advertisement

Oculus

List of abstracts related to

86606 Pointwise Methods to Measure Long-term Visual Field Progression in Glaucoma
Salazar D; Morales E; Rabiolo A; Capistrano V; Lin M; Afifi AA; Yu F; Nouri-Mahdavi K; Caprioli J
JAMA ophthalmology 2020; 138: 536-543

Listed by Classification


6.20 Progression (2063 abstracts found)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Siesky B
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90508 Impact of Artifacts From Optical Coherence Tomography Retinal Nerve Fiber Layer and Macula Scans on Detection of Glaucoma Progression
Li A
American Journal of Ophthalmology 2021; 221: 235-245 (IGR: 21-3)


90573 The Relationship Between Corneal Hysteresis and Progression of Glaucoma After Trabeculectomy
Fujino Y
Journal of Glaucoma 2020; 29: 912-917 (IGR: 21-3)


90232 The Relationship Between Asymmetries of Corneal Properties and Rates of Visual Field Progression in Glaucoma Patients
Estrela T
Journal of Glaucoma 2020; 29: 872-877 (IGR: 21-3)


90510 Lifetime visual outcomes of patients undergoing trabeculectomy
Chen R
British Journal of Ophthalmology 2020; 0: (IGR: 21-3)


90775 Comparing the Rule of 5 to Trend-based Analysis for Detecting Glaucoma Progression on OCT
Thompson AC
Ophthalmology. Glaucoma 2020; 3: 414-420 (IGR: 21-3)


90534 The Trajectory of Glaucoma Progression in 2-Dimensional Structural-Functional Space
de Gainza A
Ophthalmology. Glaucoma 2020; 3: 466-474 (IGR: 21-3)


90422 Discovery and clinical translation of novel glaucoma biomarkers
Beykin G
Progress in Retinal and Eye Research 2020; 0: 100875 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Higashide T
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90166 Can Treatment With Citicoline Eyedrops Reduce Progression in Glaucoma? The Results of a Randomized Placebo-controlled Clinical Trial
Rossetti L
Journal of Glaucoma 2020; 29: 513-520 (IGR: 21-3)


90499 Predicting Lifetime Transition Risk of Severe Visual Field Defects Using Monte Carlo Simulation in Japanese Patients with Primary Open-Angle Glaucoma
Nitta K
Clinical Ophthalmology 2020; 14: 1967-1978 (IGR: 21-3)


90748 Effect of baseline test selection on glaucoma progression detection by optical coherence tomography-guided progression analysis
Kang DH
British Journal of Ophthalmology 2020; 0: (IGR: 21-3)


90113 Glaucomatous Progression After Lens Extraction in Primary Angle Closure Disease Spectrum
Song MK
Journal of Glaucoma 2020; 29: 711-717 (IGR: 21-3)


90762 Effect of medically lowering intraocular pressure in glaucoma suspects with high myopia (GSHM study): study protocol for a randomized controlled trial
Lin FB
Trials 2020; 21: 813 (IGR: 21-3)


90636 Development of a nomogram using fundus photography to predict glaucoma progression in patients showing disc hemorrhage
Kim S
Scientific reports 2020; 10: 14650 (IGR: 21-3)


90299 Wide-field Trend-based Progression Analysis of Combined Retinal Nerve Fiber Layer and Ganglion Cell Inner Plexiform Layer Thickness: A New Paradigm to Improve Glaucoma Progression Detection
Wu K
Ophthalmology 2020; 127: 1322-1330 (IGR: 21-3)


90002 A framework for assessing glaucoma progression using structural and functional indices jointly
Abu SL
PLoS ONE 2020; 15: e0235255 (IGR: 21-3)


90677 Clinical Predictors of the Region of First Structural Progression in Early Normal-tension Glaucoma
Lee JS
Korean Journal of Ophthalmology 2020; 34: 322-333 (IGR: 21-3)


89934 Impact of anxiety and depression on progression to glaucoma among glaucoma suspects
Berchuck S
British Journal of Ophthalmology 2020; 0: (IGR: 21-3)


90014 Association Between 17-β-Estradiol and Interleukin-8 and Visual Field Progression in Postmenopausal Women with Primary Angle Closure Glaucoma
Li S
American Journal of Ophthalmology 2020; 217: 55-67 (IGR: 21-3)


90232 The Relationship Between Asymmetries of Corneal Properties and Rates of Visual Field Progression in Glaucoma Patients
Estrela T
Journal of Glaucoma 2020; 29: 872-877 (IGR: 21-3)


90142 Application of the Sight Outcomes Research Collaborative Ophthalmology Data Repository for Triaging Patients With Glaucoma and Clinic Appointments During Pandemics Such as COVID-19
Bommakanti NK
JAMA ophthalmology 2020; 138: 974-980 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
An D
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90269 Risk Factors Associated with Structural Progression in Normal-Tension Glaucoma: Intraocular Pressure, Systemic Blood Pressure, and Myopia
Lee K
Investigative Ophthalmology and Visual Science 2020; 61: 35 (IGR: 21-3)


90150 Compressive optic neuropathy. Not everything that progresses is glaucoma
Sotelo-Monge KG
Archivos de la Sociedad Espa˝ola de Oftalmologia 2020; 0: (IGR: 21-3)


89992 Improving the Detection of Glaucoma and Its Progression: A Topographical Approach
Hood DC
Journal of Glaucoma 2020; 29: 613-621 (IGR: 21-3)


90134 Comparison of visual field progression in new-diagnosed primary open-angle and exfoliation glaucoma patients in Sweden
Ayala M
BMC Ophthalmology 2020; 20: 322 (IGR: 21-3)


90150 Compressive optic neuropathy. Not everything that progresses is glaucoma
Espinosa-Barberi G
Archivos de la Sociedad Espa˝ola de Oftalmologia 2020; 0: (IGR: 21-3)


90014 Association Between 17-β-Estradiol and Interleukin-8 and Visual Field Progression in Postmenopausal Women with Primary Angle Closure Glaucoma
Zhang H
American Journal of Ophthalmology 2020; 217: 55-67 (IGR: 21-3)


90232 The Relationship Between Asymmetries of Corneal Properties and Rates of Visual Field Progression in Glaucoma Patients
Jammal AA
Journal of Glaucoma 2020; 29: 872-877 (IGR: 21-3)


90499 Predicting Lifetime Transition Risk of Severe Visual Field Defects Using Monte Carlo Simulation in Japanese Patients with Primary Open-Angle Glaucoma
Tachibana G
Clinical Ophthalmology 2020; 14: 1967-1978 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Ohkubo S
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90775 Comparing the Rule of 5 to Trend-based Analysis for Detecting Glaucoma Progression on OCT
Jammal AA
Ophthalmology. Glaucoma 2020; 3: 414-420 (IGR: 21-3)


90113 Glaucomatous Progression After Lens Extraction in Primary Angle Closure Disease Spectrum
Sung KR
Journal of Glaucoma 2020; 29: 711-717 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
House P
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


89934 Impact of anxiety and depression on progression to glaucoma among glaucoma suspects
Jammal A
British Journal of Ophthalmology 2020; 0: (IGR: 21-3)


90510 Lifetime visual outcomes of patients undergoing trabeculectomy
King AJ
British Journal of Ophthalmology 2020; 0: (IGR: 21-3)


90636 Development of a nomogram using fundus photography to predict glaucoma progression in patients showing disc hemorrhage
Park CK
Scientific reports 2020; 10: 14650 (IGR: 21-3)


89992 Improving the Detection of Glaucoma and Its Progression: A Topographical Approach
Zemborain ZZ
Journal of Glaucoma 2020; 29: 613-621 (IGR: 21-3)


90166 Can Treatment With Citicoline Eyedrops Reduce Progression in Glaucoma? The Results of a Randomized Placebo-controlled Clinical Trial
Iester M
Journal of Glaucoma 2020; 29: 513-520 (IGR: 21-3)


90142 Application of the Sight Outcomes Research Collaborative Ophthalmology Data Repository for Triaging Patients With Glaucoma and Clinic Appointments During Pandemics Such as COVID-19
Zhou Y
JAMA ophthalmology 2020; 138: 974-980 (IGR: 21-3)


90150 Compressive optic neuropathy. Not everything that progresses is glaucoma
Espinosa-Barberi G
Archivos de la Sociedad Espa˝ola de Oftalmologia 2020; 0: (IGR: 21-3)


90508 Impact of Artifacts From Optical Coherence Tomography Retinal Nerve Fiber Layer and Macula Scans on Detection of Glaucoma Progression
Thompson AC
American Journal of Ophthalmology 2021; 221: 235-245 (IGR: 21-3)


90534 The Trajectory of Glaucoma Progression in 2-Dimensional Structural-Functional Space
Morales E
Ophthalmology. Glaucoma 2020; 3: 466-474 (IGR: 21-3)


90748 Effect of baseline test selection on glaucoma progression detection by optical coherence tomography-guided progression analysis
Hwang YH
British Journal of Ophthalmology 2020; 0: (IGR: 21-3)


90573 The Relationship Between Corneal Hysteresis and Progression of Glaucoma After Trabeculectomy
Murata H
Journal of Glaucoma 2020; 29: 912-917 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Wentz SM
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90762 Effect of medically lowering intraocular pressure in glaucoma suspects with high myopia (GSHM study): study protocol for a randomized controlled trial
Da Chen S
Trials 2020; 21: 813 (IGR: 21-3)


90299 Wide-field Trend-based Progression Analysis of Combined Retinal Nerve Fiber Layer and Ganglion Cell Inner Plexiform Layer Thickness: A New Paradigm to Improve Glaucoma Progression Detection
Lin C
Ophthalmology 2020; 127: 1322-1330 (IGR: 21-3)


90002 A framework for assessing glaucoma progression using structural and functional indices jointly
Marín-Franch I
PLoS ONE 2020; 15: e0235255 (IGR: 21-3)


90677 Clinical Predictors of the Region of First Structural Progression in Early Normal-tension Glaucoma
Lee K
Korean Journal of Ophthalmology 2020; 34: 322-333 (IGR: 21-3)


90422 Discovery and clinical translation of novel glaucoma biomarkers
Norcia AM
Progress in Retinal and Eye Research 2020; 0: 100875 (IGR: 21-3)


90269 Risk Factors Associated with Structural Progression in Normal-Tension Glaucoma: Intraocular Pressure, Systemic Blood Pressure, and Myopia
Yang H
Investigative Ophthalmology and Visual Science 2020; 61: 35 (IGR: 21-3)


90142 Application of the Sight Outcomes Research Collaborative Ophthalmology Data Repository for Triaging Patients With Glaucoma and Clinic Appointments During Pandemics Such as COVID-19
Ehrlich JR
JAMA ophthalmology 2020; 138: 974-980 (IGR: 21-3)


89934 Impact of anxiety and depression on progression to glaucoma among glaucoma suspects
Mukherjee S
British Journal of Ophthalmology 2020; 0: (IGR: 21-3)


89992 Improving the Detection of Glaucoma and Its Progression: A Topographical Approach
Tsamis E
Journal of Glaucoma 2020; 29: 613-621 (IGR: 21-3)


90762 Effect of medically lowering intraocular pressure in glaucoma suspects with high myopia (GSHM study): study protocol for a randomized controlled trial
Song YH
Trials 2020; 21: 813 (IGR: 21-3)


90113 Glaucomatous Progression After Lens Extraction in Primary Angle Closure Disease Spectrum
Shin JW
Journal of Glaucoma 2020; 29: 711-717 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
Barry C
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90269 Risk Factors Associated with Structural Progression in Normal-Tension Glaucoma: Intraocular Pressure, Systemic Blood Pressure, and Myopia
Kim JY
Investigative Ophthalmology and Visual Science 2020; 61: 35 (IGR: 21-3)


90299 Wide-field Trend-based Progression Analysis of Combined Retinal Nerve Fiber Layer and Ganglion Cell Inner Plexiform Layer Thickness: A New Paradigm to Improve Glaucoma Progression Detection
Lam AK
Ophthalmology 2020; 127: 1322-1330 (IGR: 21-3)


90002 A framework for assessing glaucoma progression using structural and functional indices jointly
Racette L
PLoS ONE 2020; 15: e0235255 (IGR: 21-3)


90232 The Relationship Between Asymmetries of Corneal Properties and Rates of Visual Field Progression in Glaucoma Patients
Mariottoni EB
Journal of Glaucoma 2020; 29: 872-877 (IGR: 21-3)


90508 Impact of Artifacts From Optical Coherence Tomography Retinal Nerve Fiber Layer and Macula Scans on Detection of Glaucoma Progression
Asrani S
American Journal of Ophthalmology 2021; 221: 235-245 (IGR: 21-3)


89992 Improving the Detection of Glaucoma and Its Progression: A Topographical Approach
Tsamis E
Journal of Glaucoma 2020; 29: 613-621 (IGR: 21-3)


90150 Compressive optic neuropathy. Not everything that progresses is glaucoma
Pinilla Cortés LM
Archivos de la Sociedad Espa˝ola de Oftalmologia 2020; 0: (IGR: 21-3)


90775 Comparing the Rule of 5 to Trend-based Analysis for Detecting Glaucoma Progression on OCT
Berchuck SI
Ophthalmology. Glaucoma 2020; 3: 414-420 (IGR: 21-3)


90677 Clinical Predictors of the Region of First Structural Progression in Early Normal-tension Glaucoma
Seong GJ
Korean Journal of Ophthalmology 2020; 34: 322-333 (IGR: 21-3)


90232 The Relationship Between Asymmetries of Corneal Properties and Rates of Visual Field Progression in Glaucoma Patients
Mariottoni EB
Journal of Glaucoma 2020; 29: 872-877 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Udagawa S
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90014 Association Between 17-β-Estradiol and Interleukin-8 and Visual Field Progression in Postmenopausal Women with Primary Angle Closure Glaucoma
Shao M
American Journal of Ophthalmology 2020; 217: 55-67 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Januleviciene I
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90573 The Relationship Between Corneal Hysteresis and Progression of Glaucoma After Trabeculectomy
Matsuura M
Journal of Glaucoma 2020; 29: 912-917 (IGR: 21-3)


90166 Can Treatment With Citicoline Eyedrops Reduce Progression in Glaucoma? The Results of a Randomized Placebo-controlled Clinical Trial
Tranchina L
Journal of Glaucoma 2020; 29: 513-520 (IGR: 21-3)


89992 Improving the Detection of Glaucoma and Its Progression: A Topographical Approach
Tsamis E
Journal of Glaucoma 2020; 29: 613-621 (IGR: 21-3)


90775 Comparing the Rule of 5 to Trend-based Analysis for Detecting Glaucoma Progression on OCT
Berchuck SI
Ophthalmology. Glaucoma 2020; 3: 414-420 (IGR: 21-3)


90636 Development of a nomogram using fundus photography to predict glaucoma progression in patients showing disc hemorrhage
Kim EW
Scientific reports 2020; 10: 14650 (IGR: 21-3)


90422 Discovery and clinical translation of novel glaucoma biomarkers
Srinivasan VJ
Progress in Retinal and Eye Research 2020; 0: 100875 (IGR: 21-3)


90534 The Trajectory of Glaucoma Progression in 2-Dimensional Structural-Functional Space
Salazar Vega DC
Ophthalmology. Glaucoma 2020; 3: 466-474 (IGR: 21-3)


90499 Predicting Lifetime Transition Risk of Severe Visual Field Defects Using Monte Carlo Simulation in Japanese Patients with Primary Open-Angle Glaucoma
Wajima R
Clinical Ophthalmology 2020; 14: 1967-1978 (IGR: 21-3)


90150 Compressive optic neuropathy. Not everything that progresses is glaucoma
Puntí Badosa A
Archivos de la Sociedad Espa˝ola de Oftalmologia 2020; 0: (IGR: 21-3)


89934 Impact of anxiety and depression on progression to glaucoma among glaucoma suspects
Somers T
British Journal of Ophthalmology 2020; 0: (IGR: 21-3)


90677 Clinical Predictors of the Region of First Structural Progression in Early Normal-tension Glaucoma
Kim CY
Korean Journal of Ophthalmology 2020; 34: 322-333 (IGR: 21-3)


90113 Glaucomatous Progression After Lens Extraction in Primary Angle Closure Disease Spectrum
Jo YH
Journal of Glaucoma 2020; 29: 711-717 (IGR: 21-3)


90636 Development of a nomogram using fundus photography to predict glaucoma progression in patients showing disc hemorrhage
Lee SY
Scientific reports 2020; 10: 14650 (IGR: 21-3)


90299 Wide-field Trend-based Progression Analysis of Combined Retinal Nerve Fiber Layer and Ganglion Cell Inner Plexiform Layer Thickness: A New Paradigm to Improve Glaucoma Progression Detection
Chan L
Ophthalmology 2020; 127: 1322-1330 (IGR: 21-3)


90014 Association Between 17-β-Estradiol and Interleukin-8 and Visual Field Progression in Postmenopausal Women with Primary Angle Closure Glaucoma
Li Y
American Journal of Ophthalmology 2020; 217: 55-67 (IGR: 21-3)


90775 Comparing the Rule of 5 to Trend-based Analysis for Detecting Glaucoma Progression on OCT
Mariottoni EB
Ophthalmology. Glaucoma 2020; 3: 414-420 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Kim DH
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90166 Can Treatment With Citicoline Eyedrops Reduce Progression in Glaucoma? The Results of a Randomized Placebo-controlled Clinical Trial
Ottobelli L
Journal of Glaucoma 2020; 29: 513-520 (IGR: 21-3)


90534 The Trajectory of Glaucoma Progression in 2-Dimensional Structural-Functional Space
Mohammadzadeh V
Ophthalmology. Glaucoma 2020; 3: 466-474 (IGR: 21-3)


90422 Discovery and clinical translation of novel glaucoma biomarkers
Dubra A
Progress in Retinal and Eye Research 2020; 0: 100875 (IGR: 21-3)


90762 Effect of medically lowering intraocular pressure in glaucoma suspects with high myopia (GSHM study): study protocol for a randomized controlled trial
Wang W
Trials 2020; 21: 813 (IGR: 21-3)


90573 The Relationship Between Corneal Hysteresis and Progression of Glaucoma After Trabeculectomy
Nakakura S
Journal of Glaucoma 2020; 29: 912-917 (IGR: 21-3)


89992 Improving the Detection of Glaucoma and Its Progression: A Topographical Approach
De Moraes CG
Journal of Glaucoma 2020; 29: 613-621 (IGR: 21-3)


90775 Comparing the Rule of 5 to Trend-based Analysis for Detecting Glaucoma Progression on OCT
Mariottoni EB
Ophthalmology. Glaucoma 2020; 3: 414-420 (IGR: 21-3)


90269 Risk Factors Associated with Structural Progression in Normal-Tension Glaucoma: Intraocular Pressure, Systemic Blood Pressure, and Myopia
Seong GJ
Investigative Ophthalmology and Visual Science 2020; 61: 35 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Sugiyama K
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90499 Predicting Lifetime Transition Risk of Severe Visual Field Defects Using Monte Carlo Simulation in Japanese Patients with Primary Open-Angle Glaucoma
Inoue S
Clinical Ophthalmology 2020; 14: 1967-1978 (IGR: 21-3)


90232 The Relationship Between Asymmetries of Corneal Properties and Rates of Visual Field Progression in Glaucoma Patients
Urata CN
Journal of Glaucoma 2020; 29: 872-877 (IGR: 21-3)


90142 Application of the Sight Outcomes Research Collaborative Ophthalmology Data Repository for Triaging Patients With Glaucoma and Clinic Appointments During Pandemics Such as COVID-19
Elam AR
JAMA ophthalmology 2020; 138: 974-980 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
Turpin A
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90422 Discovery and clinical translation of novel glaucoma biomarkers
Goldberg JL
Progress in Retinal and Eye Research 2020; 0: 100875 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
McKendrick AM
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90636 Development of a nomogram using fundus photography to predict glaucoma progression in patients showing disc hemorrhage
Seong GJ
Scientific reports 2020; 10: 14650 (IGR: 21-3)


90166 Can Treatment With Citicoline Eyedrops Reduce Progression in Glaucoma? The Results of a Randomized Placebo-controlled Clinical Trial
Coco G
Journal of Glaucoma 2020; 29: 513-520 (IGR: 21-3)


90142 Application of the Sight Outcomes Research Collaborative Ophthalmology Data Repository for Triaging Patients With Glaucoma and Clinic Appointments During Pandemics Such as COVID-19
John D
JAMA ophthalmology 2020; 138: 974-980 (IGR: 21-3)


90150 Compressive optic neuropathy. Not everything that progresses is glaucoma
Anton A
Archivos de la Sociedad Espa˝ola de Oftalmologia 2020; 0: (IGR: 21-3)


89934 Impact of anxiety and depression on progression to glaucoma among glaucoma suspects
Medeiros FA
British Journal of Ophthalmology 2020; 0: (IGR: 21-3)


90573 The Relationship Between Corneal Hysteresis and Progression of Glaucoma After Trabeculectomy
Shoji N
Journal of Glaucoma 2020; 29: 912-917 (IGR: 21-3)


90677 Clinical Predictors of the Region of First Structural Progression in Early Normal-tension Glaucoma
Lee SY
Korean Journal of Ophthalmology 2020; 34: 322-333 (IGR: 21-3)


90269 Risk Factors Associated with Structural Progression in Normal-Tension Glaucoma: Intraocular Pressure, Systemic Blood Pressure, and Myopia
Kim CY
Investigative Ophthalmology and Visual Science 2020; 61: 35 (IGR: 21-3)


90299 Wide-field Trend-based Progression Analysis of Combined Retinal Nerve Fiber Layer and Ganglion Cell Inner Plexiform Layer Thickness: A New Paradigm to Improve Glaucoma Progression Detection
Leung CK
Ophthalmology 2020; 127: 1322-1330 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Tanihara H
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90775 Comparing the Rule of 5 to Trend-based Analysis for Detecting Glaucoma Progression on OCT
Wu Z
Ophthalmology. Glaucoma 2020; 3: 414-420 (IGR: 21-3)


90232 The Relationship Between Asymmetries of Corneal Properties and Rates of Visual Field Progression in Glaucoma Patients
Ogata NG
Journal of Glaucoma 2020; 29: 872-877 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Burgett KM
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90534 The Trajectory of Glaucoma Progression in 2-Dimensional Structural-Functional Space
Yu F
Ophthalmology. Glaucoma 2020; 3: 466-474 (IGR: 21-3)


90499 Predicting Lifetime Transition Risk of Severe Visual Field Defects Using Monte Carlo Simulation in Japanese Patients with Primary Open-Angle Glaucoma
Ohigashi T
Clinical Ophthalmology 2020; 14: 1967-1978 (IGR: 21-3)


90762 Effect of medically lowering intraocular pressure in glaucoma suspects with high myopia (GSHM study): study protocol for a randomized controlled trial
Jin L
Trials 2020; 21: 813 (IGR: 21-3)


90113 Glaucomatous Progression After Lens Extraction in Primary Angle Closure Disease Spectrum
Won HJ
Journal of Glaucoma 2020; 29: 711-717 (IGR: 21-3)


90014 Association Between 17-β-Estradiol and Interleukin-8 and Visual Field Progression in Postmenopausal Women with Primary Angle Closure Glaucoma
Song Y
American Journal of Ophthalmology 2020; 217: 55-67 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Araie M
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90534 The Trajectory of Glaucoma Progression in 2-Dimensional Structural-Functional Space
Afifi A
Ophthalmology. Glaucoma 2020; 3: 466-474 (IGR: 21-3)


90677 Clinical Predictors of the Region of First Structural Progression in Early Normal-tension Glaucoma
Bae HW
Korean Journal of Ophthalmology 2020; 34: 322-333 (IGR: 21-3)


90762 Effect of medically lowering intraocular pressure in glaucoma suspects with high myopia (GSHM study): study protocol for a randomized controlled trial
Liu BQ
Trials 2020; 21: 813 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Verticchio Vercellin AC
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
Chauhan BC
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90573 The Relationship Between Corneal Hysteresis and Progression of Glaucoma After Trabeculectomy
Nakao Y
Journal of Glaucoma 2020; 29: 912-917 (IGR: 21-3)


90232 The Relationship Between Asymmetries of Corneal Properties and Rates of Visual Field Progression in Glaucoma Patients
Berchuck SI
Journal of Glaucoma 2020; 29: 872-877 (IGR: 21-3)


90499 Predicting Lifetime Transition Risk of Severe Visual Field Defects Using Monte Carlo Simulation in Japanese Patients with Primary Open-Angle Glaucoma
Otsuka N
Clinical Ophthalmology 2020; 14: 1967-1978 (IGR: 21-3)


90014 Association Between 17-β-Estradiol and Interleukin-8 and Visual Field Progression in Postmenopausal Women with Primary Angle Closure Glaucoma
Sun X
American Journal of Ophthalmology 2020; 217: 55-67 (IGR: 21-3)


90269 Risk Factors Associated with Structural Progression in Normal-Tension Glaucoma: Intraocular Pressure, Systemic Blood Pressure, and Myopia
Bae HW
Investigative Ophthalmology and Visual Science 2020; 61: 35 (IGR: 21-3)


90166 Can Treatment With Citicoline Eyedrops Reduce Progression in Glaucoma? The Results of a Randomized Placebo-controlled Clinical Trial
Calcatelli E
Journal of Glaucoma 2020; 29: 513-520 (IGR: 21-3)


90232 The Relationship Between Asymmetries of Corneal Properties and Rates of Visual Field Progression in Glaucoma Patients
Berchuck SI
Journal of Glaucoma 2020; 29: 872-877 (IGR: 21-3)


90142 Application of the Sight Outcomes Research Collaborative Ophthalmology Data Repository for Triaging Patients With Glaucoma and Clinic Appointments During Pandemics Such as COVID-19
Kamat SS
JAMA ophthalmology 2020; 138: 974-980 (IGR: 21-3)


90636 Development of a nomogram using fundus photography to predict glaucoma progression in patients showing disc hemorrhage
Kim CY
Scientific reports 2020; 10: 14650 (IGR: 21-3)


90775 Comparing the Rule of 5 to Trend-based Analysis for Detecting Glaucoma Progression on OCT
Daga FB
Ophthalmology. Glaucoma 2020; 3: 414-420 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Rowe LW
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90636 Development of a nomogram using fundus photography to predict glaucoma progression in patients showing disc hemorrhage
Bae HW
Scientific reports 2020; 10: 14650 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Tomita G
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90014 Association Between 17-β-Estradiol and Interleukin-8 and Visual Field Progression in Postmenopausal Women with Primary Angle Closure Glaucoma
Cao W
American Journal of Ophthalmology 2020; 217: 55-67 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Rowe LW
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90499 Predicting Lifetime Transition Risk of Severe Visual Field Defects Using Monte Carlo Simulation in Japanese Patients with Primary Open-Angle Glaucoma
Kurashima H
Clinical Ophthalmology 2020; 14: 1967-1978 (IGR: 21-3)


90142 Application of the Sight Outcomes Research Collaborative Ophthalmology Data Repository for Triaging Patients With Glaucoma and Clinic Appointments During Pandemics Such as COVID-19
Kelstrom J
JAMA ophthalmology 2020; 138: 974-980 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
Manners S
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90775 Comparing the Rule of 5 to Trend-based Analysis for Detecting Glaucoma Progression on OCT
Ogata NG
Ophthalmology. Glaucoma 2020; 3: 414-420 (IGR: 21-3)


90573 The Relationship Between Corneal Hysteresis and Progression of Glaucoma After Trabeculectomy
Kiuchi Y
Journal of Glaucoma 2020; 29: 912-917 (IGR: 21-3)


90232 The Relationship Between Asymmetries of Corneal Properties and Rates of Visual Field Progression in Glaucoma Patients
Medeiros FA
Journal of Glaucoma 2020; 29: 872-877 (IGR: 21-3)


90762 Effect of medically lowering intraocular pressure in glaucoma suspects with high myopia (GSHM study): study protocol for a randomized controlled trial
Liu YH
Trials 2020; 21: 813 (IGR: 21-3)


90534 The Trajectory of Glaucoma Progression in 2-Dimensional Structural-Functional Space
Nouri-Mahdavi K
Ophthalmology. Glaucoma 2020; 3: 466-474 (IGR: 21-3)


90166 Can Treatment With Citicoline Eyedrops Reduce Progression in Glaucoma? The Results of a Randomized Placebo-controlled Clinical Trial
Ancona C
Journal of Glaucoma 2020; 29: 513-520 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Matsumoto C
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90166 Can Treatment With Citicoline Eyedrops Reduce Progression in Glaucoma? The Results of a Randomized Placebo-controlled Clinical Trial
Cirafici P
Journal of Glaucoma 2020; 29: 513-520 (IGR: 21-3)


90775 Comparing the Rule of 5 to Trend-based Analysis for Detecting Glaucoma Progression on OCT
Urata CN
Ophthalmology. Glaucoma 2020; 3: 414-420 (IGR: 21-3)


90499 Predicting Lifetime Transition Risk of Severe Visual Field Defects Using Monte Carlo Simulation in Japanese Patients with Primary Open-Angle Glaucoma
Santo K
Clinical Ophthalmology 2020; 14: 1967-1978 (IGR: 21-3)


90573 The Relationship Between Corneal Hysteresis and Progression of Glaucoma After Trabeculectomy
Asaoka R
Journal of Glaucoma 2020; 29: 912-917 (IGR: 21-3)


90142 Application of the Sight Outcomes Research Collaborative Ophthalmology Data Repository for Triaging Patients With Glaucoma and Clinic Appointments During Pandemics Such as COVID-19
Newman-Casey PA
JAMA ophthalmology 2020; 138: 974-980 (IGR: 21-3)


90534 The Trajectory of Glaucoma Progression in 2-Dimensional Structural-Functional Space
Caprioli J
Ophthalmology. Glaucoma 2020; 3: 466-474 (IGR: 21-3)


90166 Can Treatment With Citicoline Eyedrops Reduce Progression in Glaucoma? The Results of a Randomized Placebo-controlled Clinical Trial
Cirafici P
Journal of Glaucoma 2020; 29: 513-520 (IGR: 21-3)


90762 Effect of medically lowering intraocular pressure in glaucoma suspects with high myopia (GSHM study): study protocol for a randomized controlled trial
Chen ML
Trials 2020; 21: 813 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
Graham S
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Eckert GJ
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90166 Can Treatment With Citicoline Eyedrops Reduce Progression in Glaucoma? The Results of a Randomized Placebo-controlled Clinical Trial
Manni G
Journal of Glaucoma 2020; 29: 513-520 (IGR: 21-3)


90142 Application of the Sight Outcomes Research Collaborative Ophthalmology Data Repository for Triaging Patients With Glaucoma and Clinic Appointments During Pandemics Such as COVID-19
Shah MM
JAMA ophthalmology 2020; 138: 974-980 (IGR: 21-3)


90762 Effect of medically lowering intraocular pressure in glaucoma suspects with high myopia (GSHM study): study protocol for a randomized controlled trial
Gao K
Trials 2020; 21: 813 (IGR: 21-3)


90775 Comparing the Rule of 5 to Trend-based Analysis for Detecting Glaucoma Progression on OCT
Estrela T
Ophthalmology. Glaucoma 2020; 3: 414-420 (IGR: 21-3)


90285 Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma
Harris A
PLoS ONE 2020; 15: e0236819 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
Yu DY
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90499 Predicting Lifetime Transition Risk of Severe Visual Field Defects Using Monte Carlo Simulation in Japanese Patients with Primary Open-Angle Glaucoma
Hashimoto M
Clinical Ophthalmology 2020; 14: 1967-1978 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Fukuchi T
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90775 Comparing the Rule of 5 to Trend-based Analysis for Detecting Glaucoma Progression on OCT
Estrela T
Ophthalmology. Glaucoma 2020; 3: 414-420 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Tomidokoro A
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90762 Effect of medically lowering intraocular pressure in glaucoma suspects with high myopia (GSHM study): study protocol for a randomized controlled trial
Friedman DS
Trials 2020; 21: 813 (IGR: 21-3)


90775 Comparing the Rule of 5 to Trend-based Analysis for Detecting Glaucoma Progression on OCT
Medeiros FA
Ophthalmology. Glaucoma 2020; 3: 414-420 (IGR: 21-3)


90811 Recurrent Optic Disc Hemorrhage and Its Association with Visual Field Deterioration in Glaucoma
Morgan WH
Ophthalmology. Glaucoma 2020; 3: 443-452 (IGR: 21-3)


90499 Predicting Lifetime Transition Risk of Severe Visual Field Defects Using Monte Carlo Simulation in Japanese Patients with Primary Open-Angle Glaucoma
Shibahara H
Clinical Ophthalmology 2020; 14: 1967-1978 (IGR: 21-3)


90142 Application of the Sight Outcomes Research Collaborative Ophthalmology Data Repository for Triaging Patients With Glaucoma and Clinic Appointments During Pandemics Such as COVID-19
Weizer JS
JAMA ophthalmology 2020; 138: 974-980 (IGR: 21-3)


90499 Predicting Lifetime Transition Risk of Severe Visual Field Defects Using Monte Carlo Simulation in Japanese Patients with Primary Open-Angle Glaucoma
Hirukawa M
Clinical Ophthalmology 2020; 14: 1967-1978 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Hangai M
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90142 Application of the Sight Outcomes Research Collaborative Ophthalmology Data Repository for Triaging Patients With Glaucoma and Clinic Appointments During Pandemics Such as COVID-19
Wood SD
JAMA ophthalmology 2020; 138: 974-980 (IGR: 21-3)


90762 Effect of medically lowering intraocular pressure in glaucoma suspects with high myopia (GSHM study): study protocol for a randomized controlled trial
Jonas JB
Trials 2020; 21: 813 (IGR: 21-3)


90499 Predicting Lifetime Transition Risk of Severe Visual Field Defects Using Monte Carlo Simulation in Japanese Patients with Primary Open-Angle Glaucoma
Sugiyama K
Clinical Ophthalmology 2020; 14: 1967-1978 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Kawata H
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90762 Effect of medically lowering intraocular pressure in glaucoma suspects with high myopia (GSHM study): study protocol for a randomized controlled trial
Aung T
Trials 2020; 21: 813 (IGR: 21-3)


90142 Application of the Sight Outcomes Research Collaborative Ophthalmology Data Repository for Triaging Patients With Glaucoma and Clinic Appointments During Pandemics Such as COVID-19
Zhang AD
JAMA ophthalmology 2020; 138: 974-980 (IGR: 21-3)


90762 Effect of medically lowering intraocular pressure in glaucoma suspects with high myopia (GSHM study): study protocol for a randomized controlled trial
Lv L
Trials 2020; 21: 813 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Inai M
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90142 Application of the Sight Outcomes Research Collaborative Ophthalmology Data Repository for Triaging Patients With Glaucoma and Clinic Appointments During Pandemics Such as COVID-19
Zhang J; Lee PP
JAMA ophthalmology 2020; 138: 974-980 (IGR: 21-3)


90762 Effect of medically lowering intraocular pressure in glaucoma suspects with high myopia (GSHM study): study protocol for a randomized controlled trial
Liu YZ
Trials 2020; 21: 813 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study
Tanaka Y
Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90762 Effect of medically lowering intraocular pressure in glaucoma suspects with high myopia (GSHM study): study protocol for a randomized controlled trial
Zhang XL
Trials 2020; 21: 813 (IGR: 21-3)


90142 Application of the Sight Outcomes Research Collaborative Ophthalmology Data Repository for Triaging Patients With Glaucoma and Clinic Appointments During Pandemics Such as COVID-19
Stein JD
JAMA ophthalmology 2020; 138: 974-980 (IGR: 21-3)


90854 Spatial and Temporal Relationship between Structural Progression and Disc Hemorrhage in Glaucoma in a 3-Year Prospective Study

Ophthalmology. Glaucoma 2020; 0: (IGR: 21-3)


90762 Effect of medically lowering intraocular pressure in glaucoma suspects with high myopia (GSHM study): study protocol for a randomized controlled trial

Trials 2020; 21: 813 (IGR: 21-3)


90142 Application of the Sight Outcomes Research Collaborative Ophthalmology Data Repository for Triaging Patients With Glaucoma and Clinic Appointments During Pandemics Such as COVID-19

JAMA ophthalmology 2020; 138: 974-980 (IGR: 21-3)


86566 Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression
Bak E
American Journal of Ophthalmology 2020; 216: 121-131 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Shukla AG
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86577 Relationship Between Contact Lens Sensor Output Parameters and Visual Field Progression in Open-angle Glaucoma: Assessment of a Practical Tool to Guide Clinical Risk-assessment
Gillmann K
Journal of Glaucoma 2020; 29: 461-466 (IGR: 21-2)


86848 Functional assessment of glaucoma: Uncovering progression
Hu R
Survey of Ophthalmology 2020; 65: 639-661 (IGR: 21-2)


86350 Visual field progression 8 years after trabeculectomy in Asian eyes: results from The Singapore 5-Fluorouracil Study
Ang BCH
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86625 The Relationship Between Intraocular Pressure and Rates of Central Versus Peripheral Visual Field Progression
Shukla AG
Journal of Glaucoma 2020; 29: 435-440 (IGR: 21-2)


86552 Progression from ocular hypertension to visual field loss in the English hospital eye service
Kelly SR
British Journal of Ophthalmology 2020; 104: 1406-1411 (IGR: 21-2)


86141 The optic nerve head vasoreactive response to systemic hyperoxia and visual field defect progression in open-angle glaucoma, a pilot study
Kiyota N
Acta Ophthalmologica 2020; 98: e747-e753 (IGR: 21-2)


86566 Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression
Bak E
American Journal of Ophthalmology 2020; 216: 121-131 (IGR: 21-2)


86840 Morphological characteristics of parapapillary atrophy and subsequent visual field progression in primary open-angle glaucoma
Ha A
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86751 A CNN-aided method to predict glaucoma progression using DARC (Detection of Apoptosing Retinal Cells)
Normando EM
Expert review of molecular diagnostics 2020; 20: 737-748 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
De Moraes CG
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86566 Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression
Bak E
American Journal of Ophthalmology 2020; 216: 121-131 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
Yousefi S
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86602 Glaucomatous visual field loss in eyes undergoing first trabeculectomy in Iceland
Tryggvadottir EB
Laeknabladid 2020; 106: 187-192 (IGR: 21-2)


86550 Genetic Variants Associated With the Onset and Progression of Primary Open-Angle Glaucoma
Mabuchi F
American Journal of Ophthalmology 2020; 215: 135-140 (IGR: 21-2)


86566 Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression
Bak E
American Journal of Ophthalmology 2020; 216: 121-131 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Shukla AG
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86329 Nasalization of Central Retinal Vessel Trunk Predicts Rapid Progression of Central Visual Field in Open-Angle Glaucoma
Shon K
Scientific reports 2020; 10: 3789 (IGR: 21-2)


86625 The Relationship Between Intraocular Pressure and Rates of Central Versus Peripheral Visual Field Progression
Shukla AG
Journal of Glaucoma 2020; 29: 435-440 (IGR: 21-2)


86204 One year structural and functional glaucoma progression after trabeculectomy
Chua J
Scientific reports 2020; 10: 2808 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
Elze T
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86566 Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression
Kim YW
American Journal of Ophthalmology 2020; 216: 121-131 (IGR: 21-2)


86625 The Relationship Between Intraocular Pressure and Rates of Central Versus Peripheral Visual Field Progression
De Moraes CG
Journal of Glaucoma 2020; 29: 435-440 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Sirinek PE
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86577 Relationship Between Contact Lens Sensor Output Parameters and Visual Field Progression in Open-angle Glaucoma: Assessment of a Practical Tool to Guide Clinical Risk-assessment
Young CC
Journal of Glaucoma 2020; 29: 461-466 (IGR: 21-2)


86350 Visual field progression 8 years after trabeculectomy in Asian eyes: results from The Singapore 5-Fluorouracil Study
Seen S
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86141 The optic nerve head vasoreactive response to systemic hyperoxia and visual field defect progression in open-angle glaucoma, a pilot study
Shiga Y
Acta Ophthalmologica 2020; 98: e747-e753 (IGR: 21-2)


86840 Morphological characteristics of parapapillary atrophy and subsequent visual field progression in primary open-angle glaucoma
Kim YW
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86848 Functional assessment of glaucoma: Uncovering progression
Racette L
Survey of Ophthalmology 2020; 65: 639-661 (IGR: 21-2)


86552 Progression from ocular hypertension to visual field loss in the English hospital eye service
Khawaja AP
British Journal of Ophthalmology 2020; 104: 1406-1411 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Paula JS
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86751 A CNN-aided method to predict glaucoma progression using DARC (Detection of Apoptosing Retinal Cells)
Yap TE
Expert review of molecular diagnostics 2020; 20: 737-748 (IGR: 21-2)


86550 Genetic Variants Associated With the Onset and Progression of Primary Open-Angle Glaucoma
Mabuchi N
American Journal of Ophthalmology 2020; 215: 135-140 (IGR: 21-2)


86204 One year structural and functional glaucoma progression after trabeculectomy
Kadziauskienė A
Scientific reports 2020; 10: 2808 (IGR: 21-2)


86329 Nasalization of Central Retinal Vessel Trunk Predicts Rapid Progression of Central Visual Field in Open-Angle Glaucoma
Hye Jo Y
Scientific reports 2020; 10: 3789 (IGR: 21-2)


86602 Glaucomatous visual field loss in eyes undergoing first trabeculectomy in Iceland
Hardarson SH
Laeknabladid 2020; 106: 187-192 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Blumberg DM
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86840 Morphological characteristics of parapapillary atrophy and subsequent visual field progression in primary open-angle glaucoma
Lee J
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86602 Glaucomatous visual field loss in eyes undergoing first trabeculectomy in Iceland
Gottfredsdottir MS
Laeknabladid 2020; 106: 187-192 (IGR: 21-2)


86751 A CNN-aided method to predict glaucoma progression using DARC (Detection of Apoptosing Retinal Cells)
Maddison J
Expert review of molecular diagnostics 2020; 20: 737-748 (IGR: 21-2)


86552 Progression from ocular hypertension to visual field loss in the English hospital eye service
Bryan SR
British Journal of Ophthalmology 2020; 104: 1406-1411 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
Pasquale LR
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86550 Genetic Variants Associated With the Onset and Progression of Primary Open-Angle Glaucoma
Sakurada Y
American Journal of Ophthalmology 2020; 215: 135-140 (IGR: 21-2)


86204 One year structural and functional glaucoma progression after trabeculectomy
Wong D
Scientific reports 2020; 10: 2808 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
De Moraes CG
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86329 Nasalization of Central Retinal Vessel Trunk Predicts Rapid Progression of Central Visual Field in Open-Angle Glaucoma
Won Shin J
Scientific reports 2020; 10: 3789 (IGR: 21-2)


86625 The Relationship Between Intraocular Pressure and Rates of Central Versus Peripheral Visual Field Progression
Cioffi GA
Journal of Glaucoma 2020; 29: 435-440 (IGR: 21-2)


86577 Relationship Between Contact Lens Sensor Output Parameters and Visual Field Progression in Open-angle Glaucoma: Assessment of a Practical Tool to Guide Clinical Risk-assessment
Stanley J
Journal of Glaucoma 2020; 29: 461-466 (IGR: 21-2)


86350 Visual field progression 8 years after trabeculectomy in Asian eyes: results from The Singapore 5-Fluorouracil Study
Kumaran A
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86566 Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression
Ha A
American Journal of Ophthalmology 2020; 216: 121-131 (IGR: 21-2)


86848 Functional assessment of glaucoma: Uncovering progression
Chen KS
Survey of Ophthalmology 2020; 65: 639-661 (IGR: 21-2)


86141 The optic nerve head vasoreactive response to systemic hyperoxia and visual field defect progression in open-angle glaucoma, a pilot study
Yasuda M
Acta Ophthalmologica 2020; 98: e747-e753 (IGR: 21-2)


86751 A CNN-aided method to predict glaucoma progression using DARC (Detection of Apoptosing Retinal Cells)
Miodragovic S
Expert review of molecular diagnostics 2020; 20: 737-748 (IGR: 21-2)


86204 One year structural and functional glaucoma progression after trabeculectomy
Ašoklis R
Scientific reports 2020; 10: 2808 (IGR: 21-2)


86840 Morphological characteristics of parapapillary atrophy and subsequent visual field progression in primary open-angle glaucoma
Bak E
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86552 Progression from ocular hypertension to visual field loss in the English hospital eye service
Azuara-Blanco A
British Journal of Ophthalmology 2020; 104: 1406-1411 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
Saeedi O
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86848 Functional assessment of glaucoma: Uncovering progression
Johnson CA
Survey of Ophthalmology 2020; 65: 639-661 (IGR: 21-2)


86550 Genetic Variants Associated With the Onset and Progression of Primary Open-Angle Glaucoma
Yoneyama S
American Journal of Ophthalmology 2020; 215: 135-140 (IGR: 21-2)


86566 Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression
Kim YK
American Journal of Ophthalmology 2020; 216: 121-131 (IGR: 21-2)


86840 Morphological characteristics of parapapillary atrophy and subsequent visual field progression in primary open-angle glaucoma
Bak E
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86329 Nasalization of Central Retinal Vessel Trunk Predicts Rapid Progression of Central Visual Field in Open-Angle Glaucoma
Kwon J
Scientific reports 2020; 10: 3789 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Cioffi GA
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86141 The optic nerve head vasoreactive response to systemic hyperoxia and visual field defect progression in open-angle glaucoma, a pilot study
Aizawa N
Acta Ophthalmologica 2020; 98: e747-e753 (IGR: 21-2)


86840 Morphological characteristics of parapapillary atrophy and subsequent visual field progression in primary open-angle glaucoma
Bak E
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86350 Visual field progression 8 years after trabeculectomy in Asian eyes: results from The Singapore 5-Fluorouracil Study
De Leon JMS
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86625 The Relationship Between Intraocular Pressure and Rates of Central Versus Peripheral Visual Field Progression
Girkin CA
Journal of Glaucoma 2020; 29: 435-440 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Blumberg DM
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86577 Relationship Between Contact Lens Sensor Output Parameters and Visual Field Progression in Open-angle Glaucoma: Assessment of a Practical Tool to Guide Clinical Risk-assessment
Seibold LK
Journal of Glaucoma 2020; 29: 461-466 (IGR: 21-2)


86840 Morphological characteristics of parapapillary atrophy and subsequent visual field progression in primary open-angle glaucoma
Bak E
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86552 Progression from ocular hypertension to visual field loss in the English hospital eye service
Sparrow JM
British Journal of Ophthalmology 2020; 104: 1406-1411 (IGR: 21-2)


86840 Morphological characteristics of parapapillary atrophy and subsequent visual field progression in primary open-angle glaucoma
Han YS
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Cioffi GA
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Al-Aswad LA
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86329 Nasalization of Central Retinal Vessel Trunk Predicts Rapid Progression of Central Visual Field in Open-Angle Glaucoma
Jeong D
Scientific reports 2020; 10: 3789 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
Wang M
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86625 The Relationship Between Intraocular Pressure and Rates of Central Versus Peripheral Visual Field Progression
Weinreb RN
Journal of Glaucoma 2020; 29: 435-440 (IGR: 21-2)


86577 Relationship Between Contact Lens Sensor Output Parameters and Visual Field Progression in Open-angle Glaucoma: Assessment of a Practical Tool to Guide Clinical Risk-assessment
Hoskens K
Journal of Glaucoma 2020; 29: 461-466 (IGR: 21-2)


86141 The optic nerve head vasoreactive response to systemic hyperoxia and visual field defect progression in open-angle glaucoma, a pilot study
Omodaka K
Acta Ophthalmologica 2020; 98: e747-e753 (IGR: 21-2)


86350 Visual field progression 8 years after trabeculectomy in Asian eyes: results from The Singapore 5-Fluorouracil Study
Seah SKL
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86751 A CNN-aided method to predict glaucoma progression using DARC (Detection of Apoptosing Retinal Cells)
Bonetti P
Expert review of molecular diagnostics 2020; 20: 737-748 (IGR: 21-2)


86566 Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression
Park KH
American Journal of Ophthalmology 2020; 216: 121-131 (IGR: 21-2)


86204 One year structural and functional glaucoma progression after trabeculectomy
Lesinskas E
Scientific reports 2020; 10: 2808 (IGR: 21-2)


86550 Genetic Variants Associated With the Onset and Progression of Primary Open-Angle Glaucoma
Kashiwagi K
American Journal of Ophthalmology 2020; 215: 135-140 (IGR: 21-2)


86566 Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression
Jeoung JW
American Journal of Ophthalmology 2020; 216: 121-131 (IGR: 21-2)


86329 Nasalization of Central Retinal Vessel Trunk Predicts Rapid Progression of Central Visual Field in Open-Angle Glaucoma
Kook MS
Scientific reports 2020; 10: 3789 (IGR: 21-2)


86141 The optic nerve head vasoreactive response to systemic hyperoxia and visual field defect progression in open-angle glaucoma, a pilot study
Tsuda S
Acta Ophthalmologica 2020; 98: e747-e753 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Skaat A
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86204 One year structural and functional glaucoma progression after trabeculectomy
Quang ND
Scientific reports 2020; 10: 2808 (IGR: 21-2)


