Pascual J; Medeiros FA; Aihara M; Weinreb RN; Sample PA
Investigative Ophthalmology and Visual Science 2005; 46: 2433-2439 (IGR: 7-2)


12385 Effect of cataract extraction on the visual fields of patients with glaucoma
Carrillo MM; Artes PH; Nicolela MT; Leblanc RP; Chauhan BC
Archives of Ophthalmology 2005; 123: 929-932 (IGR: 7-2)


12170 Learning effect in computerized perimetry
Danielescu C; Chiselita D
Oftalmologia 2005; 49: 36-40 (IGR: 7-2)


12414 Comparison of retinal nerve fibre layer thickness and visual field loss between different glaucoma groups
Galvao Filho RP; Vessani RM; Susanna R Jr.
British Journal of Ophthalmology 2005; 89: 1004-1007 (IGR: 7-2)


12130 Integrated visual fields: a new approach to measuring the binocular field of view and visual disability
Crabb DP; Viswanathan AC
Graefe's Archive for Clinical and Experimental Ophthalmology 2005; 243: 210-216 (IGR: 7-1)


12003 Optic disk ovality as an index of tilt and its relationship to myopia and perimetry
Tay E; Seah SK; Chan SP; Lim AT; Chew SJ; Foster PJ; Aung T
American Journal of Ophthalmology 2005; 139: 247-252 (IGR: 7-1)


11679 Longitudinal changes in the visual field and optic disc in glaucoma
Artes PH; Chauhan BC
Progress in Retinal and Eye Research 2005; 24: 333-354 (IGR: 7-1)


12073 An application of threshold-versus-intensity functions in automated static perimetry
Herse P
Vision Research 2005; 45: 461-468 (IGR: 7-1)


12039 Evaluation of two Humphrey perimetry programs: Full threshold and SITA standard testing strategy for learning effect
Yenice O; Temel A
European Journal of Ophthalmology 2005; 15: 209-212 (IGR: 7-1)


11249 A practical approach to measuring the visual field component of fitness to drive
Crabb DP; Fitzke FW; Hitchings RA; Viswanathan AC
British Journal of Ophthalmology 2004; 88: 1191-1196 (IGR: 6-3)


11474 Appearance of the pattern deviation map as a function of change in area of localized field loss
Asman P; Wild JM; Heijl A
Investigative Ophthalmology and Visual Science 2004; 45: 3099-3106 (IGR: 6-3)


11444 Visual field attention is reduced by concomitant hands-free conversation on acellular telephone
Barkana Y; Zadok D; Morad Y; Avni I
American Journal of Ophthalmology 2004; 138: 347-353 (IGR: 6-3)


11247 A method for comparing electrophysiological, psychophysical, and structuralmeasures of glaucomatous damage
Greenstein VC; Thienprasiddhi P; Ritch R; Liebmann JM; Hood DC
Archives of Ophthalmology 2004; 22: 1276-1284 (IGR: 6-3)


11362 Visual field changes after cataract extraction: the AGIS experience
Koucheki B; Nouri-Mahdavi K; Patel G; Gaasterland D; Caprioli J
American Journal of Ophthalmology 2004; 138: 1022-1028 (IGR: 6-3)


11234 Prediction of visual field progression in glaucoma
Nouri-Mahdavi K; Hoffman D; Gaasterland D; Caprioli J
Investigative Ophthalmology and Visual Science 2004; 45: 4346-4351 (IGR: 6-3)


11528 Intereye differences of false-negative response in patients with unilateral glaucomatous visual field defect
Wu J; Wang J; Wang D; Kang J
Chinese Ophthalmic Research 2004; 22: 412-414 (IGR: 6-3)


10533 Effects of moderate smoking on the central visual field
Akarsu C; Yazici B; Taner P; Ergin A
Acta Ophthalmologica Scandinavica 2004; 82: 432-5 (IGR: 6-2)


10828 Using unsupervised learning with variational bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects
Sample PA; Chan K; Boden C; Lee TW; Blumenthal EZ; Weinreb RN; Bernd A; Pascual J; Hao J; Sejnowski T
Investigative Ophthalmology and Visual Science 2004; 45: 2596-605 (IGR: 6-2)


10919 Summation of biocular visual field in glaucoma patients
Yamakawa Y; Shoji N; Kawai H; Tsutsui K; Shimizu K
Japanese Journal of Clinical Ophthalmology 2004; 58: 1193-1198 (IGR: 6-2)


10083 Sensitivity and specificity of the 76-suprathreshold visual field test to detect eyes with visual field defect by Humphrey threshold testing in a population-based setting: the Thessaloniki eye study
Topouzis F; Coleman AL; Yu F; Mavroudis L; Anastasopoulos E; Koskosas A; Pappas T; Dimitrakos S; Wilson MR
American Journal of Ophthalmology 2004; 137: 420-425 (IGR: 6-1)


10251 The relationship between standard automated perimetry and GDx VCC measurements
Reus NJ; Lemij HG
Investigative Ophthalmology and Visual Science 2004; 45: 840-845 (IGR: 6-1)


10383 Correlation between glaucomatous hemifield scotomas in white-on-white perimetry and blue-on-yellow perimetry using the oculus twinfield perimeter
Denk PO; Markovic M; Knorr M
Klinische Monatsblätter für Augenheilkunde 2004; 221: 109-115 (IGR: 6-1)


10382 Relationship between indices of Humphrey perimetry and frequency doubling technology perimetry in glaucoma
Fukushima A; Shirakashi M; Yaoeda K; Funaki S; Funaki H; Ofuchi N; Abe H
Journal of Glaucoma 2004; 13: 114-119 (IGR: 6-1)


10384 Reducing noise in suspected glaucomatous visual fields by using a new spatial filter
Gardiner SK; Crabb DP; Fitzke FW; Hitchings RA
Vision Research 2004; 44: 839-848 (IGR: 6-1)


10381 Increased rate of visual field loss associated with larger initial visual field threshold values on follow-up of open-angle glaucoma
Schwartz B; Takamoto T; Martin J
Journal of Glaucoma 2004; 13: 120-129 (IGR: 6-1)


10380 The effect of attention on conventional automated perimetry and luminance size threshold perimetry
Wall M; Woodward KR; Brito CF
Investigative Ophthalmology and Visual Science 2004; 45: 342-350 (IGR: 6-1)


10379 Interocular asymmetry of visual field defects in primary open angle glaucoma and primary angle-closure glaucoma
Wang JC; Gazzard G; Foster PJ; Devereux JG; Oen FT; Chew PT; Khaw PT; Seah SK
Eye 2004; 18: 365-368 (IGR: 6-1)


10513 Reliability of successive automated static perimetry
Wu JS; Wang DB; Wang JH
Chinese Journal of Ophthalmology 2003; 39: 731-735 (IGR: 6-1)


9654 Associations between glaucomatous visual field loss and participation in activities of daily living
Noe G; Ferraro J; Lamoureux E; Rait J; Keeffe JE
Clinical and Experimental Ophthalmology 2003; 31: 482-6 (IGR: 5-3)


9661 Corneal thickness as a risk factor for visual field loss in patients with preperimetric glaucomatous optic neuropathy
Medeiros FA; Sample PA; Zangwill LM; Bowd C; Aihara M; Weinreb RN
American Journal of Ophthalmology 2003; 136: 805-813 (IGR: 5-3)


9702 A comparison of visual field and optic disc appearance depending on the peak intraocular pressure in patients with normal-tension glaucoma
Ishikawa K; Tanino T; Ohtake Y; Kimura I; Miyata H; Mashima Y
Nippon Ganka Gakkai Zasshi 2003; 107: 433-439 (IGR: 5-3)


9693 Visual field and optic disc progression in patients with different types of optic disc damage
Nicolela MT; McCormick TA; Drance SM; Ferrier SN; Leblanc RP; Chauhan BC
Ophthalmology 2003; 110: 2178-2184 (IGR: 5-3)


9756 Anatomy of a supergroup: does a criterion of normal perimetric performance generate a supernormal population?
Anderson AJ; Johnson CA
Investigative Ophthalmology and Visual Science 2003; 44: 5043-5048 (IGR: 5-3)


9760 Evaluating several sources of variability for standard and SWAP visual fields in glaucoma patients, suspects, and normals
Blumenthal EZ; Sample PA; Berry CC; Lee AC; Girkin CA; Zangwill L; Caprioli J; Weinreb RN
Ophthalmology 2003; 110: 1895-1902 (IGR: 5-3)


9755 Comparison of long-term fluctuations: laser scanning tomography versus automated perimetry
Funk J; Mueller H
Graefe's Archive for Clinical and Experimental Ophthalmology 2003; 241: 721-724 (IGR: 5-3)


9762 Correlation analysis of visual field thresholds and scanning laser ophthalmoscopic optic nerve head measurements in glaucoma
Gulati V; Agarwal HC; Sihota R; Saxena R
Ophthalmic and Physiological Optics 2003; 23: 233-242 (IGR: 5-3)


9758 The correlation between optic nerve head topographic measurements, peripapillary nerve fibre layer thickness, and visual field indices in glaucoma
Lan YW; Henson DB; Kwartz AJ
British Journal of Ophthalmology 2003; 87: 1135-1141 (IGR: 5-3)


9761 Patterns of visual field defects in chronic angle-closure glaucoma with different disease severity
Lau LI; Liu CJ; Chou JC; Hsu WM; Liu JH
Ophthalmology 2003; 110: 1890-1894 (IGR: 5-3)


9757 Properties of perimetric threshold estimates from full threshold, ZEST, and SITA-like strategies, as determined by computer simulation
Turpin A; McKendrick AM; Johnson CA; Vingrys AJ
Investigative Ophthalmology and Visual Science 2003; 44: 4787-4795 (IGR: 5-3)


9759 Comparison of different methods for detecting glaucomatous visual field progression
Vesti E; Johnson CA; Chauhan BC
Investigative Ophthalmology and Visual Science 2003; 44: 3873-3879 (IGR: 5-3)