86350 Visual field progression 8 years after trabeculectomy in Asian eyes: results from The Singapore 5-Fluorouracil Study
Foster PJ
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86751 A CNN-aided method to predict glaucoma progression using DARC (Detection of Apoptosing Retinal Cells)
Almonte M
Expert review of molecular diagnostics 2020; 20: 737-748 (IGR: 21-2)


86625 The Relationship Between Intraocular Pressure and Rates of Central Versus Peripheral Visual Field Progression
Zangwill LM
Journal of Glaucoma 2020; 29: 435-440 (IGR: 21-2)


86552 Progression from ocular hypertension to visual field loss in the English hospital eye service
Crabb DP
British Journal of Ophthalmology 2020; 104: 1406-1411 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Girkin CA
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86577 Relationship Between Contact Lens Sensor Output Parameters and Visual Field Progression in Open-angle Glaucoma: Assessment of a Practical Tool to Guide Clinical Risk-assessment
Midha N
Journal of Glaucoma 2020; 29: 461-466 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
Shen LQ
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86840 Morphological characteristics of parapapillary atrophy and subsequent visual field progression in primary open-angle glaucoma
Kim YK
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86550 Genetic Variants Associated With the Onset and Progression of Primary Open-Angle Glaucoma
Iijima H
American Journal of Ophthalmology 2020; 215: 135-140 (IGR: 21-2)


86141 The optic nerve head vasoreactive response to systemic hyperoxia and visual field defect progression in open-angle glaucoma, a pilot study
Pak K
Acta Ophthalmologica 2020; 98: e747-e753 (IGR: 21-2)


86625 The Relationship Between Intraocular Pressure and Rates of Central Versus Peripheral Visual Field Progression
Liebmann JM
Journal of Glaucoma 2020; 29: 435-440 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Weinreb RN
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86577 Relationship Between Contact Lens Sensor Output Parameters and Visual Field Progression in Open-angle Glaucoma: Assessment of a Practical Tool to Guide Clinical Risk-assessment
Kahook MY
Journal of Glaucoma 2020; 29: 461-466 (IGR: 21-2)


86350 Visual field progression 8 years after trabeculectomy in Asian eyes: results from The Singapore 5-Fluorouracil Study
Gazzard G
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86550 Genetic Variants Associated With the Onset and Progression of Primary Open-Angle Glaucoma
Yamagata Z
American Journal of Ophthalmology 2020; 215: 135-140 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
Wellik SR
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86840 Morphological characteristics of parapapillary atrophy and subsequent visual field progression in primary open-angle glaucoma
Park KH
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Girkin CA
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86204 One year structural and functional glaucoma progression after trabeculectomy
Chong R
Scientific reports 2020; 10: 2808 (IGR: 21-2)


86751 A CNN-aided method to predict glaucoma progression using DARC (Detection of Apoptosing Retinal Cells)
Mohammad NG
Expert review of molecular diagnostics 2020; 20: 737-748 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Weinreb RN
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86204 One year structural and functional glaucoma progression after trabeculectomy
Tan B
Scientific reports 2020; 10: 2808 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
De Moraes CG
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86751 A CNN-aided method to predict glaucoma progression using DARC (Detection of Apoptosing Retinal Cells)
Ameen S
Expert review of molecular diagnostics 2020; 20: 737-748 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Zangwill LM
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86350 Visual field progression 8 years after trabeculectomy in Asian eyes: results from The Singapore 5-Fluorouracil Study
Htoon HM
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86577 Relationship Between Contact Lens Sensor Output Parameters and Visual Field Progression in Open-angle Glaucoma: Assessment of a Practical Tool to Guide Clinical Risk-assessment
Mansouri K
Journal of Glaucoma 2020; 29: 461-466 (IGR: 21-2)


86550 Genetic Variants Associated With the Onset and Progression of Primary Open-Angle Glaucoma
Takamoto M
American Journal of Ophthalmology 2020; 215: 135-140 (IGR: 21-2)


86840 Morphological characteristics of parapapillary atrophy and subsequent visual field progression in primary open-angle glaucoma
Jeoung JW
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86141 The optic nerve head vasoreactive response to systemic hyperoxia and visual field defect progression in open-angle glaucoma, a pilot study
Kunikata H
Acta Ophthalmologica 2020; 98: e747-e753 (IGR: 21-2)


86751 A CNN-aided method to predict glaucoma progression using DARC (Detection of Apoptosing Retinal Cells)
Ameen S
Expert review of molecular diagnostics 2020; 20: 737-748 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
Myers JS
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86751 A CNN-aided method to predict glaucoma progression using DARC (Detection of Apoptosing Retinal Cells)
Crawley L
Expert review of molecular diagnostics 2020; 20: 737-748 (IGR: 21-2)


86550 Genetic Variants Associated With the Onset and Progression of Primary Open-Angle Glaucoma
Aihara M
American Journal of Ophthalmology 2020; 215: 135-140 (IGR: 21-2)


86141 The optic nerve head vasoreactive response to systemic hyperoxia and visual field defect progression in open-angle glaucoma, a pilot study
Nakazawa T
Acta Ophthalmologica 2020; 98: e747-e753 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Zangwill LM
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86204 One year structural and functional glaucoma progression after trabeculectomy
Girard MJA
Scientific reports 2020; 10: 2808 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Ritch R
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86350 Visual field progression 8 years after trabeculectomy in Asian eyes: results from The Singapore 5-Fluorouracil Study
Khaw PT
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86204 One year structural and functional glaucoma progression after trabeculectomy
Mari JM
Scientific reports 2020; 10: 2808 (IGR: 21-2)


86350 Visual field progression 8 years after trabeculectomy in Asian eyes: results from The Singapore 5-Fluorouracil Study
Aung T
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Susanna R
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86751 A CNN-aided method to predict glaucoma progression using DARC (Detection of Apoptosing Retinal Cells)
Ahmed F
Expert review of molecular diagnostics 2020; 20: 737-748 (IGR: 21-2)


86550 Genetic Variants Associated With the Onset and Progression of Primary Open-Angle Glaucoma
Iwata T
American Journal of Ophthalmology 2020; 215: 135-140 (IGR: 21-2)


86766 Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
Boland MV
Ophthalmology 2020; 127: 1170-1178 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Hood DC
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86350 Visual field progression 8 years after trabeculectomy in Asian eyes: results from The Singapore 5-Fluorouracil Study
Husain R
British Journal of Ophthalmology 2020; 0: (IGR: 21-2)


86751 A CNN-aided method to predict glaucoma progression using DARC (Detection of Apoptosing Retinal Cells)
Bloom PA
Expert review of molecular diagnostics 2020; 20: 737-748 (IGR: 21-2)


86550 Genetic Variants Associated With the Onset and Progression of Primary Open-Angle Glaucoma
Hashimoto K
American Journal of Ophthalmology 2020; 215: 135-140 (IGR: 21-2)


86204 One year structural and functional glaucoma progression after trabeculectomy
Crowston JG
Scientific reports 2020; 10: 2808 (IGR: 21-2)


86696 Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects
Liebmann JM
Journal of Glaucoma 2020; 29: 429-434 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Hood DC
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86550 Genetic Variants Associated With the Onset and Progression of Primary Open-Angle Glaucoma
Sato K
American Journal of Ophthalmology 2020; 215: 135-140 (IGR: 21-2)


86204 One year structural and functional glaucoma progression after trabeculectomy
Aung T
Scientific reports 2020; 10: 2808 (IGR: 21-2)


86675 Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm
Liebmann JM
American Journal of Ophthalmology 2020; 216: 37-43 (IGR: 21-2)


86751 A CNN-aided method to predict glaucoma progression using DARC (Detection of Apoptosing Retinal Cells)
Cordeiro MF
Expert review of molecular diagnostics 2020; 20: 737-748 (IGR: 21-2)


86550 Genetic Variants Associated With the Onset and Progression of Primary Open-Angle Glaucoma
Shiga Y
American Journal of Ophthalmology 2020; 215: 135-140 (IGR: 21-2)


86204 One year structural and functional glaucoma progression after trabeculectomy
Schmetterer L
Scientific reports 2020; 10: 2808 (IGR: 21-2)


86550 Genetic Variants Associated With the Onset and Progression of Primary Open-Angle Glaucoma
Nishiguchi KM; Nakazawa T; Akiyama M; Kawase K; Ozaki M; Araie M;
American Journal of Ophthalmology 2020; 215: 135-140 (IGR: 21-2)


84541 Accuracy of Kalman Filtering in Forecasting Visual Field and Intraocular Pressure Trajectory in Patients With Ocular Hypertension
Garcia GP
JAMA ophthalmology 2019; 0: (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Wang M
JAMA ophthalmology 2020; 0: (IGR: 21-1)


84409 Effects of Intravitreal Anti-VEGF Therapy on Glaucoma-like Progression in Susceptible Eyes
Du J
Journal of Glaucoma 2019; 28: 1035-1040 (IGR: 21-1)


84443 Long-Term Follow-up on Glaucoma Patients With Initial Single-Hemifield Defect: Progression Patterns and Associated Factors
Baek SU
Journal of Glaucoma 2019; 28: 1041-1047 (IGR: 21-1)


84470 Baseline Age and Mean Deviation Affect the Rate of Glaucomatous Vision Loss
Bommakanti N
Journal of Glaucoma 2020; 29: 31-38 (IGR: 21-1)


84921 Selective Laser Trabeculoplasty Protects Glaucoma Progression in the Initial Primary Open-Angle Glaucoma and Angle-Closure Glaucoma after Laser Peripheral Iridotomy in the Long Term
Kurysheva NI
BioMed research international 2019; 2019: 4519412 (IGR: 21-1)


84773 Machine learning classifiers-based prediction of normal-tension glaucoma progression in young myopic patients
Lee J
Japanese Journal of Ophthalmology 2020; 64: 68-76 (IGR: 21-1)


84935 Lamina cribrosa defect and progress of glaucoma
Liu XY
Chinese Journal of Ophthalmology 2020; 56: 17-20 (IGR: 21-1)


84659 Estimating Rates of Progression and Predicting Future Visual Fields in Glaucoma Using a Deep Variational Autoencoder
Berchuck SI
Scientific reports 2019; 9: 18113 (IGR: 21-1)


84545 Association of Retinal Blood Flow with Progression of Visual Field in Glaucoma
Jeon SJ
Scientific reports 2019; 9: 16813 (IGR: 21-1)


84659 Estimating Rates of Progression and Predicting Future Visual Fields in Glaucoma Using a Deep Variational Autoencoder
Berchuck SI
Scientific reports 2019; 9: 18113 (IGR: 21-1)


85169 Evening exercise is associated with lower odds of visual field progression in Chinese patients with primary open angle glaucoma
Pan X
Eye and vision (London, England) 2020; 7: 12 (IGR: 21-1)


84443 Long-Term Follow-up on Glaucoma Patients With Initial Single-Hemifield Defect: Progression Patterns and Associated Factors
Baek SU
Journal of Glaucoma 2019; 28: 1041-1047 (IGR: 21-1)


84773 Machine learning classifiers-based prediction of normal-tension glaucoma progression in young myopic patients
Kim YK
Japanese Journal of Ophthalmology 2020; 64: 68-76 (IGR: 21-1)


84443 Long-Term Follow-up on Glaucoma Patients With Initial Single-Hemifield Defect: Progression Patterns and Associated Factors
Kim YK
Journal of Glaucoma 2019; 28: 1041-1047 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Tichelaar J
JAMA ophthalmology 2020; 0: (IGR: 21-1)


84409 Effects of Intravitreal Anti-VEGF Therapy on Glaucoma-like Progression in Susceptible Eyes
Patrie JT
Journal of Glaucoma 2019; 28: 1035-1040 (IGR: 21-1)


84935 Lamina cribrosa defect and progress of glaucoma
Fan N
Chinese Journal of Ophthalmology 2020; 56: 17-20 (IGR: 21-1)


84921 Selective Laser Trabeculoplasty Protects Glaucoma Progression in the Initial Primary Open-Angle Glaucoma and Angle-Closure Glaucoma after Laser Peripheral Iridotomy in the Long Term
Lepeshkina LV
BioMed research international 2019; 2019: 4519412 (IGR: 21-1)


84659 Estimating Rates of Progression and Predicting Future Visual Fields in Glaucoma Using a Deep Variational Autoencoder
Mukherjee S
Scientific reports 2019; 9: 18113 (IGR: 21-1)


85169 Evening exercise is associated with lower odds of visual field progression in Chinese patients with primary open angle glaucoma
Xu K
Eye and vision (London, England) 2020; 7: 12 (IGR: 21-1)


84541 Accuracy of Kalman Filtering in Forecasting Visual Field and Intraocular Pressure Trajectory in Patients With Ocular Hypertension
Lavieri MS
JAMA ophthalmology 2019; 0: (IGR: 21-1)


84545 Association of Retinal Blood Flow with Progression of Visual Field in Glaucoma
Shin DY
Scientific reports 2019; 9: 16813 (IGR: 21-1)


84470 Baseline Age and Mean Deviation Affect the Rate of Glaucomatous Vision Loss
De Moraes CG
Journal of Glaucoma 2020; 29: 31-38 (IGR: 21-1)


85169 Evening exercise is associated with lower odds of visual field progression in Chinese patients with primary open angle glaucoma
Wang X
Eye and vision (London, England) 2020; 7: 12 (IGR: 21-1)


84659 Estimating Rates of Progression and Predicting Future Visual Fields in Glaucoma Using a Deep Variational Autoencoder
Medeiros FA
Scientific reports 2019; 9: 18113 (IGR: 21-1)


84545 Association of Retinal Blood Flow with Progression of Visual Field in Glaucoma
Park HL
Scientific reports 2019; 9: 16813 (IGR: 21-1)


84541 Accuracy of Kalman Filtering in Forecasting Visual Field and Intraocular Pressure Trajectory in Patients With Ocular Hypertension
Andrews C
JAMA ophthalmology 2019; 0: (IGR: 21-1)


84470 Baseline Age and Mean Deviation Affect the Rate of Glaucomatous Vision Loss
Boland MV
Journal of Glaucoma 2020; 29: 31-38 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Pasquale LR
JAMA ophthalmology 2020; 0: (IGR: 21-1)


84443 Long-Term Follow-up on Glaucoma Patients With Initial Single-Hemifield Defect: Progression Patterns and Associated Factors
Park KH
Journal of Glaucoma 2019; 28: 1041-1047 (IGR: 21-1)


84409 Effects of Intravitreal Anti-VEGF Therapy on Glaucoma-like Progression in Susceptible Eyes
Prum BE
Journal of Glaucoma 2019; 28: 1035-1040 (IGR: 21-1)


84773 Machine learning classifiers-based prediction of normal-tension glaucoma progression in young myopic patients
Jeoung JW
Japanese Journal of Ophthalmology 2020; 64: 68-76 (IGR: 21-1)


84541 Accuracy of Kalman Filtering in Forecasting Visual Field and Intraocular Pressure Trajectory in Patients With Ocular Hypertension
Liu X
JAMA ophthalmology 2019; 0: (IGR: 21-1)


85169 Evening exercise is associated with lower odds of visual field progression in Chinese patients with primary open angle glaucoma
Chen G
Eye and vision (London, England) 2020; 7: 12 (IGR: 21-1)


84409 Effects of Intravitreal Anti-VEGF Therapy on Glaucoma-like Progression in Susceptible Eyes
Netland PA
Journal of Glaucoma 2019; 28: 1035-1040 (IGR: 21-1)


84773 Machine learning classifiers-based prediction of normal-tension glaucoma progression in young myopic patients
Ha A
Japanese Journal of Ophthalmology 2020; 64: 68-76 (IGR: 21-1)


84545 Association of Retinal Blood Flow with Progression of Visual Field in Glaucoma
Park CK
Scientific reports 2019; 9: 16813 (IGR: 21-1)


84470 Baseline Age and Mean Deviation Affect the Rate of Glaucomatous Vision Loss
Myers JS
Journal of Glaucoma 2020; 29: 31-38 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Shen LQ
JAMA ophthalmology 2020; 0: (IGR: 21-1)


84443 Long-Term Follow-up on Glaucoma Patients With Initial Single-Hemifield Defect: Progression Patterns and Associated Factors
Jeoung JW
Journal of Glaucoma 2019; 28: 1041-1047 (IGR: 21-1)


85169 Evening exercise is associated with lower odds of visual field progression in Chinese patients with primary open angle glaucoma
Cheng H
Eye and vision (London, England) 2020; 7: 12 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Boland MV
JAMA ophthalmology 2020; 0: (IGR: 21-1)


84409 Effects of Intravitreal Anti-VEGF Therapy on Glaucoma-like Progression in Susceptible Eyes
Shildkrot YE
Journal of Glaucoma 2019; 28: 1035-1040 (IGR: 21-1)


84470 Baseline Age and Mean Deviation Affect the Rate of Glaucomatous Vision Loss
Wellik SR
Journal of Glaucoma 2020; 29: 31-38 (IGR: 21-1)


84541 Accuracy of Kalman Filtering in Forecasting Visual Field and Intraocular Pressure Trajectory in Patients With Ocular Hypertension
Van Oyen MP
JAMA ophthalmology 2019; 0: (IGR: 21-1)


84773 Machine learning classifiers-based prediction of normal-tension glaucoma progression in young myopic patients
Kim YW
Japanese Journal of Ophthalmology 2020; 64: 68-76 (IGR: 21-1)


84470 Baseline Age and Mean Deviation Affect the Rate of Glaucomatous Vision Loss
Elze T
Journal of Glaucoma 2020; 29: 31-38 (IGR: 21-1)


85169 Evening exercise is associated with lower odds of visual field progression in Chinese patients with primary open angle glaucoma
Liu AJ
Eye and vision (London, England) 2020; 7: 12 (IGR: 21-1)


84773 Machine learning classifiers-based prediction of normal-tension glaucoma progression in young myopic patients
Park KH
Japanese Journal of Ophthalmology 2020; 64: 68-76 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Wellik SR
JAMA ophthalmology 2020; 0: (IGR: 21-1)


84541 Accuracy of Kalman Filtering in Forecasting Visual Field and Intraocular Pressure Trajectory in Patients With Ocular Hypertension
Kass MA
JAMA ophthalmology 2019; 0: (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
De Moraes CG
JAMA ophthalmology 2020; 0: (IGR: 21-1)


84470 Baseline Age and Mean Deviation Affect the Rate of Glaucomatous Vision Loss
Pasquale LR
Journal of Glaucoma 2020; 29: 31-38 (IGR: 21-1)


84541 Accuracy of Kalman Filtering in Forecasting Visual Field and Intraocular Pressure Trajectory in Patients With Ocular Hypertension
Gordon MO
JAMA ophthalmology 2019; 0: (IGR: 21-1)


85169 Evening exercise is associated with lower odds of visual field progression in Chinese patients with primary open angle glaucoma
Hou LT
Eye and vision (London, England) 2020; 7: 12 (IGR: 21-1)


84541 Accuracy of Kalman Filtering in Forecasting Visual Field and Intraocular Pressure Trajectory in Patients With Ocular Hypertension
Stein JD
JAMA ophthalmology 2019; 0: (IGR: 21-1)


85169 Evening exercise is associated with lower odds of visual field progression in Chinese patients with primary open angle glaucoma
Zhong L
Eye and vision (London, England) 2020; 7: 12 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Myers JS
JAMA ophthalmology 2020; 0: (IGR: 21-1)


84470 Baseline Age and Mean Deviation Affect the Rate of Glaucomatous Vision Loss
Shen LQ
Journal of Glaucoma 2020; 29: 31-38 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Ramulu P
JAMA ophthalmology 2020; 0: (IGR: 21-1)


84470 Baseline Age and Mean Deviation Affect the Rate of Glaucomatous Vision Loss
Ritch R
Journal of Glaucoma 2020; 29: 31-38 (IGR: 21-1)


85169 Evening exercise is associated with lower odds of visual field progression in Chinese patients with primary open angle glaucoma
Chen J
Eye and vision (London, England) 2020; 7: 12 (IGR: 21-1)


84470 Baseline Age and Mean Deviation Affect the Rate of Glaucomatous Vision Loss
Liebmann JM
Journal of Glaucoma 2020; 29: 31-38 (IGR: 21-1)


85169 Evening exercise is associated with lower odds of visual field progression in Chinese patients with primary open angle glaucoma
Liang Y
Eye and vision (London, England) 2020; 7: 12 (IGR: 21-1)


84857 Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
Kwon M; Saeedi OJ; Wang H; Baniasadi N; Li D; Bex PJ; Elze T
JAMA ophthalmology 2020; 0: (IGR: 21-1)


82371 Clinical Course and Risk Factors for Visual Field Progression in Normal-Tension Glaucoma With Myopia Without Glaucoma Medications
Han JC
American Journal of Ophthalmology 2020; 209: 77-87 (IGR: 20-4)


82514 Making a Correct Diagnosis of Glaucoma: Data From the EMGT
Öhnell H
Journal of Glaucoma 2019; 28: 859-864 (IGR: 20-4)


82134 Elucidation of the Strongest Factors Influencing Rapid Retinal Nerve Fiber Layer Thinning in Glaucoma
Lee EJ
Investigative Ophthalmology and Visual Science 2019; 60: 3343-3351 (IGR: 20-4)


82161 Seeking a practical definition of stable glaucoma: a Delphi consensus survey of UK glaucoma consultants
Lakhani BK
Eye 2020; 34: 335-343 (IGR: 20-4)


82414 Corneal Biomechanics and Visual Field Progression in Eyes with Seemingly Well-Controlled Intraocular Pressure
Susanna BN
Ophthalmology 2019; 126: 1640-1646 (IGR: 20-4)


82190 Intraocular pressure control and visual field changes in primary angle closure disease: the CUHK PACG Longitudinal (CUPAL) study
Cheung CY
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82488 Comparison of Methods to Detect and Measure Glaucomatous Visual Field Progression
Rabiolo A
Translational vision science & technology 2019; 8: 2 (IGR: 20-4)


82574 Relationship between sleep position and glaucoma progression
Kaplowitz K
Current Opinions in Ophthalmology 2019; 30: 484-490 (IGR: 20-4)


82768 Changes on Confocal Scanning Laser Ophthalmoscopy with the Heidelberg Retinal Tomography after a Cardiac Catheterism in a Patient with Progressive Glaucoma
Valera-Cornejo DA
Case Reports in Ophthalmology 2019; 10: 256-266 (IGR: 20-4)


81873 Optical Coherence Tomography Assessment of Risk Factors for Visual Acuity Decline After Trabeculectomy in Patients With Advanced Open-Angle Glaucoma
Asaoka K
Journal of Glaucoma 2019; 28: 780-784 (IGR: 20-4)


81956 Validating the efficacy of the binomial pointwise linear regression method to detect glaucoma progression with multicentral database
Asano S
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82211 Corneal deflection amplitude and visual field progression in primary open-angle glaucoma
Jung Y
PLoS ONE 2019; 14: e0220655 (IGR: 20-4)


82602 Risk factors for visual field loss progression in patients with primary open-angle glaucoma in Wenzhou area
Zhou K
Chinese Journal of Ophthalmology 2019; 55: 777-784 (IGR: 20-4)


82714 Correlation between 24-h continuous intraocular pressure measurement with a contact lens sensor and visual field progression
Tojo N
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 175-182 (IGR: 20-4)


82161 Seeking a practical definition of stable glaucoma: a Delphi consensus survey of UK glaucoma consultants
Giannouladis K
Eye 2020; 34: 335-343 (IGR: 20-4)


82602 Risk factors for visual field loss progression in patients with primary open-angle glaucoma in Wenzhou area
Shang X
Chinese Journal of Ophthalmology 2019; 55: 777-784 (IGR: 20-4)


82190 Intraocular pressure control and visual field changes in primary angle closure disease: the CUHK PACG Longitudinal (CUPAL) study
Li SL
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82714 Correlation between 24-h continuous intraocular pressure measurement with a contact lens sensor and visual field progression
Hayashi A
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 175-182 (IGR: 20-4)


82211 Corneal deflection amplitude and visual field progression in primary open-angle glaucoma
Chun H
PLoS ONE 2019; 14: e0220655 (IGR: 20-4)


82574 Relationship between sleep position and glaucoma progression
Dredge J
Current Opinions in Ophthalmology 2019; 30: 484-490 (IGR: 20-4)


81873 Optical Coherence Tomography Assessment of Risk Factors for Visual Acuity Decline After Trabeculectomy in Patients With Advanced Open-Angle Glaucoma
Kunimatsu-Sanuki S
Journal of Glaucoma 2019; 28: 780-784 (IGR: 20-4)


81956 Validating the efficacy of the binomial pointwise linear regression method to detect glaucoma progression with multicentral database
Murata H
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82768 Changes on Confocal Scanning Laser Ophthalmoscopy with the Heidelberg Retinal Tomography after a Cardiac Catheterism in a Patient with Progressive Glaucoma
Loayza-Gamboa W
Case Reports in Ophthalmology 2019; 10: 256-266 (IGR: 20-4)


82514 Making a Correct Diagnosis of Glaucoma: Data From the EMGT
Bengtsson B
Journal of Glaucoma 2019; 28: 859-864 (IGR: 20-4)


82414 Corneal Biomechanics and Visual Field Progression in Eyes with Seemingly Well-Controlled Intraocular Pressure
Ogata NG
Ophthalmology 2019; 126: 1640-1646 (IGR: 20-4)


82134 Elucidation of the Strongest Factors Influencing Rapid Retinal Nerve Fiber Layer Thinning in Glaucoma
Kim TW
Investigative Ophthalmology and Visual Science 2019; 60: 3343-3351 (IGR: 20-4)


82488 Comparison of Methods to Detect and Measure Glaucomatous Visual Field Progression
Morales E
Translational vision science & technology 2019; 8: 2 (IGR: 20-4)


82371 Clinical Course and Risk Factors for Visual Field Progression in Normal-Tension Glaucoma With Myopia Without Glaucoma Medications
Han SH
American Journal of Ophthalmology 2020; 209: 77-87 (IGR: 20-4)


81873 Optical Coherence Tomography Assessment of Risk Factors for Visual Acuity Decline After Trabeculectomy in Patients With Advanced Open-Angle Glaucoma
Kokubun T
Journal of Glaucoma 2019; 28: 780-784 (IGR: 20-4)


81956 Validating the efficacy of the binomial pointwise linear regression method to detect glaucoma progression with multicentral database
Matsuura M
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82371 Clinical Course and Risk Factors for Visual Field Progression in Normal-Tension Glaucoma With Myopia Without Glaucoma Medications
Park DY
American Journal of Ophthalmology 2020; 209: 77-87 (IGR: 20-4)


82514 Making a Correct Diagnosis of Glaucoma: Data From the EMGT
Heijl A
Journal of Glaucoma 2019; 28: 859-864 (IGR: 20-4)


82414 Corneal Biomechanics and Visual Field Progression in Eyes with Seemingly Well-Controlled Intraocular Pressure
Jammal AA
Ophthalmology 2019; 126: 1640-1646 (IGR: 20-4)


82161 Seeking a practical definition of stable glaucoma: a Delphi consensus survey of UK glaucoma consultants
Leighton P
Eye 2020; 34: 335-343 (IGR: 20-4)


82211 Corneal deflection amplitude and visual field progression in primary open-angle glaucoma
Moon JI
PLoS ONE 2019; 14: e0220655 (IGR: 20-4)


82714 Correlation between 24-h continuous intraocular pressure measurement with a contact lens sensor and visual field progression
Otsuka M
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 175-182 (IGR: 20-4)


82602 Risk factors for visual field loss progression in patients with primary open-angle glaucoma in Wenzhou area
Wang XY
Chinese Journal of Ophthalmology 2019; 55: 777-784 (IGR: 20-4)


82768 Changes on Confocal Scanning Laser Ophthalmoscopy with the Heidelberg Retinal Tomography after a Cardiac Catheterism in a Patient with Progressive Glaucoma
Herrera-Quiroz J
Case Reports in Ophthalmology 2019; 10: 256-266 (IGR: 20-4)


82574 Relationship between sleep position and glaucoma progression
Honkanen R
Current Opinions in Ophthalmology 2019; 30: 484-490 (IGR: 20-4)


82134 Elucidation of the Strongest Factors Influencing Rapid Retinal Nerve Fiber Layer Thinning in Glaucoma
Kim JA
Investigative Ophthalmology and Visual Science 2019; 60: 3343-3351 (IGR: 20-4)


82190 Intraocular pressure control and visual field changes in primary angle closure disease: the CUHK PACG Longitudinal (CUPAL) study
Chan PP
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82488 Comparison of Methods to Detect and Measure Glaucomatous Visual Field Progression
Mohamed L
Translational vision science & technology 2019; 8: 2 (IGR: 20-4)


82134 Elucidation of the Strongest Factors Influencing Rapid Retinal Nerve Fiber Layer Thinning in Glaucoma
Kim GN
Investigative Ophthalmology and Visual Science 2019; 60: 3343-3351 (IGR: 20-4)


82190 Intraocular pressure control and visual field changes in primary angle closure disease: the CUHK PACG Longitudinal (CUPAL) study
Chan NCY
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82602 Risk factors for visual field loss progression in patients with primary open-angle glaucoma in Wenzhou area
Wang XJ
Chinese Journal of Ophthalmology 2019; 55: 777-784 (IGR: 20-4)


82488 Comparison of Methods to Detect and Measure Glaucomatous Visual Field Progression
Capistrano V
Translational vision science & technology 2019; 8: 2 (IGR: 20-4)


81956 Validating the efficacy of the binomial pointwise linear regression method to detect glaucoma progression with multicentral database
Fujino Y
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82768 Changes on Confocal Scanning Laser Ophthalmoscopy with the Heidelberg Retinal Tomography after a Cardiac Catheterism in a Patient with Progressive Glaucoma
Alvarado-Villacorta R
Case Reports in Ophthalmology 2019; 10: 256-266 (IGR: 20-4)


81873 Optical Coherence Tomography Assessment of Risk Factors for Visual Acuity Decline After Trabeculectomy in Patients With Advanced Open-Angle Glaucoma
Nakazawa T
Journal of Glaucoma 2019; 28: 780-784 (IGR: 20-4)


82371 Clinical Course and Risk Factors for Visual Field Progression in Normal-Tension Glaucoma With Myopia Without Glaucoma Medications
Lee EJ
American Journal of Ophthalmology 2020; 209: 77-87 (IGR: 20-4)


82161 Seeking a practical definition of stable glaucoma: a Delphi consensus survey of UK glaucoma consultants
King AJ
Eye 2020; 34: 335-343 (IGR: 20-4)


82414 Corneal Biomechanics and Visual Field Progression in Eyes with Seemingly Well-Controlled Intraocular Pressure
Susanna CN
Ophthalmology 2019; 126: 1640-1646 (IGR: 20-4)


82134 Elucidation of the Strongest Factors Influencing Rapid Retinal Nerve Fiber Layer Thinning in Glaucoma
Kim JM
Investigative Ophthalmology and Visual Science 2019; 60: 3343-3351 (IGR: 20-4)


82768 Changes on Confocal Scanning Laser Ophthalmoscopy with the Heidelberg Retinal Tomography after a Cardiac Catheterism in a Patient with Progressive Glaucoma
Córdova-Crisanto L
Case Reports in Ophthalmology 2019; 10: 256-266 (IGR: 20-4)


82414 Corneal Biomechanics and Visual Field Progression in Eyes with Seemingly Well-Controlled Intraocular Pressure
Berchuck SI
Ophthalmology 2019; 126: 1640-1646 (IGR: 20-4)


82190 Intraocular pressure control and visual field changes in primary angle closure disease: the CUHK PACG Longitudinal (CUPAL) study
Tan S
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82488 Comparison of Methods to Detect and Measure Glaucomatous Visual Field Progression
Kim JH
Translational vision science & technology 2019; 8: 2 (IGR: 20-4)


82602 Risk factors for visual field loss progression in patients with primary open-angle glaucoma in Wenzhou area
Cheng HH
Chinese Journal of Ophthalmology 2019; 55: 777-784 (IGR: 20-4)


81956 Validating the efficacy of the binomial pointwise linear regression method to detect glaucoma progression with multicentral database
Miki A
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82414 Corneal Biomechanics and Visual Field Progression in Eyes with Seemingly Well-Controlled Intraocular Pressure
Berchuck SI
Ophthalmology 2019; 126: 1640-1646 (IGR: 20-4)


82371 Clinical Course and Risk Factors for Visual Field Progression in Normal-Tension Glaucoma With Myopia Without Glaucoma Medications
Kee C
American Journal of Ophthalmology 2020; 209: 77-87 (IGR: 20-4)


82488 Comparison of Methods to Detect and Measure Glaucomatous Visual Field Progression
Afifi A
Translational vision science & technology 2019; 8: 2 (IGR: 20-4)


82134 Elucidation of the Strongest Factors Influencing Rapid Retinal Nerve Fiber Layer Thinning in Glaucoma
Girard MJA
Investigative Ophthalmology and Visual Science 2019; 60: 3343-3351 (IGR: 20-4)


82414 Corneal Biomechanics and Visual Field Progression in Eyes with Seemingly Well-Controlled Intraocular Pressure
Medeiros FA
Ophthalmology 2019; 126: 1640-1646 (IGR: 20-4)


82190 Intraocular pressure control and visual field changes in primary angle closure disease: the CUHK PACG Longitudinal (CUPAL) study
Man X
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


81956 Validating the efficacy of the binomial pointwise linear regression method to detect glaucoma progression with multicentral database
Tanito M
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82602 Risk factors for visual field loss progression in patients with primary open-angle glaucoma in Wenzhou area
Hu HS
Chinese Journal of Ophthalmology 2019; 55: 777-784 (IGR: 20-4)


82768 Changes on Confocal Scanning Laser Ophthalmoscopy with the Heidelberg Retinal Tomography after a Cardiac Catheterism in a Patient with Progressive Glaucoma
Valderrama-Albino V; Pantoja-Dávalos N
Case Reports in Ophthalmology 2019; 10: 256-266 (IGR: 20-4)


81956 Validating the efficacy of the binomial pointwise linear regression method to detect glaucoma progression with multicentral database
Mizoue S
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82602 Risk factors for visual field loss progression in patients with primary open-angle glaucoma in Wenzhou area
Huang QJ
Chinese Journal of Ophthalmology 2019; 55: 777-784 (IGR: 20-4)


82134 Elucidation of the Strongest Factors Influencing Rapid Retinal Nerve Fiber Layer Thinning in Glaucoma
Mari JM
Investigative Ophthalmology and Visual Science 2019; 60: 3343-3351 (IGR: 20-4)


82190 Intraocular pressure control and visual field changes in primary angle closure disease: the CUHK PACG Longitudinal (CUPAL) study
Tham CC
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82488 Comparison of Methods to Detect and Measure Glaucomatous Visual Field Progression
Yu F
Translational vision science & technology 2019; 8: 2 (IGR: 20-4)


81956 Validating the efficacy of the binomial pointwise linear regression method to detect glaucoma progression with multicentral database
Mori K
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82602 Risk factors for visual field loss progression in patients with primary open-angle glaucoma in Wenzhou area
Pan XF
Chinese Journal of Ophthalmology 2019; 55: 777-784 (IGR: 20-4)


82134 Elucidation of the Strongest Factors Influencing Rapid Retinal Nerve Fiber Layer Thinning in Glaucoma
Kim H
Investigative Ophthalmology and Visual Science 2019; 60: 3343-3351 (IGR: 20-4)


82488 Comparison of Methods to Detect and Measure Glaucomatous Visual Field Progression
Coleman AL; Nouri-Mahdavi K
Translational vision science & technology 2019; 8: 2 (IGR: 20-4)


82602 Risk factors for visual field loss progression in patients with primary open-angle glaucoma in Wenzhou area
Xu X
Chinese Journal of Ophthalmology 2019; 55: 777-784 (IGR: 20-4)


81956 Validating the efficacy of the binomial pointwise linear regression method to detect glaucoma progression with multicentral database
Suzuki K
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82602 Risk factors for visual field loss progression in patients with primary open-angle glaucoma in Wenzhou area
Liang YB
Chinese Journal of Ophthalmology 2019; 55: 777-784 (IGR: 20-4)


81956 Validating the efficacy of the binomial pointwise linear regression method to detect glaucoma progression with multicentral database
Yamashita T
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


82488 Comparison of Methods to Detect and Measure Glaucomatous Visual Field Progression
Caprioli J
Translational vision science & technology 2019; 8: 2 (IGR: 20-4)


81956 Validating the efficacy of the binomial pointwise linear regression method to detect glaucoma progression with multicentral database
Kashiwagi K; Shoji N; Zangwill LM; Asaoka R
British Journal of Ophthalmology 2019; 0: (IGR: 20-4)


81363 Prediction of Glaucoma Progression with Structural Parameters: Comparison of Optical Coherence Tomography and Clinical Disc Parameters
Daneshvar R
American Journal of Ophthalmology 2019; 208: 19-29 (IGR: 20-3)


80990 Risk factors for disease progression in low-teens normal-tension glaucoma
Baek SU
British Journal of Ophthalmology 2020; 104: 81-86 (IGR: 20-3)


81316 Sectoral Differences in the Association of Optic Nerve Head Blood Flow and Glaucomatous Visual Field Defect Severity and Progression
Kiyota N
Investigative Ophthalmology and Visual Science 2019; 60: 2650-2658 (IGR: 20-3)


81236 Spatial and Temporal Characteristics of Visual Field Progression in Glaucoma Assessed by Parallel Factor Analysis
Kim S
Korean Journal of Ophthalmology 2019; 33: 279-286 (IGR: 20-3)


80602 Baseline Systolic versus Diastolic Blood Pressure Dip and Subsequent Visual Field Progression in Normal-Tension Glaucoma
Kwon J
Ophthalmology 2019; 126: 967-979 (IGR: 20-3)


80633 Improved Detection of Visual Field Progression Using a Spatiotemporal Boundary Detection Method
Berchuck SI
Scientific reports 2019; 9: 4642 (IGR: 20-3)


80696 Sex-Specific Effect of BDNF Val66Met Genotypes on the Progression of Open-Angle Glaucoma
Shen T
Investigative Ophthalmology and Visual Science 2019; 60: 1069-1075 (IGR: 20-3)


81240 Visual Field Prediction using Recurrent Neural Network
Park K
Scientific reports 2019; 9: 8385 (IGR: 20-3)


80563 Comparison of Visual Field Progression Rates Among the High Tension Glaucoma, Primary Angle Closure Glaucoma, and Normal Tension Glaucoma
Ballae Ganeshrao S
Investigative Ophthalmology and Visual Science 2019; 60: 889-900 (IGR: 20-3)


80958 Optic Disc Microhemorrhage in Primary Open-Angle Glaucoma: Clinical Implications for Visual Field Progression
Ha A
Investigative Ophthalmology and Visual Science 2019; 60: 1824-1832 (IGR: 20-3)


81253 Rapid Central Visual Field Progression Rate in Eyes with Open-Angle Glaucoma and Choroidal Microvasculature Dropout
Jo YH
Scientific reports 2019; 9: 8525 (IGR: 20-3)


81039 Significance of dynamic contour tonometry in evaluation of progression of glaucoma in patients with a history of laser refractive surgery
Lee SY
British Journal of Ophthalmology 2020; 104: 276-281 (IGR: 20-3)


81101 Contrast-to-Noise Ratios for Assessing the Detection of Progression in the Various Stages of Glaucoma
Majoor JEA
Translational vision science & technology 2019; 8: 8 (IGR: 20-3)


80829 Possible role of differentially expressing novel protein markers (ligatin and fibulin-7) in human aqueous humor and trabecular meshwork tissue in glaucoma progression
Basu K
Cell biology international 2019; 43: 820-834 (IGR: 20-3)


80837 Correlation between structural progression in glaucoma and obstructive sleep apnea
Fan YY
Eye 2019; 33: 1459-1465 (IGR: 20-3)


80750 Association Between Parapapillary Choroidal Vessel Density Measured With Optical Coherence Tomography Angiography and Future Visual Field Progression in Patients With Glaucoma
Park HY
JAMA ophthalmology 2019; 137: 681-688 (IGR: 20-3)


80778 A spatially varying change points model for monitoring glaucoma progression using visual field data
Berchuck SI
Spatial statistics 2019; 30: 1-26 (IGR: 20-3)


81406 Classification and Statistical Trend Analysis in Detecting Glaucomatous Visual Field Progression
Valente C
Journal of Ophthalmology 2019; 2019: 1583260 (IGR: 20-3)


81248 Effects of Brimonidine and Timolol on the Progression of Visual Field Defects in Open-angle Glaucoma: A Single-center Randomized Trial
Yokoyama Y
Journal of Glaucoma 2019; 28: 575-583 (IGR: 20-3)


80462 Agreement and Predictors of Discordance of 6 Visual Field Progression Algorithms
Saeedi OJ
Ophthalmology 2019; 126: 822-828 (IGR: 20-3)


80513 Predictive Factors for the Rate of Visual Field Progression in the Advanced Imaging for Glaucoma Study
Zhang X
American Journal of Ophthalmology 2019; 202: 62-71 (IGR: 20-3)


80990 Risk factors for disease progression in low-teens normal-tension glaucoma
Baek SU
British Journal of Ophthalmology 2020; 104: 81-86 (IGR: 20-3)


80778 A spatially varying change points model for monitoring glaucoma progression using visual field data
Berchuck SI
Spatial statistics 2019; 30: 1-26 (IGR: 20-3)


80633 Improved Detection of Visual Field Progression Using a Spatiotemporal Boundary Detection Method
Berchuck SI
Scientific reports 2019; 9: 4642 (IGR: 20-3)


81369 Evaluating the Impact of Uveitis on Visual Field Progression Using Large Scale Real-World Data
Liu X
American Journal of Ophthalmology 2019; 207: 144-150 (IGR: 20-3)


80825 Glaucoma progression analysis by Spectral-Domain Optical Coherence Tomography (SD-OCT)
Renard JP
Journal Franšais d'Ophtalmologie 2019; 42: 499-516 (IGR: 20-3)


81336 Risk Factors For Fast Visual Field Progression In Glaucoma
Kim JH
American Journal of Ophthalmology 2019; 207: 268-278 (IGR: 20-3)


81240 Visual Field Prediction using Recurrent Neural Network
Kim J
Scientific reports 2019; 9: 8385 (IGR: 20-3)


80829 Possible role of differentially expressing novel protein markers (ligatin and fibulin-7) in human aqueous humor and trabecular meshwork tissue in glaucoma progression
Maurya N
Cell biology international 2019; 43: 820-834 (IGR: 20-3)


80563 Comparison of Visual Field Progression Rates Among the High Tension Glaucoma, Primary Angle Closure Glaucoma, and Normal Tension Glaucoma
Senthil S
Investigative Ophthalmology and Visual Science 2019; 60: 889-900 (IGR: 20-3)


81336 Risk Factors For Fast Visual Field Progression In Glaucoma
Rabiolo A
American Journal of Ophthalmology 2019; 207: 268-278 (IGR: 20-3)


81101 Contrast-to-Noise Ratios for Assessing the Detection of Progression in the Various Stages of Glaucoma
Vermeer KA
Translational vision science & technology 2019; 8: 8 (IGR: 20-3)


81369 Evaluating the Impact of Uveitis on Visual Field Progression Using Large Scale Real-World Data
Kelly SR
American Journal of Ophthalmology 2019; 207: 144-150 (IGR: 20-3)


81406 Classification and Statistical Trend Analysis in Detecting Glaucomatous Visual Field Progression
D'Alessandro E
Journal of Ophthalmology 2019; 2019: 1583260 (IGR: 20-3)


81248 Effects of Brimonidine and Timolol on the Progression of Visual Field Defects in Open-angle Glaucoma: A Single-center Randomized Trial
Kawasaki R
Journal of Glaucoma 2019; 28: 575-583 (IGR: 20-3)


80513 Predictive Factors for the Rate of Visual Field Progression in the Advanced Imaging for Glaucoma Study
Parrish RK
American Journal of Ophthalmology 2019; 202: 62-71 (IGR: 20-3)


80696 Sex-Specific Effect of BDNF Val66Met Genotypes on the Progression of Open-Angle Glaucoma
Gupta VK
Investigative Ophthalmology and Visual Science 2019; 60: 1069-1075 (IGR: 20-3)


80990 Risk factors for disease progression in low-teens normal-tension glaucoma
Ha A
British Journal of Ophthalmology 2020; 104: 81-86 (IGR: 20-3)


80778 A spatially varying change points model for monitoring glaucoma progression using visual field data
Mwanza JC
Spatial statistics 2019; 30: 1-26 (IGR: 20-3)


81316 Sectoral Differences in the Association of Optic Nerve Head Blood Flow and Glaucomatous Visual Field Defect Severity and Progression
Shiga Y
Investigative Ophthalmology and Visual Science 2019; 60: 2650-2658 (IGR: 20-3)


80825 Glaucoma progression analysis by Spectral-Domain Optical Coherence Tomography (SD-OCT)
Fénolland JR
Journal Franšais d'Ophtalmologie 2019; 42: 499-516 (IGR: 20-3)


80462 Agreement and Predictors of Discordance of 6 Visual Field Progression Algorithms
Elze T
Ophthalmology 2019; 126: 822-828 (IGR: 20-3)


81363 Prediction of Glaucoma Progression with Structural Parameters: Comparison of Optical Coherence Tomography and Clinical Disc Parameters
Yarmohammadi A
American Journal of Ophthalmology 2019; 208: 19-29 (IGR: 20-3)


81039 Significance of dynamic contour tonometry in evaluation of progression of glaucoma in patients with a history of laser refractive surgery
Kim EW
British Journal of Ophthalmology 2020; 104: 276-281 (IGR: 20-3)


81236 Spatial and Temporal Characteristics of Visual Field Progression in Glaucoma Assessed by Parallel Factor Analysis
Shon K
Korean Journal of Ophthalmology 2019; 33: 279-286 (IGR: 20-3)


80958 Optic Disc Microhemorrhage in Primary Open-Angle Glaucoma: Clinical Implications for Visual Field Progression
Kim YK
Investigative Ophthalmology and Visual Science 2019; 60: 1824-1832 (IGR: 20-3)


80602 Baseline Systolic versus Diastolic Blood Pressure Dip and Subsequent Visual Field Progression in Normal-Tension Glaucoma
Jo YH
Ophthalmology 2019; 126: 967-979 (IGR: 20-3)


80750 Association Between Parapapillary Choroidal Vessel Density Measured With Optical Coherence Tomography Angiography and Future Visual Field Progression in Patients With Glaucoma
Shin DY
JAMA ophthalmology 2019; 137: 681-688 (IGR: 20-3)


80633 Improved Detection of Visual Field Progression Using a Spatiotemporal Boundary Detection Method
Mwanza JC
Scientific reports 2019; 9: 4642 (IGR: 20-3)


80837 Correlation between structural progression in glaucoma and obstructive sleep apnea
Su WW
Eye 2019; 33: 1459-1465 (IGR: 20-3)


81253 Rapid Central Visual Field Progression Rate in Eyes with Open-Angle Glaucoma and Choroidal Microvasculature Dropout
Kwon J
Scientific reports 2019; 9: 8525 (IGR: 20-3)


80958 Optic Disc Microhemorrhage in Primary Open-Angle Glaucoma: Clinical Implications for Visual Field Progression
Baek SU
Investigative Ophthalmology and Visual Science 2019; 60: 1824-1832 (IGR: 20-3)


80633 Improved Detection of Visual Field Progression Using a Spatiotemporal Boundary Detection Method
Tanna AP
Scientific reports 2019; 9: 4642 (IGR: 20-3)


80696 Sex-Specific Effect of BDNF Val66Met Genotypes on the Progression of Open-Angle Glaucoma
Klistorner A
Investigative Ophthalmology and Visual Science 2019; 60: 1069-1075 (IGR: 20-3)


80778 A spatially varying change points model for monitoring glaucoma progression using visual field data
Warren JL
Spatial statistics 2019; 30: 1-26 (IGR: 20-3)


81039 Significance of dynamic contour tonometry in evaluation of progression of glaucoma in patients with a history of laser refractive surgery
Choi W
British Journal of Ophthalmology 2020; 104: 276-281 (IGR: 20-3)


81248 Effects of Brimonidine and Timolol on the Progression of Visual Field Defects in Open-angle Glaucoma: A Single-center Randomized Trial
Takahashi H
Journal of Glaucoma 2019; 28: 575-583 (IGR: 20-3)


80513 Predictive Factors for the Rate of Visual Field Progression in the Advanced Imaging for Glaucoma Study
Greenfield DS
American Journal of Ophthalmology 2019; 202: 62-71 (IGR: 20-3)


81363 Prediction of Glaucoma Progression with Structural Parameters: Comparison of Optical Coherence Tomography and Clinical Disc Parameters
Alizadeh R
American Journal of Ophthalmology 2019; 208: 19-29 (IGR: 20-3)


80829 Possible role of differentially expressing novel protein markers (ligatin and fibulin-7) in human aqueous humor and trabecular meshwork tissue in glaucoma progression
Kaur J
Cell biology international 2019; 43: 820-834 (IGR: 20-3)


80837 Correlation between structural progression in glaucoma and obstructive sleep apnea
Liu CH
Eye 2019; 33: 1459-1465 (IGR: 20-3)


81336 Risk Factors For Fast Visual Field Progression In Glaucoma
Morales E
American Journal of Ophthalmology 2019; 207: 268-278 (IGR: 20-3)


80462 Agreement and Predictors of Discordance of 6 Visual Field Progression Algorithms
D'Acunto L
Ophthalmology 2019; 126: 822-828 (IGR: 20-3)


80563 Comparison of Visual Field Progression Rates Among the High Tension Glaucoma, Primary Angle Closure Glaucoma, and Normal Tension Glaucoma
Choudhari N
Investigative Ophthalmology and Visual Science 2019; 60: 889-900 (IGR: 20-3)


81253 Rapid Central Visual Field Progression Rate in Eyes with Open-Angle Glaucoma and Choroidal Microvasculature Dropout
Jeong D
Scientific reports 2019; 9: 8525 (IGR: 20-3)


80990 Risk factors for disease progression in low-teens normal-tension glaucoma
Kim DW
British Journal of Ophthalmology 2020; 104: 81-86 (IGR: 20-3)


81101 Contrast-to-Noise Ratios for Assessing the Detection of Progression in the Various Stages of Glaucoma
Andrinopoulou ER
Translational vision science & technology 2019; 8: 8 (IGR: 20-3)


80825 Glaucoma progression analysis by Spectral-Domain Optical Coherence Tomography (SD-OCT)
Giraud JM
Journal Franšais d'Ophtalmologie 2019; 42: 499-516 (IGR: 20-3)


81240 Visual Field Prediction using Recurrent Neural Network
Lee J
Scientific reports 2019; 9: 8385 (IGR: 20-3)


80958 Optic Disc Microhemorrhage in Primary Open-Angle Glaucoma: Clinical Implications for Visual Field Progression
Baek SU
Investigative Ophthalmology and Visual Science 2019; 60: 1824-1832 (IGR: 20-3)


81316 Sectoral Differences in the Association of Optic Nerve Head Blood Flow and Glaucomatous Visual Field Defect Severity and Progression
Yasuda M
Investigative Ophthalmology and Visual Science 2019; 60: 2650-2658 (IGR: 20-3)


81369 Evaluating the Impact of Uveitis on Visual Field Progression Using Large Scale Real-World Data
Montesano G
American Journal of Ophthalmology 2019; 207: 144-150 (IGR: 20-3)


81236 Spatial and Temporal Characteristics of Visual Field Progression in Glaucoma Assessed by Parallel Factor Analysis
Sung KR
Korean Journal of Ophthalmology 2019; 33: 279-286 (IGR: 20-3)


80602 Baseline Systolic versus Diastolic Blood Pressure Dip and Subsequent Visual Field Progression in Normal-Tension Glaucoma
Jeong D
Ophthalmology 2019; 126: 967-979 (IGR: 20-3)


81406 Classification and Statistical Trend Analysis in Detecting Glaucomatous Visual Field Progression
Iester M
Journal of Ophthalmology 2019; 2019: 1583260 (IGR: 20-3)


80750 Association Between Parapapillary Choroidal Vessel Density Measured With Optical Coherence Tomography Angiography and Future Visual Field Progression in Patients With Glaucoma
Jeon SJ
JAMA ophthalmology 2019; 137: 681-688 (IGR: 20-3)


80513 Predictive Factors for the Rate of Visual Field Progression in the Advanced Imaging for Glaucoma Study
Francis BA
American Journal of Ophthalmology 2019; 202: 62-71 (IGR: 20-3)


80563 Comparison of Visual Field Progression Rates Among the High Tension Glaucoma, Primary Angle Closure Glaucoma, and Normal Tension Glaucoma
Sri Durgam S
Investigative Ophthalmology and Visual Science 2019; 60: 889-900 (IGR: 20-3)


81369 Evaluating the Impact of Uveitis on Visual Field Progression Using Large Scale Real-World Data
Bryan SR
American Journal of Ophthalmology 2019; 207: 144-150 (IGR: 20-3)


80462 Agreement and Predictors of Discordance of 6 Visual Field Progression Algorithms
Swamy R
Ophthalmology 2019; 126: 822-828 (IGR: 20-3)


81253 Rapid Central Visual Field Progression Rate in Eyes with Open-Angle Glaucoma and Choroidal Microvasculature Dropout
Shon K
Scientific reports 2019; 9: 8525 (IGR: 20-3)


80750 Association Between Parapapillary Choroidal Vessel Density Measured With Optical Coherence Tomography Angiography and Future Visual Field Progression in Patients With Glaucoma
Park CK
JAMA ophthalmology 2019; 137: 681-688 (IGR: 20-3)


80633 Improved Detection of Visual Field Progression Using a Spatiotemporal Boundary Detection Method
Budenz DL
Scientific reports 2019; 9: 4642 (IGR: 20-3)


80602 Baseline Systolic versus Diastolic Blood Pressure Dip and Subsequent Visual Field Progression in Normal-Tension Glaucoma
Shon K
Ophthalmology 2019; 126: 967-979 (IGR: 20-3)


80990 Risk factors for disease progression in low-teens normal-tension glaucoma
Jeoung JW
British Journal of Ophthalmology 2020; 104: 81-86 (IGR: 20-3)


80696 Sex-Specific Effect of BDNF Val66Met Genotypes on the Progression of Open-Angle Glaucoma
Chitranshi N
Investigative Ophthalmology and Visual Science 2019; 60: 1069-1075 (IGR: 20-3)


81316 Sectoral Differences in the Association of Optic Nerve Head Blood Flow and Glaucomatous Visual Field Defect Severity and Progression
Aizawa N
Investigative Ophthalmology and Visual Science 2019; 60: 2650-2658 (IGR: 20-3)


81039 Significance of dynamic contour tonometry in evaluation of progression of glaucoma in patients with a history of laser refractive surgery
Park CK
British Journal of Ophthalmology 2020; 104: 276-281 (IGR: 20-3)


81336 Risk Factors For Fast Visual Field Progression In Glaucoma
Yu F
American Journal of Ophthalmology 2019; 207: 268-278 (IGR: 20-3)


80829 Possible role of differentially expressing novel protein markers (ligatin and fibulin-7) in human aqueous humor and trabecular meshwork tissue in glaucoma progression
Saxena R
Cell biology international 2019; 43: 820-834 (IGR: 20-3)


80837 Correlation between structural progression in glaucoma and obstructive sleep apnea
Chen HS
Eye 2019; 33: 1459-1465 (IGR: 20-3)


81363 Prediction of Glaucoma Progression with Structural Parameters: Comparison of Optical Coherence Tomography and Clinical Disc Parameters
Henry S
American Journal of Ophthalmology 2019; 208: 19-29 (IGR: 20-3)


81248 Effects of Brimonidine and Timolol on the Progression of Visual Field Defects in Open-angle Glaucoma: A Single-center Randomized Trial
Maekawa S
Journal of Glaucoma 2019; 28: 575-583 (IGR: 20-3)


80958 Optic Disc Microhemorrhage in Primary Open-Angle Glaucoma: Clinical Implications for Visual Field Progression
Park KH
Investigative Ophthalmology and Visual Science 2019; 60: 1824-1832 (IGR: 20-3)


81101 Contrast-to-Noise Ratios for Assessing the Detection of Progression in the Various Stages of Glaucoma
Lemij HG
Translational vision science & technology 2019; 8: 8 (IGR: 20-3)


81248 Effects of Brimonidine and Timolol on the Progression of Visual Field Defects in Open-angle Glaucoma: A Single-center Randomized Trial
Tsuda S
Journal of Glaucoma 2019; 28: 575-583 (IGR: 20-3)


80829 Possible role of differentially expressing novel protein markers (ligatin and fibulin-7) in human aqueous humor and trabecular meshwork tissue in glaucoma progression
Gupta V
Cell biology international 2019; 43: 820-834 (IGR: 20-3)


80837 Correlation between structural progression in glaucoma and obstructive sleep apnea
Wu SC
Eye 2019; 33: 1459-1465 (IGR: 20-3)


80958 Optic Disc Microhemorrhage in Primary Open-Angle Glaucoma: Clinical Implications for Visual Field Progression
Jeoung JW
Investigative Ophthalmology and Visual Science 2019; 60: 1824-1832 (IGR: 20-3)


80990 Risk factors for disease progression in low-teens normal-tension glaucoma
Park KH
British Journal of Ophthalmology 2020; 104: 81-86 (IGR: 20-3)


81316 Sectoral Differences in the Association of Optic Nerve Head Blood Flow and Glaucomatous Visual Field Defect Severity and Progression
Omodaka K
Investigative Ophthalmology and Visual Science 2019; 60: 2650-2658 (IGR: 20-3)


80462 Agreement and Predictors of Discordance of 6 Visual Field Progression Algorithms
Hegde V
Ophthalmology 2019; 126: 822-828 (IGR: 20-3)


80633 Improved Detection of Visual Field Progression Using a Spatiotemporal Boundary Detection Method
Warren JL
Scientific reports 2019; 9: 4642 (IGR: 20-3)


81253 Rapid Central Visual Field Progression Rate in Eyes with Open-Angle Glaucoma and Choroidal Microvasculature Dropout
Kook MS
Scientific reports 2019; 9: 8525 (IGR: 20-3)


81369 Evaluating the Impact of Uveitis on Visual Field Progression Using Large Scale Real-World Data
Barry RJ
American Journal of Ophthalmology 2019; 207: 144-150 (IGR: 20-3)


81363 Prediction of Glaucoma Progression with Structural Parameters: Comparison of Optical Coherence Tomography and Clinical Disc Parameters
Law SK
American Journal of Ophthalmology 2019; 208: 19-29 (IGR: 20-3)


80696 Sex-Specific Effect of BDNF Val66Met Genotypes on the Progression of Open-Angle Glaucoma
Graham SL
Investigative Ophthalmology and Visual Science 2019; 60: 1069-1075 (IGR: 20-3)


81039 Significance of dynamic contour tonometry in evaluation of progression of glaucoma in patients with a history of laser refractive surgery
Kim S
British Journal of Ophthalmology 2020; 104: 276-281 (IGR: 20-3)


81336 Risk Factors For Fast Visual Field Progression In Glaucoma
Afifi AA
American Journal of Ophthalmology 2019; 207: 268-278 (IGR: 20-3)


80602 Baseline Systolic versus Diastolic Blood Pressure Dip and Subsequent Visual Field Progression in Normal-Tension Glaucoma
Kook MS
Ophthalmology 2019; 126: 967-979 (IGR: 20-3)


80563 Comparison of Visual Field Progression Rates Among the High Tension Glaucoma, Primary Angle Closure Glaucoma, and Normal Tension Glaucoma
Garudadri CS
Investigative Ophthalmology and Visual Science 2019; 60: 889-900 (IGR: 20-3)


80513 Predictive Factors for the Rate of Visual Field Progression in the Advanced Imaging for Glaucoma Study
Varma R
American Journal of Ophthalmology 2019; 202: 62-71 (IGR: 20-3)


80462 Agreement and Predictors of Discordance of 6 Visual Field Progression Algorithms
Gupta S
Ophthalmology 2019; 126: 822-828 (IGR: 20-3)


81363 Prediction of Glaucoma Progression with Structural Parameters: Comparison of Optical Coherence Tomography and Clinical Disc Parameters
Caprioli J
American Journal of Ophthalmology 2019; 208: 19-29 (IGR: 20-3)


80513 Predictive Factors for the Rate of Visual Field Progression in the Advanced Imaging for Glaucoma Study
Schuman JS
American Journal of Ophthalmology 2019; 202: 62-71 (IGR: 20-3)


81369 Evaluating the Impact of Uveitis on Visual Field Progression Using Large Scale Real-World Data
Keane PA
American Journal of Ophthalmology 2019; 207: 144-150 (IGR: 20-3)


80696 Sex-Specific Effect of BDNF Val66Met Genotypes on the Progression of Open-Angle Glaucoma
You Y
Investigative Ophthalmology and Visual Science 2019; 60: 1069-1075 (IGR: 20-3)


81336 Risk Factors For Fast Visual Field Progression In Glaucoma
Nouri-Mahdavi K
American Journal of Ophthalmology 2019; 207: 268-278 (IGR: 20-3)


81039 Significance of dynamic contour tonometry in evaluation of progression of glaucoma in patients with a history of laser refractive surgery
Bae HW
British Journal of Ophthalmology 2020; 104: 276-281 (IGR: 20-3)


80829 Possible role of differentially expressing novel protein markers (ligatin and fibulin-7) in human aqueous humor and trabecular meshwork tissue in glaucoma progression
Sihota R
Cell biology international 2019; 43: 820-834 (IGR: 20-3)


80837 Correlation between structural progression in glaucoma and obstructive sleep apnea
Chang SHL
Eye 2019; 33: 1459-1465 (IGR: 20-3)


81248 Effects of Brimonidine and Timolol on the Progression of Visual Field Defects in Open-angle Glaucoma: A Single-center Randomized Trial
Omodaka K
Journal of Glaucoma 2019; 28: 575-583 (IGR: 20-3)


80990 Risk factors for disease progression in low-teens normal-tension glaucoma
Kim YK
British Journal of Ophthalmology 2020; 104: 81-86 (IGR: 20-3)


81316 Sectoral Differences in the Association of Optic Nerve Head Blood Flow and Glaucomatous Visual Field Defect Severity and Progression
Tsuda S
Investigative Ophthalmology and Visual Science 2019; 60: 2650-2658 (IGR: 20-3)


80513 Predictive Factors for the Rate of Visual Field Progression in the Advanced Imaging for Glaucoma Study
Tan O
American Journal of Ophthalmology 2019; 202: 62-71 (IGR: 20-3)


81039 Significance of dynamic contour tonometry in evaluation of progression of glaucoma in patients with a history of laser refractive surgery
Seong GJ
British Journal of Ophthalmology 2020; 104: 276-281 (IGR: 20-3)


81336 Risk Factors For Fast Visual Field Progression In Glaucoma
Caprioli J
American Journal of Ophthalmology 2019; 207: 268-278 (IGR: 20-3)


80837 Correlation between structural progression in glaucoma and obstructive sleep apnea
Chen KJ
Eye 2019; 33: 1459-1465 (IGR: 20-3)


80462 Agreement and Predictors of Discordance of 6 Visual Field Progression Algorithms
Venjara A
Ophthalmology 2019; 126: 822-828 (IGR: 20-3)


81369 Evaluating the Impact of Uveitis on Visual Field Progression Using Large Scale Real-World Data
Denniston AK
American Journal of Ophthalmology 2019; 207: 144-150 (IGR: 20-3)


81248 Effects of Brimonidine and Timolol on the Progression of Visual Field Defects in Open-angle Glaucoma: A Single-center Randomized Trial
Nakazawa T
Journal of Glaucoma 2019; 28: 575-583 (IGR: 20-3)


81316 Sectoral Differences in the Association of Optic Nerve Head Blood Flow and Glaucomatous Visual Field Defect Severity and Progression
Kunikata H
Investigative Ophthalmology and Visual Science 2019; 60: 2650-2658 (IGR: 20-3)


80829 Possible role of differentially expressing novel protein markers (ligatin and fibulin-7) in human aqueous humor and trabecular meshwork tissue in glaucoma progression
Ghosh I
Cell biology international 2019; 43: 820-834 (IGR: 20-3)


81363 Prediction of Glaucoma Progression with Structural Parameters: Comparison of Optical Coherence Tomography and Clinical Disc Parameters
Nouri-Mahdavi K
American Journal of Ophthalmology 2019; 208: 19-29 (IGR: 20-3)


81316 Sectoral Differences in the Association of Optic Nerve Head Blood Flow and Glaucomatous Visual Field Defect Severity and Progression
Nakazawa T
Investigative Ophthalmology and Visual Science 2019; 60: 2650-2658 (IGR: 20-3)


81369 Evaluating the Impact of Uveitis on Visual Field Progression Using Large Scale Real-World Data
Crabb DP
American Journal of Ophthalmology 2019; 207: 144-150 (IGR: 20-3)


80837 Correlation between structural progression in glaucoma and obstructive sleep apnea
Wu WC
Eye 2019; 33: 1459-1465 (IGR: 20-3)


80513 Predictive Factors for the Rate of Visual Field Progression in the Advanced Imaging for Glaucoma Study
Huang D
American Journal of Ophthalmology 2019; 202: 62-71 (IGR: 20-3)


80462 Agreement and Predictors of Discordance of 6 Visual Field Progression Algorithms
Tsai J
Ophthalmology 2019; 126: 822-828 (IGR: 20-3)


81039 Significance of dynamic contour tonometry in evaluation of progression of glaucoma in patients with a history of laser refractive surgery
Kim CY
British Journal of Ophthalmology 2020; 104: 276-281 (IGR: 20-3)


80462 Agreement and Predictors of Discordance of 6 Visual Field Progression Algorithms
Myers JS
Ophthalmology 2019; 126: 822-828 (IGR: 20-3)


80837 Correlation between structural progression in glaucoma and obstructive sleep apnea
Chen NH
Eye 2019; 33: 1459-1465 (IGR: 20-3)


80513 Predictive Factors for the Rate of Visual Field Progression in the Advanced Imaging for Glaucoma Study

American Journal of Ophthalmology 2019; 202: 62-71 (IGR: 20-3)


80837 Correlation between structural progression in glaucoma and obstructive sleep apnea
Li HY
Eye 2019; 33: 1459-1465 (IGR: 20-3)


80462 Agreement and Predictors of Discordance of 6 Visual Field Progression Algorithms
Wellik SR
Ophthalmology 2019; 126: 822-828 (IGR: 20-3)


80837 Correlation between structural progression in glaucoma and obstructive sleep apnea
Sun MH
Eye 2019; 33: 1459-1465 (IGR: 20-3)


80462 Agreement and Predictors of Discordance of 6 Visual Field Progression Algorithms
De Moraes CG; Pasquale LR; Shen LQ; Boland MV
Ophthalmology 2019; 126: 822-828 (IGR: 20-3)


79823 Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns
Yousefi S
Investigative Ophthalmology and Visual Science 2018; 59: 5717-5725 (IGR: 20-2)


79942 Intraocular pressure fluctuation and the risk of glaucomatous damage deterioration: a Meta-analysis
Guo ZZ
International Journal of Ophthalmology 2019; 12: 123-128 (IGR: 20-2)


80034 Vision-related Performance and Quality of Life of Patients With Rapid Glaucoma Progression
Waisbourd M
Journal of Glaucoma 2019; 28: 216-222 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Wang M
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


79568 Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression
Matlach J
Clinical Ophthalmology 2019; 13: 9-16 (IGR: 20-2)


79844 Cataract Surgery and Rate of Visual Field Progression in Primary Open-Angle Glaucoma
Kim JH
American Journal of Ophthalmology 2019; 201: 19-30 (IGR: 20-2)


79599 Parapapillary Deep-Layer Microvasculature Dropout and Visual Field Progression in Glaucoma
Kwon JM
American Journal of Ophthalmology 2019; 200: 65-75 (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure
Sakata R
Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


79736 Relationship between Progressive Changes in Lamina Cribrosa Depth and Deterioration of Visual Field Loss in Glaucomatous Eyes
Kim YN
Korean Journal of Ophthalmology 2018; 32: 470-477 (IGR: 20-2)


79990 Comparison of Rates of Fast and Catastrophic Visual Field Loss in Three Glaucoma Subtypes
Anderson AJ
Investigative Ophthalmology and Visual Science 2019; 60: 161-167 (IGR: 20-2)


79343 Impact of ab-interno trabeculectomy on Bruch's membrane opening-based morphometry of the optic nerve head for glaucoma progression analysis
Kiessling D
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 339-347 (IGR: 20-2)


79390 Early Detection of Glaucomatous Visual Field Progression Using Pointwise Linear Regression With Binomial Test in the Central 10 Degrees
Asano S
American Journal of Ophthalmology 2019; 199: 140-149 (IGR: 20-2)


79682 Intraocular Pressure Elevation during Lateral Body Posture in Side-sleeping Glaucoma Patients
Park JH
Optometry and Vision Science 2019; 96: 62-70 (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure
Yoshitomi T
Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


79682 Intraocular Pressure Elevation during Lateral Body Posture in Side-sleeping Glaucoma Patients
Yoo C
Optometry and Vision Science 2019; 96: 62-70 (IGR: 20-2)


79343 Impact of ab-interno trabeculectomy on Bruch's membrane opening-based morphometry of the optic nerve head for glaucoma progression analysis
Christ H
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 339-347 (IGR: 20-2)


79599 Parapapillary Deep-Layer Microvasculature Dropout and Visual Field Progression in Glaucoma
Weinreb RN
American Journal of Ophthalmology 2019; 200: 65-75 (IGR: 20-2)


79823 Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns
Sakai H
Investigative Ophthalmology and Visual Science 2018; 59: 5717-5725 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Shen LQ
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


80034 Vision-related Performance and Quality of Life of Patients With Rapid Glaucoma Progression
Sanvicente CT
Journal of Glaucoma 2019; 28: 216-222 (IGR: 20-2)


79844 Cataract Surgery and Rate of Visual Field Progression in Primary Open-Angle Glaucoma
Rabiolo A
American Journal of Ophthalmology 2019; 201: 19-30 (IGR: 20-2)


79390 Early Detection of Glaucomatous Visual Field Progression Using Pointwise Linear Regression With Binomial Test in the Central 10 Degrees
Murata H
American Journal of Ophthalmology 2019; 199: 140-149 (IGR: 20-2)


79568 Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression
Bender S
Clinical Ophthalmology 2019; 13: 9-16 (IGR: 20-2)


80034 Vision-related Performance and Quality of Life of Patients With Rapid Glaucoma Progression
Sanvicente CT
Journal of Glaucoma 2019; 28: 216-222 (IGR: 20-2)


79942 Intraocular pressure fluctuation and the risk of glaucomatous damage deterioration: a Meta-analysis
Chang K
International Journal of Ophthalmology 2019; 12: 123-128 (IGR: 20-2)


79990 Comparison of Rates of Fast and Catastrophic Visual Field Loss in Three Glaucoma Subtypes
Chaurasia AK
Investigative Ophthalmology and Visual Science 2019; 60: 161-167 (IGR: 20-2)


79736 Relationship between Progressive Changes in Lamina Cribrosa Depth and Deterioration of Visual Field Loss in Glaucomatous Eyes
Shin JW
Korean Journal of Ophthalmology 2018; 32: 470-477 (IGR: 20-2)


79390 Early Detection of Glaucomatous Visual Field Progression Using Pointwise Linear Regression With Binomial Test in the Central 10 Degrees
Matsuura M
American Journal of Ophthalmology 2019; 199: 140-149 (IGR: 20-2)


80034 Vision-related Performance and Quality of Life of Patients With Rapid Glaucoma Progression
Coleman HM
Journal of Glaucoma 2019; 28: 216-222 (IGR: 20-2)


79736 Relationship between Progressive Changes in Lamina Cribrosa Depth and Deterioration of Visual Field Loss in Glaucomatous Eyes
Sung KR
Korean Journal of Ophthalmology 2018; 32: 470-477 (IGR: 20-2)


79568 Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression
König J
Clinical Ophthalmology 2019; 13: 9-16 (IGR: 20-2)


79990 Comparison of Rates of Fast and Catastrophic Visual Field Loss in Three Glaucoma Subtypes
Sharma A
Investigative Ophthalmology and Visual Science 2019; 60: 161-167 (IGR: 20-2)


79942 Intraocular pressure fluctuation and the risk of glaucomatous damage deterioration: a Meta-analysis
Wei X
International Journal of Ophthalmology 2019; 12: 123-128 (IGR: 20-2)


79343 Impact of ab-interno trabeculectomy on Bruch's membrane opening-based morphometry of the optic nerve head for glaucoma progression analysis
Gietzelt C
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 339-347 (IGR: 20-2)


79599 Parapapillary Deep-Layer Microvasculature Dropout and Visual Field Progression in Glaucoma
Zangwill LM
American Journal of Ophthalmology 2019; 200: 65-75 (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure
Iwase A
Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


79682 Intraocular Pressure Elevation during Lateral Body Posture in Side-sleeping Glaucoma Patients
Yoo E
Optometry and Vision Science 2019; 96: 62-70 (IGR: 20-2)


79844 Cataract Surgery and Rate of Visual Field Progression in Primary Open-Angle Glaucoma
Morales E
American Journal of Ophthalmology 2019; 201: 19-30 (IGR: 20-2)


79823 Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns
Murata H
Investigative Ophthalmology and Visual Science 2018; 59: 5717-5725 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Pasquale LR; Petrakos P
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


79568 Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression
Binder H
Clinical Ophthalmology 2019; 13: 9-16 (IGR: 20-2)


79343 Impact of ab-interno trabeculectomy on Bruch's membrane opening-based morphometry of the optic nerve head for glaucoma progression analysis
Schaub F
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 339-347 (IGR: 20-2)


79990 Comparison of Rates of Fast and Catastrophic Visual Field Loss in Three Glaucoma Subtypes
Gupta A
Investigative Ophthalmology and Visual Science 2019; 60: 161-167 (IGR: 20-2)


80034 Vision-related Performance and Quality of Life of Patients With Rapid Glaucoma Progression
Sieburth R
Journal of Glaucoma 2019; 28: 216-222 (IGR: 20-2)


79844 Cataract Surgery and Rate of Visual Field Progression in Primary Open-Angle Glaucoma
Fatehi N
American Journal of Ophthalmology 2019; 201: 19-30 (IGR: 20-2)


79390 Early Detection of Glaucomatous Visual Field Progression Using Pointwise Linear Regression With Binomial Test in the Central 10 Degrees
Fujino Y
American Journal of Ophthalmology 2019; 199: 140-149 (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure
Matsumoto C
Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


79682 Intraocular Pressure Elevation during Lateral Body Posture in Side-sleeping Glaucoma Patients
Kim YY
Optometry and Vision Science 2019; 96: 62-70 (IGR: 20-2)


79823 Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns
Fujino Y
Investigative Ophthalmology and Visual Science 2018; 59: 5717-5725 (IGR: 20-2)


79599 Parapapillary Deep-Layer Microvasculature Dropout and Visual Field Progression in Glaucoma
Suh MH
American Journal of Ophthalmology 2019; 200: 65-75 (IGR: 20-2)


79343 Impact of ab-interno trabeculectomy on Bruch's membrane opening-based morphometry of the optic nerve head for glaucoma progression analysis
Dietlein TS
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 339-347 (IGR: 20-2)


79990 Comparison of Rates of Fast and Catastrophic Visual Field Loss in Three Glaucoma Subtypes
Gupta S
Investigative Ophthalmology and Visual Science 2019; 60: 161-167 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Formica S
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


79844 Cataract Surgery and Rate of Visual Field Progression in Primary Open-Angle Glaucoma
Lee WS
American Journal of Ophthalmology 2019; 201: 19-30 (IGR: 20-2)


79823 Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns
Matsuura M
Investigative Ophthalmology and Visual Science 2018; 59: 5717-5725 (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure
Higashide T
Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


80034 Vision-related Performance and Quality of Life of Patients With Rapid Glaucoma Progression
Zhan T
Journal of Glaucoma 2019; 28: 216-222 (IGR: 20-2)


79568 Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression
Pfeiffer N
Clinical Ophthalmology 2019; 13: 9-16 (IGR: 20-2)


79390 Early Detection of Glaucomatous Visual Field Progression Using Pointwise Linear Regression With Binomial Test in the Central 10 Degrees
Asaoka R
American Journal of Ophthalmology 2019; 199: 140-149 (IGR: 20-2)


79568 Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression
Hoffmann EM
Clinical Ophthalmology 2019; 13: 9-16 (IGR: 20-2)


79844 Cataract Surgery and Rate of Visual Field Progression in Primary Open-Angle Glaucoma
Yu F
American Journal of Ophthalmology 2019; 201: 19-30 (IGR: 20-2)


79990 Comparison of Rates of Fast and Catastrophic Visual Field Loss in Three Glaucoma Subtypes
Khanna A
Investigative Ophthalmology and Visual Science 2019; 60: 161-167 (IGR: 20-2)


80034 Vision-related Performance and Quality of Life of Patients With Rapid Glaucoma Progression
Gogte P
Journal of Glaucoma 2019; 28: 216-222 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Boland MV
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


79823 Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns
Garway-Heath D
Investigative Ophthalmology and Visual Science 2018; 59: 5717-5725 (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure
Shirakashi M
Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


79343 Impact of ab-interno trabeculectomy on Bruch's membrane opening-based morphometry of the optic nerve head for glaucoma progression analysis
Cursiefen C
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 339-347 (IGR: 20-2)


79844 Cataract Surgery and Rate of Visual Field Progression in Primary Open-Angle Glaucoma
Afifi AA
American Journal of Ophthalmology 2019; 201: 19-30 (IGR: 20-2)


79823 Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns
Weinreb R
Investigative Ophthalmology and Visual Science 2018; 59: 5717-5725 (IGR: 20-2)


79343 Impact of ab-interno trabeculectomy on Bruch's membrane opening-based morphometry of the optic nerve head for glaucoma progression analysis
Heindl LM
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 339-347 (IGR: 20-2)


79990 Comparison of Rates of Fast and Catastrophic Visual Field Loss in Three Glaucoma Subtypes
Gupta V
Investigative Ophthalmology and Visual Science 2019; 60: 161-167 (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure
Aihara M
Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


80034 Vision-related Performance and Quality of Life of Patients With Rapid Glaucoma Progression
Muhire RSM
Journal of Glaucoma 2019; 28: 216-222 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Wellik SR
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


79823 Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns
Asaoka R
Investigative Ophthalmology and Visual Science 2018; 59: 5717-5725 (IGR: 20-2)


79343 Impact of ab-interno trabeculectomy on Bruch's membrane opening-based morphometry of the optic nerve head for glaucoma progression analysis
Enders P
Graefe's Archive for Clinical and Experimental Ophthalmology 2019; 257: 339-347 (IGR: 20-2)


79844 Cataract Surgery and Rate of Visual Field Progression in Primary Open-Angle Glaucoma
Nouri-Mahdavi K
American Journal of Ophthalmology 2019; 201: 19-30 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
De Moraes CG
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


80034 Vision-related Performance and Quality of Life of Patients With Rapid Glaucoma Progression
Wizov SS
Journal of Glaucoma 2019; 28: 216-222 (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure
Sugiyama K; Araie M
Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


80034 Vision-related Performance and Quality of Life of Patients With Rapid Glaucoma Progression
Moster MR
Journal of Glaucoma 2019; 28: 216-222 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Myers JS
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


79844 Cataract Surgery and Rate of Visual Field Progression in Primary Open-Angle Glaucoma
Caprioli J
American Journal of Ophthalmology 2019; 201: 19-30 (IGR: 20-2)


80071 Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure

Ophthalmology 2019; 126: 1107-1116 (IGR: 20-2)


80034 Vision-related Performance and Quality of Life of Patients With Rapid Glaucoma Progression
Pro MJ
Journal of Glaucoma 2019; 28: 216-222 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Saeedi O; Wang H
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


80034 Vision-related Performance and Quality of Life of Patients With Rapid Glaucoma Progression
Fudemberg SJ
Journal of Glaucoma 2019; 28: 216-222 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Baniasadi N
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


80034 Vision-related Performance and Quality of Life of Patients With Rapid Glaucoma Progression
Mantravadi AV
Journal of Glaucoma 2019; 28: 216-222 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Li D
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


80034 Vision-related Performance and Quality of Life of Patients With Rapid Glaucoma Progression
Myers JS; Katz LJ
Journal of Glaucoma 2019; 28: 216-222 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Tichelaar J
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


80034 Vision-related Performance and Quality of Life of Patients With Rapid Glaucoma Progression
Hark LA
Journal of Glaucoma 2019; 28: 216-222 (IGR: 20-2)


79883 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
Bex PJ; Elze T
Investigative Ophthalmology and Visual Science 2019; 60: 365-375 (IGR: 20-2)


80034 Vision-related Performance and Quality of Life of Patients With Rapid Glaucoma Progression
Spaeth GL
Journal of Glaucoma 2019; 28: 216-222 (IGR: 20-2)


79264 Influence of glaucoma surgery on visual function: a clinical cohort study and meta-analysis
Junoy Montolio FG
Acta Ophthalmologica 2019; 97: 193-199 (IGR: 20-1)


79087 A Method to Measure the Rate of Glaucomatous Visual Field Change
Caprioli J
Translational vision science & technology 2018; 7: 14 (IGR: 20-1)


78357 Effect of quantitative intraocular pressure reduction on visual field defect progression in normal tension glaucoma under medical therapy applying Markov model
Yoshikawa K
Clinical Ophthalmology 2018; 12: 1617-1624 (IGR: 20-1)


78497 Combined Use of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer Event-based Progression Analysis
Lee WJ
American Journal of Ophthalmology 2018; 196: 65-71 (IGR: 20-1)


78876 Correlation between elastic energy stored in an eye and visual field progression in glaucoma
Aoki S
PLoS ONE 2018; 13: e0204451 (IGR: 20-1)


79225 Greater Physical Activity Is Associated with Slower Visual Field Loss in Glaucoma
Lee MJ
Ophthalmology 2019; 126: 958-964 (IGR: 20-1)


78474 Association between Rates of Visual Field Progression and Intraocular Pressure Measurements Obtained by Different Tonometers
Susanna BN
Ophthalmology 2019; 126: 49-54 (IGR: 20-1)


79110 Lack of Association of rs1192415 in With Visual Field Progression: A Cohort Study in Chinese Open Angle Glaucoma Patients
Chen Y
Frontiers in genetics 2018; 9: 488 (IGR: 20-1)


78357 Effect of quantitative intraocular pressure reduction on visual field defect progression in normal tension glaucoma under medical therapy applying Markov model
Santo K
Clinical Ophthalmology 2018; 12: 1617-1624 (IGR: 20-1)


79110 Lack of Association of rs1192415 in With Visual Field Progression: A Cohort Study in Chinese Open Angle Glaucoma Patients
Qiu C
Frontiers in genetics 2018; 9: 488 (IGR: 20-1)


78474 Association between Rates of Visual Field Progression and Intraocular Pressure Measurements Obtained by Different Tonometers
Ogata NG
Ophthalmology 2019; 126: 49-54 (IGR: 20-1)


78876 Correlation between elastic energy stored in an eye and visual field progression in glaucoma
Murata H
PLoS ONE 2018; 13: e0204451 (IGR: 20-1)


78497 Combined Use of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer Event-based Progression Analysis
Na KI
American Journal of Ophthalmology 2018; 196: 65-71 (IGR: 20-1)


79225 Greater Physical Activity Is Associated with Slower Visual Field Loss in Glaucoma
Wang J
Ophthalmology 2019; 126: 958-964 (IGR: 20-1)


79264 Influence of glaucoma surgery on visual function: a clinical cohort study and meta-analysis
Müskens RPHM
Acta Ophthalmologica 2019; 97: 193-199 (IGR: 20-1)


79087 A Method to Measure the Rate of Glaucomatous Visual Field Change
Mohamed L
Translational vision science & technology 2018; 7: 14 (IGR: 20-1)


78497 Combined Use of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer Event-based Progression Analysis
Ha A
American Journal of Ophthalmology 2018; 196: 65-71 (IGR: 20-1)


79225 Greater Physical Activity Is Associated with Slower Visual Field Loss in Glaucoma
Friedman DS
Ophthalmology 2019; 126: 958-964 (IGR: 20-1)


78876 Correlation between elastic energy stored in an eye and visual field progression in glaucoma
Nakakura S
PLoS ONE 2018; 13: e0204451 (IGR: 20-1)


78474 Association between Rates of Visual Field Progression and Intraocular Pressure Measurements Obtained by Different Tonometers
Daga FB
Ophthalmology 2019; 126: 49-54 (IGR: 20-1)


79110 Lack of Association of rs1192415 in With Visual Field Progression: A Cohort Study in Chinese Open Angle Glaucoma Patients
Qian S
Frontiers in genetics 2018; 9: 488 (IGR: 20-1)


79264 Influence of glaucoma surgery on visual function: a clinical cohort study and meta-analysis
Jansonius NM
Acta Ophthalmologica 2019; 97: 193-199 (IGR: 20-1)


79087 A Method to Measure the Rate of Glaucomatous Visual Field Change
Morales E
Translational vision science & technology 2018; 7: 14 (IGR: 20-1)


78357 Effect of quantitative intraocular pressure reduction on visual field defect progression in normal tension glaucoma under medical therapy applying Markov model
Hizaki H
Clinical Ophthalmology 2018; 12: 1617-1624 (IGR: 20-1)


78876 Correlation between elastic energy stored in an eye and visual field progression in glaucoma
Nakao Y
PLoS ONE 2018; 13: e0204451 (IGR: 20-1)


78497 Combined Use of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer Event-based Progression Analysis
Kim YK
American Journal of Ophthalmology 2018; 196: 65-71 (IGR: 20-1)


79225 Greater Physical Activity Is Associated with Slower Visual Field Loss in Glaucoma
Boland MV
Ophthalmology 2019; 126: 958-964 (IGR: 20-1)


79087 A Method to Measure the Rate of Glaucomatous Visual Field Change
Rabiolo A
Translational vision science & technology 2018; 7: 14 (IGR: 20-1)


78357 Effect of quantitative intraocular pressure reduction on visual field defect progression in normal tension glaucoma under medical therapy applying Markov model
Hashimoto M
Clinical Ophthalmology 2018; 12: 1617-1624 (IGR: 20-1)


78474 Association between Rates of Visual Field Progression and Intraocular Pressure Measurements Obtained by Different Tonometers
Susanna CN
Ophthalmology 2019; 126: 49-54 (IGR: 20-1)


79110 Lack of Association of rs1192415 in With Visual Field Progression: A Cohort Study in Chinese Open Angle Glaucoma Patients
Chen J
Frontiers in genetics 2018; 9: 488 (IGR: 20-1)


78474 Association between Rates of Visual Field Progression and Intraocular Pressure Measurements Obtained by Different Tonometers
Diniz-Filho A
Ophthalmology 2019; 126: 49-54 (IGR: 20-1)


79087 A Method to Measure the Rate of Glaucomatous Visual Field Change
Sears N
Translational vision science & technology 2018; 7: 14 (IGR: 20-1)


79110 Lack of Association of rs1192415 in With Visual Field Progression: A Cohort Study in Chinese Open Angle Glaucoma Patients
Chen X
Frontiers in genetics 2018; 9: 488 (IGR: 20-1)


79225 Greater Physical Activity Is Associated with Slower Visual Field Loss in Glaucoma
De Moraes CG
Ophthalmology 2019; 126: 958-964 (IGR: 20-1)


78876 Correlation between elastic energy stored in an eye and visual field progression in glaucoma
Matsuura M
PLoS ONE 2018; 13: e0204451 (IGR: 20-1)


78497 Combined Use of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer Event-based Progression Analysis
Jeoung JW
American Journal of Ophthalmology 2018; 196: 65-71 (IGR: 20-1)


79225 Greater Physical Activity Is Associated with Slower Visual Field Loss in Glaucoma
Ramulu PY
Ophthalmology 2019; 126: 958-964 (IGR: 20-1)


78876 Correlation between elastic energy stored in an eye and visual field progression in glaucoma
Kiuchi Y
PLoS ONE 2018; 13: e0204451 (IGR: 20-1)


79110 Lack of Association of rs1192415 in With Visual Field Progression: A Cohort Study in Chinese Open Angle Glaucoma Patients
Wang L
Frontiers in genetics 2018; 9: 488 (IGR: 20-1)


78474 Association between Rates of Visual Field Progression and Intraocular Pressure Measurements Obtained by Different Tonometers
Medeiros FA
Ophthalmology 2019; 126: 49-54 (IGR: 20-1)


78497 Combined Use of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer Event-based Progression Analysis
Park KH
American Journal of Ophthalmology 2018; 196: 65-71 (IGR: 20-1)


79087 A Method to Measure the Rate of Glaucomatous Visual Field Change
Pradtana H; Alizadeh R
Translational vision science & technology 2018; 7: 14 (IGR: 20-1)


79110 Lack of Association of rs1192415 in With Visual Field Progression: A Cohort Study in Chinese Open Angle Glaucoma Patients
Sun X
Frontiers in genetics 2018; 9: 488 (IGR: 20-1)


78876 Correlation between elastic energy stored in an eye and visual field progression in glaucoma
Asaoka R
PLoS ONE 2018; 13: e0204451 (IGR: 20-1)


79087 A Method to Measure the Rate of Glaucomatous Visual Field Change
Yu F; Afifi AA; Coleman AL; Nouri-Mahdavi K
Translational vision science & technology 2018; 7: 14 (IGR: 20-1)


77956 Detection of Longitudinal Visual Field Progression in Glaucoma Using Machine Learning
Yousefi S
American Journal of Ophthalmology 2018; 193: 71-79 (IGR: 19-4)


77926 Iridotomy to slow progression of visual field loss in angle-closure glaucoma
Le JT
Cochrane Database of Systematic Reviews 2018; 6: CD012270 (IGR: 19-4)


78012 Baseline Lamina Cribrosa Curvature and Subsequent Visual Field Progression Rate in Primary Open-Angle Glaucoma
Ha A
Ophthalmology 2018; 0: (IGR: 19-4)


78287 Comparison of Visual Field Point-Wise Event-Based and Global Trend-Based Analysis for Detecting Glaucomatous Progression
Wu Z
Translational vision science & technology 2018; 7: 20 (IGR: 19-4)


77877 Provider Agreement in the Assessment of Glaucoma Progression Within a Team Model
Shah SM; Choo C
Journal of Glaucoma 2018; 27: 691-698 (IGR: 19-4)


78287 Comparison of Visual Field Point-Wise Event-Based and Global Trend-Based Analysis for Detecting Glaucomatous Progression
Medeiros FA
Translational vision science & technology 2018; 7: 20 (IGR: 19-4)


77956 Detection of Longitudinal Visual Field Progression in Glaucoma Using Machine Learning
Kiwaki T
American Journal of Ophthalmology 2018; 193: 71-79 (IGR: 19-4)


77926 Iridotomy to slow progression of visual field loss in angle-closure glaucoma
Rouse B
Cochrane Database of Systematic Reviews 2018; 6: CD012270 (IGR: 19-4)


78012 Baseline Lamina Cribrosa Curvature and Subsequent Visual Field Progression Rate in Primary Open-Angle Glaucoma
Kim TJ
Ophthalmology 2018; 0: (IGR: 19-4)


77877 Provider Agreement in the Assessment of Glaucoma Progression Within a Team Model
Odden J
Journal of Glaucoma 2018; 27: 691-698 (IGR: 19-4)


77926 Iridotomy to slow progression of visual field loss in angle-closure glaucoma
Gazzard G
Cochrane Database of Systematic Reviews 2018; 6: CD012270 (IGR: 19-4)


77956 Detection of Longitudinal Visual Field Progression in Glaucoma Using Machine Learning
Zheng Y
American Journal of Ophthalmology 2018; 193: 71-79 (IGR: 19-4)


78012 Baseline Lamina Cribrosa Curvature and Subsequent Visual Field Progression Rate in Primary Open-Angle Glaucoma
Girard MJA; Mari JM
Ophthalmology 2018; 0: (IGR: 19-4)


77877 Provider Agreement in the Assessment of Glaucoma Progression Within a Team Model
Zhao B
Journal of Glaucoma 2018; 27: 691-698 (IGR: 19-4)


77956 Detection of Longitudinal Visual Field Progression in Glaucoma Using Machine Learning
Sugiura H
American Journal of Ophthalmology 2018; 193: 71-79 (IGR: 19-4)


77877 Provider Agreement in the Assessment of Glaucoma Progression Within a Team Model
Fang C
Journal of Glaucoma 2018; 27: 691-698 (IGR: 19-4)


78012 Baseline Lamina Cribrosa Curvature and Subsequent Visual Field Progression Rate in Primary Open-Angle Glaucoma
Kim YK
Ophthalmology 2018; 0: (IGR: 19-4)


77956 Detection of Longitudinal Visual Field Progression in Glaucoma Using Machine Learning
Asaoka R
American Journal of Ophthalmology 2018; 193: 71-79 (IGR: 19-4)


78012 Baseline Lamina Cribrosa Curvature and Subsequent Visual Field Progression Rate in Primary Open-Angle Glaucoma
Park KH
Ophthalmology 2018; 0: (IGR: 19-4)


77877 Provider Agreement in the Assessment of Glaucoma Progression Within a Team Model
Schornack M
Journal of Glaucoma 2018; 27: 691-698 (IGR: 19-4)


77956 Detection of Longitudinal Visual Field Progression in Glaucoma Using Machine Learning
Murata H
American Journal of Ophthalmology 2018; 193: 71-79 (IGR: 19-4)


78012 Baseline Lamina Cribrosa Curvature and Subsequent Visual Field Progression Rate in Primary Open-Angle Glaucoma
Jeoung JW
Ophthalmology 2018; 0: (IGR: 19-4)


77956 Detection of Longitudinal Visual Field Progression in Glaucoma Using Machine Learning
Lemij H
American Journal of Ophthalmology 2018; 193: 71-79 (IGR: 19-4)


77877 Provider Agreement in the Assessment of Glaucoma Progression Within a Team Model
Stalboerger G
Journal of Glaucoma 2018; 27: 691-698 (IGR: 19-4)


77956 Detection of Longitudinal Visual Field Progression in Glaucoma Using Machine Learning
Yamanishi K
American Journal of Ophthalmology 2018; 193: 71-79 (IGR: 19-4)


77877 Provider Agreement in the Assessment of Glaucoma Progression Within a Team Model
Bennett JR; Bennett JR; Khanna CL
Journal of Glaucoma 2018; 27: 691-698 (IGR: 19-4)


77238 Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression
Christopher M
Investigative Ophthalmology and Visual Science 2018; 59: 2748-2756 (IGR: 19-3)


76505 Progression of Primary Open-Angle Glaucoma in Diabetic and Nondiabetic Patients
Hou H
American Journal of Ophthalmology 2018; 189: 1-9 (IGR: 19-3)


77239 Peripapillary Retinoschisis in Glaucoma: Association With Progression and OCT Signs of Müller Cell Involvement
Fortune B
Investigative Ophthalmology and Visual Science 2018; 59: 2818-2827 (IGR: 19-3)


76797 Simplifying "target" intraocular pressure for different stages of primary open-angle glaucoma and primary angle-closure glaucoma
Sihota R
Indian Journal of Ophthalmology 2018; 66: 495-505 (IGR: 19-3)


76514 Detection of Glaucoma Progression in Individuals of African Descent Compared With Those of European Descent
Gracitelli CPB
JAMA ophthalmology 2018; 136: 329-335 (IGR: 19-3)


76735 Distribution and Progression of Visual Field Defects With Binocular Vision in Glaucoma
Hashimoto S
Journal of Glaucoma 2018; 27: 519-524 (IGR: 19-3)


76741 Location of Disc Hemorrhage and Direction of Progression in Glaucomatous Retinal Nerve Fiber Layer Defects
Lee EJ
Journal of Glaucoma 2018; 27: 504-510 (IGR: 19-3)


76948 Glaucoma Progression and its Relationship with Corrected and Uncorrected Intraocular Pressure in Eyes with History of Refractive Corneal Surgery
Kwon J
Current Eye Research 2018; 0: 1-9 (IGR: 19-3)


76612 The relationship between increased oxidative stress and visual field defect progression in glaucoma patients with sleep apnoea syndrome
Yamada E
Acta Ophthalmologica 2018; 96: e479-e484 (IGR: 19-3)


76650 The association between corneal biomechanical parameters and visual field progression in patients with normal tension glaucoma
Li BB
Chinese Journal of Ophthalmology 2018; 54: 171-176 (IGR: 19-3)


76502 The effect of air pulse-driven whole eye motion on the association between corneal hysteresis and glaucomatous visual field progression
Aoki S
Scientific reports 2018; 8: 2969 (IGR: 19-3)


77000 Comparison of changes of macular ganglion cell-inner plexiform layer defect between stable group and progression group in primary open-angle glaucoma
Seol BR
Japanese Journal of Ophthalmology 2018; 62: 491-498 (IGR: 19-3)


76505 Progression of Primary Open-Angle Glaucoma in Diabetic and Nondiabetic Patients
Hou H
American Journal of Ophthalmology 2018; 189: 1-9 (IGR: 19-3)


76309 Comparison of Peripapillary OCT Angiography Vessel Density and Retinal Nerve Fiber Layer Thickness Measurements for Their Ability to Detect Progression in Glaucoma
Holló G
Journal of Glaucoma 2018; 27: 302-305 (IGR: 19-3)


77177 Association Between 24-Hour Intraocular Pressure Monitored With Contact Lens Sensor and Visual Field Progression in Older Adults With Glaucoma
De Moraes CG
JAMA ophthalmology 2018; 136: 779-785 (IGR: 19-3)


77243 Association of Diopsys® Short-duration Transient Visual Evoked Potential Latency with Visual Field Progression in Chronic Glaucoma
Trevino R
Journal of Current Glaucoma Practice 2018; 12: 29-35 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Murata H
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


76768 Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements
Song Y
Ophthalmology 2018; 0: (IGR: 19-3)


77051 Evaluation of a Qualitative Approach for Detecting Glaucomatous Progression Using Wide-Field Optical Coherence Tomography Scans
Wu Z
Translational vision science & technology 2018; 7: 5 (IGR: 19-3)