9784 Relationship of optic disc topography and visual function in patients with large cup-to-disc ratios
Mansberger SL; Zangwill LM; Sample PA; Choi D; Weinreb RN
American Journal of Ophthalmology 2003; 136: 888-894 (IGR: 5-3)


9805 Ocular hemodynamics and glaucoma prognosis: a color Doppler imaging study
Galassi F; Sodi A; Ucci F; Renieri G; Pieri B; Baccini M
Archives of Ophthalmology 2003; 121: 1711-1715 (IGR: 5-3)


9199 Standard perimetry
Anderson DR
Ophthalmology Clinics of North America 2003; 16: 205-212 (IGR: 5-2)


9194 Intraocular pressure and visual field loss in primary angle closure and primary open angle glaucomas
Gazzard G; Foster PJ; Devereux JG; Oen F; Chew P; Khaw PT; Seah S
British Journal of Ophthalmology 2003; 87: 720-725 (IGR: 5-2)


9196 The collaborative initial glaucoma treatment study: baseline visual field and test-retest variability.
Gillespie BW; Musch DC; Guire KE; Mills RP; Lichter PR; Janz NK; Wren PA; CIGTS Study Group
Investigative Ophthalmology and Visual Science 2003; 44: 2613-2620 (IGR: 5-2)


9201 Measuring visual field progression in the Early Manifest Glaucoma Trial
Heijl A; Leske C; Bengtsson B; Hussein M; EMGT Group
Acta Ophthalmologica Scandinavica 2003; 81: 286-293 (IGR: 5-2)


9191 Classification of visual field abnormalities in the ocular hypertension treatment study
Keltner JL; Johnson CA; Cello KE; Edwards MA; Bandermann SE; Kass MA; Gordon MO; Ocular Hypertension Treatment Study Group
Archives of Ophthalmology 2003; 121: 643-650 (IGR: 5-2)


9192 Agreement between frequency doubling perimetry and static perimetry in eyes with high tension glaucoma and normal tension glaucoma
Kogure S; Toda Y; Crabb DP; Kashiwagi K; Fitzke FW; Tsukahara S
British Journal of Ophthalmology 2003; 87: 604-608 (IGR: 5-2)


9195 A comparison of perimetric results with the Medmont and Humphrey perimeters
Landers J; Sharma A; Goldberg I; Graham S
British Journal of Ophthalmology 2003; 87: 690-694 (IGR: 5-2)


9197 A statistical model for the evaluation of sensory tests in glaucoma, depending on optic disc damage
Stroux A; Korth M; Jünemann A; Jonas JB; Horn F; Ziegler A; Martus P
Investigative Ophthalmology and Visual Science 2003; 44: 2879-2884 (IGR: 5-2)


9193 Interobserver agreement on visual field progression in glaucoma: a comparison of methods
Viswanathan AC; Crabb DP; McNaught AI; Westcott MC; Kamal D; Garway-Heath DF; Fitzke FW; Hitchings RA
British Journal of Ophthalmology 2003; 87: 726-730 (IGR: 5-2)


8378 The relationship between visual disability and visual field in patients with glaucoma
Sumi I; Shirato S; Matsumoto S; Araie M
Ophthalmology 2003; 110: 332-339 (IGR: 5-1)


8394 Combined use of frequency doubling perimetry and polarimetric measurements of retinal nerve fiber layer in glaucoma detection
Horn FK; Nguyen NX; Mardin CY; Jünemann AG
American Journal of Ophthalmology 2003; 135: 160-168 (IGR: 5-1)


8429 Misleading statistical calculations in far-advanced glaucomatous visual field loss
Blumenthal EZ; Sapir-Pichhadze R
Ophthalmology 2003; 110: 196-200 (IGR: 5-1)


8618 Glaucomatous visual field defects in patients with migraine
Comoglu S; Yarangümeli A; Gürbüz Köz Ö; Elhan AH; Kural G
Journal of Neurology 2003; 250: 201-206 (IGR: 5-1)


8620 A method for detecting progression in glaucoma patients with deep, localized perimetric defects
Corallo G; Gandolfo E
European Journal of Ophthalmology 2003; 13: 49-56 (IGR: 5-1)


8647 Multicenter evaluation of tendency-oriented perimetry (TOP) using the G1 grid
Gonzales de la Rosa M; Morales J; Dannheim F; Papst E; Papst N; Seilers T; Matsumoto C; Lachkar Y; Mermoud A; Prunte C
European Journal of Ophthalmology 2003; 13: 32-41 (IGR: 5-1)


8426 Neural networks to identify glaucomatous visual field progression
Lin A; Hoffman D; Gaasterland DE; Caprioli J
American Journal of Ophthalmology 2003; 135: 49-54 (IGR: 5-1)


8428 Appearance of the frequency doubling stimulus in normal subjects and patients with glaucoma
McKendrick AM; Anderson AJ; Johnson CA; Fortune B
Investigative Ophthalmology and Visual Science 2003; 44: 1111-1116 (IGR: 5-1)