76481 Integrating Macular Ganglion Cell Inner Plexiform Layer and Parapapillary Retinal Nerve Fiber Layer Measurements to Detect Glaucoma Progression
Hou HW
Ophthalmology 2018; 125: 822-831 (IGR: 19-3)


77103 Influence of Removing the Large Retinal Vessels-related Effect on Peripapillary Vessel Density Progression Analysis in Glaucoma
Holló G
Journal of Glaucoma 2018; 27: e137-e139 (IGR: 19-3)


76505 Progression of Primary Open-Angle Glaucoma in Diabetic and Nondiabetic Patients
Hou H
American Journal of Ophthalmology 2018; 189: 1-9 (IGR: 19-3)


76259 Recent developments in visual field testing for glaucoma
Wu Z
Current Opinions in Ophthalmology 2018; 29: 141-146 (IGR: 19-3)


76870 Event-based analysis of visual field change can miss fast glaucoma progression detected by a combined structure and function index
Zhang C
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1227-1234 (IGR: 19-3)


76481 Integrating Macular Ganglion Cell Inner Plexiform Layer and Parapapillary Retinal Nerve Fiber Layer Measurements to Detect Glaucoma Progression
Lin C
Ophthalmology 2018; 125: 822-831 (IGR: 19-3)


77051 Evaluation of a Qualitative Approach for Detecting Glaucomatous Progression Using Wide-Field Optical Coherence Tomography Scans
Weng DSD
Translational vision science & technology 2018; 7: 5 (IGR: 19-3)


76741 Location of Disc Hemorrhage and Direction of Progression in Glaucomatous Retinal Nerve Fiber Layer Defects
Han JC
Journal of Glaucoma 2018; 27: 504-510 (IGR: 19-3)


76650 The association between corneal biomechanical parameters and visual field progression in patients with normal tension glaucoma
Cai Y
Chinese Journal of Ophthalmology 2018; 54: 171-176 (IGR: 19-3)


76259 Recent developments in visual field testing for glaucoma
Medeiros FA
Current Opinions in Ophthalmology 2018; 29: 141-146 (IGR: 19-3)


76735 Distribution and Progression of Visual Field Defects With Binocular Vision in Glaucoma
Matsumoto C
Journal of Glaucoma 2018; 27: 519-524 (IGR: 19-3)


77177 Association Between 24-Hour Intraocular Pressure Monitored With Contact Lens Sensor and Visual Field Progression in Older Adults With Glaucoma
Mansouri K
JAMA ophthalmology 2018; 136: 779-785 (IGR: 19-3)


76768 Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements
Ishikawa H
Ophthalmology 2018; 0: (IGR: 19-3)


77051 Evaluation of a Qualitative Approach for Detecting Glaucomatous Progression Using Wide-Field Optical Coherence Tomography Scans
Weng DSD
Translational vision science & technology 2018; 7: 5 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Zangwill LM
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


77238 Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression
Belghith A
Investigative Ophthalmology and Visual Science 2018; 59: 2748-2756 (IGR: 19-3)


76505 Progression of Primary Open-Angle Glaucoma in Diabetic and Nondiabetic Patients
Shoji T
American Journal of Ophthalmology 2018; 189: 1-9 (IGR: 19-3)


77243 Association of Diopsys® Short-duration Transient Visual Evoked Potential Latency with Visual Field Progression in Chronic Glaucoma
Sponsel WE
Journal of Current Glaucoma Practice 2018; 12: 29-35 (IGR: 19-3)


77051 Evaluation of a Qualitative Approach for Detecting Glaucomatous Progression Using Wide-Field Optical Coherence Tomography Scans
Weng DSD
Translational vision science & technology 2018; 7: 5 (IGR: 19-3)


76870 Event-based analysis of visual field change can miss fast glaucoma progression detected by a combined structure and function index
Tatham AJ
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1227-1234 (IGR: 19-3)


76797 Simplifying "target" intraocular pressure for different stages of primary open-angle glaucoma and primary angle-closure glaucoma
Angmo D
Indian Journal of Ophthalmology 2018; 66: 495-505 (IGR: 19-3)


76514 Detection of Glaucoma Progression in Individuals of African Descent Compared With Those of European Descent
Zangwill LM
JAMA ophthalmology 2018; 136: 329-335 (IGR: 19-3)


76948 Glaucoma Progression and its Relationship with Corrected and Uncorrected Intraocular Pressure in Eyes with History of Refractive Corneal Surgery
Sung KR
Current Eye Research 2018; 0: 1-9 (IGR: 19-3)


77239 Peripapillary Retinoschisis in Glaucoma: Association With Progression and OCT Signs of Müller Cell Involvement
Ma KN
Investigative Ophthalmology and Visual Science 2018; 59: 2818-2827 (IGR: 19-3)


77000 Comparison of changes of macular ganglion cell-inner plexiform layer defect between stable group and progression group in primary open-angle glaucoma
Yoo BW
Japanese Journal of Ophthalmology 2018; 62: 491-498 (IGR: 19-3)


76612 The relationship between increased oxidative stress and visual field defect progression in glaucoma patients with sleep apnoea syndrome
Himori N
Acta Ophthalmologica 2018; 96: e479-e484 (IGR: 19-3)


76502 The effect of air pulse-driven whole eye motion on the association between corneal hysteresis and glaucomatous visual field progression
Murata H
Scientific reports 2018; 8: 2969 (IGR: 19-3)


77000 Comparison of changes of macular ganglion cell-inner plexiform layer defect between stable group and progression group in primary open-angle glaucoma
Kim YK
Japanese Journal of Ophthalmology 2018; 62: 491-498 (IGR: 19-3)


77051 Evaluation of a Qualitative Approach for Detecting Glaucomatous Progression Using Wide-Field Optical Coherence Tomography Scans
Rajshekhar R
Translational vision science & technology 2018; 7: 5 (IGR: 19-3)


76948 Glaucoma Progression and its Relationship with Corrected and Uncorrected Intraocular Pressure in Eyes with History of Refractive Corneal Surgery
Jo J
Current Eye Research 2018; 0: 1-9 (IGR: 19-3)


76735 Distribution and Progression of Visual Field Defects With Binocular Vision in Glaucoma
Eura M
Journal of Glaucoma 2018; 27: 519-524 (IGR: 19-3)


76505 Progression of Primary Open-Angle Glaucoma in Diabetic and Nondiabetic Patients
Zangwill LM
American Journal of Ophthalmology 2018; 189: 1-9 (IGR: 19-3)


77238 Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression
Weinreb RN
Investigative Ophthalmology and Visual Science 2018; 59: 2748-2756 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Fujino Y
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


76870 Event-based analysis of visual field change can miss fast glaucoma progression detected by a combined structure and function index
Daga FB
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1227-1234 (IGR: 19-3)


76650 The association between corneal biomechanical parameters and visual field progression in patients with normal tension glaucoma
Pan YZ
Chinese Journal of Ophthalmology 2018; 54: 171-176 (IGR: 19-3)


76481 Integrating Macular Ganglion Cell Inner Plexiform Layer and Parapapillary Retinal Nerve Fiber Layer Measurements to Detect Glaucoma Progression
Leung CK
Ophthalmology 2018; 125: 822-831 (IGR: 19-3)


77243 Association of Diopsys® Short-duration Transient Visual Evoked Potential Latency with Visual Field Progression in Chronic Glaucoma
Majcher CE
Journal of Current Glaucoma Practice 2018; 12: 29-35 (IGR: 19-3)


76768 Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements
Wu M
Ophthalmology 2018; 0: (IGR: 19-3)


76797 Simplifying "target" intraocular pressure for different stages of primary open-angle glaucoma and primary angle-closure glaucoma
Ramaswamy D
Indian Journal of Ophthalmology 2018; 66: 495-505 (IGR: 19-3)


77239 Peripapillary Retinoschisis in Glaucoma: Association With Progression and OCT Signs of Müller Cell Involvement
Gardiner SK
Investigative Ophthalmology and Visual Science 2018; 59: 2818-2827 (IGR: 19-3)


76514 Detection of Glaucoma Progression in Individuals of African Descent Compared With Those of European Descent
Diniz-Filho A
JAMA ophthalmology 2018; 136: 329-335 (IGR: 19-3)


76612 The relationship between increased oxidative stress and visual field defect progression in glaucoma patients with sleep apnoea syndrome
Kunikata H
Acta Ophthalmologica 2018; 96: e479-e484 (IGR: 19-3)


76741 Location of Disc Hemorrhage and Direction of Progression in Glaucomatous Retinal Nerve Fiber Layer Defects
Kee C
Journal of Glaucoma 2018; 27: 504-510 (IGR: 19-3)


76502 The effect of air pulse-driven whole eye motion on the association between corneal hysteresis and glaucomatous visual field progression
Matsuura M
Scientific reports 2018; 8: 2969 (IGR: 19-3)


77051 Evaluation of a Qualitative Approach for Detecting Glaucomatous Progression Using Wide-Field Optical Coherence Tomography Scans
Rajshekhar R
Translational vision science & technology 2018; 7: 5 (IGR: 19-3)


77177 Association Between 24-Hour Intraocular Pressure Monitored With Contact Lens Sensor and Visual Field Progression in Older Adults With Glaucoma
Liebmann JM
JAMA ophthalmology 2018; 136: 779-785 (IGR: 19-3)


76797 Simplifying "target" intraocular pressure for different stages of primary open-angle glaucoma and primary angle-closure glaucoma
Dada T
Indian Journal of Ophthalmology 2018; 66: 495-505 (IGR: 19-3)


76870 Event-based analysis of visual field change can miss fast glaucoma progression detected by a combined structure and function index
Jammal AA
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1227-1234 (IGR: 19-3)


76502 The effect of air pulse-driven whole eye motion on the association between corneal hysteresis and glaucomatous visual field progression
Fujino Y
Scientific reports 2018; 8: 2969 (IGR: 19-3)


77238 Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression
Bowd C
Investigative Ophthalmology and Visual Science 2018; 59: 2748-2756 (IGR: 19-3)


76612 The relationship between increased oxidative stress and visual field defect progression in glaucoma patients with sleep apnoea syndrome
Omodaka K
Acta Ophthalmologica 2018; 96: e479-e484 (IGR: 19-3)


77243 Association of Diopsys® Short-duration Transient Visual Evoked Potential Latency with Visual Field Progression in Chronic Glaucoma
Allen J
Journal of Current Glaucoma Practice 2018; 12: 29-35 (IGR: 19-3)


77051 Evaluation of a Qualitative Approach for Detecting Glaucomatous Progression Using Wide-Field Optical Coherence Tomography Scans
Thenappan A
Translational vision science & technology 2018; 7: 5 (IGR: 19-3)


77177 Association Between 24-Hour Intraocular Pressure Monitored With Contact Lens Sensor and Visual Field Progression in Older Adults With Glaucoma
Ritch R
JAMA ophthalmology 2018; 136: 779-785 (IGR: 19-3)


76768 Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements
Liu YY
Ophthalmology 2018; 0: (IGR: 19-3)


76735 Distribution and Progression of Visual Field Defects With Binocular Vision in Glaucoma
Okuyama S
Journal of Glaucoma 2018; 27: 519-524 (IGR: 19-3)


76505 Progression of Primary Open-Angle Glaucoma in Diabetic and Nondiabetic Patients
Moghimi S
American Journal of Ophthalmology 2018; 189: 1-9 (IGR: 19-3)


77000 Comparison of changes of macular ganglion cell-inner plexiform layer defect between stable group and progression group in primary open-angle glaucoma
Jeoung JW
Japanese Journal of Ophthalmology 2018; 62: 491-498 (IGR: 19-3)


76514 Detection of Glaucoma Progression in Individuals of African Descent Compared With Those of European Descent
Abe RY
JAMA ophthalmology 2018; 136: 329-335 (IGR: 19-3)


76650 The association between corneal biomechanical parameters and visual field progression in patients with normal tension glaucoma
Li M
Chinese Journal of Ophthalmology 2018; 54: 171-176 (IGR: 19-3)


76948 Glaucoma Progression and its Relationship with Corrected and Uncorrected Intraocular Pressure in Eyes with History of Refractive Corneal Surgery
Yang SH
Current Eye Research 2018; 0: 1-9 (IGR: 19-3)


77239 Peripapillary Retinoschisis in Glaucoma: Association With Progression and OCT Signs of Müller Cell Involvement
Demirel S
Investigative Ophthalmology and Visual Science 2018; 59: 2818-2827 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Matsuura M
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


77051 Evaluation of a Qualitative Approach for Detecting Glaucomatous Progression Using Wide-Field Optical Coherence Tomography Scans
Ritch R
Translational vision science & technology 2018; 7: 5 (IGR: 19-3)


76650 The association between corneal biomechanical parameters and visual field progression in patients with normal tension glaucoma
Fang Y
Chinese Journal of Ophthalmology 2018; 54: 171-176 (IGR: 19-3)


76870 Event-based analysis of visual field change can miss fast glaucoma progression detected by a combined structure and function index
Medeiros FA
Graefe's Archive for Clinical and Experimental Ophthalmology 2018; 256: 1227-1234 (IGR: 19-3)


76514 Detection of Glaucoma Progression in Individuals of African Descent Compared With Those of European Descent
Girkin CA
JAMA ophthalmology 2018; 136: 329-335 (IGR: 19-3)


77177 Association Between 24-Hour Intraocular Pressure Monitored With Contact Lens Sensor and Visual Field Progression in Older Adults With Glaucoma

JAMA ophthalmology 2018; 136: 779-785 (IGR: 19-3)


77000 Comparison of changes of macular ganglion cell-inner plexiform layer defect between stable group and progression group in primary open-angle glaucoma
Park KH
Japanese Journal of Ophthalmology 2018; 62: 491-498 (IGR: 19-3)


76502 The effect of air pulse-driven whole eye motion on the association between corneal hysteresis and glaucomatous visual field progression
Nakakura S
Scientific reports 2018; 8: 2969 (IGR: 19-3)


76612 The relationship between increased oxidative stress and visual field defect progression in glaucoma patients with sleep apnoea syndrome
Ogawa H
Acta Ophthalmologica 2018; 96: e479-e484 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Miki A
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


76735 Distribution and Progression of Visual Field Defects With Binocular Vision in Glaucoma
Nomoto H
Journal of Glaucoma 2018; 27: 519-524 (IGR: 19-3)


77239 Peripapillary Retinoschisis in Glaucoma: Association With Progression and OCT Signs of Müller Cell Involvement
Mansberger SL
Investigative Ophthalmology and Visual Science 2018; 59: 2818-2827 (IGR: 19-3)


76505 Progression of Primary Open-Angle Glaucoma in Diabetic and Nondiabetic Patients
Saunders LJ
American Journal of Ophthalmology 2018; 189: 1-9 (IGR: 19-3)


76768 Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements
Lucy KA
Ophthalmology 2018; 0: (IGR: 19-3)


77243 Association of Diopsys® Short-duration Transient Visual Evoked Potential Latency with Visual Field Progression in Chronic Glaucoma
Rabin J
Journal of Current Glaucoma Practice 2018; 12: 29-35 (IGR: 19-3)


77238 Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression
Goldbaum MH
Investigative Ophthalmology and Visual Science 2018; 59: 2748-2756 (IGR: 19-3)


76768 Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements
Lavinsky F
Ophthalmology 2018; 0: (IGR: 19-3)


77051 Evaluation of a Qualitative Approach for Detecting Glaucomatous Progression Using Wide-Field Optical Coherence Tomography Scans
Hood DC
Translational vision science & technology 2018; 7: 5 (IGR: 19-3)


76612 The relationship between increased oxidative stress and visual field defect progression in glaucoma patients with sleep apnoea syndrome
Ichinose M
Acta Ophthalmologica 2018; 96: e479-e484 (IGR: 19-3)


76502 The effect of air pulse-driven whole eye motion on the association between corneal hysteresis and glaucomatous visual field progression
Nakao Y
Scientific reports 2018; 8: 2969 (IGR: 19-3)


76505 Progression of Primary Open-Angle Glaucoma in Diabetic and Nondiabetic Patients
Hasenstab K
American Journal of Ophthalmology 2018; 189: 1-9 (IGR: 19-3)


76514 Detection of Glaucoma Progression in Individuals of African Descent Compared With Those of European Descent
Weinreb RN
JAMA ophthalmology 2018; 136: 329-335 (IGR: 19-3)


76735 Distribution and Progression of Visual Field Defects With Binocular Vision in Glaucoma
Tanabe F
Journal of Glaucoma 2018; 27: 519-524 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Hirasawa K
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


77238 Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression
Saunders LJ
Investigative Ophthalmology and Visual Science 2018; 59: 2748-2756 (IGR: 19-3)


76650 The association between corneal biomechanical parameters and visual field progression in patients with normal tension glaucoma
Tian T
Chinese Journal of Ophthalmology 2018; 54: 171-176 (IGR: 19-3)


76612 The relationship between increased oxidative stress and visual field defect progression in glaucoma patients with sleep apnoea syndrome
Nakazawa T
Acta Ophthalmologica 2018; 96: e479-e484 (IGR: 19-3)


76514 Detection of Glaucoma Progression in Individuals of African Descent Compared With Those of European Descent
Liebmann JM
JAMA ophthalmology 2018; 136: 329-335 (IGR: 19-3)


76502 The effect of air pulse-driven whole eye motion on the association between corneal hysteresis and glaucomatous visual field progression
Kiuchi Y
Scientific reports 2018; 8: 2969 (IGR: 19-3)


76505 Progression of Primary Open-Angle Glaucoma in Diabetic and Nondiabetic Patients
Ghahari E
American Journal of Ophthalmology 2018; 189: 1-9 (IGR: 19-3)


76650 The association between corneal biomechanical parameters and visual field progression in patients with normal tension glaucoma
Yan XM
Chinese Journal of Ophthalmology 2018; 54: 171-176 (IGR: 19-3)


77238 Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression
Medeiros FA
Investigative Ophthalmology and Visual Science 2018; 59: 2748-2756 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Tanito M
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


76735 Distribution and Progression of Visual Field Defects With Binocular Vision in Glaucoma
Kayazawa T
Journal of Glaucoma 2018; 27: 519-524 (IGR: 19-3)


76768 Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements
Liu M
Ophthalmology 2018; 0: (IGR: 19-3)


76514 Detection of Glaucoma Progression in Individuals of African Descent Compared With Those of European Descent
Medeiros FA
JAMA ophthalmology 2018; 136: 329-335 (IGR: 19-3)


76502 The effect of air pulse-driven whole eye motion on the association between corneal hysteresis and glaucomatous visual field progression
Asaoka R
Scientific reports 2018; 8: 2969 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Mizoue S
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


77238 Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression
Zangwill LM
Investigative Ophthalmology and Visual Science 2018; 59: 2748-2756 (IGR: 19-3)


76768 Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements
Wollstein G
Ophthalmology 2018; 0: (IGR: 19-3)


76735 Distribution and Progression of Visual Field Defects With Binocular Vision in Glaucoma
Iwase A
Journal of Glaucoma 2018; 27: 519-524 (IGR: 19-3)


76505 Progression of Primary Open-Angle Glaucoma in Diabetic and Nondiabetic Patients
Manalastas PIC
American Journal of Ophthalmology 2018; 189: 1-9 (IGR: 19-3)


76735 Distribution and Progression of Visual Field Defects With Binocular Vision in Glaucoma
Shimomura Y
Journal of Glaucoma 2018; 27: 519-524 (IGR: 19-3)


76505 Progression of Primary Open-Angle Glaucoma in Diabetic and Nondiabetic Patients
Akagi T
American Journal of Ophthalmology 2018; 189: 1-9 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Mori K
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


76768 Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements
Schuman JS
Ophthalmology 2018; 0: (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Suzuki K
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


76505 Progression of Primary Open-Angle Glaucoma in Diabetic and Nondiabetic Patients
Christopher M; Penteado RC
American Journal of Ophthalmology 2018; 189: 1-9 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Yamashita T; Kashiwagi K
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


76505 Progression of Primary Open-Angle Glaucoma in Diabetic and Nondiabetic Patients
Weinreb RN
American Journal of Ophthalmology 2018; 189: 1-9 (IGR: 19-3)


76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Shoji N; Asaoka R
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904 (IGR: 19-3)


75436 Predictive Factors for Visual Field Conversion: Comparison of Scanning Laser Polarimetry and Optical Coherence Tomography
Diekmann T
Journal of Glaucoma 2018; 27: 157-163 (IGR: 19-2)


75682 Baseline 24-2 Central Visual Field Damage Is Predictive of Global Progressive Field Loss
Garg A
American Journal of Ophthalmology 2018; 187: 92-98 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Kitaoka Y
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75130 Risk Factors Associated With Glaucomatous Progression in Pseudoexfoliation Patients
Moon Y
Journal of Glaucoma 2017; 26: 1107-1113 (IGR: 19-2)


75544 Impact of optic disc hemorrhage on subsequent glaucoma progression in mild-to-moderate myopia
Ha A
PLoS ONE 2017; 12: e0189706 (IGR: 19-2)


75333 Detecting Visual Field Progression
Aref AA
Ophthalmology 2017; 124: S51-S56 (IGR: 19-2)


75358 The influence of oral statin medications on progression of glaucomatous visual field loss: A propensity score analysis
Whigham B
Ophthalmic Epidemiology 2018; 25: 207-214 (IGR: 19-2)


75451 Personalized Prediction of Glaucoma Progression Under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods
Kazemian P
Ophthalmology 2018; 125: 569-577 (IGR: 19-2)


75703 SITA-Standard perimetry has better performance than FDT2 matrix perimetry for detecting glaucomatous progression
Wall M
British Journal of Ophthalmology 2018; 0: (IGR: 19-2)


75336 The Future of Imaging in Detecting Glaucoma Progression
Lavinsky F
Ophthalmology 2017; 124: S76-S82 (IGR: 19-2)


75398 Is Obstructive Sleep Apnea Associated With Progressive Glaucomatous Optic Neuropathy?
Swaminathan SS
Journal of Glaucoma 2018; 27: 1-6 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Nitta K
Scientific reports 2017; 7: 15048 (IGR: 19-2)


75334 Detecting Structural Progression in Glaucoma with Optical Coherence Tomography
Tatham AJ
Ophthalmology 2017; 124: S57-S65 (IGR: 19-2)


75682 Baseline 24-2 Central Visual Field Damage Is Predictive of Global Progressive Field Loss
De Moraes CG
American Journal of Ophthalmology 2018; 187: 92-98 (IGR: 19-2)


75334 Detecting Structural Progression in Glaucoma with Optical Coherence Tomography
Medeiros FA
Ophthalmology 2017; 124: S57-S65 (IGR: 19-2)


75358 The influence of oral statin medications on progression of glaucomatous visual field loss: A propensity score analysis
Oddone EZ
Ophthalmic Epidemiology 2018; 25: 207-214 (IGR: 19-2)


75436 Predictive Factors for Visual Field Conversion: Comparison of Scanning Laser Polarimetry and Optical Coherence Tomography
Schrems-Hoesl LM
Journal of Glaucoma 2018; 27: 157-163 (IGR: 19-2)


75451 Personalized Prediction of Glaucoma Progression Under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods
Lavieri MS
Ophthalmology 2018; 125: 569-577 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Wajima R
Scientific reports 2017; 7: 15048 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Tanito M
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75398 Is Obstructive Sleep Apnea Associated With Progressive Glaucomatous Optic Neuropathy?
Bhakta AS
Journal of Glaucoma 2018; 27: 1-6 (IGR: 19-2)


75130 Risk Factors Associated With Glaucomatous Progression in Pseudoexfoliation Patients
Sung KR
Journal of Glaucoma 2017; 26: 1107-1113 (IGR: 19-2)


75336 The Future of Imaging in Detecting Glaucoma Progression
Wollstein G
Ophthalmology 2017; 124: S76-S82 (IGR: 19-2)


75544 Impact of optic disc hemorrhage on subsequent glaucoma progression in mild-to-moderate myopia
Kim YK
PLoS ONE 2017; 12: e0189706 (IGR: 19-2)


75333 Detecting Visual Field Progression
Budenz DL
Ophthalmology 2017; 124: S51-S56 (IGR: 19-2)


75703 SITA-Standard perimetry has better performance than FDT2 matrix perimetry for detecting glaucomatous progression
Johnson CA
British Journal of Ophthalmology 2018; 0: (IGR: 19-2)


75358 The influence of oral statin medications on progression of glaucomatous visual field loss: A propensity score analysis
Woolson S
Ophthalmic Epidemiology 2018; 25: 207-214 (IGR: 19-2)


75336 The Future of Imaging in Detecting Glaucoma Progression
Tauber J
Ophthalmology 2017; 124: S76-S82 (IGR: 19-2)


75398 Is Obstructive Sleep Apnea Associated With Progressive Glaucomatous Optic Neuropathy?
Shi W
Journal of Glaucoma 2018; 27: 1-6 (IGR: 19-2)


75451 Personalized Prediction of Glaucoma Progression Under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods
Van Oyen MP
Ophthalmology 2018; 125: 569-577 (IGR: 19-2)


75544 Impact of optic disc hemorrhage on subsequent glaucoma progression in mild-to-moderate myopia
Jeoung JW
PLoS ONE 2017; 12: e0189706 (IGR: 19-2)


75703 SITA-Standard perimetry has better performance than FDT2 matrix perimetry for detecting glaucomatous progression
Zamba KD
British Journal of Ophthalmology 2018; 0: (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Yokoyama Y
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75436 Predictive Factors for Visual Field Conversion: Comparison of Scanning Laser Polarimetry and Optical Coherence Tomography
Mardin CY
Journal of Glaucoma 2018; 27: 157-163 (IGR: 19-2)


75682 Baseline 24-2 Central Visual Field Damage Is Predictive of Global Progressive Field Loss
Cioffi GA
American Journal of Ophthalmology 2018; 187: 92-98 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Tachibana G
Scientific reports 2017; 7: 15048 (IGR: 19-2)


75130 Risk Factors Associated With Glaucomatous Progression in Pseudoexfoliation Patients
Kim JM
Journal of Glaucoma 2017; 26: 1107-1113 (IGR: 19-2)


75544 Impact of optic disc hemorrhage on subsequent glaucoma progression in mild-to-moderate myopia
Park KH
PLoS ONE 2017; 12: e0189706 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Nitta K
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75436 Predictive Factors for Visual Field Conversion: Comparison of Scanning Laser Polarimetry and Optical Coherence Tomography
Laemmer R
Journal of Glaucoma 2018; 27: 157-163 (IGR: 19-2)


75682 Baseline 24-2 Central Visual Field Damage Is Predictive of Global Progressive Field Loss
Girkin CA
American Journal of Ophthalmology 2018; 187: 92-98 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Inoue S
Scientific reports 2017; 7: 15048 (IGR: 19-2)


75336 The Future of Imaging in Detecting Glaucoma Progression
Schuman JS
Ophthalmology 2017; 124: S76-S82 (IGR: 19-2)


75398 Is Obstructive Sleep Apnea Associated With Progressive Glaucomatous Optic Neuropathy?
Feuer WJ
Journal of Glaucoma 2018; 27: 1-6 (IGR: 19-2)


75130 Risk Factors Associated With Glaucomatous Progression in Pseudoexfoliation Patients
Shim SH
Journal of Glaucoma 2017; 26: 1107-1113 (IGR: 19-2)


75451 Personalized Prediction of Glaucoma Progression Under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods
Andrews C
Ophthalmology 2018; 125: 569-577 (IGR: 19-2)


75358 The influence of oral statin medications on progression of glaucomatous visual field loss: A propensity score analysis
Coffman C
Ophthalmic Epidemiology 2018; 25: 207-214 (IGR: 19-2)


75130 Risk Factors Associated With Glaucomatous Progression in Pseudoexfoliation Patients
Yoo C
Journal of Glaucoma 2017; 26: 1107-1113 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Ohigashi T
Scientific reports 2017; 7: 15048 (IGR: 19-2)


75398 Is Obstructive Sleep Apnea Associated With Progressive Glaucomatous Optic Neuropathy?
Abreu AR
Journal of Glaucoma 2018; 27: 1-6 (IGR: 19-2)


75358 The influence of oral statin medications on progression of glaucomatous visual field loss: A propensity score analysis
Allingham RR
Ophthalmic Epidemiology 2018; 25: 207-214 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Katai M
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75436 Predictive Factors for Visual Field Conversion: Comparison of Scanning Laser Polarimetry and Optical Coherence Tomography
Horn FK
Journal of Glaucoma 2018; 27: 157-163 (IGR: 19-2)


75451 Personalized Prediction of Glaucoma Progression Under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods
Stein JD
Ophthalmology 2018; 125: 569-577 (IGR: 19-2)


75682 Baseline 24-2 Central Visual Field Damage Is Predictive of Global Progressive Field Loss
Medeiros FA
American Journal of Ophthalmology 2018; 187: 92-98 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Omodaka K
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75398 Is Obstructive Sleep Apnea Associated With Progressive Glaucomatous Optic Neuropathy?
Chediak AD
Journal of Glaucoma 2018; 27: 1-6 (IGR: 19-2)


75682 Baseline 24-2 Central Visual Field Damage Is Predictive of Global Progressive Field Loss
Weinreb RN
American Journal of Ophthalmology 2018; 187: 92-98 (IGR: 19-2)


75358 The influence of oral statin medications on progression of glaucomatous visual field loss: A propensity score analysis
Shieh C
Ophthalmic Epidemiology 2018; 25: 207-214 (IGR: 19-2)


75130 Risk Factors Associated With Glaucomatous Progression in Pseudoexfoliation Patients
Park JH
Journal of Glaucoma 2017; 26: 1107-1113 (IGR: 19-2)


75436 Predictive Factors for Visual Field Conversion: Comparison of Scanning Laser Polarimetry and Optical Coherence Tomography
Kruse FE
Journal of Glaucoma 2018; 27: 157-163 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Otsuka N; Kurashima H
Scientific reports 2017; 7: 15048 (IGR: 19-2)


75358 The influence of oral statin medications on progression of glaucomatous visual field loss: A propensity score analysis
Muir KW
Ophthalmic Epidemiology 2018; 25: 207-214 (IGR: 19-2)


75436 Predictive Factors for Visual Field Conversion: Comparison of Scanning Laser Polarimetry and Optical Coherence Tomography
Schrems WA
Journal of Glaucoma 2018; 27: 157-163 (IGR: 19-2)


75682 Baseline 24-2 Central Visual Field Damage Is Predictive of Global Progressive Field Loss
Zangwill LM
American Journal of Ophthalmology 2018; 187: 92-98 (IGR: 19-2)


75398 Is Obstructive Sleep Apnea Associated With Progressive Glaucomatous Optic Neuropathy?
Greenfield DS
Journal of Glaucoma 2018; 27: 1-6 (IGR: 19-2)


76017 A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study
Nakazawa T
Journal of Ophthalmology 2018; 2018: 8941489 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Santo K
Scientific reports 2017; 7: 15048 (IGR: 19-2)


75682 Baseline 24-2 Central Visual Field Damage Is Predictive of Global Progressive Field Loss
Liebmann JM
American Journal of Ophthalmology 2018; 187: 92-98 (IGR: 19-2)


75271 Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma
Hashimoto M; Shibahara H; Hirukawa M; Sugiyama K
Scientific reports 2017; 7: 15048 (IGR: 19-2)


74720 Optic Disc Image Subtraction as an Aid to Detect Glaucoma Progression
Amini N
Translational vision science & technology 2017; 6: 14 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Cirineo N
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74061 Can Home Monitoring Allow Earlier Detection of Rapid Visual Field Progression in Glaucoma?
Anderson AJ
Ophthalmology 2017; 124: 1735-1742 (IGR: 19-1)


74288 Pupillary responses to light are not affected by narrow irido-corneal angles
Rukmini AV
Scientific reports 2017; 7: 10190 (IGR: 19-1)


74487 Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field
Zhang X
American Journal of Ophthalmology 2017; 184: 63-74 (IGR: 19-1)


74241 Effect of trabeculectomy on visual field progression in Japanese progressive normal-tension glaucoma with intraocular pressure < 15 mmHg
Naito T
PLoS ONE 2017; 12: e0184096 (IGR: 19-1)


74408 Evaluation of preoperative speed of progression and its association with surgical outcomes in primary congenital glaucoma patients: a retrospective study
Guo C
BMC Ophthalmology 2017; 17: 170 (IGR: 19-1)


74502 Tolerable rates of visual field progression in a population-based sample of patients with glaucoma
Salonikiou A
British Journal of Ophthalmology 2018; 102: 916-921 (IGR: 19-1)


74215 Change in Visual Field Progression Following Treatment Escalation in Primary Open-angle Glaucoma
Aptel F
Journal of Glaucoma 2017; 26: 875-880 (IGR: 19-1)


74453 5-year disease progression of patients across the glaucoma spectrum assessed by structural and functional tools
Seth NG
British Journal of Ophthalmology 2018; 102: 802-807 (IGR: 19-1)


74219 Glaucoma progression detection with frequency doubling technology (FDT) compared to standard automated perimetry (SAP) in the Groningen Longitudinal Glaucoma Study
Wesselink C
Ophthalmic and Physiological Optics 2017; 37: 594-601 (IGR: 19-1)


74453 5-year disease progression of patients across the glaucoma spectrum assessed by structural and functional tools
Kaushik S
British Journal of Ophthalmology 2018; 102: 802-807 (IGR: 19-1)


74215 Change in Visual Field Progression Following Treatment Escalation in Primary Open-angle Glaucoma
Bron AM
Journal of Glaucoma 2017; 26: 875-880 (IGR: 19-1)


74288 Pupillary responses to light are not affected by narrow irido-corneal angles
Najjar RP
Scientific reports 2017; 7: 10190 (IGR: 19-1)


74408 Evaluation of preoperative speed of progression and its association with surgical outcomes in primary congenital glaucoma patients: a retrospective study
Wu Y
BMC Ophthalmology 2017; 17: 170 (IGR: 19-1)


74219 Glaucoma progression detection with frequency doubling technology (FDT) compared to standard automated perimetry (SAP) in the Groningen Longitudinal Glaucoma Study
Jansonius NM
Ophthalmic and Physiological Optics 2017; 37: 594-601 (IGR: 19-1)


74502 Tolerable rates of visual field progression in a population-based sample of patients with glaucoma
Founti P
British Journal of Ophthalmology 2018; 102: 916-921 (IGR: 19-1)


74061 Can Home Monitoring Allow Earlier Detection of Rapid Visual Field Progression in Glaucoma?
Bedggood PA
Ophthalmology 2017; 124: 1735-1742 (IGR: 19-1)


74487 Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field
Dastiridou A
American Journal of Ophthalmology 2017; 184: 63-74 (IGR: 19-1)


74241 Effect of trabeculectomy on visual field progression in Japanese progressive normal-tension glaucoma with intraocular pressure < 15 mmHg
Fujiwara M
PLoS ONE 2017; 12: e0184096 (IGR: 19-1)


74720 Optic Disc Image Subtraction as an Aid to Detect Glaucoma Progression
Alizadeh R
Translational vision science & technology 2017; 6: 14 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Morales E
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74408 Evaluation of preoperative speed of progression and its association with surgical outcomes in primary congenital glaucoma patients: a retrospective study
Xu L
BMC Ophthalmology 2017; 17: 170 (IGR: 19-1)


74241 Effect of trabeculectomy on visual field progression in Japanese progressive normal-tension glaucoma with intraocular pressure < 15 mmHg
Miki T
PLoS ONE 2017; 12: e0184096 (IGR: 19-1)


74215 Change in Visual Field Progression Following Treatment Escalation in Primary Open-angle Glaucoma
Lachkar Y
Journal of Glaucoma 2017; 26: 875-880 (IGR: 19-1)


74288 Pupillary responses to light are not affected by narrow irido-corneal angles
Atalay E
Scientific reports 2017; 7: 10190 (IGR: 19-1)


74720 Optic Disc Image Subtraction as an Aid to Detect Glaucoma Progression
Parivisutt N
Translational vision science & technology 2017; 6: 14 (IGR: 19-1)


74453 5-year disease progression of patients across the glaucoma spectrum assessed by structural and functional tools
Kaur S
British Journal of Ophthalmology 2018; 102: 802-807 (IGR: 19-1)


74487 Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field
Francis BA
American Journal of Ophthalmology 2017; 184: 63-74 (IGR: 19-1)


74061 Can Home Monitoring Allow Earlier Detection of Rapid Visual Field Progression in Glaucoma?
George Kong YX
Ophthalmology 2017; 124: 1735-1742 (IGR: 19-1)


74502 Tolerable rates of visual field progression in a population-based sample of patients with glaucoma
Kilintzis V
British Journal of Ophthalmology 2018; 102: 916-921 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Lee JM
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74453 5-year disease progression of patients across the glaucoma spectrum assessed by structural and functional tools
Raj S
British Journal of Ophthalmology 2018; 102: 802-807 (IGR: 19-1)


74288 Pupillary responses to light are not affected by narrow irido-corneal angles
Sharma S
Scientific reports 2017; 7: 10190 (IGR: 19-1)


74720 Optic Disc Image Subtraction as an Aid to Detect Glaucoma Progression
Kim E
Translational vision science & technology 2017; 6: 14 (IGR: 19-1)


74502 Tolerable rates of visual field progression in a population-based sample of patients with glaucoma
Antoniadis A
British Journal of Ophthalmology 2018; 102: 916-921 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Ramanathan M
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74215 Change in Visual Field Progression Following Treatment Escalation in Primary Open-angle Glaucoma
Schweitzer C
Journal of Glaucoma 2017; 26: 875-880 (IGR: 19-1)


74408 Evaluation of preoperative speed of progression and its association with surgical outcomes in primary congenital glaucoma patients: a retrospective study
Li M
BMC Ophthalmology 2017; 17: 170 (IGR: 19-1)


74061 Can Home Monitoring Allow Earlier Detection of Rapid Visual Field Progression in Glaucoma?
Martin KR
Ophthalmology 2017; 124: 1735-1742 (IGR: 19-1)


74487 Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field
Tan O
American Journal of Ophthalmology 2017; 184: 63-74 (IGR: 19-1)


74241 Effect of trabeculectomy on visual field progression in Japanese progressive normal-tension glaucoma with intraocular pressure < 15 mmHg
Araki R; Fujiwara A
PLoS ONE 2017; 12: e0184096 (IGR: 19-1)


74408 Evaluation of preoperative speed of progression and its association with surgical outcomes in primary congenital glaucoma patients: a retrospective study
Wang Z
BMC Ophthalmology 2017; 17: 170 (IGR: 19-1)


74061 Can Home Monitoring Allow Earlier Detection of Rapid Visual Field Progression in Glaucoma?
Vingrys AJ
Ophthalmology 2017; 124: 1735-1742 (IGR: 19-1)


74487 Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field
Varma R
American Journal of Ophthalmology 2017; 184: 63-74 (IGR: 19-1)


74502 Tolerable rates of visual field progression in a population-based sample of patients with glaucoma
Anastasopoulos E
British Journal of Ophthalmology 2018; 102: 916-921 (IGR: 19-1)


74288 Pupillary responses to light are not affected by narrow irido-corneal angles
Lock JZ
Scientific reports 2017; 7: 10190 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Hirunpatravong P
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74453 5-year disease progression of patients across the glaucoma spectrum assessed by structural and functional tools
Pandav SS
British Journal of Ophthalmology 2018; 102: 802-807 (IGR: 19-1)


74720 Optic Disc Image Subtraction as an Aid to Detect Glaucoma Progression
Nouri-Mahdavi K
Translational vision science & technology 2017; 6: 14 (IGR: 19-1)


74408 Evaluation of preoperative speed of progression and its association with surgical outcomes in primary congenital glaucoma patients: a retrospective study
Ni N
BMC Ophthalmology 2017; 17: 170 (IGR: 19-1)


74241 Effect of trabeculectomy on visual field progression in Japanese progressive normal-tension glaucoma with intraocular pressure < 15 mmHg
Shiode Y
PLoS ONE 2017; 12: e0184096 (IGR: 19-1)


74288 Pupillary responses to light are not affected by narrow irido-corneal angles
Baskaran M
Scientific reports 2017; 7: 10190 (IGR: 19-1)


74720 Optic Disc Image Subtraction as an Aid to Detect Glaucoma Progression
Caprioli J
Translational vision science & technology 2017; 6: 14 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Lin M
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74487 Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field
Greenfield DS
American Journal of Ophthalmology 2017; 184: 63-74 (IGR: 19-1)


74502 Tolerable rates of visual field progression in a population-based sample of patients with glaucoma
Pappas T
British Journal of Ophthalmology 2018; 102: 916-921 (IGR: 19-1)


74487 Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field
Schuman JS
American Journal of Ophthalmology 2017; 184: 63-74 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Capistrano V
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74502 Tolerable rates of visual field progression in a population-based sample of patients with glaucoma
Raptou A
British Journal of Ophthalmology 2018; 102: 916-921 (IGR: 19-1)


74288 Pupillary responses to light are not affected by narrow irido-corneal angles
Nongpiur M
Scientific reports 2017; 7: 10190 (IGR: 19-1)


74241 Effect of trabeculectomy on visual field progression in Japanese progressive normal-tension glaucoma with intraocular pressure < 15 mmHg
Morizane Y
PLoS ONE 2017; 12: e0184096 (IGR: 19-1)


74408 Evaluation of preoperative speed of progression and its association with surgical outcomes in primary congenital glaucoma patients: a retrospective study
Guo W
BMC Ophthalmology 2017; 17: 170 (IGR: 19-1)


74502 Tolerable rates of visual field progression in a population-based sample of patients with glaucoma
Topouzis F
British Journal of Ophthalmology 2018; 102: 916-921 (IGR: 19-1)


74487 Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field
Huang D
American Journal of Ophthalmology 2017; 184: 63-74 (IGR: 19-1)


74241 Effect of trabeculectomy on visual field progression in Japanese progressive normal-tension glaucoma with intraocular pressure < 15 mmHg
Nagayama M
PLoS ONE 2017; 12: e0184096 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Abdelmonen A
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74288 Pupillary responses to light are not affected by narrow irido-corneal angles
Gooley JJ
Scientific reports 2017; 7: 10190 (IGR: 19-1)


74487 Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field

American Journal of Ophthalmology 2017; 184: 63-74 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Yu F
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74241 Effect of trabeculectomy on visual field progression in Japanese progressive normal-tension glaucoma with intraocular pressure < 15 mmHg
Shiraga F
PLoS ONE 2017; 12: e0184096 (IGR: 19-1)


74288 Pupillary responses to light are not affected by narrow irido-corneal angles
Aung T
Scientific reports 2017; 7: 10190 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Nouri-Mahdavi K
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


74288 Pupillary responses to light are not affected by narrow irido-corneal angles
Milea D
Scientific reports 2017; 7: 10190 (IGR: 19-1)


74271 Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss
Coleman AL; Caprioli J
Journal of Glaucoma 2017; 26: 902-910 (IGR: 19-1)


72853 Trend-based Analysis of Ganglion Cell-Inner Plexiform Layer Thickness Changes on Optical Coherence Tomography in Glaucoma Progression
Lee WJ
Ophthalmology 2017; 124: 1383-1391 (IGR: 18-4)


73464 Progression of Local Glaucomatous Damage Near Fixation as Seen with Adaptive Optics Imaging
Hood DC
Translational vision science & technology 2017; 6: 6 (IGR: 18-4)


72961 Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma
Aoki S
British Journal of Ophthalmology 2017; 101: 1658-1665 (IGR: 18-4)


73046 β-Zone Parapapillary Atrophy and Rates of Glaucomatous Visual Field Progression: African Descent and Glaucoma Evaluation Study
De Moraes CG
JAMA ophthalmology 2017; 135: 617-623 (IGR: 18-4)


72597 Frequency of Testing to Detect Visual Field Progression Derived Using a Longitudinal Cohort of Glaucoma Patients
Wu Z
Ophthalmology 2017; 124: 786-792 (IGR: 18-4)


72998 Using CorvisST tonometry to assess glaucoma progression
Matsuura M
PLoS ONE 2017; 12: e0176380 (IGR: 18-4)


72848 Factors Associated With Visual Field Progression in Cirrus Optical Coherence Tomography-guided Progression Analysis: A Topographic Approach
Shin JW
Journal of Glaucoma 2017; 26: 555-560 (IGR: 18-4)


72666 Visual Field Progression is Associated with Systemic Concentration of Macrophage Chemoattractant Protein-1 in Normal-Tension Glaucoma
Lee NY
Current Eye Research 2017; 42: 1002-1006 (IGR: 18-4)


72776 Visual Field Progression in Patients with Primary Angle-Closure Glaucoma Using Pointwise Linear Regression Analysis
Verma S
Ophthalmology 2017; 124: 1065-1071 (IGR: 18-4)


72912 Is high myopia a risk factor for visual field progression or disk hemorrhage in primary open-angle glaucoma?
Nitta K
Clinical Ophthalmology 2017; 11: 599-604 (IGR: 18-4)


73162 Ganglion Cell-Inner Plexiform Layer Change Detected by Optical Coherence Tomography Indicates Progression in Advanced Glaucoma
Shin JW
Ophthalmology 2017; 124: 1466-1474 (IGR: 18-4)


72739 Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma
Wu Z
Investigative Ophthalmology and Visual Science 2017; 58: 1825-1833 (IGR: 18-4)


72766 Evaluation of a Novel Visual Field Analyzer Application for Automated Classification of Glaucoma Severity
Germano RAS
Journal of Glaucoma 2017; 26: 586-591 (IGR: 18-4)


72666 Visual Field Progression is Associated with Systemic Concentration of Macrophage Chemoattractant Protein-1 in Normal-Tension Glaucoma
Kim MH
Current Eye Research 2017; 42: 1002-1006 (IGR: 18-4)


72597 Frequency of Testing to Detect Visual Field Progression Derived Using a Longitudinal Cohort of Glaucoma Patients
Saunders LJ
Ophthalmology 2017; 124: 786-792 (IGR: 18-4)


72848 Factors Associated With Visual Field Progression in Cirrus Optical Coherence Tomography-guided Progression Analysis: A Topographic Approach
Sung KR
Journal of Glaucoma 2017; 26: 555-560 (IGR: 18-4)


73046 β-Zone Parapapillary Atrophy and Rates of Glaucomatous Visual Field Progression: African Descent and Glaucoma Evaluation Study
Murphy JT
JAMA ophthalmology 2017; 135: 617-623 (IGR: 18-4)


72961 Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma
Murata H
British Journal of Ophthalmology 2017; 101: 1658-1665 (IGR: 18-4)


73162 Ganglion Cell-Inner Plexiform Layer Change Detected by Optical Coherence Tomography Indicates Progression in Advanced Glaucoma
Sung KR
Ophthalmology 2017; 124: 1466-1474 (IGR: 18-4)


72766 Evaluation of a Novel Visual Field Analyzer Application for Automated Classification of Glaucoma Severity
De Moraes CG
Journal of Glaucoma 2017; 26: 586-591 (IGR: 18-4)


72853 Trend-based Analysis of Ganglion Cell-Inner Plexiform Layer Thickness Changes on Optical Coherence Tomography in Glaucoma Progression
Kim YK
Ophthalmology 2017; 124: 1383-1391 (IGR: 18-4)


72776 Visual Field Progression in Patients with Primary Angle-Closure Glaucoma Using Pointwise Linear Regression Analysis
Nongpiur ME
Ophthalmology 2017; 124: 1065-1071 (IGR: 18-4)


72912 Is high myopia a risk factor for visual field progression or disk hemorrhage in primary open-angle glaucoma?
Sugiyama K
Clinical Ophthalmology 2017; 11: 599-604 (IGR: 18-4)


72739 Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma
Lin C
Investigative Ophthalmology and Visual Science 2017; 58: 1825-1833 (IGR: 18-4)


73464 Progression of Local Glaucomatous Damage Near Fixation as Seen with Adaptive Optics Imaging
Lee D
Translational vision science & technology 2017; 6: 6 (IGR: 18-4)


72998 Using CorvisST tonometry to assess glaucoma progression
Hirasawa K
PLoS ONE 2017; 12: e0176380 (IGR: 18-4)


72739 Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma
Crowther M
Investigative Ophthalmology and Visual Science 2017; 58: 1825-1833 (IGR: 18-4)


72776 Visual Field Progression in Patients with Primary Angle-Closure Glaucoma Using Pointwise Linear Regression Analysis
Atalay E
Ophthalmology 2017; 124: 1065-1071 (IGR: 18-4)


72666 Visual Field Progression is Associated with Systemic Concentration of Macrophage Chemoattractant Protein-1 in Normal-Tension Glaucoma
Park CK
Current Eye Research 2017; 42: 1002-1006 (IGR: 18-4)


72998 Using CorvisST tonometry to assess glaucoma progression
Murata H
PLoS ONE 2017; 12: e0176380 (IGR: 18-4)


73046 β-Zone Parapapillary Atrophy and Rates of Glaucomatous Visual Field Progression: African Descent and Glaucoma Evaluation Study
Kaplan CM
JAMA ophthalmology 2017; 135: 617-623 (IGR: 18-4)


73464 Progression of Local Glaucomatous Damage Near Fixation as Seen with Adaptive Optics Imaging
Jarukasetphon R
Translational vision science & technology 2017; 6: 6 (IGR: 18-4)


72597 Frequency of Testing to Detect Visual Field Progression Derived Using a Longitudinal Cohort of Glaucoma Patients
Daga FB
Ophthalmology 2017; 124: 786-792 (IGR: 18-4)


73162 Ganglion Cell-Inner Plexiform Layer Change Detected by Optical Coherence Tomography Indicates Progression in Advanced Glaucoma
Lee GC
Ophthalmology 2017; 124: 1466-1474 (IGR: 18-4)


72766 Evaluation of a Novel Visual Field Analyzer Application for Automated Classification of Glaucoma Severity
Susanna R
Journal of Glaucoma 2017; 26: 586-591 (IGR: 18-4)


72853 Trend-based Analysis of Ganglion Cell-Inner Plexiform Layer Thickness Changes on Optical Coherence Tomography in Glaucoma Progression
Park KH
Ophthalmology 2017; 124: 1383-1391 (IGR: 18-4)


72961 Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma
Fujino Y
British Journal of Ophthalmology 2017; 101: 1658-1665 (IGR: 18-4)


72848 Factors Associated With Visual Field Progression in Cirrus Optical Coherence Tomography-guided Progression Analysis: A Topographic Approach
Lee J
Journal of Glaucoma 2017; 26: 555-560 (IGR: 18-4)


72912 Is high myopia a risk factor for visual field progression or disk hemorrhage in primary open-angle glaucoma?
Wajima R
Clinical Ophthalmology 2017; 11: 599-604 (IGR: 18-4)


73464 Progression of Local Glaucomatous Damage Near Fixation as Seen with Adaptive Optics Imaging
Nunez J
Translational vision science & technology 2017; 6: 6 (IGR: 18-4)


72853 Trend-based Analysis of Ganglion Cell-Inner Plexiform Layer Thickness Changes on Optical Coherence Tomography in Glaucoma Progression
Jeoung JW
Ophthalmology 2017; 124: 1383-1391 (IGR: 18-4)


73162 Ganglion Cell-Inner Plexiform Layer Change Detected by Optical Coherence Tomography Indicates Progression in Advanced Glaucoma
Durbin MK
Ophthalmology 2017; 124: 1466-1474 (IGR: 18-4)


72998 Using CorvisST tonometry to assess glaucoma progression
Nakakura S
PLoS ONE 2017; 12: e0176380 (IGR: 18-4)


72766 Evaluation of a Novel Visual Field Analyzer Application for Automated Classification of Glaucoma Severity
Dantas DO
Journal of Glaucoma 2017; 26: 586-591 (IGR: 18-4)


72776 Visual Field Progression in Patients with Primary Angle-Closure Glaucoma Using Pointwise Linear Regression Analysis
Wei X
Ophthalmology 2017; 124: 1065-1071 (IGR: 18-4)


72912 Is high myopia a risk factor for visual field progression or disk hemorrhage in primary open-angle glaucoma?
Tachibana G
Clinical Ophthalmology 2017; 11: 599-604 (IGR: 18-4)


72739 Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma
Mak H
Investigative Ophthalmology and Visual Science 2017; 58: 1825-1833 (IGR: 18-4)


72848 Factors Associated With Visual Field Progression in Cirrus Optical Coherence Tomography-guided Progression Analysis: A Topographic Approach
Kwon J
Journal of Glaucoma 2017; 26: 555-560 (IGR: 18-4)


72961 Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma
Matsuura M
British Journal of Ophthalmology 2017; 101: 1658-1665 (IGR: 18-4)


72597 Frequency of Testing to Detect Visual Field Progression Derived Using a Longitudinal Cohort of Glaucoma Patients
Diniz-Filho A
Ophthalmology 2017; 124: 786-792 (IGR: 18-4)


73046 β-Zone Parapapillary Atrophy and Rates of Glaucomatous Visual Field Progression: African Descent and Glaucoma Evaluation Study
Reimann JJ
JAMA ophthalmology 2017; 135: 617-623 (IGR: 18-4)


72998 Using CorvisST tonometry to assess glaucoma progression
Kiuchi Y
PLoS ONE 2017; 12: e0176380 (IGR: 18-4)


73046 β-Zone Parapapillary Atrophy and Rates of Glaucomatous Visual Field Progression: African Descent and Glaucoma Evaluation Study
Skaat A
JAMA ophthalmology 2017; 135: 617-623 (IGR: 18-4)


72776 Visual Field Progression in Patients with Primary Angle-Closure Glaucoma Using Pointwise Linear Regression Analysis
Husain R
Ophthalmology 2017; 124: 1065-1071 (IGR: 18-4)


72739 Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma
Yu M
Investigative Ophthalmology and Visual Science 2017; 58: 1825-1833 (IGR: 18-4)


72961 Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma
Miki A
British Journal of Ophthalmology 2017; 101: 1658-1665 (IGR: 18-4)


73162 Ganglion Cell-Inner Plexiform Layer Change Detected by Optical Coherence Tomography Indicates Progression in Advanced Glaucoma
Cheng D
Ophthalmology 2017; 124: 1466-1474 (IGR: 18-4)


72766 Evaluation of a Novel Visual Field Analyzer Application for Automated Classification of Glaucoma Severity
Neto EDS
Journal of Glaucoma 2017; 26: 586-591 (IGR: 18-4)


72597 Frequency of Testing to Detect Visual Field Progression Derived Using a Longitudinal Cohort of Glaucoma Patients
Medeiros FA
Ophthalmology 2017; 124: 786-792 (IGR: 18-4)


73464 Progression of Local Glaucomatous Damage Near Fixation as Seen with Adaptive Optics Imaging
Mavrommatis MA; Rosen RB
Translational vision science & technology 2017; 6: 6 (IGR: 18-4)


72739 Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma
Leung CK
Investigative Ophthalmology and Visual Science 2017; 58: 1825-1833 (IGR: 18-4)


72776 Visual Field Progression in Patients with Primary Angle-Closure Glaucoma Using Pointwise Linear Regression Analysis
Goh D
Ophthalmology 2017; 124: 1065-1071 (IGR: 18-4)


72961 Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma
Tanito M
British Journal of Ophthalmology 2017; 101: 1658-1665 (IGR: 18-4)


73046 β-Zone Parapapillary Atrophy and Rates of Glaucomatous Visual Field Progression: African Descent and Glaucoma Evaluation Study
Blumberg DM
JAMA ophthalmology 2017; 135: 617-623 (IGR: 18-4)


72998 Using CorvisST tonometry to assess glaucoma progression
Asaoka R
PLoS ONE 2017; 12: e0176380 (IGR: 18-4)


72961 Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma
Mizoue S
British Journal of Ophthalmology 2017; 101: 1658-1665 (IGR: 18-4)


73046 β-Zone Parapapillary Atrophy and Rates of Glaucomatous Visual Field Progression: African Descent and Glaucoma Evaluation Study
Al-Aswad L
JAMA ophthalmology 2017; 135: 617-623 (IGR: 18-4)


72776 Visual Field Progression in Patients with Primary Angle-Closure Glaucoma Using Pointwise Linear Regression Analysis
Perera SA
Ophthalmology 2017; 124: 1065-1071 (IGR: 18-4)


73464 Progression of Local Glaucomatous Damage Near Fixation as Seen with Adaptive Optics Imaging
Ritch R; Dubra A
Translational vision science & technology 2017; 6: 6 (IGR: 18-4)


73046 β-Zone Parapapillary Atrophy and Rates of Glaucomatous Visual Field Progression: African Descent and Glaucoma Evaluation Study
Cioffi GA
JAMA ophthalmology 2017; 135: 617-623 (IGR: 18-4)


72776 Visual Field Progression in Patients with Primary Angle-Closure Glaucoma Using Pointwise Linear Regression Analysis
Aung T
Ophthalmology 2017; 124: 1065-1071 (IGR: 18-4)


72961 Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma
Mori K
British Journal of Ophthalmology 2017; 101: 1658-1665 (IGR: 18-4)


73464 Progression of Local Glaucomatous Damage Near Fixation as Seen with Adaptive Optics Imaging
Chui TYP
Translational vision science & technology 2017; 6: 6 (IGR: 18-4)


73046 β-Zone Parapapillary Atrophy and Rates of Glaucomatous Visual Field Progression: African Descent and Glaucoma Evaluation Study
Girkin CA
JAMA ophthalmology 2017; 135: 617-623 (IGR: 18-4)


72961 Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma
Suzuki K
British Journal of Ophthalmology 2017; 101: 1658-1665 (IGR: 18-4)


73046 β-Zone Parapapillary Atrophy and Rates of Glaucomatous Visual Field Progression: African Descent and Glaucoma Evaluation Study
Medeiros FA
JAMA ophthalmology 2017; 135: 617-623 (IGR: 18-4)


72961 Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma
Yamashita T
British Journal of Ophthalmology 2017; 101: 1658-1665 (IGR: 18-4)


73046 β-Zone Parapapillary Atrophy and Rates of Glaucomatous Visual Field Progression: African Descent and Glaucoma Evaluation Study
Weinreb RN
JAMA ophthalmology 2017; 135: 617-623 (IGR: 18-4)


72961 Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma
Kashiwagi K; Hirasawa K
British Journal of Ophthalmology 2017; 101: 1658-1665 (IGR: 18-4)


73046 β-Zone Parapapillary Atrophy and Rates of Glaucomatous Visual Field Progression: African Descent and Glaucoma Evaluation Study
Zangwill L; Liebmann JM
JAMA ophthalmology 2017; 135: 617-623 (IGR: 18-4)


72961 Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma
Shoji N; Asaoka R
British Journal of Ophthalmology 2017; 101: 1658-1665 (IGR: 18-4)


71340 Can Glaucomatous Visual Field Progression be Predicted by Structural and Functional Measures?
Schrems WA
Journal of Glaucoma 2017; 26: 373-382 (IGR: 18-3)


71651 Optical Coherence Tomography and Glaucoma Progression: A Comparison of a Region of Interest Approach to Average Retinal Nerve Fiber Layer Thickness
Thenappan A
Journal of Glaucoma 2017; 26: 473-477 (IGR: 18-3)


71113 Applying "Lasso" Regression to Predict Future Glaucomatous Visual Field Progression in the Central 10 Degrees
Fujino Y
Journal of Glaucoma 2017; 26: 113-118 (IGR: 18-3)


71462 24-Hour Contact Lens Sensor Monitoring of Intraocular Pressure-Related Profiles in Normal-Tension Glaucoma and Rates of Disease Progression
Hoban K
Ophthalmic Research 2017; 57: 208-215 (IGR: 18-3)


71410 Trend-Based Progression Analysis for Examination of the Topography of Rates of Retinal Nerve Fiber Layer Thinning in Glaucoma
Lin C
JAMA ophthalmology 2017; 135: 189-195 (IGR: 18-3)


71299 The usefulness of CorvisST Tonometry and the Ocular Response Analyzer to assess the progression of glaucoma
Matsuura M
Scientific reports 2017; 7: 40798 (IGR: 18-3)


71010 Progressive Retinal Nerve Fiber Layer Atrophy Associated With Enlarging Peripapillary Pit
Lee EJ
Journal of Glaucoma 2017; 26: e79-e81 (IGR: 18-3)


71364 Detecting change using standard global perimetric indices in glaucoma
Gardiner SK
American Journal of Ophthalmology 2017; 176: 148-156 (IGR: 18-3)


71569 Risk factors for visual field progression of normal-tension glaucoma in patients with myopia
Bae HW
Canadian Journal of Ophthalmology 2017; 52: 107-113 (IGR: 18-3)


71581 Intraobserver and Interobserver Agreement of Structural and Functional Software Programs for Measuring Glaucoma Progression
Moreno-Montañés J
JAMA ophthalmology 2017; 135: 313-319 (IGR: 18-3)


71539 Sustained Resolution of Macular Retinoschisis After Trabeculectomy in a Patient With Progressive Glaucoma
Woo R
Journal of Glaucoma 2017; 26: e180-e186 (IGR: 18-3)


71411 Bayesian hierarchical modeling of longitudinal glaucomatous visual fields using a two-stage approach
Bryan SR
Statistics in Medicine 2017; 36: 1735-1753 (IGR: 18-3)


71410 Trend-Based Progression Analysis for Examination of the Topography of Rates of Retinal Nerve Fiber Layer Thinning in Glaucoma
Mak H
JAMA ophthalmology 2017; 135: 189-195 (IGR: 18-3)


71539 Sustained Resolution of Macular Retinoschisis After Trabeculectomy in a Patient With Progressive Glaucoma
Akil H
Journal of Glaucoma 2017; 26: e180-e186 (IGR: 18-3)


71364 Detecting change using standard global perimetric indices in glaucoma
Demirel S
American Journal of Ophthalmology 2017; 176: 148-156 (IGR: 18-3)


71651 Optical Coherence Tomography and Glaucoma Progression: A Comparison of a Region of Interest Approach to Average Retinal Nerve Fiber Layer Thickness
De Moraes CG
Journal of Glaucoma 2017; 26: 473-477 (IGR: 18-3)


71569 Risk factors for visual field progression of normal-tension glaucoma in patients with myopia
Seo SJ
Canadian Journal of Ophthalmology 2017; 52: 107-113 (IGR: 18-3)


71581 Intraobserver and Interobserver Agreement of Structural and Functional Software Programs for Measuring Glaucoma Progression
Antón V
JAMA ophthalmology 2017; 135: 313-319 (IGR: 18-3)


71113 Applying "Lasso" Regression to Predict Future Glaucomatous Visual Field Progression in the Central 10 Degrees
Murata H
Journal of Glaucoma 2017; 26: 113-118 (IGR: 18-3)


71411 Bayesian hierarchical modeling of longitudinal glaucomatous visual fields using a two-stage approach
Eilers PH
Statistics in Medicine 2017; 36: 1735-1753 (IGR: 18-3)


71299 The usefulness of CorvisST Tonometry and the Ocular Response Analyzer to assess the progression of glaucoma
Hirasawa K
Scientific reports 2017; 7: 40798 (IGR: 18-3)


71010 Progressive Retinal Nerve Fiber Layer Atrophy Associated With Enlarging Peripapillary Pit
Kim TW
Journal of Glaucoma 2017; 26: e79-e81 (IGR: 18-3)


71340 Can Glaucomatous Visual Field Progression be Predicted by Structural and Functional Measures?
Schrems-Hoesl LM
Journal of Glaucoma 2017; 26: 373-382 (IGR: 18-3)


71462 24-Hour Contact Lens Sensor Monitoring of Intraocular Pressure-Related Profiles in Normal-Tension Glaucoma and Rates of Disease Progression
Peden R
Ophthalmic Research 2017; 57: 208-215 (IGR: 18-3)


71411 Bayesian hierarchical modeling of longitudinal glaucomatous visual fields using a two-stage approach
Rosmalen JV
Statistics in Medicine 2017; 36: 1735-1753 (IGR: 18-3)


71299 The usefulness of CorvisST Tonometry and the Ocular Response Analyzer to assess the progression of glaucoma
Murata H
Scientific reports 2017; 7: 40798 (IGR: 18-3)


71113 Applying "Lasso" Regression to Predict Future Glaucomatous Visual Field Progression in the Central 10 Degrees
Mayama C
Journal of Glaucoma 2017; 26: 113-118 (IGR: 18-3)


71462 24-Hour Contact Lens Sensor Monitoring of Intraocular Pressure-Related Profiles in Normal-Tension Glaucoma and Rates of Disease Progression
Megaw R
Ophthalmic Research 2017; 57: 208-215 (IGR: 18-3)


71539 Sustained Resolution of Macular Retinoschisis After Trabeculectomy in a Patient With Progressive Glaucoma
Koulisis N
Journal of Glaucoma 2017; 26: e180-e186 (IGR: 18-3)


71410 Trend-Based Progression Analysis for Examination of the Topography of Rates of Retinal Nerve Fiber Layer Thinning in Glaucoma
Yu M
JAMA ophthalmology 2017; 135: 189-195 (IGR: 18-3)


71651 Optical Coherence Tomography and Glaucoma Progression: A Comparison of a Region of Interest Approach to Average Retinal Nerve Fiber Layer Thickness
Wang DL
Journal of Glaucoma 2017; 26: 473-477 (IGR: 18-3)


71340 Can Glaucomatous Visual Field Progression be Predicted by Structural and Functional Measures?
Mardin CY
Journal of Glaucoma 2017; 26: 373-382 (IGR: 18-3)


71569 Risk factors for visual field progression of normal-tension glaucoma in patients with myopia
Lee SY
Canadian Journal of Ophthalmology 2017; 52: 107-113 (IGR: 18-3)


71581 Intraobserver and Interobserver Agreement of Structural and Functional Software Programs for Measuring Glaucoma Progression
Antón A
JAMA ophthalmology 2017; 135: 313-319 (IGR: 18-3)


71299 The usefulness of CorvisST Tonometry and the Ocular Response Analyzer to assess the progression of glaucoma
Nakakura S
Scientific reports 2017; 7: 40798 (IGR: 18-3)


71569 Risk factors for visual field progression of normal-tension glaucoma in patients with myopia
Lee YH
Canadian Journal of Ophthalmology 2017; 52: 107-113 (IGR: 18-3)


71113 Applying "Lasso" Regression to Predict Future Glaucomatous Visual Field Progression in the Central 10 Degrees
Matsuo H
Journal of Glaucoma 2017; 26: 113-118 (IGR: 18-3)


71411 Bayesian hierarchical modeling of longitudinal glaucomatous visual fields using a two-stage approach
Rizopoulos D
Statistics in Medicine 2017; 36: 1735-1753 (IGR: 18-3)


71539 Sustained Resolution of Macular Retinoschisis After Trabeculectomy in a Patient With Progressive Glaucoma
Olmos de Koo LC
Journal of Glaucoma 2017; 26: e180-e186 (IGR: 18-3)


71581 Intraobserver and Interobserver Agreement of Structural and Functional Software Programs for Measuring Glaucoma Progression
Larrosa JM
JAMA ophthalmology 2017; 135: 313-319 (IGR: 18-3)


71340 Can Glaucomatous Visual Field Progression be Predicted by Structural and Functional Measures?
Laemmer R
Journal of Glaucoma 2017; 26: 373-382 (IGR: 18-3)


71462 24-Hour Contact Lens Sensor Monitoring of Intraocular Pressure-Related Profiles in Normal-Tension Glaucoma and Rates of Disease Progression
Halpin P
Ophthalmic Research 2017; 57: 208-215 (IGR: 18-3)


71410 Trend-Based Progression Analysis for Examination of the Topography of Rates of Retinal Nerve Fiber Layer Thinning in Glaucoma
Leung CK
JAMA ophthalmology 2017; 135: 189-195 (IGR: 18-3)


71651 Optical Coherence Tomography and Glaucoma Progression: A Comparison of a Region of Interest Approach to Average Retinal Nerve Fiber Layer Thickness
Xin D
Journal of Glaucoma 2017; 26: 473-477 (IGR: 18-3)


71340 Can Glaucomatous Visual Field Progression be Predicted by Structural and Functional Measures?
Kruse FE
Journal of Glaucoma 2017; 26: 373-382 (IGR: 18-3)


71651 Optical Coherence Tomography and Glaucoma Progression: A Comparison of a Region of Interest Approach to Average Retinal Nerve Fiber Layer Thickness
Jarukasetphon R
Journal of Glaucoma 2017; 26: 473-477 (IGR: 18-3)


71539 Sustained Resolution of Macular Retinoschisis After Trabeculectomy in a Patient With Progressive Glaucoma
Tan JC
Journal of Glaucoma 2017; 26: e180-e186 (IGR: 18-3)


71569 Risk factors for visual field progression of normal-tension glaucoma in patients with myopia
Hong S
Canadian Journal of Ophthalmology 2017; 52: 107-113 (IGR: 18-3)


71581 Intraobserver and Interobserver Agreement of Structural and Functional Software Programs for Measuring Glaucoma Progression
Martinez-de-la-Casa JM
JAMA ophthalmology 2017; 135: 313-319 (IGR: 18-3)


71411 Bayesian hierarchical modeling of longitudinal glaucomatous visual fields using a two-stage approach
Vermeer KA
Statistics in Medicine 2017; 36: 1735-1753 (IGR: 18-3)


71462 24-Hour Contact Lens Sensor Monitoring of Intraocular Pressure-Related Profiles in Normal-Tension Glaucoma and Rates of Disease Progression
Tatham AJ
Ophthalmic Research 2017; 57: 208-215 (IGR: 18-3)


71299 The usefulness of CorvisST Tonometry and the Ocular Response Analyzer to assess the progression of glaucoma
Kiuchi Y
Scientific reports 2017; 7: 40798 (IGR: 18-3)


71113 Applying "Lasso" Regression to Predict Future Glaucomatous Visual Field Progression in the Central 10 Degrees
Asaoka R
Journal of Glaucoma 2017; 26: 113-118 (IGR: 18-3)


71581 Intraobserver and Interobserver Agreement of Structural and Functional Software Programs for Measuring Glaucoma Progression
Rebolleda G
JAMA ophthalmology 2017; 135: 313-319 (IGR: 18-3)


71340 Can Glaucomatous Visual Field Progression be Predicted by Structural and Functional Measures?
Horn FK
Journal of Glaucoma 2017; 26: 373-382 (IGR: 18-3)


71569 Risk factors for visual field progression of normal-tension glaucoma in patients with myopia
Seong GJ
Canadian Journal of Ophthalmology 2017; 52: 107-113 (IGR: 18-3)


71651 Optical Coherence Tomography and Glaucoma Progression: A Comparison of a Region of Interest Approach to Average Retinal Nerve Fiber Layer Thickness
Ritch R
Journal of Glaucoma 2017; 26: 473-477 (IGR: 18-3)


71411 Bayesian hierarchical modeling of longitudinal glaucomatous visual fields using a two-stage approach
Lemij HG
Statistics in Medicine 2017; 36: 1735-1753 (IGR: 18-3)


71299 The usefulness of CorvisST Tonometry and the Ocular Response Analyzer to assess the progression of glaucoma
Asaoka R
Scientific reports 2017; 7: 40798 (IGR: 18-3)


71569 Risk factors for visual field progression of normal-tension glaucoma in patients with myopia
Kim CY
Canadian Journal of Ophthalmology 2017; 52: 107-113 (IGR: 18-3)


71581 Intraobserver and Interobserver Agreement of Structural and Functional Software Programs for Measuring Glaucoma Progression
Ussa F
JAMA ophthalmology 2017; 135: 313-319 (IGR: 18-3)


71411 Bayesian hierarchical modeling of longitudinal glaucomatous visual fields using a two-stage approach
Lesaffre EM
Statistics in Medicine 2017; 36: 1735-1753 (IGR: 18-3)


71651 Optical Coherence Tomography and Glaucoma Progression: A Comparison of a Region of Interest Approach to Average Retinal Nerve Fiber Layer Thickness
Hood DC
Journal of Glaucoma 2017; 26: 473-477 (IGR: 18-3)


71581 Intraobserver and Interobserver Agreement of Structural and Functional Software Programs for Measuring Glaucoma Progression
García-Granero M
JAMA ophthalmology 2017; 135: 313-319 (IGR: 18-3)


70899 Association of Myopic Deformation of Optic Disc with Visual Field Progression in Paired Eyes with Open-Angle Glaucoma
Sawada Y
PLoS ONE 2017; 12: e0170733 (IGR: 18-2)


70334 Optic disc tilt direction affects regional visual field progression rates in myopic eyes with open-angle glaucoma
Lee JR
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2267-2276 (IGR: 18-2)


70238 Baseline Fourier-Domain Optical Coherence Tomography Structural Risk Factors for Visual Field Progression in the Advanced Imaging for Glaucoma Study
Zhang X
American Journal of Ophthalmology 2016; 172: 94-103 (IGR: 18-2)


70268 Developing new automated alternation flicker using optic disc photography for the detection of glaucoma progression
Ahn J
Eye 2017; 31: 119-126 (IGR: 18-2)


70716 Uveitic Glaucoma: Long-term Clinical Outcome and Risk Factors for Progression
Sharon Y
Ocular Immunology and Inflammation 2016; 0: 1-8 (IGR: 18-2)


70729 Effects of ocular and systemic factors on the progression of glaucomatous visual field damage in various sectors
Asaoka R
British Journal of Ophthalmology 2017; 101: 1071-1075 (IGR: 18-2)


70416 The Effect of Diurnal Fluctuation in Intraocular Pressure on the Evaluation of Risk Factors of Progression in Normal Tension Glaucoma
Kim SH
PLoS ONE 2016; 11: e0164876 (IGR: 18-2)


70478 Rates of glaucomatous visual field change after trabeculectomy
Baril C
British Journal of Ophthalmology 2017; 101: 874-878 (IGR: 18-2)


69949 Difference in glaucoma progression between the first and second eye after consecutive bilateral glaucoma surgery in patients with bilateral uveitic glaucoma
Din NM
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2439-2448 (IGR: 18-2)


70122 The retest distribution of the visual field summary index mean deviation is close to normal
Anderson AJ
Ophthalmic and Physiological Optics 2016; 36: 558-565 (IGR: 18-2)


70077 The relationship between self-reported habitual exercise and visual field defect progression: a retrospective cohort study
Yokota S
BMC Ophthalmology 2016; 16: 147 (IGR: 18-2)


70670 Estimating OCT Structural Measurement Floors to Improve Detection of Progression In Advanced Glaucoma
Bowd C
American Journal of Ophthalmology 2017; 175: 37-44 (IGR: 18-2)


70412 Detection and measurement of clinically meaningful visual field progression in clinical trials for glaucoma
De Moraes CG
Progress in Retinal and Eye Research 2017; 56: 107-147 (IGR: 18-2)


70404 Lack of Visual Field Improvement After Initiation of Intraocular Pressure Reducing Treatment in the Early Manifest Glaucoma Trial
Bengtsson B
Investigative Ophthalmology and Visual Science 2016; 57: 5611-5615 (IGR: 18-2)


70174 Evaluation of the progression of visual field damage in patients suffering from early manifest glaucoma
Perdicchi A
Clinical Ophthalmology 2016; 10: 1647-1651 (IGR: 18-2)


70456 Glaucoma Progression in the Unaffected Fellow Eye of Glaucoma Patients Who Developed Unilateral Branch Retinal Vein Occlusion
Lopilly Park HY
American Journal of Ophthalmology 2017; 175: 194-200 (IGR: 18-2)


70551 Significant Glaucomatous Visual Field Progression in the First Two Years: What Does It Mean?
Anderson AJ
Translational vision science & technology 2016; 5: 1 (IGR: 18-2)


70089 A novel method to predict visual field progression more accurately, using intraocular pressure measurements in glaucoma patients

Scientific reports 2016; 6: 31728 (IGR: 18-2)


70670 Estimating OCT Structural Measurement Floors to Improve Detection of Progression In Advanced Glaucoma
Zangwill LM
American Journal of Ophthalmology 2017; 175: 37-44 (IGR: 18-2)


70456 Glaucoma Progression in the Unaffected Fellow Eye of Glaucoma Patients Who Developed Unilateral Branch Retinal Vein Occlusion
Jeon S
American Journal of Ophthalmology 2017; 175: 194-200 (IGR: 18-2)


70478 Rates of glaucomatous visual field change after trabeculectomy
Vianna JR
British Journal of Ophthalmology 2017; 101: 874-878 (IGR: 18-2)


70238 Baseline Fourier-Domain Optical Coherence Tomography Structural Risk Factors for Visual Field Progression in the Advanced Imaging for Glaucoma Study
Dastiridou A
American Journal of Ophthalmology 2016; 172: 94-103 (IGR: 18-2)


70716 Uveitic Glaucoma: Long-term Clinical Outcome and Risk Factors for Progression
Friling R
Ocular Immunology and Inflammation 2016; 0: 1-8 (IGR: 18-2)


70334 Optic disc tilt direction affects regional visual field progression rates in myopic eyes with open-angle glaucoma
Lee J
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2267-2276 (IGR: 18-2)


70404 Lack of Visual Field Improvement After Initiation of Intraocular Pressure Reducing Treatment in the Early Manifest Glaucoma Trial
Heijl A
Investigative Ophthalmology and Visual Science 2016; 57: 5611-5615 (IGR: 18-2)


70174 Evaluation of the progression of visual field damage in patients suffering from early manifest glaucoma
Abdolrahimzadeh S
Clinical Ophthalmology 2016; 10: 1647-1651 (IGR: 18-2)


70899 Association of Myopic Deformation of Optic Disc with Visual Field Progression in Paired Eyes with Open-Angle Glaucoma
Hangai M
PLoS ONE 2017; 12: e0170733 (IGR: 18-2)


69949 Difference in glaucoma progression between the first and second eye after consecutive bilateral glaucoma surgery in patients with bilateral uveitic glaucoma
Talat L
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2439-2448 (IGR: 18-2)


70268 Developing new automated alternation flicker using optic disc photography for the detection of glaucoma progression
Yun IS
Eye 2017; 31: 119-126 (IGR: 18-2)


70122 The retest distribution of the visual field summary index mean deviation is close to normal
Cheng AC
Ophthalmic and Physiological Optics 2016; 36: 558-565 (IGR: 18-2)


70729 Effects of ocular and systemic factors on the progression of glaucomatous visual field damage in various sectors
Murata H
British Journal of Ophthalmology 2017; 101: 1071-1075 (IGR: 18-2)


70416 The Effect of Diurnal Fluctuation in Intraocular Pressure on the Evaluation of Risk Factors of Progression in Normal Tension Glaucoma
Lee EJ
PLoS ONE 2016; 11: e0164876 (IGR: 18-2)


70077 The relationship between self-reported habitual exercise and visual field defect progression: a retrospective cohort study
Takihara Y
BMC Ophthalmology 2016; 16: 147 (IGR: 18-2)


70412 Detection and measurement of clinically meaningful visual field progression in clinical trials for glaucoma
Liebmann JM
Progress in Retinal and Eye Research 2017; 56: 107-147 (IGR: 18-2)


70077 The relationship between self-reported habitual exercise and visual field defect progression: a retrospective cohort study
Kimura K
BMC Ophthalmology 2016; 16: 147 (IGR: 18-2)


70729 Effects of ocular and systemic factors on the progression of glaucomatous visual field damage in various sectors
Fujino Y
British Journal of Ophthalmology 2017; 101: 1071-1075 (IGR: 18-2)


70412 Detection and measurement of clinically meaningful visual field progression in clinical trials for glaucoma
Levin LA
Progress in Retinal and Eye Research 2017; 56: 107-147 (IGR: 18-2)


69949 Difference in glaucoma progression between the first and second eye after consecutive bilateral glaucoma surgery in patients with bilateral uveitic glaucoma
Isa H
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2439-2448 (IGR: 18-2)


70416 The Effect of Diurnal Fluctuation in Intraocular Pressure on the Evaluation of Risk Factors of Progression in Normal Tension Glaucoma
Han JC
PLoS ONE 2016; 11: e0164876 (IGR: 18-2)


70899 Association of Myopic Deformation of Optic Disc with Visual Field Progression in Paired Eyes with Open-Angle Glaucoma
Ishikawa M
PLoS ONE 2017; 12: e0170733 (IGR: 18-2)


70456 Glaucoma Progression in the Unaffected Fellow Eye of Glaucoma Patients Who Developed Unilateral Branch Retinal Vein Occlusion
Lee MY
American Journal of Ophthalmology 2017; 175: 194-200 (IGR: 18-2)


70268 Developing new automated alternation flicker using optic disc photography for the detection of glaucoma progression
Yoo HG
Eye 2017; 31: 119-126 (IGR: 18-2)


70716 Uveitic Glaucoma: Long-term Clinical Outcome and Risk Factors for Progression
Luski M
Ocular Immunology and Inflammation 2016; 0: 1-8 (IGR: 18-2)


70334 Optic disc tilt direction affects regional visual field progression rates in myopic eyes with open-angle glaucoma
Lee JE
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2267-2276 (IGR: 18-2)


70238 Baseline Fourier-Domain Optical Coherence Tomography Structural Risk Factors for Visual Field Progression in the Advanced Imaging for Glaucoma Study
Francis BA
American Journal of Ophthalmology 2016; 172: 94-103 (IGR: 18-2)


70478 Rates of glaucomatous visual field change after trabeculectomy
Shuba LM
British Journal of Ophthalmology 2017; 101: 874-878 (IGR: 18-2)


70670 Estimating OCT Structural Measurement Floors to Improve Detection of Progression In Advanced Glaucoma
Weinreb RN
American Journal of Ophthalmology 2017; 175: 37-44 (IGR: 18-2)


70122 The retest distribution of the visual field summary index mean deviation is close to normal
Lau S
Ophthalmic and Physiological Optics 2016; 36: 558-565 (IGR: 18-2)


70174 Evaluation of the progression of visual field damage in patients suffering from early manifest glaucoma
Cutini A
Clinical Ophthalmology 2016; 10: 1647-1651 (IGR: 18-2)


70478 Rates of glaucomatous visual field change after trabeculectomy
Rafuse PE
British Journal of Ophthalmology 2017; 101: 874-878 (IGR: 18-2)


70268 Developing new automated alternation flicker using optic disc photography for the detection of glaucoma progression
Choi JJ
Eye 2017; 31: 119-126 (IGR: 18-2)


70174 Evaluation of the progression of visual field damage in patients suffering from early manifest glaucoma
Ciarnella A
Clinical Ophthalmology 2016; 10: 1647-1651 (IGR: 18-2)


70077 The relationship between self-reported habitual exercise and visual field defect progression: a retrospective cohort study
Takamura Y
BMC Ophthalmology 2016; 16: 147 (IGR: 18-2)


70670 Estimating OCT Structural Measurement Floors to Improve Detection of Progression In Advanced Glaucoma
Medeiros FA
American Journal of Ophthalmology 2017; 175: 37-44 (IGR: 18-2)


70729 Effects of ocular and systemic factors on the progression of glaucomatous visual field damage in various sectors
Hirasawa K
British Journal of Ophthalmology 2017; 101: 1071-1075 (IGR: 18-2)


70238 Baseline Fourier-Domain Optical Coherence Tomography Structural Risk Factors for Visual Field Progression in the Advanced Imaging for Glaucoma Study
Tan O
American Journal of Ophthalmology 2016; 172: 94-103 (IGR: 18-2)


70416 The Effect of Diurnal Fluctuation in Intraocular Pressure on the Evaluation of Risk Factors of Progression in Normal Tension Glaucoma
Sohn SW
PLoS ONE 2016; 11: e0164876 (IGR: 18-2)


70122 The retest distribution of the visual field summary index mean deviation is close to normal
Le-Pham A
Ophthalmic and Physiological Optics 2016; 36: 558-565 (IGR: 18-2)


70456 Glaucoma Progression in the Unaffected Fellow Eye of Glaucoma Patients Who Developed Unilateral Branch Retinal Vein Occlusion
Park CK
American Journal of Ophthalmology 2017; 175: 194-200 (IGR: 18-2)


70716 Uveitic Glaucoma: Long-term Clinical Outcome and Risk Factors for Progression
Campoverde BQ
Ocular Immunology and Inflammation 2016; 0: 1-8 (IGR: 18-2)


70899 Association of Myopic Deformation of Optic Disc with Visual Field Progression in Paired Eyes with Open-Angle Glaucoma
Yoshitomi T
PLoS ONE 2017; 12: e0170733 (IGR: 18-2)


70334 Optic disc tilt direction affects regional visual field progression rates in myopic eyes with open-angle glaucoma
Lee JY
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2267-2276 (IGR: 18-2)


69949 Difference in glaucoma progression between the first and second eye after consecutive bilateral glaucoma surgery in patients with bilateral uveitic glaucoma
Tomkins-Netzer O
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2439-2448 (IGR: 18-2)


70716 Uveitic Glaucoma: Long-term Clinical Outcome and Risk Factors for Progression
Amer R
Ocular Immunology and Inflammation 2016; 0: 1-8 (IGR: 18-2)


70174 Evaluation of the progression of visual field damage in patients suffering from early manifest glaucoma
Scuderi GL
Clinical Ophthalmology 2016; 10: 1647-1651 (IGR: 18-2)


70729 Effects of ocular and systemic factors on the progression of glaucomatous visual field damage in various sectors
Tanito M
British Journal of Ophthalmology 2017; 101: 1071-1075 (IGR: 18-2)


70334 Optic disc tilt direction affects regional visual field progression rates in myopic eyes with open-angle glaucoma
Kook MS
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2267-2276 (IGR: 18-2)


70238 Baseline Fourier-Domain Optical Coherence Tomography Structural Risk Factors for Visual Field Progression in the Advanced Imaging for Glaucoma Study
Varma R
American Journal of Ophthalmology 2016; 172: 94-103 (IGR: 18-2)


70122 The retest distribution of the visual field summary index mean deviation is close to normal
Liu V
Ophthalmic and Physiological Optics 2016; 36: 558-565 (IGR: 18-2)


70077 The relationship between self-reported habitual exercise and visual field defect progression: a retrospective cohort study
Inatani M
BMC Ophthalmology 2016; 16: 147 (IGR: 18-2)


70670 Estimating OCT Structural Measurement Floors to Improve Detection of Progression In Advanced Glaucoma
Belghith A
American Journal of Ophthalmology 2017; 175: 37-44 (IGR: 18-2)


70478 Rates of glaucomatous visual field change after trabeculectomy
Chauhan BC
British Journal of Ophthalmology 2017; 101: 874-878 (IGR: 18-2)


70268 Developing new automated alternation flicker using optic disc photography for the detection of glaucoma progression
Lee M
Eye 2017; 31: 119-126 (IGR: 18-2)


69949 Difference in glaucoma progression between the first and second eye after consecutive bilateral glaucoma surgery in patients with bilateral uveitic glaucoma
Barton K
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2439-2448 (IGR: 18-2)


70416 The Effect of Diurnal Fluctuation in Intraocular Pressure on the Evaluation of Risk Factors of Progression in Normal Tension Glaucoma
Rhee T
PLoS ONE 2016; 11: e0164876 (IGR: 18-2)


69949 Difference in glaucoma progression between the first and second eye after consecutive bilateral glaucoma surgery in patients with bilateral uveitic glaucoma
Lightman S
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 2439-2448 (IGR: 18-2)


70416 The Effect of Diurnal Fluctuation in Intraocular Pressure on the Evaluation of Risk Factors of Progression in Normal Tension Glaucoma
Kee C
PLoS ONE 2016; 11: e0164876 (IGR: 18-2)


70122 The retest distribution of the visual field summary index mean deviation is close to normal
Rahman F
Ophthalmic and Physiological Optics 2016; 36: 558-565 (IGR: 18-2)


70478 Rates of glaucomatous visual field change after trabeculectomy
Nicolela MT
British Journal of Ophthalmology 2017; 101: 874-878 (IGR: 18-2)


70238 Baseline Fourier-Domain Optical Coherence Tomography Structural Risk Factors for Visual Field Progression in the Advanced Imaging for Glaucoma Study
Greenfield DS
American Journal of Ophthalmology 2016; 172: 94-103 (IGR: 18-2)


70729 Effects of ocular and systemic factors on the progression of glaucomatous visual field damage in various sectors
Mizoue S
British Journal of Ophthalmology 2017; 101: 1071-1075 (IGR: 18-2)


70716 Uveitic Glaucoma: Long-term Clinical Outcome and Risk Factors for Progression
Kramer M
Ocular Immunology and Inflammation 2016; 0: 1-8 (IGR: 18-2)


70729 Effects of ocular and systemic factors on the progression of glaucomatous visual field damage in various sectors
Mori K
British Journal of Ophthalmology 2017; 101: 1071-1075 (IGR: 18-2)


70238 Baseline Fourier-Domain Optical Coherence Tomography Structural Risk Factors for Visual Field Progression in the Advanced Imaging for Glaucoma Study
Schuman JS
American Journal of Ophthalmology 2016; 172: 94-103 (IGR: 18-2)


70729 Effects of ocular and systemic factors on the progression of glaucomatous visual field damage in various sectors
Suzuki K
British Journal of Ophthalmology 2017; 101: 1071-1075 (IGR: 18-2)


70238 Baseline Fourier-Domain Optical Coherence Tomography Structural Risk Factors for Visual Field Progression in the Advanced Imaging for Glaucoma Study
Sehi M; Chopra V
American Journal of Ophthalmology 2016; 172: 94-103 (IGR: 18-2)


70729 Effects of ocular and systemic factors on the progression of glaucomatous visual field damage in various sectors
Yamashita T
British Journal of Ophthalmology 2017; 101: 1071-1075 (IGR: 18-2)


70238 Baseline Fourier-Domain Optical Coherence Tomography Structural Risk Factors for Visual Field Progression in the Advanced Imaging for Glaucoma Study
Huang D
American Journal of Ophthalmology 2016; 172: 94-103 (IGR: 18-2)


70729 Effects of ocular and systemic factors on the progression of glaucomatous visual field damage in various sectors
Kashiwagi K
British Journal of Ophthalmology 2017; 101: 1071-1075 (IGR: 18-2)


70238 Baseline Fourier-Domain Optical Coherence Tomography Structural Risk Factors for Visual Field Progression in the Advanced Imaging for Glaucoma Study

American Journal of Ophthalmology 2016; 172: 94-103 (IGR: 18-2)


70729 Effects of ocular and systemic factors on the progression of glaucomatous visual field damage in various sectors
Miki A; Shoji N;
British Journal of Ophthalmology 2017; 101: 1071-1075 (IGR: 18-2)


69470 Effect of Glaucoma Surgery on the Progression Rate and Pattern in Glaucoma Patients With Myopia
Park HY
Investigative Ophthalmology and Visual Science 2016; 57: 4170-4179 (IGR: 18-1)


68923 Optic Disc Rotation as a Clue for Predicting Visual Field Progression in Myopic Normal-Tension Glaucoma
Sung MS
Ophthalmology 2016; 123: 1484-1493 (IGR: 18-1)


69489 Maladaptive coping strategies and glaucoma progression
Freeman EE
Medicine 2016; 95: e4761 (IGR: 18-1)


69126 Association of Fast Visual Field Loss With Risk of Falling in Patients With Glaucoma
Baig S
JAMA ophthalmology 2016; 134: 880-886 (IGR: 18-1)


69493 A Statistical Model to Analyze Clinician Expert Consensus on Glaucoma Progression using Spatially Correlated Visual Field Data
Warren JL
Translational vision science & technology 2016; 5: 14 (IGR: 18-1)


69189 Visual Field Progression Pattern Associated With Optic Disc Tilt Morphology in Myopic Open-Angle Glaucoma
Han JC
American Journal of Ophthalmology 2016; 169: 33-45 (IGR: 18-1)


69316 The Relative Odds of Progressing by Structural and Functional Tests in Glaucoma
Abe RY
Investigative Ophthalmology and Visual Science 2016; 57: OCT421-8 (IGR: 18-1)


69385 Integrating independent spatio-temporal replications to assess population trends in disease spread
VanBuren J
Statistics in Medicine 2016; 35: 5210-5221 (IGR: 18-1)


69218 Risk Factors Associated with Progression to Blindness from Primary Open-Angle Glaucoma in an African-American Population
Pleet A
Ophthalmic Epidemiology 2016; 23: 248-256 (IGR: 18-1)


69337 Factors Associated with Loss of Visual Function in Medically Treated Advanced Normal Tension Glaucoma
Kim S
Current Eye Research 2016; 0: 1-7 (IGR: 18-1)


69454 Comparison of corneal biomechanical properties in normal tension glaucoma patients with different visual field progression speed
Hong Y
International Journal of Ophthalmology 2016; 9: 973-978 (IGR: 18-1)


69420 Estimating the rate of retinal ganglion cell loss to detect glaucoma progression: An observational cohort study
Hirooka K
Medicine 2016; 95: e4209 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Moore NA
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69466 Relationship between visual field progression and baseline refraction in primary open-angle glaucoma
Naito T; Yoshikawa K
Clinical Ophthalmology 2016; 10: 1397-1403 (IGR: 18-1)


69337 Factors Associated with Loss of Visual Function in Medically Treated Advanced Normal Tension Glaucoma
Sung KR
Current Eye Research 2016; 0: 1-7 (IGR: 18-1)


69218 Risk Factors Associated with Progression to Blindness from Primary Open-Angle Glaucoma in an African-American Population
Sulewski M
Ophthalmic Epidemiology 2016; 23: 248-256 (IGR: 18-1)


69470 Effect of Glaucoma Surgery on the Progression Rate and Pattern in Glaucoma Patients With Myopia
Yi R
Investigative Ophthalmology and Visual Science 2016; 57: 4170-4179 (IGR: 18-1)


69454 Comparison of corneal biomechanical properties in normal tension glaucoma patients with different visual field progression speed
Shoji N
International Journal of Ophthalmology 2016; 9: 973-978 (IGR: 18-1)


69489 Maladaptive coping strategies and glaucoma progression
Lesk MR
Medicine 2016; 95: e4761 (IGR: 18-1)


69126 Association of Fast Visual Field Loss With Risk of Falling in Patients With Glaucoma
Diniz-Filho A
JAMA ophthalmology 2016; 134: 880-886 (IGR: 18-1)


69493 A Statistical Model to Analyze Clinician Expert Consensus on Glaucoma Progression using Spatially Correlated Visual Field Data
Mwanza JC
Translational vision science & technology 2016; 5: 14 (IGR: 18-1)


69189 Visual Field Progression Pattern Associated With Optic Disc Tilt Morphology in Myopic Open-Angle Glaucoma
Lee EJ
American Journal of Ophthalmology 2016; 169: 33-45 (IGR: 18-1)


69385 Integrating independent spatio-temporal replications to assess population trends in disease spread
Oleson JJ
Statistics in Medicine 2016; 35: 5210-5221 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Harris A
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69420 Estimating the rate of retinal ganglion cell loss to detect glaucoma progression: An observational cohort study
Izumibata S
Medicine 2016; 95: e4209 (IGR: 18-1)


68923 Optic Disc Rotation as a Clue for Predicting Visual Field Progression in Myopic Normal-Tension Glaucoma
Kang YS
Ophthalmology 2016; 123: 1484-1493 (IGR: 18-1)


69316 The Relative Odds of Progressing by Structural and Functional Tests in Glaucoma
Diniz-Filho A
Investigative Ophthalmology and Visual Science 2016; 57: OCT421-8 (IGR: 18-1)


69385 Integrating independent spatio-temporal replications to assess population trends in disease spread
Zamba GK
Statistics in Medicine 2016; 35: 5210-5221 (IGR: 18-1)


69189 Visual Field Progression Pattern Associated With Optic Disc Tilt Morphology in Myopic Open-Angle Glaucoma
Kim SH
American Journal of Ophthalmology 2016; 169: 33-45 (IGR: 18-1)


69126 Association of Fast Visual Field Loss With Risk of Falling in Patients With Glaucoma
Wu Z
JAMA ophthalmology 2016; 134: 880-886 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Wentz S
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69466 Relationship between visual field progression and baseline refraction in primary open-angle glaucoma
Mizoue S
Clinical Ophthalmology 2016; 10: 1397-1403 (IGR: 18-1)


69218 Risk Factors Associated with Progression to Blindness from Primary Open-Angle Glaucoma in an African-American Population
Salowe RJ
Ophthalmic Epidemiology 2016; 23: 248-256 (IGR: 18-1)


69316 The Relative Odds of Progressing by Structural and Functional Tests in Glaucoma
Zangwill LM
Investigative Ophthalmology and Visual Science 2016; 57: OCT421-8 (IGR: 18-1)


69470 Effect of Glaucoma Surgery on the Progression Rate and Pattern in Glaucoma Patients With Myopia
Jung Y
Investigative Ophthalmology and Visual Science 2016; 57: 4170-4179 (IGR: 18-1)


68923 Optic Disc Rotation as a Clue for Predicting Visual Field Progression in Myopic Normal-Tension Glaucoma
Heo H
Ophthalmology 2016; 123: 1484-1493 (IGR: 18-1)


69493 A Statistical Model to Analyze Clinician Expert Consensus on Glaucoma Progression using Spatially Correlated Visual Field Data
Tanna AP
Translational vision science & technology 2016; 5: 14 (IGR: 18-1)


69454 Comparison of corneal biomechanical properties in normal tension glaucoma patients with different visual field progression speed
Morita T
International Journal of Ophthalmology 2016; 9: 973-978 (IGR: 18-1)


69420 Estimating the rate of retinal ganglion cell loss to detect glaucoma progression: An observational cohort study
Ukegawa K
Medicine 2016; 95: e4209 (IGR: 18-1)


69489 Maladaptive coping strategies and glaucoma progression
Harasymowycz P
Medicine 2016; 95: e4761 (IGR: 18-1)


69493 A Statistical Model to Analyze Clinician Expert Consensus on Glaucoma Progression using Spatially Correlated Visual Field Data
Budenz DL
Translational vision science & technology 2016; 5: 14 (IGR: 18-1)


69420 Estimating the rate of retinal ganglion cell loss to detect glaucoma progression: An observational cohort study
Nitta E
Medicine 2016; 95: e4209 (IGR: 18-1)


69454 Comparison of corneal biomechanical properties in normal tension glaucoma patients with different visual field progression speed
Hirasawa K
International Journal of Ophthalmology 2016; 9: 973-978 (IGR: 18-1)