8770 Alternative method of evaluating visual field deterioration in very advanced glaucomatous eyes by microperimetry
Okada K; Watanabe W; Koike I; Tsumamoto Y; Mishima HK
Japanese Journal of Ophthalmology 2003; 47: 178-181 (IGR: 5-1)


8789 Open-angle glaucoma: variations in the intraocular pressure after visual field examination
Recupero SM; Contestabile MT; Taverniti L; Villani GM; Recupero V
Journal of Glaucoma 2003; 12: 114-118 (IGR: 5-1)


8427 Measurement error of visual field tests in glaucoma
Spry PG; Johnson CA; McKendrick AM; Turpin A
British Journal of Ophthalmology 2003; 87: 107-112 (IGR: 5-1)


8607 Humphrey visual field and frequency doubling perimetry in the diagnosis of early glaucoma
Chandrasekhar G; Kunjam V; Rao VS; Nutheti R
Indian Journal of Ophthalmology 2003; 51: 35-38 (IGR: 5-1)


8430 Development of an automatic discrimination system for glaucomatous visual fields based on neuro-fuzzy nets
Garcia-Feijoo J; Carmona-Suarez E; Gallardo LM; Gonzalez-Hernandez M; Fernandez-Vidal A; Gonzalez-De-La-Rosa M; Mira-Mira J; Garcia-Sanchez J
Archivos de la Sociedad Española de Oftalmologia 2002; 77: 669-676 (IGR: 5-1)


8781 The endothelin-1 level in blood serum of patients with primary open angle glaucoma and its influence on the static perimetry and GDx changes
Pienkowska-Machoy E; Millo B
Klinika Oczna 2002; 104: 214-217 (IGR: 5-1)


8813 Evaluation of changes in the visual field in glaucoma during examination with white and colored stimuli
Skorkovska S; Stara S; Koci J
?eska a Slovenska Oftalmologie 2003; 59: 28-32 (IGR: 5-1)


8183 Visual field loss in patients with glaucoma who have asymmetric peripapillary focal arteriolar narrowing
Lam A; Bunya V; Piltz-Seymour JR
Archives of Ophthalmology 2000; 120: 1494-7 (IGR: 4-3)


8155 Comparison of glaucomatous visual field defects using standard full threshold and Swedish interactive threshold algorithms
Budenz DL; Rhee P; Feuer WJ; McSoley J; Johnson CA; Anderson DR
Archives of Ophthalmology 2002; 120: 1136-1141 (IGR: 4-3)


3432 Image of optic nerve disc with laser scanning tomography and results of static perimetry in children with juvenile glaucoma
Koraszewska Matuszewska B; Filipek E; Samochowiec Donocik E; Pieczara E; Dudzinski A
Klinika Oczna 2002; 104: 37-40 (IGR: 4-2)


3486 Properties of perimetric threshold estimates from full threshold, SITA standard, and SITA fast strategies
Artes PH; Iwase A; Ohno Y; Kitazawa Y; Chauhan BC
Investigative Ophthalmology and Visual Science 2002; 43: 2654-2659 (IGR: 4-2)


3487 Detection of optic neuropathy in glaucomatous eyes with normal standard visual fields using a test battery of short-wavelength automated perimetry and pattern electroretinography
Bayer AU; Maag KP; Erb C
Ophthalmology 2002; 109: 1350-1361 (IGR: 4-2)


3488 The structure-function relationship in eyes with glaucomatous visual field loss that crosses the horizontal meridian
Boden C; Sample PA; Boehm AG; Vasile C; Akinepalli R; Weinreb RN
Archives of Ophthalmology 2002; 120: 907-912 (IGR: 4-2)


3489 Sensitivity and specificity of the Swedish interactive threshold algorithm for glaucomatous visual field defects
Budenz DL; Rhee P; Feuer WJ; McSoley J; Johnson CA; Anderson DR
Ophthalmology 2002; 109: 1052-1058 (IGR: 4-2)


3490 Examination of different pointwise linear regression methods for determining visual field progression
Gardiner SK; Crabb DP
Investigative Ophthalmology and Visual Science 2002; 43: 1400-1407 (IGR: 4-2)


3491 Frequency of testing for detecting visual field progression
Gardiner SK; Crabb DP
British Journal of Ophthalmology 2002; 86: 560-564 (IGR: 4-2)


3492 Relationship between electrophysiological, psychophysical, and anatomical measurements in glaucoma
Garway Heath DF; Holder GE; Fitzke FW; Hitchings RA
Investigative Ophthalmology and Visual Science 2002; 43: 2213-2220 (IGR: 4-2)


3493 Comparison of two fast strategies, SITA Fast and TOP, for the assessment of visual fields in glaucoma patients
King AJ; Taguri A; Wadood AC; Azuara-Blanco A
Graefe's Archive for Clinical and Experimental Ophthalmology 2002; 240: 481-487 (IGR: 4-2)


3494 Infrequent confirmation of visual field progression
Lee AC; Sample PA; Blumenthal EZ; Berry C; Zangwill L; Weinreb RN
Ophthalmology 2002; 109: 1059-1065 (IGR: 4-2)