69466 Relationship between visual field progression and baseline refraction in primary open-angle glaucoma
Nanno M
Clinical Ophthalmology 2016; 10: 1397-1403 (IGR: 18-1)


68923 Optic Disc Rotation as a Clue for Predicting Visual Field Progression in Myopic Normal-Tension Glaucoma
Park SW
Ophthalmology 2016; 123: 1484-1493 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Verticchio Vercellin AC
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69126 Association of Fast Visual Field Loss With Risk of Falling in Patients With Glaucoma
Abe RY
JAMA ophthalmology 2016; 134: 880-886 (IGR: 18-1)


69189 Visual Field Progression Pattern Associated With Optic Disc Tilt Morphology in Myopic Open-Angle Glaucoma
Kee C
American Journal of Ophthalmology 2016; 169: 33-45 (IGR: 18-1)


69470 Effect of Glaucoma Surgery on the Progression Rate and Pattern in Glaucoma Patients With Myopia
Park CK
Investigative Ophthalmology and Visual Science 2016; 57: 4170-4179 (IGR: 18-1)


69316 The Relative Odds of Progressing by Structural and Functional Tests in Glaucoma
Gracitelli CP
Investigative Ophthalmology and Visual Science 2016; 57: OCT421-8 (IGR: 18-1)


69489 Maladaptive coping strategies and glaucoma progression
Desjardins D
Medicine 2016; 95: e4761 (IGR: 18-1)


69385 Integrating independent spatio-temporal replications to assess population trends in disease spread
Wall M
Statistics in Medicine 2016; 35: 5210-5221 (IGR: 18-1)


69218 Risk Factors Associated with Progression to Blindness from Primary Open-Angle Glaucoma in an African-American Population
Fertig R
Ophthalmic Epidemiology 2016; 23: 248-256 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Parekh P
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69420 Estimating the rate of retinal ganglion cell loss to detect glaucoma progression: An observational cohort study
Tsujikawa A
Medicine 2016; 95: e4209 (IGR: 18-1)


69466 Relationship between visual field progression and baseline refraction in primary open-angle glaucoma
Kimura T
Clinical Ophthalmology 2016; 10: 1397-1403 (IGR: 18-1)


69316 The Relative Odds of Progressing by Structural and Functional Tests in Glaucoma
Marvasti AH
Investigative Ophthalmology and Visual Science 2016; 57: OCT421-8 (IGR: 18-1)


69489 Maladaptive coping strategies and glaucoma progression
Flores V
Medicine 2016; 95: e4761 (IGR: 18-1)


69454 Comparison of corneal biomechanical properties in normal tension glaucoma patients with different visual field progression speed
Matsumura K
International Journal of Ophthalmology 2016; 9: 973-978 (IGR: 18-1)


69218 Risk Factors Associated with Progression to Blindness from Primary Open-Angle Glaucoma in an African-American Population
Salinas J
Ophthalmic Epidemiology 2016; 23: 248-256 (IGR: 18-1)


69126 Association of Fast Visual Field Loss With Risk of Falling in Patients With Glaucoma
Gracitelli CP
JAMA ophthalmology 2016; 134: 880-886 (IGR: 18-1)


69316 The Relative Odds of Progressing by Structural and Functional Tests in Glaucoma
Weinreb RN
Investigative Ophthalmology and Visual Science 2016; 57: OCT421-8 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Gross J
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69489 Maladaptive coping strategies and glaucoma progression
Kamga H
Medicine 2016; 95: e4761 (IGR: 18-1)


69466 Relationship between visual field progression and baseline refraction in primary open-angle glaucoma
Suzumura H
Clinical Ophthalmology 2016; 10: 1397-1403 (IGR: 18-1)


69218 Risk Factors Associated with Progression to Blindness from Primary Open-Angle Glaucoma in an African-American Population
Rhodes A
Ophthalmic Epidemiology 2016; 23: 248-256 (IGR: 18-1)


69126 Association of Fast Visual Field Loss With Risk of Falling in Patients With Glaucoma
Cabezas E
JAMA ophthalmology 2016; 134: 880-886 (IGR: 18-1)


69454 Comparison of corneal biomechanical properties in normal tension glaucoma patients with different visual field progression speed
Kasahara M; Shimizu K
International Journal of Ophthalmology 2016; 9: 973-978 (IGR: 18-1)


69466 Relationship between visual field progression and baseline refraction in primary open-angle glaucoma
Umeda Y
Clinical Ophthalmology 2016; 10: 1397-1403 (IGR: 18-1)


69126 Association of Fast Visual Field Loss With Risk of Falling in Patients With Glaucoma
Medeiros FA
JAMA ophthalmology 2016; 134: 880-886 (IGR: 18-1)


69489 Maladaptive coping strategies and glaucoma progression
Li G
Medicine 2016; 95: e4761 (IGR: 18-1)


69316 The Relative Odds of Progressing by Structural and Functional Tests in Glaucoma
Baig S
Investigative Ophthalmology and Visual Science 2016; 57: OCT421-8 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Hussain RM
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69218 Risk Factors Associated with Progression to Blindness from Primary Open-Angle Glaucoma in an African-American Population
Merritt Iii W
Ophthalmic Epidemiology 2016; 23: 248-256 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Thieme C
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69218 Risk Factors Associated with Progression to Blindness from Primary Open-Angle Glaucoma in an African-American Population
Natesh V
Ophthalmic Epidemiology 2016; 23: 248-256 (IGR: 18-1)


69316 The Relative Odds of Progressing by Structural and Functional Tests in Glaucoma
Medeiros FA
Investigative Ophthalmology and Visual Science 2016; 57: OCT421-8 (IGR: 18-1)


69466 Relationship between visual field progression and baseline refraction in primary open-angle glaucoma
Shiraga F
Clinical Ophthalmology 2016; 10: 1397-1403 (IGR: 18-1)


69154 Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years
Siesky B
British Journal of Ophthalmology 2016; 0: (IGR: 18-1)


69218 Risk Factors Associated with Progression to Blindness from Primary Open-Angle Glaucoma in an African-American Population
Huang J; Gudiseva HV; Collins DW; Chavali VR; Tapino P; Lehman A; Regina-Gigiliotti M; Miller-Ellis E; Sankar P; Ying GS; O'Brien JM
Ophthalmic Epidemiology 2016; 23: 248-256 (IGR: 18-1)


66747 Does the Location of Bruch's Membrane Opening Change Over Time? Longitudinal Analysis Using San Diego Automated Layer Segmentation Algorithm (SALSA)
Belghith A
Investigative Ophthalmology and Visual Science 2016; 57: 675-682 (IGR: 17-4)


67129 Evaluation of Glaucoma Progression in Large-Scale Clinical Data: The Japanese Archive of Multicentral Databases in Glaucoma (JAMDIG)
Fujino Y
Investigative Ophthalmology and Visual Science 2016; 57: 2012-2020 (IGR: 17-4)


67229 Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study
Yu M
Ophthalmology 2016; 123: 1201-1210 (IGR: 17-4)


67454 Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
Yousefi S
Translational vision science & technology 2016; 5: 2 (IGR: 17-4)


67575 Progression of primary open angle glaucoma in asymmetrically myopic eyes
Song MK
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 1331-1337 (IGR: 17-4)


66689 Changes in Retinal Nerve Fiber Layer Reflectance Intensity as a Predictor of Functional Progression in Glaucoma
Gardiner SK
Investigative Ophthalmology and Visual Science 2016; 57: 1221-1227 (IGR: 17-4)


66696 Association Between Peripheral Vascular Endothelial Function and Progression of Open-Angle Glaucoma
Liu CH
Medicine 2016; 95: e3055 (IGR: 17-4)


66730 Fast Visual Field Progression Is Associated with Depressive Symptoms in Patients with Glaucoma
Diniz-Filho A
Ophthalmology 2016; 123: 754-759 (IGR: 17-4)


66937 Optical coherence tomography platforms and parameters for glaucoma diagnosis and progression
Mwanza JC
Current Opinions in Ophthalmology 2016; 27: 102-110 (IGR: 17-4)


67273 Course of Glaucomatous Visual Field Loss Across the Entire Perimetric Range
Otarola F
JAMA ophthalmology 2016; 0: (IGR: 17-4)


67306 Structural and Functional Progression in the Early Manifest Glaucoma Trial
Öhnell H
Ophthalmology 2016; 123: 1173-1180 (IGR: 17-4)


67207 Management of advanced glaucoma: characterization and monitoring
De Moraes CG
Survey of Ophthalmology 2016; 61: 597-615 (IGR: 17-4)


67425 Impact of Age and Myopia on the Rate of Visual Field Progression in Glaucoma Patients
Park HY
Medicine 2016; 95: e3500 (IGR: 17-4)


67129 Evaluation of Glaucoma Progression in Large-Scale Clinical Data: The Japanese Archive of Multicentral Databases in Glaucoma (JAMDIG)
Asaoka R
Investigative Ophthalmology and Visual Science 2016; 57: 2012-2020 (IGR: 17-4)


66696 Association Between Peripheral Vascular Endothelial Function and Progression of Open-Angle Glaucoma
Su WW
Medicine 2016; 95: e3055 (IGR: 17-4)


67306 Structural and Functional Progression in the Early Manifest Glaucoma Trial
Heijl A
Ophthalmology 2016; 123: 1173-1180 (IGR: 17-4)


67207 Management of advanced glaucoma: characterization and monitoring
Liebmann JM
Survey of Ophthalmology 2016; 61: 597-615 (IGR: 17-4)


67425 Impact of Age and Myopia on the Rate of Visual Field Progression in Glaucoma Patients
Hong KE
Medicine 2016; 95: e3500 (IGR: 17-4)


67273 Course of Glaucomatous Visual Field Loss Across the Entire Perimetric Range
Chen A
JAMA ophthalmology 2016; 0: (IGR: 17-4)


66730 Fast Visual Field Progression Is Associated with Depressive Symptoms in Patients with Glaucoma
Abe RY
Ophthalmology 2016; 123: 754-759 (IGR: 17-4)


67575 Progression of primary open angle glaucoma in asymmetrically myopic eyes
Sung KR
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 1331-1337 (IGR: 17-4)


66689 Changes in Retinal Nerve Fiber Layer Reflectance Intensity as a Predictor of Functional Progression in Glaucoma
Demirel S
Investigative Ophthalmology and Visual Science 2016; 57: 1221-1227 (IGR: 17-4)


66747 Does the Location of Bruch's Membrane Opening Change Over Time? Longitudinal Analysis Using San Diego Automated Layer Segmentation Algorithm (SALSA)
Bowd C
Investigative Ophthalmology and Visual Science 2016; 57: 675-682 (IGR: 17-4)


66937 Optical coherence tomography platforms and parameters for glaucoma diagnosis and progression
Budenz DL
Current Opinions in Ophthalmology 2016; 27: 102-110 (IGR: 17-4)


67229 Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study
Lin C
Ophthalmology 2016; 123: 1201-1210 (IGR: 17-4)


66730 Fast Visual Field Progression Is Associated with Depressive Symptoms in Patients with Glaucoma
Cho HJ
Ophthalmology 2016; 123: 754-759 (IGR: 17-4)


67306 Structural and Functional Progression in the Early Manifest Glaucoma Trial
Brenner L
Ophthalmology 2016; 123: 1173-1180 (IGR: 17-4)


66689 Changes in Retinal Nerve Fiber Layer Reflectance Intensity as a Predictor of Functional Progression in Glaucoma
Reynaud J
Investigative Ophthalmology and Visual Science 2016; 57: 1221-1227 (IGR: 17-4)


67229 Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study
Weinreb RN
Ophthalmology 2016; 123: 1201-1210 (IGR: 17-4)


66747 Does the Location of Bruch's Membrane Opening Change Over Time? Longitudinal Analysis Using San Diego Automated Layer Segmentation Algorithm (SALSA)
Medeiros FA
Investigative Ophthalmology and Visual Science 2016; 57: 675-682 (IGR: 17-4)


67575 Progression of primary open angle glaucoma in asymmetrically myopic eyes
Han S
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 1331-1337 (IGR: 17-4)


67129 Evaluation of Glaucoma Progression in Large-Scale Clinical Data: The Japanese Archive of Multicentral Databases in Glaucoma (JAMDIG)
Murata H
Investigative Ophthalmology and Visual Science 2016; 57: 2012-2020 (IGR: 17-4)


66696 Association Between Peripheral Vascular Endothelial Function and Progression of Open-Angle Glaucoma
Shie SS
Medicine 2016; 95: e3055 (IGR: 17-4)


67425 Impact of Age and Myopia on the Rate of Visual Field Progression in Glaucoma Patients
Park CK
Medicine 2016; 95: e3500 (IGR: 17-4)


67454 Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
Goldbaum MH
Translational vision science & technology 2016; 5: 2 (IGR: 17-4)


67207 Management of advanced glaucoma: characterization and monitoring
Medeiros FA
Survey of Ophthalmology 2016; 61: 597-615 (IGR: 17-4)


67273 Course of Glaucomatous Visual Field Loss Across the Entire Perimetric Range
Morales E; Yu F
JAMA ophthalmology 2016; 0: (IGR: 17-4)


66747 Does the Location of Bruch's Membrane Opening Change Over Time? Longitudinal Analysis Using San Diego Automated Layer Segmentation Algorithm (SALSA)
Hammel N
Investigative Ophthalmology and Visual Science 2016; 57: 675-682 (IGR: 17-4)


67575 Progression of primary open angle glaucoma in asymmetrically myopic eyes
Lee JE
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 1331-1337 (IGR: 17-4)


67229 Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study
Lai G
Ophthalmology 2016; 123: 1201-1210 (IGR: 17-4)


67207 Management of advanced glaucoma: characterization and monitoring
Weinreb RN
Survey of Ophthalmology 2016; 61: 597-615 (IGR: 17-4)


67306 Structural and Functional Progression in the Early Manifest Glaucoma Trial
Anderson H
Ophthalmology 2016; 123: 1173-1180 (IGR: 17-4)


67454 Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
Medeiros FA
Translational vision science & technology 2016; 5: 2 (IGR: 17-4)


67129 Evaluation of Glaucoma Progression in Large-Scale Clinical Data: The Japanese Archive of Multicentral Databases in Glaucoma (JAMDIG)
Miki A
Investigative Ophthalmology and Visual Science 2016; 57: 2012-2020 (IGR: 17-4)


66696 Association Between Peripheral Vascular Endothelial Function and Progression of Open-Angle Glaucoma
Cheng ST
Medicine 2016; 95: e3055 (IGR: 17-4)


66689 Changes in Retinal Nerve Fiber Layer Reflectance Intensity as a Predictor of Functional Progression in Glaucoma
Fortune B
Investigative Ophthalmology and Visual Science 2016; 57: 1221-1227 (IGR: 17-4)


66730 Fast Visual Field Progression Is Associated with Depressive Symptoms in Patients with Glaucoma
Baig S
Ophthalmology 2016; 123: 754-759 (IGR: 17-4)


67575 Progression of primary open angle glaucoma in asymmetrically myopic eyes
Yoon JY
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 1331-1337 (IGR: 17-4)


67273 Course of Glaucomatous Visual Field Loss Across the Entire Perimetric Range
Afifi A
JAMA ophthalmology 2016; 0: (IGR: 17-4)


67454 Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
Zangwill LM
Translational vision science & technology 2016; 5: 2 (IGR: 17-4)


67306 Structural and Functional Progression in the Early Manifest Glaucoma Trial
Bengtsson B
Ophthalmology 2016; 123: 1173-1180 (IGR: 17-4)


66747 Does the Location of Bruch's Membrane Opening Change Over Time? Longitudinal Analysis Using San Diego Automated Layer Segmentation Algorithm (SALSA)
Yang Z
Investigative Ophthalmology and Visual Science 2016; 57: 675-682 (IGR: 17-4)


67229 Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study
Chiu V
Ophthalmology 2016; 123: 1201-1210 (IGR: 17-4)


67129 Evaluation of Glaucoma Progression in Large-Scale Clinical Data: The Japanese Archive of Multicentral Databases in Glaucoma (JAMDIG)
Tanito M
Investigative Ophthalmology and Visual Science 2016; 57: 2012-2020 (IGR: 17-4)


66730 Fast Visual Field Progression Is Associated with Depressive Symptoms in Patients with Glaucoma
Gracitelli CP
Ophthalmology 2016; 123: 754-759 (IGR: 17-4)


66696 Association Between Peripheral Vascular Endothelial Function and Progression of Open-Angle Glaucoma
Su CW
Medicine 2016; 95: e3055 (IGR: 17-4)


67454 Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
Weinreb RN
Translational vision science & technology 2016; 5: 2 (IGR: 17-4)


67129 Evaluation of Glaucoma Progression in Large-Scale Clinical Data: The Japanese Archive of Multicentral Databases in Glaucoma (JAMDIG)
Mizoue S
Investigative Ophthalmology and Visual Science 2016; 57: 2012-2020 (IGR: 17-4)


66730 Fast Visual Field Progression Is Associated with Depressive Symptoms in Patients with Glaucoma
Medeiros FA
Ophthalmology 2016; 123: 754-759 (IGR: 17-4)


66696 Association Between Peripheral Vascular Endothelial Function and Progression of Open-Angle Glaucoma
Ho WJ
Medicine 2016; 95: e3055 (IGR: 17-4)


67229 Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study
Leung CK
Ophthalmology 2016; 123: 1201-1210 (IGR: 17-4)


67575 Progression of primary open angle glaucoma in asymmetrically myopic eyes
Park JM
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 1331-1337 (IGR: 17-4)


67273 Course of Glaucomatous Visual Field Loss Across the Entire Perimetric Range
Caprioli J
JAMA ophthalmology 2016; 0: (IGR: 17-4)


66747 Does the Location of Bruch's Membrane Opening Change Over Time? Longitudinal Analysis Using San Diego Automated Layer Segmentation Algorithm (SALSA)
Weinreb RN; Zangwill LM
Investigative Ophthalmology and Visual Science 2016; 57: 675-682 (IGR: 17-4)


67129 Evaluation of Glaucoma Progression in Large-Scale Clinical Data: The Japanese Archive of Multicentral Databases in Glaucoma (JAMDIG)
Mori K
Investigative Ophthalmology and Visual Science 2016; 57: 2012-2020 (IGR: 17-4)


67454 Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
Liebmann JM
Translational vision science & technology 2016; 5: 2 (IGR: 17-4)


67575 Progression of primary open angle glaucoma in asymmetrically myopic eyes
Lee JY
Graefe's Archive for Clinical and Experimental Ophthalmology 2016; 254: 1331-1337 (IGR: 17-4)


67454 Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
Girkin CA
Translational vision science & technology 2016; 5: 2 (IGR: 17-4)


67129 Evaluation of Glaucoma Progression in Large-Scale Clinical Data: The Japanese Archive of Multicentral Databases in Glaucoma (JAMDIG)
Suzuki K
Investigative Ophthalmology and Visual Science 2016; 57: 2012-2020 (IGR: 17-4)


67454 Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
Bowd C
Translational vision science & technology 2016; 5: 2 (IGR: 17-4)


67129 Evaluation of Glaucoma Progression in Large-Scale Clinical Data: The Japanese Archive of Multicentral Databases in Glaucoma (JAMDIG)
Yamashita T; Kashiwagi K; Shoji N;
Investigative Ophthalmology and Visual Science 2016; 57: 2012-2020 (IGR: 17-4)


65969 Risk Factors of Disease Progression After Cataract Surgery in Chronic Angle-closure Glaucoma Patients
Lee CK
Journal of Glaucoma 2016; 25: e372-e376 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4
Malik R
American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


66301 The Impact of Location of Progressive Visual Field Loss on Longitudinal Changes in Quality of Life of Patients with Glaucoma
Abe RY
Ophthalmology 2016; 123: 552-557 (IGR: 17-3)


65972 Persistence of Glaucoma Therapy and Visual Field Progression
De Leon JM
Journal of Glaucoma 2016; 25: e336-e339 (IGR: 17-3)


66313 Microstructure of Peripapillary Atrophy and Subsequent Visual Field Progression in Treated Primary Open-Angle Glaucoma
Yamada H
Ophthalmology 2016; 123: 542-551 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Hammel N
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


66511 Rate of progression of total, upper, and lower visual field defects in patients with open-angle glaucoma and high myopia
Yoshino T
Japanese Journal of Ophthalmology 2016; 60: 78-85 (IGR: 17-3)


66238 The Effect of Limiting the Range of Perimetric Sensitivities on Pointwise Assessment of Visual Field Progression in Glaucoma
Gardiner SK
Investigative Ophthalmology and Visual Science 2016; 57: 288-294 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Kostanyan T
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


66475 Comparison of Standard Automated Perimetry, Short-Wavelength Automated Perimetry, and Frequency-Doubling Technology Perimetry to Monitor Glaucoma Progression
Hu R
Medicine 2016; 95: e2618 (IGR: 17-3)


66353 Rates of glaucomatous visual field change before and after transscleral cyclophotocoagulation: a retrospective case series
Bleisch D
BMC Ophthalmology 2015; 15: 179 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Sung KR
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


66313 Microstructure of Peripapillary Atrophy and Subsequent Visual Field Progression in Treated Primary Open-Angle Glaucoma
Akagi T
Ophthalmology 2016; 123: 542-551 (IGR: 17-3)


66475 Comparison of Standard Automated Perimetry, Short-Wavelength Automated Perimetry, and Frequency-Doubling Technology Perimetry to Monitor Glaucoma Progression
Wang C
Medicine 2016; 95: e2618 (IGR: 17-3)


66353 Rates of glaucomatous visual field change before and after transscleral cyclophotocoagulation: a retrospective case series
Furrer S
BMC Ophthalmology 2015; 15: 179 (IGR: 17-3)


66489 Comparison of the Progression of High- and Low-tension Glaucoma as Determined by Two Different Criteria
Sung KR
Korean Journal of Ophthalmology 2016; 30: 40-47 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Belghith A
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


65969 Risk Factors of Disease Progression After Cataract Surgery in Chronic Angle-closure Glaucoma Patients
Lee NE
Journal of Glaucoma 2016; 25: e372-e376 (IGR: 17-3)


66511 Rate of progression of total, upper, and lower visual field defects in patients with open-angle glaucoma and high myopia
Fukuchi T
Japanese Journal of Ophthalmology 2016; 60: 78-85 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4
O'Leary N
American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


65972 Persistence of Glaucoma Therapy and Visual Field Progression
Quek DT
Journal of Glaucoma 2016; 25: e336-e339 (IGR: 17-3)


66301 The Impact of Location of Progressive Visual Field Loss on Longitudinal Changes in Quality of Life of Patients with Glaucoma
Diniz-Filho A
Ophthalmology 2016; 123: 552-557 (IGR: 17-3)


66238 The Effect of Limiting the Range of Perimetric Sensitivities on Pointwise Assessment of Visual Field Progression in Glaucoma
Swanson WH
Investigative Ophthalmology and Visual Science 2016; 57: 288-294 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4
Mikelberg FS
American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Bowd C
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


65969 Risk Factors of Disease Progression After Cataract Surgery in Chronic Angle-closure Glaucoma Patients
Hong S
Journal of Glaucoma 2016; 25: e372-e376 (IGR: 17-3)


65972 Persistence of Glaucoma Therapy and Visual Field Progression
Htoon HM
Journal of Glaucoma 2016; 25: e336-e339 (IGR: 17-3)


66475 Comparison of Standard Automated Perimetry, Short-Wavelength Automated Perimetry, and Frequency-Doubling Technology Perimetry to Monitor Glaucoma Progression
Gu Y
Medicine 2016; 95: e2618 (IGR: 17-3)


66238 The Effect of Limiting the Range of Perimetric Sensitivities on Pointwise Assessment of Visual Field Progression in Glaucoma
Demirel S
Investigative Ophthalmology and Visual Science 2016; 57: 288-294 (IGR: 17-3)


66353 Rates of glaucomatous visual field change before and after transscleral cyclophotocoagulation: a retrospective case series
Funk J
BMC Ophthalmology 2015; 15: 179 (IGR: 17-3)


66489 Comparison of the Progression of High- and Low-tension Glaucoma as Determined by Two Different Criteria
Lee JY
Korean Journal of Ophthalmology 2016; 30: 40-47 (IGR: 17-3)


66313 Microstructure of Peripapillary Atrophy and Subsequent Visual Field Progression in Treated Primary Open-Angle Glaucoma
Nakanishi H
Ophthalmology 2016; 123: 542-551 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Schuman JS
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


66301 The Impact of Location of Progressive Visual Field Loss on Longitudinal Changes in Quality of Life of Patients with Glaucoma
Costa VP
Ophthalmology 2016; 123: 552-557 (IGR: 17-3)


66511 Rate of progression of total, upper, and lower visual field defects in patients with open-angle glaucoma and high myopia
Togano T
Japanese Journal of Ophthalmology 2016; 60: 78-85 (IGR: 17-3)


65969 Risk Factors of Disease Progression After Cataract Surgery in Chronic Angle-closure Glaucoma Patients
Kang E
Journal of Glaucoma 2016; 25: e372-e376 (IGR: 17-3)


66511 Rate of progression of total, upper, and lower visual field defects in patients with open-angle glaucoma and high myopia
Sakaue Y
Japanese Journal of Ophthalmology 2016; 60: 78-85 (IGR: 17-3)


66313 Microstructure of Peripapillary Atrophy and Subsequent Visual Field Progression in Treated Primary Open-Angle Glaucoma
Ikeda HO
Ophthalmology 2016; 123: 542-551 (IGR: 17-3)


66301 The Impact of Location of Progressive Visual Field Loss on Longitudinal Changes in Quality of Life of Patients with Glaucoma
Gracitelli CP
Ophthalmology 2016; 123: 552-557 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4
Balazsi AG
American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


65972 Persistence of Glaucoma Therapy and Visual Field Progression
Tun TA
Journal of Glaucoma 2016; 25: e336-e339 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Medeiros FA
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


66475 Comparison of Standard Automated Perimetry, Short-Wavelength Automated Perimetry, and Frequency-Doubling Technology Perimetry to Monitor Glaucoma Progression
Racette L
Medicine 2016; 95: e2618 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Ling Y
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


65972 Persistence of Glaucoma Therapy and Visual Field Progression
Perera SA
Journal of Glaucoma 2016; 25: e336-e339 (IGR: 17-3)


66313 Microstructure of Peripapillary Atrophy and Subsequent Visual Field Progression in Treated Primary Open-Angle Glaucoma
Kimura Y
Ophthalmology 2016; 123: 542-551 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4
Leblanc RP
American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Lucy KA
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


66301 The Impact of Location of Progressive Visual Field Loss on Longitudinal Changes in Quality of Life of Patients with Glaucoma
Baig S
Ophthalmology 2016; 123: 552-557 (IGR: 17-3)


65969 Risk Factors of Disease Progression After Cataract Surgery in Chronic Angle-closure Glaucoma Patients
Rho SS
Journal of Glaucoma 2016; 25: e372-e376 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Sharpsten L
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


66511 Rate of progression of total, upper, and lower visual field defects in patients with open-angle glaucoma and high myopia
Seki M
Japanese Journal of Ophthalmology 2016; 60: 78-85 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Mendoza N
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


66301 The Impact of Location of Progressive Visual Field Loss on Longitudinal Changes in Quality of Life of Patients with Glaucoma
Medeiros FA
Ophthalmology 2016; 123: 552-557 (IGR: 17-3)


66511 Rate of progression of total, upper, and lower visual field defects in patients with open-angle glaucoma and high myopia
Tanaka T
Japanese Journal of Ophthalmology 2016; 60: 78-85 (IGR: 17-3)


66313 Microstructure of Peripapillary Atrophy and Subsequent Visual Field Progression in Treated Primary Open-Angle Glaucoma
Suda K
Ophthalmology 2016; 123: 542-551 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Bilonick RA
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


65972 Persistence of Glaucoma Therapy and Visual Field Progression
Lamoureux EL
Journal of Glaucoma 2016; 25: e336-e339 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4
Lesk MR
American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


65969 Risk Factors of Disease Progression After Cataract Surgery in Chronic Angle-closure Glaucoma Patients
Seong GJ
Journal of Glaucoma 2016; 25: e372-e376 (IGR: 17-3)


66313 Microstructure of Peripapillary Atrophy and Subsequent Visual Field Progression in Treated Primary Open-Angle Glaucoma
Hasegawa T
Ophthalmology 2016; 123: 542-551 (IGR: 17-3)


66511 Rate of progression of total, upper, and lower visual field defects in patients with open-angle glaucoma and high myopia
Ueda J
Japanese Journal of Ophthalmology 2016; 60: 78-85 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Tatham AJ
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


65969 Risk Factors of Disease Progression After Cataract Surgery in Chronic Angle-closure Glaucoma Patients
Hong YJ
Journal of Glaucoma 2016; 25: e372-e376 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Ishikawa H
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4
Nicolela MT
American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


65972 Persistence of Glaucoma Therapy and Visual Field Progression
Aung T
Journal of Glaucoma 2016; 25: e336-e339 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Kagemann L
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Khachatryan N
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4
Trope GE
American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


65969 Risk Factors of Disease Progression After Cataract Surgery in Chronic Angle-closure Glaucoma Patients
Kim CY
Journal of Glaucoma 2016; 25: e372-e376 (IGR: 17-3)


66313 Microstructure of Peripapillary Atrophy and Subsequent Visual Field Progression in Treated Primary Open-Angle Glaucoma
Yoshikawa M
Ophthalmology 2016; 123: 542-551 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Lee JY
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Liebmann JM
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4
Chauhan BC
American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


66313 Microstructure of Peripapillary Atrophy and Subsequent Visual Field Progression in Treated Primary Open-Angle Glaucoma
Iida Y
Ophthalmology 2016; 123: 542-551 (IGR: 17-3)


66559 Glaucoma Structural and Functional Progression in American and Korean Cohorts
Wollstein G
Ophthalmology 2016; 123: 783-788 (IGR: 17-3)


66300 Neuroretinal Rim Area Change in Glaucoma Patients With Visual Field Progression Endpoints and Intraocular Pressure Reduction. The Canadian Glaucoma Study: 4

American Journal of Ophthalmology 2016; 163: 140-147.e1 (IGR: 17-3)


66313 Microstructure of Peripapillary Atrophy and Subsequent Visual Field Progression in Treated Primary Open-Angle Glaucoma
Yoshimura N
Ophthalmology 2016; 123: 542-551 (IGR: 17-3)


66267 Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes
Girkin CA; Weinreb RN; Zangwill LM
Ophthalmology 2016; 123: 760-770 (IGR: 17-3)


61066 Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma
Banegas SA
Journal of Glaucoma 2016; 25: e229-e235 (IGR: 17-1)


61619 Visual and structural prognosis of the untreated fellow eyes of unilateral normal tension glaucoma patients
Cho HK
Graefe's Archive for Clinical and Experimental Ophthalmology 2015; 253: 1547-1555 (IGR: 17-1)


61259 Comparison of Three Parametric Models for Glaucomatous Visual Field Progression Rate Distributions
Anderson AJ
Translational vision science & technology 2015; 4: 2 (IGR: 17-1)


61734 Functional disorders in the chronological progression of glaucoma
Erb C
Ophthalmologe 2015; 112: 402-409 (IGR: 17-1)


61124 Comparing glaucoma progression on 24-2 and 10-2 visual field examinations
Rao HL
PLoS ONE 2015; 10: e0127233 (IGR: 17-1)


61388 Log-gamma linear-mixed effects models for multiple outcomes with application to a longitudinal glaucoma study
Zhang P
Biometrical journal. Biometrische Zeitschrift 2015; 57: 766-776 (IGR: 17-1)


61719 Learning from healthy and stable eyes: A new approach for detection of glaucomatous progression
Belghith A
Artificial Intelligence in Medicine 2015; 64: 105-115 (IGR: 17-1)


61417 Relationship Between Daytime Variability of Blood Pressure or Ocular Perfusion Pressure and Glaucomatous Visual Field Progression
Lee J
American Journal of Ophthalmology 2015; 160: 522-537.e1 (IGR: 17-1)


61750 Basic biochemical processes in glaucoma progression
von Thun Und Hohenstein-Blaul N
Ophthalmologe 2015; 112: 395-401 (IGR: 17-1)


61508 Relationship between progression of visual field defect and intraocular pressure in primary open-angle glaucoma
Naito T
Clinical Ophthalmology 2015; 9: 1373-1378 (IGR: 17-1)


61118 Long-term (>8 years) evaluation of progression in patients with low-pressure glaucoma
Erdem E
European Journal of Ophthalmology 2015; 0: 0 (IGR: 17-1)


61007 The Use of Spectral-Domain Optical Coherence Tomography to Detect Glaucoma Progression
Abe RY
Open Ophthalmology Journal 2015; 9: 78-88 (IGR: 17-1)


61723 Central retinal artery resistive index and optical coherence tomography in assessment of glaucoma progression
Ghany AF
International Journal of Ophthalmology 2015; 8: 305-309 (IGR: 17-1)


61821 Evaluation of Visual Field Progression in Glaucoma: Quasar Regression Program and Event Analysis
Díaz-Alemán VT
Current Eye Research 2015; 0: 1-8 (IGR: 17-1)


61294 Global Visit Effects in Point-Wise Longitudinal Modeling of Glaucomatous Visual Fields
Bryan SR
Investigative Ophthalmology and Visual Science 2015; 56: 4283-4289 (IGR: 17-1)


61352 Progression of visual field in patients with primary open-angle glaucoma - ProgF study 1
Aptel F
Acta Ophthalmologica 2015; 93: e615-e620 (IGR: 17-1)


61677 A Study on the Central Corneal Thickness of Primary Angle Closure and Primary Angle Closure Glaucoma and Its Effect on Visual Field Progression
Tan HK
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2015; 4: 161-165 (IGR: 17-1)


61262 Circadian Intraocular Pressure Fluctuation and Disease Progression in Primary Angle Closure Glaucoma
Tan S
Investigative Ophthalmology and Visual Science 2015; 56: 4994-5005 (IGR: 17-1)


61705 Development of Glaucomatous Visual Field Defects in Preperimetric Glaucoma Patients Within 3 Years of Diagnosis
Inuzuka H
Journal of Glaucoma 2016; 25: e591-e595 (IGR: 17-1)


61529 Axial Myopia Is Associated with Visual Field Prognosis of Primary Open-Angle Glaucoma
Qiu C
PLoS ONE 2015; 10: e0133189 (IGR: 17-1)


61705 Development of Glaucomatous Visual Field Defects in Preperimetric Glaucoma Patients Within 3 Years of Diagnosis
Kawase K
Journal of Glaucoma 2016; 25: e591-e595 (IGR: 17-1)


61723 Central retinal artery resistive index and optical coherence tomography in assessment of glaucoma progression
Botros SM
International Journal of Ophthalmology 2015; 8: 305-309 (IGR: 17-1)


61750 Basic biochemical processes in glaucoma progression
Kunst S
Ophthalmologe 2015; 112: 395-401 (IGR: 17-1)


61417 Relationship Between Daytime Variability of Blood Pressure or Ocular Perfusion Pressure and Glaucomatous Visual Field Progression
Choi J
American Journal of Ophthalmology 2015; 160: 522-537.e1 (IGR: 17-1)


61821 Evaluation of Visual Field Progression in Glaucoma: Quasar Regression Program and Event Analysis
González-Hernández M
Current Eye Research 2015; 0: 1-8 (IGR: 17-1)


61677 A Study on the Central Corneal Thickness of Primary Angle Closure and Primary Angle Closure Glaucoma and Its Effect on Visual Field Progression
Ahmad Tajuddin LS
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2015; 4: 161-165 (IGR: 17-1)


61294 Global Visit Effects in Point-Wise Longitudinal Modeling of Glaucomatous Visual Fields
Eilers PH
Investigative Ophthalmology and Visual Science 2015; 56: 4283-4289 (IGR: 17-1)


61124 Comparing glaucoma progression on 24-2 and 10-2 visual field examinations
Begum VU
PLoS ONE 2015; 10: e0127233 (IGR: 17-1)


61719 Learning from healthy and stable eyes: A new approach for detection of glaucomatous progression
Bowd C
Artificial Intelligence in Medicine 2015; 64: 105-115 (IGR: 17-1)


61508 Relationship between progression of visual field defect and intraocular pressure in primary open-angle glaucoma
Yoshikawa K
Clinical Ophthalmology 2015; 9: 1373-1378 (IGR: 17-1)


61118 Long-term (>8 years) evaluation of progression in patients with low-pressure glaucoma
Williams A
European Journal of Ophthalmology 2015; 0: 0 (IGR: 17-1)


61388 Log-gamma linear-mixed effects models for multiple outcomes with application to a longitudinal glaucoma study
Luo D
Biometrical journal. Biometrische Zeitschrift 2015; 57: 766-776 (IGR: 17-1)


61007 The Use of Spectral-Domain Optical Coherence Tomography to Detect Glaucoma Progression
Gracitelli CP
Open Ophthalmology Journal 2015; 9: 78-88 (IGR: 17-1)


61352 Progression of visual field in patients with primary open-angle glaucoma - ProgF study 1
Aryal-Charles N
Acta Ophthalmologica 2015; 93: e615-e620 (IGR: 17-1)


61619 Visual and structural prognosis of the untreated fellow eyes of unilateral normal tension glaucoma patients
Suh W
Graefe's Archive for Clinical and Experimental Ophthalmology 2015; 253: 1547-1555 (IGR: 17-1)


61262 Circadian Intraocular Pressure Fluctuation and Disease Progression in Primary Angle Closure Glaucoma
Yu M
Investigative Ophthalmology and Visual Science 2015; 56: 4994-5005 (IGR: 17-1)


61066 Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma
Antón A
Journal of Glaucoma 2016; 25: e229-e235 (IGR: 17-1)


61529 Axial Myopia Is Associated with Visual Field Prognosis of Primary Open-Angle Glaucoma
Qian S
PLoS ONE 2015; 10: e0133189 (IGR: 17-1)


61294 Global Visit Effects in Point-Wise Longitudinal Modeling of Glaucomatous Visual Fields
Lesaffre EM
Investigative Ophthalmology and Visual Science 2015; 56: 4283-4289 (IGR: 17-1)


61388 Log-gamma linear-mixed effects models for multiple outcomes with application to a longitudinal glaucoma study
Li P
Biometrical journal. Biometrische Zeitschrift 2015; 57: 766-776 (IGR: 17-1)


61007 The Use of Spectral-Domain Optical Coherence Tomography to Detect Glaucoma Progression
Medeiros FA
Open Ophthalmology Journal 2015; 9: 78-88 (IGR: 17-1)


61417 Relationship Between Daytime Variability of Blood Pressure or Ocular Perfusion Pressure and Glaucomatous Visual Field Progression
Jeong D
American Journal of Ophthalmology 2015; 160: 522-537.e1 (IGR: 17-1)


61118 Long-term (>8 years) evaluation of progression in patients with low-pressure glaucoma
Kuchar SD
European Journal of Ophthalmology 2015; 0: 0 (IGR: 17-1)


61719 Learning from healthy and stable eyes: A new approach for detection of glaucomatous progression
Medeiros FA
Artificial Intelligence in Medicine 2015; 64: 105-115 (IGR: 17-1)


61352 Progression of visual field in patients with primary open-angle glaucoma - ProgF study 1
Giraud JM
Acta Ophthalmologica 2015; 93: e615-e620 (IGR: 17-1)


61066 Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma
Morilla A
Journal of Glaucoma 2016; 25: e229-e235 (IGR: 17-1)


61262 Circadian Intraocular Pressure Fluctuation and Disease Progression in Primary Angle Closure Glaucoma
Baig N
Investigative Ophthalmology and Visual Science 2015; 56: 4994-5005 (IGR: 17-1)


61705 Development of Glaucomatous Visual Field Defects in Preperimetric Glaucoma Patients Within 3 Years of Diagnosis
Sawada A
Journal of Glaucoma 2016; 25: e591-e595 (IGR: 17-1)


61619 Visual and structural prognosis of the untreated fellow eyes of unilateral normal tension glaucoma patients
Kee C
Graefe's Archive for Clinical and Experimental Ophthalmology 2015; 253: 1547-1555 (IGR: 17-1)


61529 Axial Myopia Is Associated with Visual Field Prognosis of Primary Open-Angle Glaucoma
Sun X
PLoS ONE 2015; 10: e0133189 (IGR: 17-1)


61677 A Study on the Central Corneal Thickness of Primary Angle Closure and Primary Angle Closure Glaucoma and Its Effect on Visual Field Progression
Lee MY
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2015; 4: 161-165 (IGR: 17-1)


61750 Basic biochemical processes in glaucoma progression
Pfeiffer N
Ophthalmologe 2015; 112: 395-401 (IGR: 17-1)


61124 Comparing glaucoma progression on 24-2 and 10-2 visual field examinations
Khadka D
PLoS ONE 2015; 10: e0127233 (IGR: 17-1)


61723 Central retinal artery resistive index and optical coherence tomography in assessment of glaucoma progression
El-Raggal TM
International Journal of Ophthalmology 2015; 8: 305-309 (IGR: 17-1)


61508 Relationship between progression of visual field defect and intraocular pressure in primary open-angle glaucoma
Mizoue S
Clinical Ophthalmology 2015; 9: 1373-1378 (IGR: 17-1)


61821 Evaluation of Visual Field Progression in Glaucoma: Quasar Regression Program and Event Analysis
Perera-Sanz D
Current Eye Research 2015; 0: 1-8 (IGR: 17-1)


61352 Progression of visual field in patients with primary open-angle glaucoma - ProgF study 1
El Chehab H
Acta Ophthalmologica 2015; 93: e615-e620 (IGR: 17-1)


61388 Log-gamma linear-mixed effects models for multiple outcomes with application to a longitudinal glaucoma study
Sharpsten L
Biometrical journal. Biometrische Zeitschrift 2015; 57: 766-776 (IGR: 17-1)


61705 Development of Glaucomatous Visual Field Defects in Preperimetric Glaucoma Patients Within 3 Years of Diagnosis
Kokuzawa S
Journal of Glaucoma 2016; 25: e591-e595 (IGR: 17-1)


61417 Relationship Between Daytime Variability of Blood Pressure or Ocular Perfusion Pressure and Glaucomatous Visual Field Progression
Kim S
American Journal of Ophthalmology 2015; 160: 522-537.e1 (IGR: 17-1)


61508 Relationship between progression of visual field defect and intraocular pressure in primary open-angle glaucoma
Nanno M
Clinical Ophthalmology 2015; 9: 1373-1378 (IGR: 17-1)


61529 Axial Myopia Is Associated with Visual Field Prognosis of Primary Open-Angle Glaucoma
Zhou C
PLoS ONE 2015; 10: e0133189 (IGR: 17-1)


61066 Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma
Bogado M
Journal of Glaucoma 2016; 25: e229-e235 (IGR: 17-1)


61821 Evaluation of Visual Field Progression in Glaucoma: Quasar Regression Program and Event Analysis
Armas-Domínguez K
Current Eye Research 2015; 0: 1-8 (IGR: 17-1)


61124 Comparing glaucoma progression on 24-2 and 10-2 visual field examinations
Mandal AK
PLoS ONE 2015; 10: e0127233 (IGR: 17-1)


61294 Global Visit Effects in Point-Wise Longitudinal Modeling of Glaucomatous Visual Fields
Lemij HG
Investigative Ophthalmology and Visual Science 2015; 56: 4283-4289 (IGR: 17-1)


61750 Basic biochemical processes in glaucoma progression
Grus FH
Ophthalmologe 2015; 112: 395-401 (IGR: 17-1)


61118 Long-term (>8 years) evaluation of progression in patients with low-pressure glaucoma
Waisbourd M
European Journal of Ophthalmology 2015; 0: 0 (IGR: 17-1)


61262 Circadian Intraocular Pressure Fluctuation and Disease Progression in Primary Angle Closure Glaucoma
Chan PP
Investigative Ophthalmology and Visual Science 2015; 56: 4994-5005 (IGR: 17-1)


61677 A Study on the Central Corneal Thickness of Primary Angle Closure and Primary Angle Closure Glaucoma and Its Effect on Visual Field Progression
Ismail S
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2015; 4: 161-165 (IGR: 17-1)


61352 Progression of visual field in patients with primary open-angle glaucoma - ProgF study 1
Delbarre M
Acta Ophthalmologica 2015; 93: e615-e620 (IGR: 17-1)


61705 Development of Glaucomatous Visual Field Defects in Preperimetric Glaucoma Patients Within 3 Years of Diagnosis
Ishida K
Journal of Glaucoma 2016; 25: e591-e595 (IGR: 17-1)


61294 Global Visit Effects in Point-Wise Longitudinal Modeling of Glaucomatous Visual Fields
Vermeer KA
Investigative Ophthalmology and Visual Science 2015; 56: 4283-4289 (IGR: 17-1)


61118 Long-term (>8 years) evaluation of progression in patients with low-pressure glaucoma
Spaeth GL
European Journal of Ophthalmology 2015; 0: 0 (IGR: 17-1)


61529 Axial Myopia Is Associated with Visual Field Prognosis of Primary Open-Angle Glaucoma
Meng F
PLoS ONE 2015; 10: e0133189 (IGR: 17-1)


61066 Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma
Ayala EM
Journal of Glaucoma 2016; 25: e229-e235 (IGR: 17-1)


61677 A Study on the Central Corneal Thickness of Primary Angle Closure and Primary Angle Closure Glaucoma and Its Effect on Visual Field Progression
Wan-Hitam WH
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2015; 4: 161-165 (IGR: 17-1)


61262 Circadian Intraocular Pressure Fluctuation and Disease Progression in Primary Angle Closure Glaucoma
Tang FY
Investigative Ophthalmology and Visual Science 2015; 56: 4994-5005 (IGR: 17-1)


61388 Log-gamma linear-mixed effects models for multiple outcomes with application to a longitudinal glaucoma study
Medeiros FA
Biometrical journal. Biometrische Zeitschrift 2015; 57: 766-776 (IGR: 17-1)


61124 Comparing glaucoma progression on 24-2 and 10-2 visual field examinations
Senthil S
PLoS ONE 2015; 10: e0127233 (IGR: 17-1)


61719 Learning from healthy and stable eyes: A new approach for detection of glaucomatous progression
Weinreb RN
Artificial Intelligence in Medicine 2015; 64: 105-115 (IGR: 17-1)


61417 Relationship Between Daytime Variability of Blood Pressure or Ocular Perfusion Pressure and Glaucomatous Visual Field Progression
Kook MS
American Journal of Ophthalmology 2015; 160: 522-537.e1 (IGR: 17-1)


61508 Relationship between progression of visual field defect and intraocular pressure in primary open-angle glaucoma
Kimura T; Suzumura H
Clinical Ophthalmology 2015; 9: 1373-1378 (IGR: 17-1)


61352 Progression of visual field in patients with primary open-angle glaucoma - ProgF study 1
Chiquet C
Acta Ophthalmologica 2015; 93: e615-e620 (IGR: 17-1)


61066 Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma
Fernandez-Guardiola A
Journal of Glaucoma 2016; 25: e229-e235 (IGR: 17-1)


61262 Circadian Intraocular Pressure Fluctuation and Disease Progression in Primary Angle Closure Glaucoma
Tham CC
Investigative Ophthalmology and Visual Science 2015; 56: 4994-5005 (IGR: 17-1)


61705 Development of Glaucomatous Visual Field Defects in Preperimetric Glaucoma Patients Within 3 Years of Diagnosis
Yamamoto T
Journal of Glaucoma 2016; 25: e591-e595 (IGR: 17-1)


61719 Learning from healthy and stable eyes: A new approach for detection of glaucomatous progression
Zangwill LM
Artificial Intelligence in Medicine 2015; 64: 105-115 (IGR: 17-1)


61124 Comparing glaucoma progression on 24-2 and 10-2 visual field examinations
Garudadri CS
PLoS ONE 2015; 10: e0127233 (IGR: 17-1)


61508 Relationship between progression of visual field defect and intraocular pressure in primary open-angle glaucoma
Shiraga F
Clinical Ophthalmology 2015; 9: 1373-1378 (IGR: 17-1)


61066 Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma
Moreno-Montañes J
Journal of Glaucoma 2016; 25: e229-e235 (IGR: 17-1)


61352 Progression of visual field in patients with primary open-angle glaucoma - ProgF study 1
Romanet JP; Renard JP
Acta Ophthalmologica 2015; 93: e615-e620 (IGR: 17-1)


60353 Agreement among spectral-domain optical coherence tomography, standard automated perimetry, and stereophotography in the detection of glaucoma progression
Banegas SA
Investigative Ophthalmology and Visual Science 2015; 56: 1253-1260 (IGR: 16-4)


60256 Is Myopic Optic Disc Appearance a Risk Factor for Rapid Progression in Medically Treated Glaucomatous Eyes With Confirmed Visual Field Progression?
Lee JR
Journal of Glaucoma 2016; 25: 330-337 (IGR: 16-4)


60717 Risk factors for predicting visual field progression in Chinese patients with primary open-angle glaucoma: A retrospective study
Hung KH
Journal of the Chinese Medical Association 2015; 78: 418-423 (IGR: 16-4)


60488 The relationship of TP53 and GRIN2B gene polymorphisms with risk of occurrence and progression of primary open-angle glaucoma in a Polish population
Nowak A
Polish journal of pathology : official journal of the Polish Society of Pathologists 2014; 65: 313-321 (IGR: 16-4)


60115 Comparison of event-based analysis of glaucoma progression assessed subjectively on visual fields and retinal nerve fibre layer attenuation measured by optical coherence tomography
Kaushik S
International Ophthalmology 2014; 0: (IGR: 16-4)


60704 Progressive thinning of visual cortex in primary open-angle glaucoma of varying severity
Yu L
PLoS ONE 2015; 10: e0121960 (IGR: 16-4)


60461 Estimating the true distribution of visual field progression rates in glaucoma
Anderson AJ
Investigative Ophthalmology and Visual Science 2015; 56: 1603-1608 (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Khachatryan N
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


60552 Effectiveness of Single-Digit IOP Targets on Decreasing Global and Localized Visual Field Progression After Filtration Surgery in Eyes With Progressive Normal-Tension Glaucoma
Iverson SM
Journal of Glaucoma 2016; 25: 408-414 (IGR: 16-4)


60405 Comparison of clinical characteristics and progression rates of bilaterally and unilaterally progressing glaucoma
Jeong D
Korean Journal of Ophthalmology 2015; 29: 40-46 (IGR: 16-4)


60495 Effect of myopia on the progression of primary open-angle glaucoma
Lee JY
Investigative Ophthalmology and Visual Science 2015; 56: 1775-1781 (IGR: 16-4)


60497 Applying 'Lasso' regression to predict future visual field progression in glaucoma patients
Fujino Y
Investigative Ophthalmology and Visual Science 2015; 56: 2334-2339 (IGR: 16-4)


60567 Comparison of visual field progression between temporally tilted disc and nontilted disc, in patients with normal tension glaucoma
Choy YJ
Eye 2015; 29: 1308-1314 (IGR: 16-4)


60353 Agreement among spectral-domain optical coherence tomography, standard automated perimetry, and stereophotography in the detection of glaucoma progression
Antón A
Investigative Ophthalmology and Visual Science 2015; 56: 1253-1260 (IGR: 16-4)


60567 Comparison of visual field progression between temporally tilted disc and nontilted disc, in patients with normal tension glaucoma
Kwun Y
Eye 2015; 29: 1308-1314 (IGR: 16-4)


60115 Comparison of event-based analysis of glaucoma progression assessed subjectively on visual fields and retinal nerve fibre layer attenuation measured by optical coherence tomography
Mulkutkar S
International Ophthalmology 2014; 0: (IGR: 16-4)


60405 Comparison of clinical characteristics and progression rates of bilaterally and unilaterally progressing glaucoma
Sung KR
Korean Journal of Ophthalmology 2015; 29: 40-46 (IGR: 16-4)


60497 Applying 'Lasso' regression to predict future visual field progression in glaucoma patients
Murata H
Investigative Ophthalmology and Visual Science 2015; 56: 2334-2339 (IGR: 16-4)


60552 Effectiveness of Single-Digit IOP Targets on Decreasing Global and Localized Visual Field Progression After Filtration Surgery in Eyes With Progressive Normal-Tension Glaucoma
Schultz SK
Journal of Glaucoma 2016; 25: 408-414 (IGR: 16-4)


60256 Is Myopic Optic Disc Appearance a Risk Factor for Rapid Progression in Medically Treated Glaucomatous Eyes With Confirmed Visual Field Progression?
Kim S
Journal of Glaucoma 2016; 25: 330-337 (IGR: 16-4)


60717 Risk factors for predicting visual field progression in Chinese patients with primary open-angle glaucoma: A retrospective study
Cheng CY
Journal of the Chinese Medical Association 2015; 78: 418-423 (IGR: 16-4)


60495 Effect of myopia on the progression of primary open-angle glaucoma
Sung KR
Investigative Ophthalmology and Visual Science 2015; 56: 1775-1781 (IGR: 16-4)


60488 The relationship of TP53 and GRIN2B gene polymorphisms with risk of occurrence and progression of primary open-angle glaucoma in a Polish population
Przybylowska-Sygut K
Polish journal of pathology : official journal of the Polish Society of Pathologists 2014; 65: 313-321 (IGR: 16-4)


60704 Progressive thinning of visual cortex in primary open-angle glaucoma of varying severity
Xie L
PLoS ONE 2015; 10: e0121960 (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Medeiros FA
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


60552 Effectiveness of Single-Digit IOP Targets on Decreasing Global and Localized Visual Field Progression After Filtration Surgery in Eyes With Progressive Normal-Tension Glaucoma
Shi W
Journal of Glaucoma 2016; 25: 408-414 (IGR: 16-4)


60405 Comparison of clinical characteristics and progression rates of bilaterally and unilaterally progressing glaucoma
Na JH
Korean Journal of Ophthalmology 2015; 29: 40-46 (IGR: 16-4)


60488 The relationship of TP53 and GRIN2B gene polymorphisms with risk of occurrence and progression of primary open-angle glaucoma in a Polish population
Szymanek K
Polish journal of pathology : official journal of the Polish Society of Pathologists 2014; 65: 313-321 (IGR: 16-4)


60497 Applying 'Lasso' regression to predict future visual field progression in glaucoma patients
Mayama C
Investigative Ophthalmology and Visual Science 2015; 56: 2334-2339 (IGR: 16-4)


60495 Effect of myopia on the progression of primary open-angle glaucoma
Han S
Investigative Ophthalmology and Visual Science 2015; 56: 1775-1781 (IGR: 16-4)


60567 Comparison of visual field progression between temporally tilted disc and nontilted disc, in patients with normal tension glaucoma
Han JC
Eye 2015; 29: 1308-1314 (IGR: 16-4)


60256 Is Myopic Optic Disc Appearance a Risk Factor for Rapid Progression in Medically Treated Glaucomatous Eyes With Confirmed Visual Field Progression?
Lee JY
Journal of Glaucoma 2016; 25: 330-337 (IGR: 16-4)


60717 Risk factors for predicting visual field progression in Chinese patients with primary open-angle glaucoma: A retrospective study
Liu CJ
Journal of the Chinese Medical Association 2015; 78: 418-423 (IGR: 16-4)


60353 Agreement among spectral-domain optical coherence tomography, standard automated perimetry, and stereophotography in the detection of glaucoma progression
Morilla-Grasa A
Investigative Ophthalmology and Visual Science 2015; 56: 1253-1260 (IGR: 16-4)


60115 Comparison of event-based analysis of glaucoma progression assessed subjectively on visual fields and retinal nerve fibre layer attenuation measured by optical coherence tomography
Pandav SS
International Ophthalmology 2014; 0: (IGR: 16-4)


60704 Progressive thinning of visual cortex in primary open-angle glaucoma of varying severity
Dai C
PLoS ONE 2015; 10: e0121960 (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Sharpsten L
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


60495 Effect of myopia on the progression of primary open-angle glaucoma
Na JH
Investigative Ophthalmology and Visual Science 2015; 56: 1775-1781 (IGR: 16-4)


60567 Comparison of visual field progression between temporally tilted disc and nontilted disc, in patients with normal tension glaucoma
Kee C
Eye 2015; 29: 1308-1314 (IGR: 16-4)


60552 Effectiveness of Single-Digit IOP Targets on Decreasing Global and Localized Visual Field Progression After Filtration Surgery in Eyes With Progressive Normal-Tension Glaucoma
Feuer WJ
Journal of Glaucoma 2016; 25: 408-414 (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Bowd C
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


60115 Comparison of event-based analysis of glaucoma progression assessed subjectively on visual fields and retinal nerve fibre layer attenuation measured by optical coherence tomography
Verma N
International Ophthalmology 2014; 0: (IGR: 16-4)


60704 Progressive thinning of visual cortex in primary open-angle glaucoma of varying severity
Xie B
PLoS ONE 2015; 10: e0121960 (IGR: 16-4)


60256 Is Myopic Optic Disc Appearance a Risk Factor for Rapid Progression in Medically Treated Glaucomatous Eyes With Confirmed Visual Field Progression?
Back S
Journal of Glaucoma 2016; 25: 330-337 (IGR: 16-4)


60497 Applying 'Lasso' regression to predict future visual field progression in glaucoma patients
Asaoka R
Investigative Ophthalmology and Visual Science 2015; 56: 2334-2339 (IGR: 16-4)


60353 Agreement among spectral-domain optical coherence tomography, standard automated perimetry, and stereophotography in the detection of glaucoma progression
Bogado M
Investigative Ophthalmology and Visual Science 2015; 56: 1253-1260 (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Sample PA
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


60115 Comparison of event-based analysis of glaucoma progression assessed subjectively on visual fields and retinal nerve fibre layer attenuation measured by optical coherence tomography
Gupta A
International Ophthalmology 2014; 0: (IGR: 16-4)


60488 The relationship of TP53 and GRIN2B gene polymorphisms with risk of occurrence and progression of primary open-angle glaucoma in a Polish population
Szaflik J
Polish journal of pathology : official journal of the Polish Society of Pathologists 2014; 65: 313-321 (IGR: 16-4)


60353 Agreement among spectral-domain optical coherence tomography, standard automated perimetry, and stereophotography in the detection of glaucoma progression
Ayala EM
Investigative Ophthalmology and Visual Science 2015; 56: 1253-1260 (IGR: 16-4)


60704 Progressive thinning of visual cortex in primary open-angle glaucoma of varying severity
Liang M
PLoS ONE 2015; 10: e0121960 (IGR: 16-4)


60552 Effectiveness of Single-Digit IOP Targets on Decreasing Global and Localized Visual Field Progression After Filtration Surgery in Eyes With Progressive Normal-Tension Glaucoma
Greenfield DS
Journal of Glaucoma 2016; 25: 408-414 (IGR: 16-4)


60256 Is Myopic Optic Disc Appearance a Risk Factor for Rapid Progression in Medically Treated Glaucomatous Eyes With Confirmed Visual Field Progression?
Lee KS
Journal of Glaucoma 2016; 25: 330-337 (IGR: 16-4)


60488 The relationship of TP53 and GRIN2B gene polymorphisms with risk of occurrence and progression of primary open-angle glaucoma in a Polish population
Majsterek I
Polish journal of pathology : official journal of the Polish Society of Pathologists 2014; 65: 313-321 (IGR: 16-4)


60256 Is Myopic Optic Disc Appearance a Risk Factor for Rapid Progression in Medically Treated Glaucomatous Eyes With Confirmed Visual Field Progression?
Kook MS
Journal of Glaucoma 2016; 25: 330-337 (IGR: 16-4)


60704 Progressive thinning of visual cortex in primary open-angle glaucoma of varying severity
Zhao L
PLoS ONE 2015; 10: e0121960 (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Liebmann JM
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


60353 Agreement among spectral-domain optical coherence tomography, standard automated perimetry, and stereophotography in the detection of glaucoma progression
Moreno-Montañes J
Investigative Ophthalmology and Visual Science 2015; 56: 1253-1260 (IGR: 16-4)


60704 Progressive thinning of visual cortex in primary open-angle glaucoma of varying severity
Yin X
PLoS ONE 2015; 10: e0121960 (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Girkin CA
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


60704 Progressive thinning of visual cortex in primary open-angle glaucoma of varying severity
Wang J
PLoS ONE 2015; 10: e0121960 (IGR: 16-4)


60293 The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects
Weinreb RN; Miki A; Hammel N; Zangwill LM
American Journal of Ophthalmology 2015; 159: 777-787.e1 (IGR: 16-4)


59596 Longitudinal Changes in Quality of Life and Rates of Progressive Visual Field Loss in Glaucoma Patients
Medeiros FA; Gracitelli CP; Boer ER; Weinreb RN; Zangwill LM; Rosen PN
Ophthalmology 2015; 122: 293-301 (IGR: 16-3)


59076 An examination of the hypothesis that intraocular pressure elevation episodes can have prognostic significance in glaucoma suspects
McMonnies C
Journal of optometry 2015; 8: 223-231 (IGR: 16-3)


59481 Models of glaucomatous visual field loss
Chen A; Nouri-Mahdavi K; Otarola FJ; Yu F; Afifi AA; Caprioli J
Investigative Ophthalmology and Visual Science 2014; 55: 7881-7887 (IGR: 16-3)


59579 Prevalence and spatial concordance of visual field deterioration in fellow eyes of glaucoma patients
Kim MK; Lee JM; Morales E; Caprioli J
Korean Journal of Ophthalmology 2014; 28: 436-443 (IGR: 16-3)


58857 Effect of cataract extraction on the visual field decay rate in patients with glaucoma
Lee JW; Morales E; Yu F; Afifi AA; Kim EA; Abdollahi N; Nouri-Mahdavi K; Caprioli J
JAMA ophthalmology 2014; 132: 1296-1302 (IGR: 16-3)


59012 Comparison of regression models for serial visual field analysis
Lee JM; Nouri-Mahdavi K; Morales E; Afifi A; Yu F; Caprioli J
Japanese Journal of Ophthalmology 2014; 58: 504-514 (IGR: 16-3)


59413 Clustering visual field test points based on rates of progression to improve the prediction of future damage
Hirasawa K; Murata H; Hirasawa H; Mayama C; Asaoka R
Investigative Ophthalmology and Visual Science 2014; 55: 7681-7685 (IGR: 16-3)


59323 Confocal Laser Scanning Tomography to Predict Visual Field Conversion in Patients With Ocular Hypertension and Early Glaucoma
Schrems-Hoesl LM; Schrems WA; Laemmer R; Horn FK; Juenemann AG; Kruse FE; Mardin CY
Journal of Glaucoma 2016; 25: 371-376 (IGR: 16-3)


59537 Inter-test reference height variability - a major error factor in Heidelberg Retina Tomography glaucoma progression analysis based on stereometric parameters changes
Dascalu A; Stana D; Duta S; Ardeleanu I; Savlovschi C; Serban D; Cherecheanu A
Journal of medicine and life 2014; 7: 408-411 (IGR: 16-3)


59615 Predictive Value of Heidelberg Retina Tomograph Parameters for the Development of Glaucoma in the European Glaucoma Prevention Study
Miglior S; Zeyen T; Hoffmann EM; Torri V; Rulli E; Floriani I; Poli D; Aliyeva S; Cunha-Vaz J; Pfeiffer N
American Journal of Ophthalmology 2015; 159: 265-76.e1 (IGR: 16-3)


59083 Misguided progression analysis by optical coherence tomography: a report of two cases
Kennedy JB; Soohoo JR; Seibold LK; Kahook MY
Case Reports in Ophthalmology 2014; 5: 217-221 (IGR: 16-3)


59276 Use of the structure-function relationship in detecting glaucoma progression in early glaucoma
Hirooka K; Manabe S; Tenkumo K; Nitta E; Sato S; Tsujikawa A
BMC Ophthalmology 2014; 14: 118 (IGR: 16-3)


58818 Structural glaucomatous progression before and after occurrence of an optic disc haemorrhage
Chung E; Demetriades AM; Christos PJ; Radcliffe NM
British Journal of Ophthalmology 2015; 99: 21-25 (IGR: 16-3)


59542 A new approach to measure visual field progression in glaucoma patients using Variational Bayes linear regression
Murata H; Araie M; Asaoka R
Investigative Ophthalmology and Visual Science 2014; 0: (IGR: 16-3)


59404 Agreement among graders on Heidelberg retina tomograph (HRT) topographic change analysis (TCA) glaucoma progression interpretation
Iester MM; Wollstein G; Bilonick RA; Xu J; Ishikawa H; Kagemann L; Schuman JS
British Journal of Ophthalmology 2015; 99: 519-523 (IGR: 16-3)


59524 Predictive Values of Optical Coherence Tomography (OCT) Parameters in Assessment of Glaucoma progression
Kasumovic SS; Kasumovic A; Pavljasevic S; Cabric E; Mavija M; Sesar I; Lepara SD; Jankov M
Acta informatica medica : AIM : journal of the Society for Medical Informatics of Bosnia & Herzegovina : časopis Društva za medicinsku informatiku BiH 2014; 22: 237-240 (IGR: 16-3)


58999 Estimated rates of retinal ganglion cell loss in glaucomatous eyes with and without optic disc hemorrhages
Gracitelli CP; Tatham AJ; Zangwill LM; Weinreb RN; Liu T; Medeiros FA
PLoS ONE 2014; 9: e105611 (IGR: 16-3)


59330 Combined assessment of early-stage primary open-angle glaucoma progression
Shpak AA; Sevost'ianova MK; Usol'tseva EA; Abdusadykova AK
Vestnik Oftalmologii 2014; 130: 14-17 (IGR: 16-3)


59296 Measuring rates of structural and functional change in glaucoma
Nouri-Mahdavi K; Caprioli J
British Journal of Ophthalmology 2015; 99: 893-898 (IGR: 16-3)


59610 Long-Term Follow-up in Preperimetric Open-Angle Glaucoma: Progression Rates and Associated Factors
Kim KE; Jeoung JW; Kim DM; Ahn SJ; Park KH; Kim SH
American Journal of Ophthalmology 2015; 159: 160-168.e2 (IGR: 16-3)


59042 Perimetric progression using the Visual Field Index and the Advanced Glaucoma Intervention Study score and its clinical correlations
Gros-Otero J; Castejón M; Paz-Moreno J; Mikropoulos D; Teus M
Journal of optometry 2015; 8: 232-238 (IGR: 16-3)


59578 Influence of Lamina Cribrosa Thickness and Depth on the Rate of Progressive Retinal Nerve Fiber Layer Thinning
Lee EJ; Kim TW; Kim M; Kim H
Ophthalmology 2015; 122: 721-729 (IGR: 16-3)


59444 Prediction Accuracy of a Novel Dynamic Structure-Function Model for Glaucoma Progression
Hu R; Marín-Franch I; Racette L
Investigative Ophthalmology and Visual Science 2014; 55: 8086-8094 (IGR: 16-3)


59433 Progression of Normal-Tension Glaucoma After Ventriculoperitoneal Shunt to Decrease Cerebrospinal Fluid Pressure
Drucker MD; Louis KM; Richards DW
Journal of Glaucoma 2016; 25: e50-e52 (IGR: 16-3)


59206 Safety And Efficacy Of Achieving Single-Digit Intraocular Pressure Targets With Filtration Surgery In Eyes With Progressive Normal-Tension Glaucoma
Schultz SK; Iverson SM; Shi W; Greenfield DS
Journal of Glaucoma 2016; 25: 217-222 (IGR: 16-3)


58920 Retinal vessel diameter in normal-tension glaucoma patients with asymmetric progression
Lee TE; Kim YY; Yoo C
Graefe's Archive for Clinical and Experimental Ophthalmology 2014; 252: 1795-1801 (IGR: 16-3)


58728 Disc haemorrhage is associated with the fast component, but not the slow component, of visual field decay rate in glaucoma
Kim JM; Kyung H; Azarbod P; Lee JM; Caprioli J
British Journal of Ophthalmology 2014; 98: 1555-1559 (IGR: 16-3)


59209 Prediction of Glaucomatous Visual Field Progression Using Baseline Clinical Data
Ernest PJ; Schouten JS; Beckers HJ; Hendrikse F; Prins MH; Webers CA
Journal of Glaucoma 2016; 25: 228-235 (IGR: 16-3)


57407 Refined Data Analysis Provides Clinical Evidence for Central Nervous System Control of Chronic Glaucomatous Neurodegeneration
Sponsel WE; Groth SL; Satsangi N; Maddess T; Reilly MA
Translational vision science & technology 2014; 3: 1 (IGR: 16-2)


57338 Prediction of glaucomatous visual field progression: pointwise analysis
Shon K; Wollstein G; Schuman JS; Sung KR
Current Eye Research 2014; 39: 705-710 (IGR: 16-2)


57477 Evaluation of Octopus Polar Trend Analysis for detection of glaucomatous progression
Holló G; Naghizadeh F
European Journal of Ophthalmology 2014; 24: 862-868 (IGR: 16-2)


57335 Detection of early glaucomatous progression with octopus cluster trend analysis
Naghizadeh F; Holló G
Journal of Glaucoma 2014; 23: 269-275 (IGR: 16-2)


57378 Rates of glaucomatous visual field change in a large clinical population
Chauhan BC; Malik R; Shuba LM; Rafuse PE; Nicolela MT; Artes PH
Investigative Ophthalmology and Visual Science 2014; 55: 4135-4143 (IGR: 16-2)


56900 Frequency doubling technology perimetry for detection of visual field progression in glaucoma: a pointwise linear regression analysis
Liu S; Yu M; Weinreb RN; Lai G; Lam DS; Leung CK
Investigative Ophthalmology and Visual Science 2014; 55: 2862-2869 (IGR: 16-2)


57001 Using filtered forecasting techniques to determine personalized monitoring schedules for patients with open-angle glaucoma
Schell GJ; Lavieri MS; Helm JE; Liu X; Musch DC; Van Oyen MP; Stein JD
Ophthalmology 2014; 121: 1539-1546 (IGR: 16-2)


57118 Hierarchical cluster analysis of progression patterns in open-angle glaucoma patients with medical treatment
Bae HW; Rho S; Lee HS; Lee N; Hong S; Seong GJ; Sung KR; Kim CY
Investigative Ophthalmology and Visual Science 2014; 55: 3231-3236 (IGR: 16-2)


57293 Visual Field Progression in Glaucoma: What Is the Specificity of the Guided Progression Analysis?
Artes PH; O'Leary N; Nicolela MT; Chauhan BC; Crabb DP
Ophthalmology 2014; 121: 2023-2027 (IGR: 16-2)


57286 Portsmouth visual field database: an audit of glaucoma progression
Kirwan JF; Hustler A; Bobat H; Toms L; Crabb DP; McNaught AI
Eye 2014; 28: 974-979 (IGR: 16-2)


57277 Nocturnal Systemic Hypotension Increases the Risk of Glaucoma Progression
Charlson ME; De Moraes CG; Link A; Wells MT; Harmon G; Peterson JC; Ritch R; Liebmann JM
Ophthalmology 2014; 121: 2004-2012 (IGR: 16-2)


56979 Central visual field progression in normal-tension glaucoma patients with autonomic dysfunction
Park HY; Park SH; Park CK
Investigative Ophthalmology and Visual Science 2014; 55: 2557-2563 (IGR: 16-2)


56987 The risk of newly developed visual impairment in treated normal-tension glaucoma: 10-year follow-up
Choi YJ; Kim M; Park KH; Kim DM; Kim SH
Acta Ophthalmologica 2014; 92: e644-e649 (IGR: 16-2)


57233 Rapidly Progressing Glaucoma Associated With Monoclonal Gammopathy
Jeang LJ; Chang PT; Frankfort BJ
Journal of Glaucoma 2015; 24: e139-e141 (IGR: 16-2)


57202 Effect of Palmitoylethanolamide on Visual Field Damage Progression in Normal Tension Glaucoma Patients: Results of an Open-Label Six-Month Follow-Up
Costagliola C; Romano MR; dell'Omo R; Russo A; Mastropasqua R; Semeraro F
Journal of medicinal food 2014; 17: 949-954 (IGR: 16-2)


57294 A Control Experiment for Studies that Show Improved Visual Sensitivity with Intraocular Pressure Lowering in Glaucoma
Anderson AJ; Stainer MJ
Ophthalmology 2014; 121: 2028-2032 (IGR: 16-2)


56202 Anterior lamina cribrosa surface depth, age, and visual field sensitivity in the Portland Progression Project
Ren R; Yang H; Gardiner SK; Fortune B; Hardin C; Demirel S; Burgoyne CF
Investigative Ophthalmology and Visual Science 2014; 55: 1531-1539 (IGR: 16-1)


56436 Intraocular pressure fluctuation and glaucoma progression: what do we know?
Leidl MC; Choi CJ; Syed ZA; Melki SA
British Journal of Ophthalmology 2014; 98: 1315-1319 (IGR: 16-1)


56550 A unified framework for glaucoma progression detection using Heidelberg Retina Tomograph images
Belghith A; Bowd C; Weinreb RN; Zangwill LM
Computerized Medical Imaging and Graphics 2014; 38: 411-420 (IGR: 16-1)


56072 Diagnosing glaucoma progression with optical coherence tomography
Leung CK
Current Opinions in Ophthalmology 2014; 25: 104-111 (IGR: 16-1)


56267 Detecting glaucoma progression from localized rates of retinal changes in parametric and nonparametric statistical framework with type I error control
Arias-Castro E; Medeiros FA; Kriegman DJ; Bowd C; Weinreb RN; Holst M; Sample PA; Zangwill LM
Investigative Ophthalmology and Visual Science 2014; 55: 1684-1695 (IGR: 16-1)


56183 A novel optic nerve photograph alignment and subtraction technique for the detection of structural progression in glaucoma
Marlow ED; McGlynn MM; Radcliffe NM
Acta Ophthalmologica 2014; 92: e267-e272 (IGR: 16-1)


56552 Learning from data: Recognizing glaucomatous defect patterns and detecting progression from visual field measurements
Yousefi S; Goldbaum M; Medeiros F; Zangwill L; Liebmann J; Girkin C; Weinreb R; Bowd C
IEEE Transactions on Bio-Medical Engineering 2014; 61: 2112-2124 (IGR: 16-1)


56588 Analysis of risk factors for long-term glaucomatous damage development
Gross S; Gugleta K; Turksever C; Ledolter A; Kochkorov A; Flammer J; Orgul S
Klinische Monatsblńtter fŘr Augenheilkunde 2014; 231: 335-339 (IGR: 16-1)


56539 Effect of Focal Lamina Cribrosa Defect on Glaucomatous Visual Field Progression
Faridi OS; Park SC; Kabadi R; Su D; De Moraes CG; Liebmann JM; Ritch R
Ophthalmology 2014; 121: 1524-1530 (IGR: 16-1)


55996 Estimation of retinal ganglion cell loss in glaucomatous eyes with a relative afferent pupillary defect
Tatham AJ; Meira-Freitas D; Weinreb RN; Marvasti AH; Zangwill LM; Medeiros FA
Investigative Ophthalmology and Visual Science 2014; 55: 513-522 (IGR: 16-1)


56294 Glaucoma progression and role of glaucoma surgery in patients with Boston keratoprosthesis
Crnej A; Paschalis EI; Salvador-Culla B; Tauber A; Drnovsek-Olup B; Shen LQ; Dohlman CH
Cornea 2014; 33: 349-354 (IGR: 16-1)


56482 Glaucoma progression detection using structural retinal nerve fiber layer measurements and functional visual field points
Yousefi S; Goldbaum MH; Jung TP; Weinreb RN; Medeiros FA; Zangwill LM; Liebmann JM; Girkin CA; Bowd C
IEEE Transactions on Bio-Medical Engineering 2014; 61: 1143-1154 (IGR: 16-1)


56171 Preperimetric normal tension glaucoma study: long-term clinical course and effect of therapeutic lowering of intraocular pressure
Jeong JH; Park KH; Jeoung JW; Kim DM
Acta Ophthalmologica 2014; 92: e185-e193 (IGR: 16-1)


55349 Structural diagnostics of course observation for glaucoma
Mardin CY
Ophthalmologe 2013; 110: 1036-1044 (IGR: 15-4)


55586 New insights into measurement variability in glaucomatous visual fields from computer modelling
Russell RA; Garway-Heath DF; Crabb DP
PLoS ONE 2013; 8: e83595 (IGR: 15-4)


55695 Current status of visual field examination in Andalusia, Spain: The SICVA Study
Benítez-Del-Castillo J; Regi T;
European Journal of Ophthalmology 2013; 0: 0 (IGR: 15-4)


55284 Visual field progression with frequency-doubling matrix perimetry and standard automated perimetry in patients with glaucoma and in healthy controls
Redmond T; O'Leary N; Hutchison DM; Nicolela MT; Artes PH; Chauhan BC
JAMA ophthalmology 2013; 131: 1565-1572 (IGR: 15-4)


55722 Clinical significance of optic disc progression by topographic change analysis maps in glaucoma: an 8-year follow-up study
Kourkoutas D; Buys YM; Flanagan JG; Karamaounas N; Georgopoulos G; Iliakis E; Moschos MM; Trope GE
Journal of Ophthalmology 2014; 2014: 987389 (IGR: 15-4)


55179 Cross-sectional study: Does combining optical coherence tomography measurements using the 'Random Forest' decision tree classifier improve the prediction of the presence of perimetric deterioration in glaucoma suspects?
Sugimoto K; Murata H; Hirasawa H; Aihara M; Mayama C; Asaoka R
BMJ open 2013; 3: e003114 (IGR: 15-4)


55540 OCT for glaucoma diagnosis, screening and detection of glaucoma progression
Bussel II; Wollstein G; Schuman JS
British Journal of Ophthalmology 2014; 98: ii15-9 (IGR: 15-4)


55706 Study of long term structural and functional changes in medically controlled glaucoma
Pandey AN; Sujata S
International Journal of Ophthalmology 2014; 7: 128-132 (IGR: 15-4)


55436 Predicting progression of glaucoma from rates of frequency doubling technology perimetry change
Meira-Freitas D; Tatham AJ; Lisboa R; Kuang TM; Zangwill LM; Weinreb RN; Girkin CA; Liebmann JM; Medeiros FA
Ophthalmology 2014; 121: 498-507 (IGR: 15-4)


55283 Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome
Johnson TV; Dekorver NW; Levasseur VA; Osborne A; Tassoni A; Lorber B; Heller JP; Villasmil R; Bull ND; Martin KR; Tomarev SI
Brain 2014; 137: 503-519 (IGR: 15-4)


55120 Robust and censored modeling and prediction of progression in glaucomatous visual fields
Bryan SR; Vermeer KA; Eilers PH; Lemij HG; Lesaffre EM
Investigative Ophthalmology and Visual Science 2013; 54: 6694-6700 (IGR: 15-4)


55439 Defining 10-2 visual field progression criteria: exploratory and confirmatory factor analysis using pointwise linear regression
De Moraes CG; Song C; Liebmann JM; Simonson JL; Furlanetto RL; Ritch R
Ophthalmology 2014; 121: 741-749 (IGR: 15-4)


55396 Baseline thickness of macular ganglion cell complex predicts progression of visual field loss
Anraku A; Enomoto N; Takeyama A; Ito H; Tomita G
Graefe's Archive for Clinical and Experimental Ophthalmology 2014; 252: 109-115 (IGR: 15-4)


55320 Detection of progression of glaucomatous visual field damage using the point-wise method with the binomial test
Karakawa A; Murata H; Hirasawa H; Mayama C; Asaoka R
PLoS ONE 2013; 8: e78630 (IGR: 15-4)


55546 Filtering data from the collaborative initial glaucoma treatment study for improved identification of glaucoma progression
Schell GJ; Lavieri MS; Stein JD; Musch DC
BMC Medical Informatics and Decision Making 2013; 13: 137 (IGR: 15-4)


55517 Retinal blood vessel positional shifts and glaucoma progression
Radcliffe NM; Smith SD; Syed ZA; Park SC; Ehrlich JR; De Moraes CG; Liebmann JM; Ritch R
Ophthalmology 2014; 121: 842-848 (IGR: 15-4)


55171 Discrepancy between optic disc and nerve fiber layer assessment and optical coherence tomography in detecting glaucomatous progression
Lee JR; Sung KR; Na JH; Shon K; Lee KS
Japanese Journal of Ophthalmology 2013; 57: 546-552 (IGR: 15-4)


55513 Detecting an event of progression using glaucoma probability score and the stereometric parameters of Heidelberg Retina Tomograph 3
Saarela V; Falck A; Tuulonen A
European Journal of Ophthalmology 2013; 0: 0 (IGR: 15-4)


55523 Relationship between preferred sleeping position and asymmetric visual field loss in open-angle glaucoma patients
Kim KN; Jeoung JW; Park KH; Kim DM; Ritch R
American Journal of Ophthalmology 2014; 157: 739-745 (IGR: 15-4)


55426 Arteriovenous passage times and visual field progression in normal tension glaucoma
Koch EC; Arend KO; Bienert M; Remky A; Plange N
TheScientificWorldJournal 2013; 2013: 726912 (IGR: 15-4)


55201 The United Kingdom Glaucoma Treatment Study: a multicenter, randomized, double-masked, placebo-controlled trial: baseline characteristics
Lascaratos G; Garway-Heath DF; Burton R; Bunce C; Xing W; Crabb DP; Russell RA; Shah A;
Ophthalmology 2013; 120: 2540-2545 (IGR: 15-4)


54602 Relationship between 24-hour mean ocular perfusion pressure fluctuation and rate of paracentral visual field progression in normal-tension glaucoma
Choi J; Lee JR; Lee Y; Lee KS; Na JH; Han S; Kook MS
Investigative Ophthalmology and Visual Science 2013; 54: 6150-6157 (IGR: 15-3)


54706 The significance of intraocular pressure elevation during sleep-related postures
McMonnies CW
Clinical and Experimental Optometry 2014; 97: 221-224 (IGR: 15-3)


54583 Measuring visual field progression in the central 10 degrees using additional information from central 24 degrees visual fields and 'lasso regression'
Asaoka R
PLoS ONE 2013; 8: e72199 (IGR: 15-3)


54456 Risk factors for progressive visual field loss in primary angle-closure glaucoma: a retrospective cohort study
Fan NW; Hwang DK; Ko YC; Tseng FC; Hung KH; Liu CJ
PLoS ONE 2013; 8: e69772 (IGR: 15-3)


54842 Role of color Doppler imaging in early diagnosis and prediction of progression in glaucoma
Jimenez-Aragon F; Garcia-Martin E; Larrosa-Lopez R; Artigas-Martí,n JM; Seral-Moral P; Pablo LE
BioMed research international 2013; 2013: 871689 (IGR: 15-3)


54522 Refinement of pointwise linear regression criteria for determining glaucoma progression
Kummet CM; Zamba KD; Doyle CK; Johnson CA; Wall M
Investigative Ophthalmology and Visual Science 2013; 54: 6234-6241 (IGR: 15-3)


54797 Detecting the Progression of Eye Disease: CUSUM Charts for Assessing the Visual Field and Retinal Nerve Fiber Layer Thickness
Ledolter J; Kardon R
Translational vision science & technology 2013; 2: 2 (IGR: 15-3)


54661 Impact of Age-related Change of Retinal Nerve Fiber Layer and Macular Thicknesses on Evaluation of Glaucoma Progression
Leung CK; Ye C; Weinreb RN; Yu M; Lai G; Lam DS
Ophthalmology 2013; 120: 2485-2492 (IGR: 15-3)


54857 Determinants of severity at presentation among young patients with early onset glaucoma
Gupta V; Srivastava RM; Sihota R; Kaur J; Kumar S; Singh D
Indian Journal of Ophthalmology 2013; 61: 546-551 (IGR: 15-3)


54675 An internal medicine perspective review of risk factors for assessing and progression of primary open angle glaucoma
Actis AG; Dall'Orto L; Penna R; Brogliatti B; Rolle T
Minerva Medica 2013; 104: 471-485 (IGR: 15-3)


54761 Effects of optic disc size on progression of visual field defects in normal-tension glaucoma
Hayamizu F; Yamazaki Y
Nippon Ganka Gakkai Zasshi 2013; 117: 609-615 (IGR: 15-3)


53687 Corneal Hysteresis as a Risk Factor for Glaucoma Progression: A Prospective Longitudinal Study
Medeiros FA; Meira-Freitas D; Lisboa R; Kuang TM; Zangwill LM; Weinreb RN
Ophthalmology 2013; 120: 1533-1540 (IGR: 15-2)


53773 Parafoveal Scotoma Progression in Glaucoma: Humphrey 10-2 versus 24-2 Visual Field Analysis
Park SC; Kung Y; Su D; Simonson JL; Furlanetto RL; Liebmann JM; Ritch R
Ophthalmology 2013; 120: 1546-1550 (IGR: 15-2)


53665 Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography
Wessel JM; Horn FK; Tornow RP; Schmid M; Mardin CY; Kruse FE; Juenemann AG; Laemmer R
Investigative Ophthalmology and Visual Science 2013; 54: 3613-3620 (IGR: 15-2)


53963 Evaluation of relationship between retinal nerve fiber layer thickness progression and visual field progression in patients with glaucoma
Tenkumo K; Hirooka K; Baba T; Nitta E; Sato S; Shiraga F
Japanese Journal of Ophthalmology 2013; 0: (IGR: 15-2)


53802 Features of optic disc progression in patients with ocular hypertension and early glaucoma
Lloyd MJ; Mansberger SL; Fortune BA; Nguyen H; Torres R; Demirel S; Gardiner SK; Johnson CA; Cioffi GA
Journal of Glaucoma 2013; 22: 343-348 (IGR: 15-2)


53570 Agreement between event-based and trend-based glaucoma progression analyses
Rao HL; Kumbar T; Kumar AU; Babu JG; Senthil S; Garudadri CS
Eye 2013; 27: 803-808 (IGR: 15-2)


53714 Predicting progression in glaucoma suspects with longitudinal estimates of retinal ganglion cell counts
Meira-Freitas D; Lisboa R; Tatham A; Zangwill LM; Weinreb RN; Girkin CA; Liebmann JM; Medeiros FA
Investigative Ophthalmology and Visual Science 2013; 54: 4174-4183 (IGR: 15-2)


53909 Increased Urinary 8-Hydroxy-2'-deoxyguanosine (8-OHdG)/Creatinine Level is Associated with the Progression of Normal-Tension Glaucoma
Yuki K; Tsubota K
Current Eye Research 2013; 38: 983-988 (IGR: 15-2)


53888 Comparison of Visual Field Progression Between Relatively Low and High Intraocular Pressure Groups in Normal Tension Glaucoma Patients
Lee J; Kong M; Kim J; Kee C
Journal of Glaucoma 2014; 23: 553-560 (IGR: 15-2)


53254 Visual field progression outcomes in glaucoma subtypes
De Moraes CG; Liebmann JM; Liebmann CA; Susanna R; Tello C; Ritch R
Acta Ophthalmologica 2013; 91: 288-293 (IGR: 15-2)


53568 How should we follow end-stage glaucoma?
Paletta Guedes RA; Paletta Guedes VM
Journal Franšais d'Ophtalmologie 2013; 36: 442-448 (IGR: 15-2)


52654 Spatial modeling of visual field data for assessing glaucoma progression
Betz-Stablein BD; Morgan WH; House PH; Hazelton ML
Investigative Ophthalmology and Visual Science 2013; 54: 1544-1553 (IGR: 15-1)


52571 Global and pointwise rates of decay in glaucoma eyes deteriorating according to pointwise event analysis
Nassiri N; Moghimi S; Coleman AL; Law SK; Caprioli J; Nouri-Mahdavi K
Investigative Ophthalmology and Visual Science 2013; 54: 1208-1213 (IGR: 15-1)


52671 Relationship of change in central corneal thickness to visual field progression in eyes with glaucoma
Viswanathan D; Goldberg I; Graham SL
Graefe's Archive for Clinical and Experimental Ophthalmology 2013; 251: 1593-1599 (IGR: 15-1)


53213 The rate of structural change: the confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study
Zangwill LM; Jain S; Dirkes K; He F; Medeiros FA; Trick GL; Brandt JD; Cioffi GA; Coleman AL; Liebmann JM; Piltz-Seymour JR; Gordon MO; Kass MA; Weinreb RN;
American Journal of Ophthalmology 2013; 155: 971-982 (IGR: 15-1)


52730 Usefulness of macular thickness derived from spectral-domain optical coherence tomography in the detection of glaucoma progression
Lee KS; Lee JR; Na JH; Kook MS
Investigative Ophthalmology and Visual Science 2013; 54: 1941-1949 (IGR: 15-1)


52946 Progression of retinal nerve fiber layer thinning in glaucoma assessed by cirrus optical coherence tomography-guided progression analysis
Na JH; Sung KR; Baek S; Lee JY; Kim S
Current Eye Research 2013; 38: 386-395 (IGR: 15-1)


52648 Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography
Grewal DS; Tanna AP
Current Opinions in Ophthalmology 2013; 24: 150-161 (IGR: 15-1)


52411 Detection of Glaucomatous Progression by Spectral-Domain Optical Coherence Tomography
Na JH; Sung KR; Lee JR; Lee KS; Baek S; Kim HK; Sohn YH
Ophthalmology 2013; 120: 1388-1395 (IGR: 15-1)


53166 Current approach on various methods of detection glaucomatous visual field progression
Zhong H; Yuan YS
Chinese Journal of Ophthalmology 2013; 49: 84-87 (IGR: 15-1)


52765 How useful is population data for informing visual field progression rate estimation?
Anderson AJ; Johnson CA
Investigative Ophthalmology and Visual Science 2013; 54: 2198-2206 (IGR: 15-1)


52876 Behavior of visual field index in advanced glaucoma
Rao HL; Senthil S; Choudhari NS; Mandal AK; Garudadri CS
Investigative Ophthalmology and Visual Science 2013; 54: 307-312 (IGR: 15-1)


53252 Optic disc progression and rates of visual field change in treated glaucoma
De Moraes CG; Liebmann JM; Park SC; Teng CC; Nemiroff J; Tello C; Ritch R
Acta Ophthalmologica 2013; 91: e86-e91 (IGR: 15-1)


52806 Contributing factors for progression of visual field loss in normal-tension glaucoma patients with medical treatment
Sakata R; Aihara M; Murata H; Mayama C; Tomidokoro A; Iwase A; Araie M
Journal of Glaucoma 2013; 22: 250-254 (IGR: 15-1)


53150 Optic disc size and progression of visual field damage in patients with normal-tension glaucoma
Hayamizu F; Yamazaki Y; Nakagami T; Mizuki K
Clinical Ophthalmology 2013; 7: 807-813 (IGR: 15-1)


52763 Citicoline oral solution in glaucoma: is there a role in slowing disease progression?
Ottobelli L; Manni GL; Centofanti M; Iester M; Allevena F; Rossetti L
Ophthalmologica 2013; 229: 219-226 (IGR: 15-1)


51987 Effect of Lateral Decubitus Position on Intraocular Pressure in Glaucoma Patients with Asymmetric Visual Field Loss
Kim KN; Jeoung JW; Park KH; Lee DS; Kim DM
Ophthalmology 2013; 120: 731-735 (IGR: 14-4)


51818 Progression Pattern of Initial Parafoveal Scotomas in Glaucoma
Su D; Park SC; Simonson JL; Liebmann JM; Ritch R
Ophthalmology 2013; 120: 520-527 (IGR: 14-4)


51722 Rates of retinal nerve fibre layer thickness change in glaucoma patients and control subjects
O'Leary N; Artes PH; Hutchison DM; Nicolela MT; Chauhan BC
Eye 2012; 26: 1554-1562 (IGR: 14-4)


51704 Rates of visual field progression in clinical glaucoma care
Heijl A; Buchholz P; Norrgren G; Bengtsson B
Acta Ophthalmologica 2013; 91: 406-412 (IGR: 14-4)


51919 Combining structure and function to evaluate glaucomatous progression: implications for the design of clinical trials
Lisboa R; Weinreb RN; Medeiros FA
Current opinion in pharmacology 2013; 13: 115-122 (IGR: 14-4)


51899 An Evidence-Based Review of Prognostic Factors for Glaucomatous Visual Field Progression
Ernest PJ; Schouten JS; Beckers HJ; Hendrikse F; Prins MH; Webers CA
Ophthalmology 2013; 120: 512-519 (IGR: 14-4)


51885 Detection of glaucoma progression by population and individual derived variability criteria
Folio LS; Wollstein G; Kotowski J; Bilonick RA; Ling Y; Ishikawa H; Kagemann L; Schuman JS
British Journal of Ophthalmology 2013; 97: 403-407 (IGR: 14-4)


51881 Modelling and analysing the dynamics of disease progression from cross-sectional studies
Li Y; Swift S; Tucker A
Journal of biomedical informatics 2013; 46: 266-274 (IGR: 14-4)


51804 Retrospective study of glaucoma and closed-eyelid test: long-term outcomes in an Italian native population
Pescosolido N; Belcaro G; Rusciano D; Steigerwalt RD; Nebbioso M
Panminerva medica 2012; 0: (IGR: 14-4)


51911 Ocular risk factors for progression of primary open angle glaucoma in the Tunisian population
Loukil I; Korchène N; Hachicha F; Wathek C; Bouguerra C; Mallouch N; Bhiri R; Hijazi A; Zouari B; El Afrit MA
Journal Franšais d'Ophtalmologie 2013; 36: 324-330 (IGR: 14-4)


51693 Evaluation of baseline structural factors for predicting glaucomatous visual-field progression using optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmoscopy
Sehi M; Bhardwaj N; Chung YS; Greenfield DS;
Eye 2012; 26: 1527-1535 (IGR: 14-4)


51780 Relationship between intraocular pressure and glaucoma onset and progression
Miglior S; Bertuzzi F
Current opinion in pharmacology 2013; 13: 32-35 (IGR: 14-4)


51747 Posture-induced intraocular pressure changes in eyes with open-angle glaucoma, primary angle closure with or without glaucoma medications, and control eyes
Sawada A; Yamamoto T
Investigative Ophthalmology and Visual Science 2012; 53: 7631-7635 (IGR: 14-4)


51057 Persistence, spatial distribution and implications for progression detection of blind parts of the visual field in glaucoma: a clinical cohort study
Junoy Montolio FG; Wesselink C; Jansonius NM
PLoS ONE 2012; 7: e41211 (IGR: 14-3)


50957 Progression of patterns (POP): a machine classifier algorithm to identify glaucoma progression in visual fields
Goldbaum MH; Lee I; Jang G; Sample PA; Weinreb RN; Liebmann JM; Girkin CA; Anderson DR; Zangwill LM; Fredette MJ; Jung TP; Medeiros FA; Bowd C
Investigative Ophthalmology and Visual Science 2012; 53: 6557-6567 (IGR: 14-3)


50941 Visual field progression in glaucoma: Cluster analysis
Bresson-Dumont H; Hatton J; Foucher J; Fonteneau M
Journal Franšais d'Ophtalmologie 2012; 35: 735-741 (IGR: 14-3)


50926 Validation of point-wise exponential regression to measure the decay rates of glaucomatous visual fields
Azarbod P; Mock D; Bitrian E; Afifi AA; Yu F; Nouri-Mahdavi K; Coleman AL; Caprioli J
Investigative Ophthalmology and Visual Science 2012; 53: 5403-5409 (IGR: 14-3)


51169 Detection of Early Glaucomatous Progression With Different Parameters of the RTVue Optical Coherence Tomograph
Naghizadeh F; Garas A; Vargha P; Holló G
Journal of Glaucoma 2014; 23: 195-198 (IGR: 14-3)


51039 Estimating the rate of retinal ganglion cell loss in glaucoma
Medeiros FA; Zangwill LM; Anderson DR; Liebmann JM; Girkin CA; Harwerth RS; Fredette MJ; Weinreb RN
American Journal of Ophthalmology 2012; 154: 814-824.e1 (IGR: 14-3)


51049 Comparison of Event-Based Methods Using Optical Coherence Tomography and Automated Perimetry to Detect the Progression of Glaucoma in Patients with Open-Angle Glaucoma
Lee M; Yang H; Kim J; Ahn J
Ophthalmologica 2013; 229: 106-112 (IGR: 14-3)


51288 Novel Fractal Feature-Based Multiclass Glaucoma Detection and Progression Prediction
Iftekharuddin K; Kim Y; Davey P; Essock E; Garas A; Hollo G
IEEE transactions on information technology in biomedicine: a publication of the IEEE Engineering in Medicine and Biology Society 2012; 0: (IGR: 14-3)


51118 The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change
Medeiros FA; Zangwill LM; Bowd C; Mansouri K; Weinreb RN
Investigative Ophthalmology and Visual Science 2012; 53: 6939-6946 (IGR: 14-3)


51347 Retinal Nerve Fiber Layer Atrophy Is Associated With Visual Field Loss Over Time in Glaucoma Suspect and Glaucomatous Eyes
Sehi M; Zhang X; Greenfield DS; Chung Y; Wollstein G; Francis BA; Schuman JS; Varma R; Huang D;
American Journal of Ophthalmology 2013; 155: 73-82.e1 (IGR: 14-3)


51362 Glaucoma progression detection: agreement, sensitivity, and specificity of expert visual field evaluation, event analysis, and trend analysis
Antón A; Pazos M; Martín B; Navero JM; Ayala ME; Castany M; Martínez P; Bardavío J
European Journal of Ophthalmology 2012; 0: 0 (IGR: 14-3)


50882 Glaucoma progression in eyes with a history of refractive corneal surgery
Kim YJ; Yun SC; Na JH; Tchah HW; Jung JJ; Sung KR
Investigative Ophthalmology and Visual Science 2012; 53: 4485-4489 (IGR: 14-3)


51216 Visual field progression in glaucoma: estimating the overall significance of deterioration with permutation analyses of pointwise linear regression (PoPLR)
O'Leary N; Chauhan BC; Artes PH
Investigative Ophthalmology and Visual Science 2012; 53: 6776-6784 (IGR: 14-3)


51156 Lack of immunoglobulins does not prevent C1q binding to RGC and does not alter the progression of experimental glaucoma
Ding QJ; Cook AC; Dumitrescu AV; Kuehn MH
Investigative Ophthalmology and Visual Science 2012; 53: 6370-6377 (IGR: 14-3)


51233 Comparison of the progression rates of the superior, inferior, and both hemifield defects in normal-tension glaucoma patients
Cho HK; Kee C
American Journal of Ophthalmology 2012; 154: 958-968.e1 (IGR: 14-3)