3495 Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields
Sample PA; Goldbaum MH; Chan K; Boden C; Lee TW; Vasile C; Boehm AG; Sejnowski T; Johnson CA; Weinreb RN
Investigative Ophthalmology and Visual Science 2002; 43: 2660-2665 (IGR: 4-2)


3496 Interpreting glaucoma progression by white-on-white perimetry
Tan JC; Franks WA; Hitchings RA
Graefe's Archive for Clinical and Experimental Ophthalmology 2002; 240: 585-592 (IGR: 4-2)


3631 Funduscopic findings as related to visual field in glaucoma
Ichioka I
Japanese Journal of Clinical Ophthalmology 2002; 56: 737-742 (IGR: 4-2)


6604 Correlation of the binocular visual field with patient assessment of vision
Jampel HD; Friedman DS; Quigley HA; Miller R
Investigative Ophthalmology and Visual Science 2002; 43: 1059-1067 (IGR: 4-1)


6606 Visual field assessment and the Austroads driving standard
McLean IM; Mueller E; Buttery RG; Mackey DA
Clinical and Experimental Ophthalmology 2002; 30: 3-7 (IGR: 4-1)


6671 Visual field defects and neural losses from experimental glaucoma
Harwerth RS; Crawford MLJ; Frishman LJ; Viswanathan S; Smith III EL; Carter Dawson L
Progress in Retinal and Eye Research 2002; 21: 91-125 (IGR: 4-1)


6721 Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry
Goldbaum MH; Sample PA; Chan K; Williams J; Lee TW; Blumenthal EZ; Girkin CA; Zangwill LM; Bowd C; Sejnowski T
Investigative Ophthalmology and Visual Science 2002; 43: 162-169 (IGR: 4-1)


6722 Quantification of interpoint topographic correlations of threshold values in glaucomatous visual fields
Gonzalez de la Rosa M; Gonzalez Hernandez M; Abraldes M; Azuara Blanco A
Journal of Glaucoma 2002; 11: 30-34 (IGR: 4-1)


6723 Recent developments in automated perimetry in glaucoma diagnosis and management
Johnson CA
Current Opinions in Ophthalmology 2002; 13: 77-84 (IGR: 4-1)


6724 Baseline visual field characteristics in the ocular hypertension treatment study
Johnson CA; Keltner JL; Cello KE; Edwards M; Kass MA; Gordon MO; Budenz DL; Gaasterland DE; Werner E
Ophthalmology 2002; 109: 432-437 (IGR: 4-1)


6725 Comparisons of risk factors and visual field changes between juvenile-onset and late-onset primary open-angle glaucoma
Ko YC; Liu CJ; Chou JC; Chen MR; Hsu WM; Liu JH
Ophthalmologica 2002; 216: 27-32 (IGR: 4-1)


6726 Predictive value of short-wavelength automated perimetry: a 3-year follow-up study
Polo V; Larrosa JM; Pinilla I; Perez S; Gonzalvo F; Honrubia FM
Ophthalmology 2002; 109: 761-765 (IGR: 4-1)


6727 Long-term follow-up of visual field progression after trabeculectomy in progressive normal-tension glaucoma
Shigeeda T; Tomidokoro A; Araie M; Koseki N; Yamamoto S
Ophthalmology 2002; 109: 766-770 (IGR: 4-1)


6728 Standard achromatic perimetry, short wavelength automated perimetry, and frequency doubling technology for detection of glaucoma damage
Soliman MAE; de Jong LAMS; Ismaeil Al Araby A; Van Den Berg TJTP; de Smet MD
Ophthalmology 2002; 109: 444-454 (IGR: 4-1)


6729 Identification of progressive glaucomatous visual field loss
Spry PGD; Johnson CA
Survey of Ophthalmology 2002; 47: 158-173 (IGR: 4-1)


6730 Spatial and temporal processing of threshold data for detection of progressive glaucomatous visual field loss
Spry PGD; Johnson CA; Bates AB; Turpin A; Chauhan BC
Archives of Ophthalmology 2002; 120: 173-180 (IGR: 4-1)


6731 Sensitivity differences between real-patient and computer-stimulated visual fields
Vesti E; Spry PGD; Chauhan BC; Johnson CA
Journal of Glaucoma 2002; 11: 35-45 (IGR: 4-1)


6732 Age-corrected normal values for perimetry
Wohlrab TM; Erb C; Rohrbach JM
Ophthalmologica 2002; 216: 96-100 (IGR: 4-1)


18471 Influence of retractive correction on peripheral visual field in static perimetry
Koller G; Haas A; Zulauf M; Koerner F; Mojon D
Graefe's Archive for Clinical and Experimental Ophthalmology 2001; 239: 759-762 (IGR: 3-3)


18470 Comparison of local differential luminance sensitivity (dls) between Oculus Twinfield Perimeter and Humphrey Field Analyzer 630 (HFA I) in normal volunteers of varying ages
Lorch L; Dietrich TJ; Schwabe R; Schiefer U
Klinische Monatsblätter für Augenheilkunde 2001; 218: 782-794 (IGR: 3-3)


18469 Comparison of visual field defects between primary open-angle glaucoma and chronic primary angle-closure glaucoma in the early or moderate stage of the disease
Rhee K; Kim YY; Nam DH; Jung HR
Korean Journal of Ophthalmology 2001; 15: 27-31 (IGR: 3-3)


18468 Influence of surgical reduction of intraocular pressure on regions of the visual field with different levels of sensitivity
Salim S; Paranhos A; Lima M; Shields MB
American Journal of Ophthalmology 2001; 132: 496-500 (IGR: 3-3)


18467 Localised changes in glaucomatous visual fields after trabeculectomy
Vuori ML; Vainio-Jylhä E; Viitanen TT
Acta Ophthalmologica Scandinavica 2001; 79: 468-471 (IGR: 3-3)


6379 The visual field following acute primary angle closure
Aung T; Looi ALG; Chew PTK
Acta Ophthalmologica Scandinavica 2001; 79: 298-300 (IGR: 3-2)


6380 Influence of cataract surgery on automated perimetry in patients with glaucoma
Hayashi K; Hayashi H; Nakao F; Hauashi F
American Journal of Ophthalmology 2001; 132: 41-46 (IGR: 3-2)


6381 Overcoming the language barrier in visual field testing
Nesher R; Ever-Hadini P; Epstein E; Stern Y; Assia E
Journal of Glaucoma 2001; 10: 203-205 (IGR: 3-2)


6382 Different strategies for Humphrey automated perimetry: FASTPAC, SITA standard and SITA fast in normal subjects and glaucoma patients
Roggen X; Herman K; Van Malderen L; Devos M; Spileers W
Bulletin de la Société Belge d'Ophtalmologie 2001; 279: 23-33 (IGR: 3-2)


15722 Mapping the visual field to the optic disc in normal tension glaucoma eyes
Garway-Heath DF; Poinoosawmy DP; Fitzke FW; Hitchings RA
Ophthalmology 2000; 107: 1809-1815 (IGR: 2-3)


15965 Criteria for progression of glaucoma in clinical management and in outcomestudies.
Anderson DR; Chauhan B; Johnson C; Katz J; Patella VM; Drance SM
American Journal of Ophthalmology 2000; 130: 827-829 (IGR: 2-3)


15721 Short-wavelength automated perimetry and standard perimetry in the detection of progressive optic disc cupping
Girkin CA; Emdadi A; Sample PA; Blumenthal EZ; Lee AC; Zangwill LM; Weinreb RN
Archives of Ophthalmology 2000; 118: 1231-1236 (IGR: 2-3)


15989 A study on the correlation between the structural parameter of optic disc and visual field in primary open-angle glaucoma
Pan Y; Li M
Chinese Journal of Ophthalmology 2000; 36: 275 (IGR: 2-3)


15872 The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration
The AGIS Investigators
American Journal of Ophthalmology 2000; 130: 429-440 (IGR: 2-3)


15730 Altitudinal visual field asymmetry is coupled with altered retinal circulation in patients with normal pressure glaucoma
Arend O; Remky A; Cantor LB; Harris A
British Journal of Ophthalmology 2000; 84: 1008-1012 (IGR: 2-3)


15893 Reliability of computerized perimetric threshold tests as assessed by reliability indices and threshold reproducibility in patients with suspect and manifest glaucoma
Bengtsson B
Acta Ophthalmologica Scandinavica 2000; 78: 519-522 (IGR: 2-3)


15860 The long-term fluctuation of the visual field in stable glaucoma
Hutchings N; Wild JM; Hussey MK; Flanagan JG; Trope GE
Investigative Ophthalmology and Visual Science 2000; 41: 3429-3436 (IGR: 2-3)


15864 Confirmation of visual field abnormalities in the Ocular Hypertension Treatment Study: Ocular Hypertension Treatment Study Group
Keltner JL; Johnson CA; Quigg JM; Cello KE; Kass MA; Gordon MO
Archives of Ophthalmology 2000; 118: 1187-1194 (IGR: 2-3)


15874 Retrobulbar hemodynamics in normal-tension glaucoma with asymmetric visual field change and asymmetric ocular perfusion pressure
Kondo Y; Niwa Y; Yamamoto T; Sawada A; Harris A; Kitazawa Y
American Journal of Ophthalmology 2000; 130: 454-460 (IGR: 2-3)


15720 Comparing a parallel PERG, automated perimetry, and frequency-doubling thresholds
Maddess T; James AC; Goldberg I; Wine S; Dobinson J
Investigative Ophthalmology and Visual Science 2000; 41: 3827-3832 (IGR: 2-3)


15823 New perimetric threshold test algorithm with dynamic strategy and tendency oriented perimetry (TOP) in glaucomatous eyes
Maeda H; Nakaura M; Negi A
Eye 2000; 14: 747-751 (IGR: 2-3)


15718 Correlation between static automated and scanning laser entoptic perimetry in normal subjects and glaucoma patients
Plummer DJ; Lopez A; Azen SP; Labree L; Bartsch DU; Sadun AA; Freeman WR
Ophthalmology 2000; 107: 1693-1701 (IGR: 2-3)


16006 Use of pattern standard deviation instead of corrected pattern standard deviation in Anderson's criteria
Thomas R; Paul P; Muliyil J
Journal of Glaucoma 2000; 9: 480-2 (IGR: 2-3)


6042 False-negative responses in glaucoma perimetry: indicators of patient performance or test reliability?
Bengtsson B; Heijl A
Investigative Ophthalmology and Visual Science 2000; 41: 2201-2204 (IGR: 2-2)


6043 Congruous homonymous hemianopia superimposing glaucomatous scotoma
Hashimoto M; Ohtsuka K; Nakamura Y; Satoh A
Neuro-Ophthalmology Japan 2000; 17: 71-75 (IGR: 2-2)


6044 Predicting binocular visual field sensitivity from monocular visual field results
Nelson-Quigg JM; Cello K; Johnson CA
Investigative Ophthalmology and Visual Science 2000; 41: 2212-2221 (IGR: 2-2)


6045 Sensitivity of Swedish interactive threshold algorithm compared with standard full threshold algorithm in Humphrey visual field testing
Sekhar GC; Naduvilath TJ; Lakkai M; Jayakumar AJ; Pandi GT; Mandal AK; Honavar SG
Ophthalmology 2000; 107: 1303-1308 (IGR: 2-2)


6046 Simulation of longitudinal threshold visual field data
Spry PG; Bates AB; Johnson CA; Chauhan BC
Investigative Ophthalmology and Visual Science 2000; 41: 2192-2200 (IGR: 2-2)


6047 Quantitative comparison of static perimetric strategies in early glaucoma: test-retest variability
Spry PGD; Henson DB; Sparrow JM; North RV
Journal of Glaucoma 2000; 9: 247-253 (IGR: 2-2)


5564 Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons
Kerrigan-Baumrind LA; Quigley HA; Pease ME; Kerrigan DF; Mitchell RS
Investigative Ophthalmology and Visual Science 2000; 41:741-748 (IGR: 2-1)


5595 Visual field defects and normal nerve fiber layer: may they coexist in primary open-angle glaucoma?
De Natale R; Marraffa M; Morbio R; Tomazzoli L; Bonomi L
Ophthalmologica 2000; 214: 119-121 (IGR: 2-1)


5611 Structural-functional relationships of the optic nerve in glaucoma (editorial)
Cioffi GA; Liebmann JM; Johnson CA; Weinreb RN
Journal of Glaucoma 2000; 9: 3-4 (IGR: 2-1)


5645 Comparison of long-term variability for standard and short-wavelength automated perimetry in stable glaucoma patients
Blumenthal EZ; Sample PA; Zangwill L; Lee AC; Kono Y; Weinreb RN
American Journal of Ophthalmology 2000; 129:309-313 (IGR: 2-1)


5646 Fellow eye prognosis in patients with severe visual field loss in one eye from chronic open-angle glaucoma
Chen PP; Bhandari A
Archives of Ophthalmology 2000; 118: 473-478 (IGR: 2-1)


5647 Glaucoma follow-up when converting from long to short perimetric threshold tests
Heijl A; Bengtsson B; Patella VM
Archives of Ophthalmology 2000; 118: 489-493 (IGR: 2-1)


5648 Response variability in the visual field: comparison of optic neuritis, glaucoma, ocular hypertension, and normal eyes
Henson DB; Chaudry S; Artes PH; Faragher EB; Ansons A
Investigative Ophthalmology and Visual Science 2000; 41:417-421 (IGR: 2-1)


5649 Clinical investigation: Quantitative analysis of visual field and optic disk in glaucoma: retinal nerve fiber bundle-associated analysis
Jünemann GM; Martus P; Wisse M; Jonas J
Graefe's Archive for Clinical and Experimental Ophthalmology 2000; 238: 306-314 (IGR: 2-1)


5650 A comparison of the pattern- and total deviation-based Glaucoma Change Probability programs
Katz J
Investigative Ophthalmology and Visual Science 2000; 41: 1012-1016 (IGR: 2-1)


5651 Comparison between tendency-oriented perimetry (TOP) and octopus threshold perimetry
Morales J; Weitzman ML; Gonzalez de la Rosa M
Ophthalmology 2000; 107:134-142 (IGR: 2-1)


5652 Rate of visual field loss in progressive glaucoma
Rasker MT; Van den Enden A; Bakker D; Hoyng PF
Archives of Ophthalmology 2000; 118: 481-488 (IGR: 2-1)


5653 Clinical evaluation with the 'Swedish Interactive Threshold Algorithm' (SITA)
Remky A; Arend O
Klinische Monatsblätter für Augenheilkunde 2000; 216: 143-147 (IGR: 2-1)


5654 Comparison of the Humphrey Swedish interactive thresholding algorithm (SITA) and full threshold strategies
Sharma AK; Goldberg I; Graham SL; Mohsin M
Journal of Glaucoma 2000; 9:20-27 (IGR: 2-1)


5655 Study of the contralateral eye in patients with glaucoma and a unilateral perimetric defect
Susanna R Jr; Galvao-Filho RP
Journal of Glaucoma 2000; 9:34-37 (IGR: 2-1)


5656 Limitations of the Glaucoma Hemifield Test in identifying early glaucomatous field loss
Zalta AH
Annals of Ophthalmology - Glaucoma 2000; 32:33-45 (IGR: 2-1)


15358 Parapapillary atrophy in patients with focal visual field loss
Emdadi A; Kono Y; Sample PA; Maskaleris G; Weinreb RN
American Journal of Ophthalmology 1999; 128: 595-600 (IGR: 1-3)


15382 Ganglion cell losses underlying visual field defects from experimental glaucoma
Harwerth RS; Carter-Dawson L; Shen F; Smith EL III; Crawford ML
Investigative Ophthalmology and Visual Science 1999; 40: 2242-2250 (IGR: 1-3)


15395 Kinetic and static fixation methods in automated threshold perimetry
Åsman P; Fingeret M; Robin A; Wild J; Pacey I; Greenfield DS; Liebmann JM; Ritch R
Journal of Glaucoma 1999; 8: 290-296 (IGR: 1-3)


15396 Perimetric defects after a single acute angle-closure glaucoma attack
Bonomi L; Marraffa M; Marchini G; Canali N
Graefe's Archive for Clinical and Experimental Ophthalmology 1999; 237: 908-914 (IGR: 1-3)


15397 A comparison of the Synemed Glaucoma and the Humphrey 30-2 threshold perimetry tests
Harwood LW; Remington LA
Journal of the American Optometric Association 1999; 70: 240-244 (IGR: 1-3)


15398 Diffuse loss of sensitivity in early glaucoma
Henson DB; Artes PH; Chauhan BC
Investigative Ophthalmology and Visual Science 1999; 40: 3147-3151 (IGR: 1-3)


15399 Methodological variations in estimating apparent progressive visual field loss in clinical trials of glaucoma treatment
Katz J; Congdon N; Friedman DS
Archives of Ophthalmology 1999; 117: 1137-1142 (IGR: 1-3)


15400 Comparison of 24-2 and 30-2 perimetry in glaucomatous and nonglaucomatous optic neuropathies
Khoury JM; Donahue SP; Lavin PJ; Tsai JC
Journal of Neuro-Ophthalmology 1999; 19: 100-188 (IGR: 1-3)


15401 Usefulness of gaze tracking during perimetry in glaucomatous eyes
Kunimatsu S; Suzuki Y; Shirato S; Araie M
Nippon Ganka Gakkai Zasshi 1999; 103: 748-753 (IGR: 1-3)


15402 A new rapid, perimetry test with dynamic strategy and a tendency oriented program (TOP) to detect glaucoma
Maeda H; Nakamura
Folia Ophthalmologica Japonica / Nihon Ganka Kiyo 1999; 50: 715-720 (IGR: 1-3)


15403 Comparative study of two classifications of glaucomatous perimetric deficits
Risse J-F; Dumause A; Hue B
Journal Français d'Ophtalmologie 1999; 22: 738-742 (IGR: 1-3)


15404 Comparative study of 2 classifications of glaucomatous perimetric deficits
Risse J-F; Dumause A; Hue B
Journal Français d'Ophtalmologie 1999; 22: 738-742 (IGR: 1-3)


5199 Relationship between parapapillary atrophy and visual field abnormality in primary open-angle glaucoma.
Kono Y; Zangwill L; Sample PA; Jonas JB; Emdadi A; Gupta N; Weinreb RN
American Journal of Ophthalmology 1999; 127: 674-680 (IGR: 1-2)


5224 Optic disc surface smoothness and visual field indices.
Rolando M; Macri A; Iester M
Graefe's Archive for Clinical and Experimental Ophthalmology 1999; 237: 372-376 (IGR: 1-2)


5249 Impact of intraocular pressure regulation on visual fields in open-angle glaucoma.
Bergea B; Bodin L; Svedbergh B
Ophthalmology 1999; 106: 997-1004 (IGR: 1-2)


5250 Clinical evaluation of Tendency Oriented Perimetry in Octopus perimeter
Horikoshi N; Osako M; Goto H; Tamura Y; Okano T
Japanese Journal of Clinical Ophthalmology 1999; 53: 889-893 (IGR: 1-2)


5251 (The effectiveness of glaucomatous visual field test using a size I stimulus)
Osako M; Osako S; Hashimoto K; Okano T
Nippon Ganka Gakkai Zasshi 1999; 103: 201-207 (IGR: 1-2)


5252 The SITA perimetric threshold algorithms in glaucoma
Wild JM; Pacey IE; O'Neill EC; Cunliffe IA
Investigative Ophthalmology and Visual Science 1999; 40: 1998-2009 (IGR: 1-2)


Issue 15-2

Change Issue


advertisement

Oculus