51027 Risk factors for visual field progression in the low-pressure glaucoma treatment study
De Moraes CG; Liebmann JM; Greenfield DS; Gardiner SK; Ritch R; Krupin T;
American Journal of Ophthalmology 2012; 154: 702-711 (IGR: 14-3)


50684 Glaucoma progression after the first-detected optic disc hemorrhage by optical coherence tomography
Suh MH; Park KH; Kim H; Kim TW; Kim SW; Kim SY; Kim DM
Journal of Glaucoma 2012; 21: 358-366 (IGR: 14-3)


51283 Glaucoma progression associated with Leber's hereditary optic neuropathy
Nucci C; Martucci A; Mancino R; Cerulli L
International Ophthalmology 2013; 33: 75-77 (IGR: 14-3)


51356 Effect of trabeculectomy on retrobulbar circulation and visual field progression in patients with primary open-angle glaucoma
Yamazaki Y; Hayamizu F
Clinical Ophthalmology 2012; 6: 1539-1545 (IGR: 14-3)


50204 Localized Glaucomatous Change Detection within the Proper Orthogonal Decomposition Framework
Kriegman DJ; Bowd C; Holst M; Weinreb RN; Sample PA; Zangwill LM
Investigative Ophthalmology and Visual Science 2012; 53: 3615-3628 (IGR: 14-2)


50487 Glaucoma progression detection by retinal nerve fiber layer measurement using scanning laser polarimetry: event and trend analysis
Moon BG; Sung KR; Cho JW; Kang SY; Yun SC; Na JH; Lee Y; Kook MS
Korean Journal of Ophthalmology 2012; 26: 174-181 (IGR: 14-2)


50323 Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography
Na JH; Sung KR; Baek S; Kim YJ; Durbin MK; Lee HJ; Kim HK; Sohn YH
Investigative Ophthalmology and Visual Science 2012; 53: 3817-3826 (IGR: 14-2)


50356 Factors predicting the rate of functional progression in early and suspected glaucoma
Gardiner SK; Johnson CA; Demirel S
Investigative Ophthalmology and Visual Science 2012; 53: 3598-3604 (IGR: 14-2)


50405 Relationship Between Intraocular Pressure and Rate of Visual Field Progression in Treated Glaucoma
Rao HL; Addepalli UK; Jonnadula GB; Kumbar T; Senthil S; Garudadri CS
Journal of Glaucoma 2013; 22: 719-724 (IGR: 14-2)


50467 Evaluating Objective and Subjective Quantitative Parameters at the Initial Visit to Predict Future Glaucomatous Visual Field Progression
Ungar AK; Wollstein G; Ishikawa H; Folio LS; Ling Y; Bilonick RA; Noecker RJ; Xu J; Kagemann L; Mattox C; Schuman JS
Ophthalmic Surgery Lasers and Imaging 2012; 0: 1-9 (IGR: 14-2)


50501 Retinal Nerve Fiber Layer Imaging with Spectral-domain Optical Coherence Tomography: Patterns of Retinal Nerve Fiber Layer Progression
Leung CK; Yu M; Weinreb RN; Lai G; Xu G; Lam DS
Ophthalmology 2012; 119: 1858-1866 (IGR: 14-2)


50265 The Impact of Surgical Intraocular Pressure Reduction on Visual Function Using Various Criteria to Define Visual Field Progression
Bhardwaj N; Niles PI; Greenfield DS; Hymowitz M; Sehi M; Feuer WJ; Budenz DL
Journal of Glaucoma 2013; 22: 632-637 (IGR: 14-2)


50316 Relationship between central corneal thickness and progression of visual field loss in patients with open-angle glaucoma
Cao KY; Kapasi M; Betchkal JA; Birt CM
Canadian Journal of Ophthalmology 2012; 47: 155-158 (IGR: 14-2)


50287 The Development of a Decision Analytic Model of Changes in Mean Deviation in People with Glaucoma: The COA Model
Kymes SM; Lambert DL; Lee PP; Musch DC; Siegfried CJ; Kotak SV; Stwalley DL; Fain J; Johnson C; Gordon MO
Ophthalmology 2012; 119: 1367-1374 (IGR: 14-2)


50302 Risk factors for progression of normal-tension glaucoma under β-blocker monotherapy
Araie M; Shirato S; Yamazaki Y; Matsumoto C; Kitazawa Y; Ohashi Y;
Acta Ophthalmologica 2012; 90: e337-e343 (IGR: 14-2)


50406 Effect of Ginkgo biloba Extract on Visual Field Progression in Normal Tension Glaucoma
Lee J; Sohn SW; Kee C
Journal of Glaucoma 2013; 22: 780-784 (IGR: 14-2)


49167 Altered Stability of mRNAs Associated with Glaucoma Progression in Human Trabecular Meshwork Cells Following Oxidative Stress
Mochizuki H; Murphy CJ; Brandt JD; Kiuchi Y; Russell P
Investigative Ophthalmology and Visual Science 2012; 53: 1734-1741 (IGR: 14-1)


48628 Computer simulation of progressive retinal nerve fiber layer loss in glaucoma: performance of event and trend analyses
Yu M; Weinreb RN; Yiu C; Liu S; Or MK; Ye C; Lam DS; Leung CK
Investigative Ophthalmology and Visual Science 2011; 52: 9674-9683 (IGR: 14-1)


48630 Peak intraocular pressure and glaucomatous progression in primary open-angle glaucoma
Konstas AG; Quaranta L; Mikropoulos DG; Nasr MB; Russo A; Jaffee HA; Stewart JA; Stewart WC
Journal of Ocular Pharmacology and Therapeutics 2012; 28: 26-32 (IGR: 14-1)


48773 The rate of visual field change in the ocular hypertension treatment study
Demirel S; De Moraes CG; Gardiner SK; Liebmann JM; Cioffi GA; Ritch R; Gordon MO; Kass MA;
Investigative Ophthalmology and Visual Science 2012; 53: 224-227 (IGR: 14-1)


48738 Glaucoma Progression Analysis software compared with expert consensus opinion in the detection of visual field progression in glaucoma
Tanna AP; Budenz DL; Bandi J; Feuer WJ; Feldman RM; Herndon LW; Rhee DJ; Whiteside-De Vos J; Huang J; Anderson DR
Ophthalmology 2012; 119: 468-473 (IGR: 14-1)


48936 Integrating event- and trend-based analyses to improve detection of glaucomatous visual field progression
Medeiros FA; Weinreb RN; Moore G; Liebmann JM; Girkin CA; Zangwill LM
Ophthalmology 2012; 119: 458-467 (IGR: 14-1)


48569 Cup size predicts subsequent functional change in early glaucoma
Gardiner SK; Johnson CA; Demirel S
Optometry and Vision Science 2011; 88: 1470-1476 (IGR: 14-1)


48819 Progression detection capability of macular thickness in advanced glaucomatous eyes
Sung KR; Sun JH; Na JH; Lee JY; Lee Y
Ophthalmology 2012; 119: 308-313 (IGR: 14-1)


48492 Detection of progressive retinal nerve fiber layer thickness loss with optical coherence tomography using 4 criteria for functional progression
Grewal DS; Sehi M; Paauw JD; Greenfield DS
Journal of Glaucoma 2012; 21: 214-220 (IGR: 14-1)


49263 A Validated Risk Calculator to Assess Risk and Rate of Visual Field Progression in Treated Glaucoma Patients
De Moraes CG; Sehi M; Greenfield DS; Chung YS; Ritch R; Liebmann JM
Investigative Ophthalmology and Visual Science 2012; 53: 2702-2707 (IGR: 14-1)


49288 Improved Estimates of Visual Field Progression Using Bayesian Linear Regression to Integrate Structural Information in Patients with Ocular Hypertension
Russell RA; Malik R; Chauhan BC; Crabb DP; Garway-Heath DF
Investigative Ophthalmology and Visual Science 2012; 53: 2760-2769 (IGR: 14-1)


49231 Predicting glaucomatous progression in glaucoma suspect eyes using relevance vector machine classifiers for combined structural and functional measurements
Bowd C; Lee I; Goldbaum MH; Medeiros FA; Zangwill LM; Girkin CA; Liebmann JM; Weinreb RN
Investigative Ophthalmology and Visual Science 2012; 53: 2382-2389 (IGR: 14-1)


49240 Rates of visual field progression in distinct optic disc phenotypes
Schor KS; De Moraes CG; Teng CC; Tello C; Liebmann JM; Ritch R
Clinical and Experimental Ophthalmology 2012; 40: 706-712 (IGR: 14-1)


49193 Frequency and associated factors of structural progression of open-angle glaucoma in the Beijing Eye Study
Wang YX; Hu LN; Yang H; Jonas JB; Xu L
British Journal of Ophthalmology 2012; 96: 811-815 (IGR: 14-1)


49230 Pointwise Rates of Visual Field Progression Cluster according to Retinal Nerve Fiber Layer Bundles
Nouri-Mahdavi K; Mock D; Hosseini H; Bitrian E; Yu F; Afifi A; Coleman AL; Caprioli J
Investigative Ophthalmology and Visual Science 2012; 53: 2390-2394 (IGR: 14-1)


49013 Combining Structural and Functional Measurements to Improve Estimates of Rates of Glaucomatous Progression
Medeiros FA; Zangwill LM; Girkin CA; Liebmann JM; Weinreb RN
American Journal of Ophthalmology 2012; 153: 1197-1205 (IGR: 14-1)


48846 Progression detection in different stages of glaucoma: mean deviation versus visual field index
Cho JW; Sung KR; Yun SC; Na JH; Lee Y; Kook MS
Japanese Journal of Ophthalmology 2012; 56: 128-133 (IGR: 14-1)


49196 Incorporating risk factors to improve the assessment of rates of glaucomatous progression
Medeiros FA; Zangwill LM; Mansouri K; Lisboa R; Tafreshi A; Weinreb RN
Investigative Ophthalmology and Visual Science 2012; 53: 2199-2207 (IGR: 14-1)


49166 Effect of Treatment on the Rate of Visual Field Change in the Ocular Hypertension Treatment Study Observation Group
De Moraes CG; Demirel S; Gardiner SK; Liebmann JM; Cioffi GA; Ritch R; Gordon MO; Kass MA;
Investigative Ophthalmology and Visual Science 2012; 53: 1704-1709 (IGR: 14-1)


49010 Progression of Visual Field Defects in Eyes With Different Optic Disc Appearances in Patients With Normal Tension Glaucoma
Nakazawa T; Shimura M; Ryu M; Himori N; Nitta F; Omodaka K; Doi H; Yasui T; Fuse N; Nishida K
Journal of Glaucoma 2012; 21: 426-430 (IGR: 14-1)


49291 Short-term use of inhaled and intranasal corticosteroids is not associated with glaucoma progression on optical coherence tomography
Johnson LN; Soni CR; Johnson MA; Madsen RW
European Journal of Ophthalmology 2012; 0: 0 (IGR: 14-1)


48815 Risk factors associated with progression in exfoliative glaucoma patients
Holló G; Quaranta L; Cvenkel B; Astakhov YS; Teus MA; Kó thy P; Miglior S; Riva I; Akopov EL; Gros J; Stewart JA; Kristoffersen MS; Nelson LA; Stewart WC
Ophthalmic Research 2012; 47: 208-213 (IGR: 14-1)


47629 Rates of Change in the Visual Field and Optic Disc in Patients with Distinct Patterns of Glaucomatous Optic Disc Damage
Reis ASC; Artes PH; Leblanc RP; Shuba LM; Chauhan BC; Nicolela MT
Ophthalmology 2011; (IGR: 13-4)


47699 Longitudinal relationship between retinal nerve fiber layer thickness parameters assessed by scanning laser polarimetry (GDxVCC) and visual field in glaucoma
Makabe K; Takei K; Oshika T
Graefe's Archive for Clinical and Experimental Ophthalmology 2011; (IGR: 13-4)


47971 A method to measure and predict rates of regional visual field decay in glaucoma
Caprioli J; Mock D; Bitrian E; Afifi AA; Yu F; Nouri-Mahdavi K; Coleman AL
Investigative ophthalmology & visual science 2011; 52: 4765-4773 (IGR: 13-4)


47838 Visual field evolution in glaucoma patients presenting with different disease stages: Results from an observational study
Gerlier L; Shlaen R; Wolfram C; Lamotte M; Verboven Y
Value in Health 2011; 14: A502-A503 (IGR: 13-4)


46328 Risk factors of glaucoma progression: intraocular pressure fluctuations
Aptel F; Denis P
Journal Franšais d'Ophtalmologie 2011; 34: 400-402 (IGR: 13-3)


47084 The evidence base to select a method for assessing glaucomatous visual field progression
Ernest PJG; Schouten JSAG; Beckers HJM; Hendrikse F; Prins MH; Webers CAB
Acta Ophthalmologica 2011; (IGR: 13-3)


46932 Modern assessment of perimetric progression in glaucoma
Feraru CI; Pantalon A
Oftalmologia 2010; 54: 97-102 (IGR: 13-3)


46733 Detection of visual field progression in glaucoma with standard achromatic perimetry: A review and practical implications
Nouri-Mahdavi K; Nassiri N; Giangiacomo A; Caprioli J
Graefe's Archive for Clinical and Experimental Ophthalmology 2011; (IGR: 13-3)


46323 Influence of Visual Field Testing Frequency on Detection of Glaucoma Progression With Trend Analyses
Nouri-Mahdavi K; Zarei R; Caprioli J
Archives of Ophthalmology 2011; (IGR: 13-3)


46892 Agreement in detecting glaucomatous visual field progression by using guided progression analysis and Humphrey overview printout
Iester M; Corallo G; Capris E; Capris P
European Journal of Ophthalmology 2011; 21: 573-579 (IGR: 13-3)


46520 Event-based progression detection strategies using scanning laser polarimetry images of the human retina
Vermeer KA; Lo B; Zhou Q; Vos FM; Vossepoel AM; Lemij HG
Computers in Biology and Medicine 2011; 41: 857-864 (IGR: 13-3)


46511 Comparing rates of retinal nerve fibre layer loss with GDxECC using different methods of visual-field progression
Grewal DS; Sehi M; Greenfield DS; Quinn CD; Kishor K; Schuman JS; Noecker RJ; Ishikawa H; Wollstein G; Billonick RA
British Journal of Ophthalmology 2011; 95: 1122-1127 (IGR: 13-3)


46937 The use of optical coherence tomography for identifying retinal nerve fiber layer progressive damage
Danielescu C; Chiselita D
Oftalmologia 2010; 54: 109-114 (IGR: 13-3)


46825 Risk factors for visual field progression in the groningen longitudinal glaucoma study: A comparison of different statistical approaches
Wesselink C; Marcus MW; Jansonius NM
Journal of Glaucoma 2011; (IGR: 13-3)


46389 Combining Structural and Functional Measurements to Improve Detection of Glaucoma Progression using Bayesian Hierarchical Models
Medeiros FA; Leite MT; Zangwill LM; Weinreb RN
Investigative Ophthalmology and Visual Science 2011; 52: 5794-5803 (IGR: 13-3)


46514 Pressure-cornea-vascular index (PCVI) for predicting disease progression in normal tension glaucoma
Leung DYL; Iliev ME; Chan P; Baig N; Chi SCC; Tham CCY; Lam DSC
British Journal of Ophthalmology 2011; 95: 1106-1110 (IGR: 13-3)


46822 Detection of progressive retinal nerve fiber layer thicknessloss with optical coherence tomography using4 criteria for functional progression
Grewal DS; Sehi M; Paauw JD; Greenfield DS
Journal of Glaucoma 2011; (IGR: 13-3)


46629 Evaluation of retinal nerve fiber layer progression in glaucoma: A comparison between spectral-domain and time-domain optical coherence tomography
Leung CK-S; Chiu V; Weinreb RN; Liu S; Ye C; Yu M; Cheung CY-L; Lai G; Lam DS-C
Ophthalmology 2011; 118: 1558-1562 (IGR: 13-3)


46630 Evaluation of retinal nerve fiber layer progression in glaucoma: A prospective analysis with neuroretinal rim and visual field progression
Leung CKS; Liu S; Weinreb RN; Lai G; Ye C; Cheung CYL; Pang CP; Tse KK; Lam DSC
Ophthalmology 2011; 118: 1551-1557 (IGR: 13-3)


45693 The six keys of the monitoring of the glaucoma patient
Detry-Morel M
Bulletin de la SociÚtÚ Belge d'Ophtalmologie 2010; 316: 63-84 (IGR: 13-2)


45912 Baseline mean deviation and rates of visual field change in treated glaucoma patients
Forchheimer I; De Moraes CG; Teng CC; Folgar F; Tello C; Ritch R; Liebmann JM
Eye 2011; 25: 626-632 (IGR: 13-2)


46191 Perimetric indices as predictors of future glaucomatous functional change
Gardiner SK; Demirel S; Johnson CA
Optometry and Vision Science 2011; 88: 56-62 (IGR: 13-2)


45863 Ability of Heidelberg Retina Tomograph III to predict progression in patients with early glaucoma or suspected primary open-angle glaucoma
Garcia-Martin E; Pablo L; Ferreras A; Idoipe M; Perez S; Pueyo V
Archivos de la Sociedad Espa˝ola de Oftalmologia 2010; 85: 138-143 (IGR: 13-2)


45606 Detecting glaucomatous progression using GDx with variable and enhanced corneal compensation using Guided Progression Analysis
Grewal DS; Sehi M; Greenfield DS
British Journal of Ophthalmology 2011; 95: 502-508 (IGR: 13-2)


45975 Perimetric progression in open angle glaucoma and the Visual Field Index (VFI)
Ang GS; Mustafa MS; Scott N; Diaz-Aleman VT; Azuara-Blanco A
Journal of Glaucoma 2011; 20: 223-227 (IGR: 13-2)


45589 Risk factors for visual field progression in treated glaucoma
De Moraes CGV; Juthani VJ; Liebmann JM; Teng CC; Tello C; Susanna Jr R; Ritch R
Archives of Ophthalmology 2011; 129: 562-568 (IGR: 13-2)


46145 Lifetime visual prognosis of patients with glaucoma in Aberdeen, Scotland
Goh YW; Ang GS; Azuara-Blanco A
Clinical and Experimental Ophthalmology 2011; (IGR: 13-2)


45667 Clinical evaluation of a novel population-based regression analysis for detecting glaucomatous visual field progression
Kovalska MP; Burki E; Schoetzau A; Orguel SF; Jflammer Orguel S; Grieshaber MC
Klinische Monatsblńtter fŘr Augenheilkunde 2011; 228: 311-317 (IGR: 13-2)


45765 Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma. A Prospective Analysis with Neuroretinal Rim and Visual Field Progression
Leung CKS; Liu S; Weinreb RN; Lai G; Ye C; Cheung CYL; Pang CP; Tse KK; Lam DSC
Ophthalmology 2011; (IGR: 13-2)


45771 Evaluation of retinal nerve fiber layer progression in glaucoma: A comparison between the fast and the regular retinal nerve fiber layer scans
Leung CK-S; Cheung CY-L; Weinreb RN; Liu S; Ye C; Lai G; Liu N; Pang CP; Tse KK; Lam DSC
Ophthalmology 2011; 118: 763-767 (IGR: 13-2)


46031 Improved prediction of rates of visual field loss in glaucoma using empirical bayes estimates of slopes of change
Medeiros FA; Zangwill LM; Weinreb RN
Journal of Glaucoma 2011; (IGR: 13-2)


46308 Comparison of stereo disc photographs and alternation flicker using a novel matching technology for detecting glaucoma progression
Radcliffe NM; Sehi M; Wallace IB; Greenfield DS; Krupin T; Ritch R
Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye 2010; 41: 629-634 (IGR: 13-2)


46013 Glaucoma progression after the first-detected optic disc hemorrhage by optical coherence tomography
Suh MH; Park KH; Kim H; Kim T-W; Kim SW; Kim S-Y; Kim DM
Journal of Glaucoma 2011; (IGR: 13-2)


46090 Do adherence rates and glaucomatous visual field progression correlate?
Rossi GCM; Pasinetti GM; Scudeller L; Radaelli R; Bianchi PE
European Journal of Ophthalmology 2011; 21: 410-414 (IGR: 13-2)


45673 Basic and clinical studies of pressure-independent damaging factors of open angle glaucoma
Araie M
Nippon Ganka Gakkai Zasshi 2011; 115: 213-236 (IGR: 13-2)


27919 Relationship between severity of visual field loss at presentation and rate of visual field progression in glaucoma
Rao HL; Kumar AU; Babu JG; Senthil S; Garudadri CS
Ophthalmology 2011; 118: 249-253 (IGR: 13-1)


27784 Assessment of rates of structural change in glaucoma using imaging technologies
Mansouri K; Leite MT; Medeiros FA; Leung CK; Weinreb RN
Eye 2011; 25: 269-77 (IGR: 13-1)


28142 Progression rate of total, and upper and lower visual field defects in open-angle glaucoma patients
Fukuchi T; Yoshino T; Sawada H; Seki M; Togano T; Tanaka T; Ueda J; Abe H
Clinical Ophthalmology 2010; 4: 1315-1323 (IGR: 13-1)


27776 Characteristics of visual field progression in medically treated normal-tension glaucoma patients with unstable ocular perfusion pressure
Sung KR; Cho JW; Lee S; Yun SC; Choi J; Na JH; Lee Y; Kook MS
Investigative Ophthalmology and Visual Science 2011; 52: 737-743 (IGR: 13-1)


27739 A Comparison of Functional and Structural Measures for Identifying Progression of Glaucoma
Xin D; Greenstein VC; Ritch R; Liebmann JM; De Moraes CG; Hood DC
Investigative Ophthalmology and Visual Science 2011; 52: 519-526 (IGR: 13-1)


27931 Interobserver agreement and intraobserver reproducibility of the subjective determination of glaucomatous visual field progression
Tanna AP; Bandi JR; Budenz DL; Feuer WJ; Feldman RM; Herndon LW; Rhee DJ; Whiteside-De Vos J
Ophthalmology 2011; 118: 60-65 (IGR: 13-1)


27825 Medical decision, persistence of initial treatment, and glaucoma progression in a Brazilian reference hospital
Paula JS; Filho JAR; Cecchetti DFA; Nagatsuyu DT; Rodrigues MLV; Rocha EM
Arquivos Brasileiros de Oftalmologia 2010; 73: 141-145 (IGR: 13-1)


27199 The relationship between intraocular pressure reduction and rates of progressive visual field loss in eyes with optic disc hemorrhage
Medeiros FA; Alencar LM; Sample PA; Zangwill LM; Susanna Jr R; Weinreb RN
Ophthalmology 2010; 117: 2061-2066 (IGR: 12-4)


27338 Focusing on glaucoma progression and the clinical importance of progression rate measurement: A review
Rossetti L; Goni F; Denis P; Bengtsson B; Martinez A; Heijl A
Eye 2010; 24: S1-S7 (IGR: 12-4)


26940 Longitudinal and Cross-sectional Analyses of Visual Field Progression in Participants of the Ocular Hypertension Treatment Study
PH Artes; BC Chauhan; JL Keltner; KE Cello; CA Johnson; DR Anderson; MO Gordon; MA Kass
Archives of Ophthalmology 2010; 128: 1528-1532 (IGR: 12-4)


27634 Optic disc hemorrhages and progression in glaucoma
Niyadurupola N; Broadway DC
Expert Review of Ophthalmology 2010; 5: 637-643 (IGR: 12-4)


26792 A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma
Alencar LM; Zangwill LM; Weinreb RN; Bowd C; Sample PA; Girkin CA; Liebmann JM; Medeiros FA
Investigative Ophthalmology and Visual Science 2010; 51: 3531-3539 (IGR: 12-3)


26654 Modified visual field trend analysis
De Moraes CGV; Ritch R; Tello C; Liebmann JM
Journal of Glaucoma 2010; (IGR: 12-3)


26493 The challenges of monitoring glaucoma progression
Termote K; Zeyen T
Bulletin de la SociÚtÚ Belge d'Ophtalmologie 2010; 314: 25-32 (IGR: 12-3)


26788 Intraocular pressure and visual field damage as risk factors for visual field progression in filtering surgery
Cohen JS; Novack GD; Zink JM
Ophthalmic Surgery Lasers and Imaging 2010; 41: 452-458 (IGR: 12-3)


26890 Predictors for visual field progression and the effects of treatment with dorzolamide 2% or brinzolamide 1% each added to timolol 0.5% in primary open-angle glaucoma
Martinez A; Sanchez-Salorio M
Acta Ophthalmologica 2010; 88: 541-552 (IGR: 12-3)


26204 Four-year incidence and progression of visual impairment in Latinos: the Los Angeles Latino Eye Study
Varma R; Chung J; Foong AW; Torres M; Choudhury F; Azen SP; Los Angeles Latino Eye Study Group
American Journal of Ophthalmology 2010; 149: 713-727 (IGR: 12-2)


26149 Beta-Zone parapapillary atrophy and the velocity of glaucoma progression
Teng CC; De Moraes CG; Prata TS; Tello C; Ritch R; Liebmann JM
Ophthalmology 2010; 117: 909-915 (IGR: 12-2)


26212 Glaucomatous progression in series of stereoscopic photographs and Heidelberg retina tomograph images
O'Leary N; Crabb DP; Mansberger SL; Fortune B; Twa MD; Lloyd MJ; Kotecha A; Garway-Heath DF; Cioffi GA; Johnson CA
Archives of Ophthalmology 2010; 128: 560-568 (IGR: 12-2)


26248 Rates of progressive retinal nerve fiber layer loss in glaucoma measured by scanning laser polarimetry
Medeiros FA; Zangwill LM; Alencar LM; Sample PA; Weinreb RN
American Journal of Ophthalmology 2010; 149: 908-915 (IGR: 12-2)


26131 Target intraocular pressure for stability of visual field loss progression in normal-tension glaucoma
Aoyama A; Ishida K; Sawada A; Yamamoto T
Japanese Journal of Ophthalmology 2010; 54: 117-123 (IGR: 12-2)


26186 Detection of morphological and functional progression in initial glaucoma
Gonzalez de la Rosa M; Gonzalez-Hernandez M; Sanchez-Mendez M; Medina-Mesa E; Rodriguez de la Vega R
British Journal of Ophthalmology 2010; 94: 414-418 (IGR: 12-2)


26139 Predicting progression to glaucoma in ocular hypertensive patients
Strouthidis NG; Gardiner SK; Owen VM; Zuniga C; Garway-Heath DF
Journal of Glaucoma 2010; 19: 304-309 (IGR: 12-2)


26201 Influence of the extent of myopia on the progression of normal-tension glaucoma
Sohn SW; Song JS; Kee C
American Journal of Ophthalmology 2010; 149: 831-838 (IGR: 12-2)


26260 Patterns of progression of localized retinal nerve fibre layer defect on red-free fundus photographs in normal-tension glaucoma
Suh MH; Kim DM; Kim YK; Kim TW; Park KH
Eye 2010; 24: 857-863 (IGR: 12-2)


26234 Recurrent disc hemorrhage does not increase the rate of visual field progression
de Beaufort HC; De Moraes CG; Teng CC; Prata TS; Tello C; Ritch R; Liebmann JM
Graefe's Archive for Clinical and Experimental Ophthalmology 2010; 248: 839-844 (IGR: 12-2)


25152 Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis
Leung CK; Cheung CY; Weinreb RN; Qiu K; Liu S; Li H; Xu G; Fan N; Pang CP; Tse KK
Investigative Ophthalmology and Visual Science 2010; 51: 217-222 (IGR: 12-1)


25128 Factors affecting rates of visual field progression in glaucoma patients with optic disc hemorrhage
Prata TS; De Moraes CG; Teng CC; Tello C; Ritch R; Liebmann JM
Ophthalmology 2010; 117: 24-29 (IGR: 12-1)


25244 Agreement for Detecting Glaucoma Progression with the GDx Guided Progression Analysis, Automated Perimetry, and Optic Disc Photography
Alencar LM; Zangwill LM; Weinreb RN; Bowd C; Vizzeri G; Sample PA; Susanna R Jr; Medeiros FA
Ophthalmology 2010; 117: 462-470 (IGR: 12-1)


25221 Visual Field Progression Differences between Normal-Tension and Exfoliative High-Tension Glaucoma
Ahrlich KG; De Moraes CG; Teng CC; Prata TS; Tello C; Ritch R; Liebmann JM
Investigative Ophthalmology and Visual Science 2010; 51: 1458-1463 (IGR: 12-1)


24982 Specification of progression in glaucomatous visual field loss, applying locally condensed stimulus arrangements
Nevalainen J; Paetzold J; Papageorgiou E; Sample PA; Pascual JP; Krapp E; Selig B; Vonthein R; Schiefer U
Graefe's Archive for Clinical and Experimental Ophthalmology 2009; 247: 1659-1669 (IGR: 11-4)


24870 Prediction of functional loss in glaucoma from progressive optic disc damage
Medeiros FA; Alencar LM; Zangwill LM; Bowd C; Sample PA; Weinreb RN
Archives of Ophthalmology 2009; 127: 1250-1256 (IGR: 11-4)


24580 Unpredictability of glaucoma progression
Susanna Jr R
Current Medical Research and Opinion 2009; 25: 2167-2177 (IGR: 11-4)


24864 Progression of optic neuropathy after disc hemorrhage in primary angle-closure glaucoma
Hsieh JW; Lan YW
Japanese Journal of Ophthalmology 2009; 53: 380-383 (IGR: 11-4)


24965 Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma
Chauhan BC; Nicolela MT; Artes PH
Ophthalmology 2009; 116: 2110-2118 (IGR: 11-4)


25002 Natural history of open-angle glaucoma
Heijl A; Bengtsson B; Hyman L; Leske MC; Early Manifest Glaucoma Trial Group
Ophthalmology 2009; 116: 2271-2276 (IGR: 11-4)


24819 Twenty-four hour ocular perfusion pressure fluctuation and risk of normal-tension glaucoma progression
Sung KR; Lee S; Park SB; Choi J; Kim ST; Yun SC; Kang SY; Cho JW; Kook MS
Investigative Ophthalmology and Visual Science 2009; 50: 5266-5274 (IGR: 11-4)


24975 Prediction of glaucomatous visual field loss by extrapolation of linear trends
Bengtsson B; Patella VM; Heijl A
Archives of Ophthalmology 2009; 127: 1610-1615 (IGR: 11-4)


24493 Glaucoma with early visual field loss affecting both hemifields and the risk of disease progression
De Moraes CG; Prata TS; Tello C; Ritch R; Liebmann JM
Archives of Ophthalmology 2009; 127: 1129-1134 (IGR: 11-3)


24491 Visual field progression after trabeculectomy in primary open-angle glaucoma: preliminary results
Dieng M; Wane A; Ba E; Roth PN; Demeideros M; Ndiaye M; Ndiaye P; Wade A
Journal Franšais d'Ophtalmologie 2009; 32: 474-480 (IGR: 11-3)


24494 The African Descent and Glaucoma Evaluation Study (ADAGES): design and baseline data
Sample PA; Girkin CA; Zangwill LM; Jain S; Racette L; Becerra LM; Weinreb RN; Medeiros FA; Wilson MR; De Leˇn-Ortega J
Archives of Ophthalmology 2009; 127: 1136-1145 (IGR: 11-3)


23917 Evaluating a new disc staging scale for glaucomatous damage: the ability to detect change over time
Henderer J; Wang Y; Bayer A; Altangerel U; Schwartz L; Schmidt C
European Journal of Ophthalmology 2009; 19: 404-410 (IGR: 11-2)


23928 Linear regression analysis of the cumulative defect curve by sectors and other criteria of glaucomatous visual field progression
Gonzalez de la Rosa M; Gonzalez-Hernandez M; Diaz-Aleman T
European Journal of Ophthalmology 2009; 19: 416-424 (IGR: 11-2)


23955 Optic disc progression in glaucoma: comparison of confocal scanning laser tomography to optic disc photographs in a prospective study
Chauhan BC; Hutchison DM; Artes PH; Caprioli J; Jonas JB; Leblanc RP; Nicolela MT
Investigative Ophthalmology and Visual Science 2009; 50: 1682-1691 (IGR: 11-2)


23856 The Relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma
Medeiros FA; Alencar LM; Zangwill LM; Sample PA; Weinreb RN
Ophthalmology 2009; 116: 1125-1133 (IGR: 11-2)


23513 Mean target intraocular pressure and progression rates in chronic angle-closure glaucoma
Liza Sharmini AT; Yuen Shi Yin N; Shi-Huang Lee S; Jackson AL; Stewart WC
Journal of Ocular Pharmacology and Therapeutics 2009; 25: 71-75 (IGR: 11-2)


22536 Predicting progressive glaucomatous optic neuropathy using baseline standard automated perimetry data
Demirel S; Fortune B; Fan J; Levine RA; Torres R; Nguyen H; Mansberger SL; Gardiner SK; Cioffi GA; Johnson CA
Investigative Ophthalmology and Visual Science 2009; 50: 674-680 (IGR: 11-1)


22538 Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression
Bowd C; Weinreb RN; Vizzeri G; Alencar LM; O'Leary N; Sample PA; Zangwill LM
Investigative Ophthalmology and Visual Science 2009; 50: 691-701 (IGR: 11-1)


22534 Ability of Stratus OCT to detect progressive retinal nerve fiber layer atrophy in glaucoma
Lee EJ; Kim TW; Park KH; Seong M; Kim H; Kim DM
Investigative Ophthalmology and Visual Science 2009; 50: 662-668 (IGR: 11-1)


22500 Mean intraocular pressure and progression based on corneal thickness in patients with ocular hypertension
Konstas AG; Irkec MT; Teus MA; Cvenkel B; Astakhov YS; Sharpe ED; Hollo G; Mylopoulos N; Bozkurt B; Pizzamiglio C
Eye 2009; 23: 73-78 (IGR: 11-1)


22670 Clinicians agreement in establishing glaucomatous progression using the Heidelberg retina tomograph
Vizzeri G; Weinreb RN; Martinez De La Casa JM; Alencar LM; Bowd C; Medeiros FA; Sample P; Zangwill LM
Ophthalmology 2009; 116: 14-24 (IGR: 11-1)


23353 Glaucoma monitoring in a clinical setting: glaucoma progression analysis vs nonparametric progression analysis in the Groningen Longitudinal Glaucoma Study
Wesselink C; Heeg GP; Jansonius NM
Archives of Ophthalmology 2009; 127: 270-274 (IGR: 11-1)


22622 Detection of visual-field deterioration by Glaucoma Progression Analysis and Threshold Noiseless Trend programs
Diaz-Aleman VT; Anton A; de la Rosa MG; Johnson ZK; McLeod S; Azuara-Blanco A
British Journal of Ophthalmology 2009; 93: 322-328 (IGR: 11-1)


22528 Performance of glaucoma progression analysis software in a glaucoma population
Arnalich-Montiel F; Mu˝oz-Negrete FJ; Rebolleda G
Graefe's Archive for Clinical and Experimental Ophthalmology 2009; 247: 391-397 (IGR: 11-1)


22886 Association between high myopia and progression of visual field loss in primary open-angle glaucoma
Lee Y-A; Shih Y-F; Lin LL-K; Huang J-Y; Wang T-H
Journal of the Formosan Medical Association 2008; 107: 952-957 (IGR: 11-1)


21529 Charles F. Prentice Award Lecture 2006: A neuron doctrine for glaucoma
Harwerth RS
Optometry and Vision Science 2008; 85: 436-444 (IGR: 10-3)


21809 Reversal of optic disc cupping in glaucoma
Harju M; Saari J; Kurvinen L; Vesti E
British Journal of Ophthalmology 2008; 92: 901-905 (IGR: 10-3)


21720 Intraocular pressure fluctuation a risk factor for visual field progression at low intraocular pressures in the advanced glaucoma intervention study
Caprioli J; Coleman AL
Ophthalmology 2008; 115: 1123-1129 (IGR: 10-3)


21862 A comparison of visual field progression criteria of 3 major glaucoma trials in early manifest glaucoma trial patients
Heijl A; Bengtsson B; Chauhan BC; Lieberman MF; Cunliffe I; Hyman L; Leske MC
Ophthalmology 2008; 115: 1557-1565 (IGR: 10-3)


21714 Long-term survival of central visual field in end-stage glaucoma
Much JW; Liu C; Piltz-Seymour JR
Ophthalmology 2008; 115: 1162-1166 (IGR: 10-3)


21533 Progression: Things we need to remember but often forget to think about
Artes PH
Optometry and Vision Science 2008; 85: 380-385 (IGR: 10-3)


21682 Long-term relationship between intraocular pressure and visual field loss in primary open-angle glaucoma
Inatani M; Iwao K; Inoue T; Awai M; Muto T; Koga T; Ogata-Iwao M; Hara R; Futa R; Tanihara H
Journal of Glaucoma 2008; 17: 275-279 (IGR: 10-3)


21855 Canadian Glaucoma Study: 2. Risk factors for the progression of open-angle glaucoma
Chauhan BC; Mikelberg FS; Balaszi AG; Leblanc RP; Lesk MR; Trope GE; Canadian Glaucoma Study Group
Archives of Ophthalmology 2008; 126: 1030-1036 (IGR: 10-3)


21401 Long-term intraocular pressure fluctuations and risk of conversion from ocular hypertension to glaucoma
Medeiros FA; Weinreb RN; Zangwill LM; Alencar LM; Sample PA; Vasile C; Bowd C
Ophthalmology 2008; 115: 934-940 (IGR: 10-2)


21102 Reduced choroidal blood flow can induce visual field defect in open angle glaucoma patients without intraocular pressure elevation following encircling scleral buckling
Sato EA; Shinoda K; Inoue M; Ohtake Y; Kimura I
Retina (Philadelphia, Pa.) 2008; 28: 493-497 (IGR: 10-2)


20967 Detection of visual field progression in glaucoma
Kovalska M; Grieshaber MC; Sch÷tzau A; Katamay R; Hauenstein D; Flammer J; OrgŘl S
Klinische Monatsblńtter fŘr Augenheilkunde 2008; 225: 342-345 (IGR: 10-2)


21228 Visual loss after transscleral diode laser cyclophotocoagulation for primary open-angle and neovascular glaucoma
Pokroy R; Greenwald Y; Pollack A; Bukelman A; Zalish M
Ophthalmic Surgery Lasers and Imaging 2008; 39: 22-29 (IGR: 10-2)


20009 Monitoring glaucomatous progression using a novel Heidelberg Retina Tomograph event analysis
Fayers T; Strouthidis NG; Garway-Heath DF
Ophthalmology 2007; 114: 1973-1980 (IGR: 9-4)


16928 Fluctuation of intraocular pressure and glaucoma progression in the early manifest glaucoma trial
Bengtsson B; Leske MC; Hyman L; Heijl A; Early Manifest Glaucoma Trial Group
Ophthalmology 2007; 114: 205-209 (IGR: 9-1)


16845 Comparison of glaucoma progression evaluated with Heidelberg retina tomograph II versus optic nerve head stereophotographs
Kourkoutas D; Buys YM; Flanagan JG; Hatch WV; Balian C; Trope GE
Canadian Journal of Ophthalmology 2007; 42: 82-88 (IGR: 9-1)


16924 Nonprogressive glaucomatous cupping and visual field abnormalities in young Chinese males
Doshi A; Kreidl KO; Lombardi L; Sakamoto DK; Singh K
Ophthalmology 2007; 114: 472-479 (IGR: 9-1)


15258 Relative risk of progressive glaucomatous visual field loss in patients enrolled and not enrolled in a prospective longitudinal study
Henson DB; Shambhu S
Archives of Ophthalmology 2006; 124: 1405-1408 (IGR: 8-4)


14118 Iris colour, optic disc dimensions, degree and progression of glaucomatous optic nerve damage
Jonas JB; Budde WM; Stroux A; Oberacher-Velten IM
Clinical and Experimental Ophthalmology 2006; 34: 654-660 (IGR: 8-3)


14029 Glaucoma follow-up by the Heidelberg Retina Tomograph
Kalaboukhova L; Fridhammar V; Lindblom B
Graefe's Archive for Clinical and Experimental Ophthalmology 2006; 244: 654-662 (IGR: 8-3)


14013 Estimating the clinical usefulness of optic disc biometry for detecting glaucomatous change over time
Tangelder GJ; Reus NJ; Lemij HG
Eye 2006; 20: 755-763 (IGR: 8-3)


14063 Pointwise linear regression analysis for detection of visual field progression with absolute versus corrected threshold sensitivities
Manassakorn A; Nouri-Mahdavi K; Koucheki B; Law SK; Caprioli J
Investigative Ophthalmology and Visual Science 2006; 47: 2896-2903 (IGR: 8-3)


14062 Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement
Strouthidis NG; Scott A; Peter NM; Garway-Heath DF
Investigative Ophthalmology and Visual Science 2006; 47: 2904-2910 (IGR: 8-3)


13775 Central corneal thickness and corneal hysteresis associated with glaucoma damage
Congdon NG; Broman AT; Bandeen-Roche K; Grover D; Quigley HA
American Journal of Ophthalmology 2006; 141: 868-875 (IGR: 8-2)


13781 Keratometry, optic disc dimensions, and degree and progression of glaucomatous optic nerve damage
Jonas JB; Stroux A; Martus P; Budde W
Journal of Glaucoma 2006; 15: 206-212 (IGR: 8-2)


13674 Mean intraocular pressure and progression based on corneal thickness in primary open-angle glaucoma
Stewart WC; Day DG; Jenkins JN; Passmore CL; Stewart JA
Journal of Ocular Pharmacology and Therapeutics 2006; 22: 26-33 (IGR: 8-2)


13612 Long-term changes in the shape of glaucomatous optic disc
Hiroishi G; Koike I; Ikeda Y; Yoshida S; Fujisawa K; Kubota T; Ishibashi T
Japanese Journal of Clinical Ophthalmology 2006; 60: 329-333 (IGR: 8-2)


13836 Ten-year RESULTS: detection of long-term progressive optic disc changes with confocal laser tomography
Philippin H; Unsoeld A; Maier P; Walter S; Bach M; Funk J
Graefe's Archive for Clinical and Experimental Ophthalmology 2006; 244: 460-464 (IGR: 8-2)


13853 The relationship between recurrent optic disc hemorrhage and glaucoma progression
Kim SH; Park KH
Ophthalmology 2006; 113: 598-602 (IGR: 8-2)


13530 Diagnostic approaches for early detection of glaucoma progression
Arend KO; Plange N
Klinische Monatsblńtter fŘr Augenheilkunde 2006; 223: 194-216 (IGR: 8-1)


13497 Diagnosing glaucoma progression: current practice and promising technologies
Giangiacomo A; Garway-Heath D; Caprioli J
Current Opinions in Ophthalmology 2006; 17: 153-162 (IGR: 8-1)


13486 Towards an optimal perimetric strategy for progression detection in glaucoma: from fixed-space to adaptive inter-test intervals
Jansonius NM
Graefe's Archive for Clinical and Experimental Ophthalmology 2006; 244: 390-393 (IGR: 8-1)


13330 Observer-based rather than population-based confidence limits for determining probability of change in visual fields
Turpin A; McKendrick AM
Vision Research 2005; 45: 3277-3289 (IGR: 8-1)


13394 Pointwise linear progression criteria and the detection of visual field change in a glaucoma trial
Wilkins MR; Fitzke FW; Khaw PT
Eye 2006; 20: 98-106 (IGR: 8-1)


13374 Progression of visual field loss in open angle glaucoma in the Melbourne Visual Impairment Project
Zahari M; Mukesh BN; Rait JL; Taylor HR; McCarty CA
Clinical and Experimental Ophthalmology 2006; 34: 20-26 (IGR: 8-1)


13056 Test-retest reproducibility of optic disk deterioration detected from stereophotographs by masked graders
Parrish RK 2nd; Schiffman JC; Feuer WJ; Anderson DR; Budenz DL; Wells-Albornoz MC; Vandenbroucke R; Kass MA; Gordon MO; Ocular Hypertension Treatment Study Group
American Journal of Ophthalmology 2005; 140: 762-764 (IGR: 7-3)


13165 Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields
Sample PA; Boden C; Zhang Z; Pascual J; Lee TW; Zangwill LM; Weinreb RN; Crowston JG; Hoffmann EM; Medeiros FA
Investigative Ophthalmology and Visual Science 2005; 46: 3684-3692 (IGR: 7-3)


12719 Role and mechanism of endothelin-1 in the deterioration of visual function of glaucomatous eyes
Yan C-R; Liang X-W; Li R-Z; Liao H-L; Zheng B; Song H-N; Wang S-M
Chinese Journal of Clinical Rehabilitation 2005; 9: 156-157 (IGR: 7-3)


12415 Central corneal thickness and progression of the visual field and optic disc in glaucoma
Chauhan BC; Hutchison DM; Leblanc RP; Artes PH; Nicolela MT
British Journal of Ophthalmology 2005; 89: 1008-1012 (IGR: 7-2)


12173 Nomogram for ocular hypertension progression risk based on the ocular hypertension treatment study
Diaz Aleman VT; Fernandez Baca Vaca G; Lozano Lopez V; Garcia Somalo M; Perera Sanz D; Gonzalez de la Rosa M
Archivos de la Sociedad Espa˝ola de Oftalmologia 2005; 80: 151-154 (IGR: 7-2)


12489 Bayes' theorem applied to perimetric progression detection in glaucoma: from specificity to positive predictive value
Jansonius NM
Graefe's Archive for Clinical and Experimental Ophthalmology 2005; 243: 433-437 (IGR: 7-2)


12376 Predictive factors for progressive optic nerve damage in various types of chronic open-angle glaucoma
Martus P; Stroux A; Budde WM; Mardin CY; Korth M; Jonas JB
American Journal of Ophthalmology 2005; 139: 999-1009 (IGR: 7-2)


12377 Use of progressive glaucomatous optic disk change as the reference standard for evaluation of diagnostic tests in glaucoma
Medeiros FA; Zangwill LM; Bowd C; Sample PA; Weinreb RN
American Journal of Ophthalmology 2005; 139: 1010-1018 (IGR: 7-2)


11818 Central corneal thickness correlated with glaucoma damage and rate of progression
Jonas JB; Stroux A; Velten I; Juenemann A; Martus P; Budde WM
Investigative Ophthalmology and Visual Science 2005; 46: 1269-1274 (IGR: 7-1)


11679 Longitudinal changes in the visual field and optic disc in glaucoma
Artes PH; Chauhan BC
Progress in Retinal and Eye Research 2005; 24: 333-354 (IGR: 7-1)


11748 Increased plasma endothelin-1 levels in patients with progressive open angle glaucoma
Emre M; Orgul S; Haufschild T; Shaw SG; Flammer J
British Journal of Ophthalmology 2005; 89: 60-63 (IGR: 7-1)


11790 Glaucomatous visual field progression with frequency-doubling technology and standard automated perimetry in a longitudinal prospective study
Haymes SA; Hutchison DM; McCormick TA; Varma DK; Nicolela MT; Leblanc RP; Chauhan BC
Investigative Ophthalmology and Visual Science 2005; 46: 547-554 (IGR: 7-1)


11854 An evaluation of blebs after filtering surgery with the in vivo confocal microscope
LabbÚ A; Dupas B; Hamard P; Baudouin C
Journal Franšais d'Ophtalmologie 2004; 27: 1083-1089 (IGR: 7-1)


11857 Rate of visual field progression in primary open-angle glaucoma and primary angle-closure glaucoma
Lee YH; Kim CS; Hong SP
Korean Journal of Ophthalmology 2004; 18: 106-115 (IGR: 7-1)


11912 Pointwise linear regression for evaluation of visual field outcomes and comparison with the advanced glaucoma intervention study methods
Nouri-Mahdavi K; Caprioli J; Coleman AL; Hoffman D; Gaasterland D
Archives of Ophthalmology 2005; 123: 193-199 (IGR: 7-1)


12082 Confocal microscopy used as the definitive, early diagnostic method in Chandler syndrome
Sheppard Jr JD; Lattanzio Jr FA; Williams PB; Mitrev PV; Allen RC
Cornea 2005; 24: 227-229 (IGR: 7-1)


12002 Is poor life expectancy a predictive factor in the progression of primary open angle glaucoma?
Tattersall CL; Vernon SA; Negi A
Eye 2005; 19: 387-391 (IGR: 7-1)


11239 Central corneal pachymetry and visual field progression in patients with open-angle glaucoma
Kim JW; Chen PP
Ophthalmology 2004; 111: 2126-2132 (IGR: 6-3)


11537 Blood flow studies and serological testing in the diagnostic evaluation of glaucoma: A pilot study
Greenfield DS; Bagga H
Ophthalmic Surgery Lasers and Imaging 2004; 35: 406-414 (IGR: 6-3)


11363 Patterns of glaucomatous visual field progression identified by three progression criteria
Boden C; Blumenthal EZ; Pascual J; McEwan G; Weinreb RN; Medeiros FA; Sample PA
American Journal of Ophthalmology 2004; 138: 1029-1036 (IGR: 6-3)


11349 The Advanced Glaucoma Intervention Study (AGIS): 14. Distinguishing progression of glaucoma from visual field fluctuations
Kim J; Dally LG; Ederer F; Gaasterland DE; VanVeldhuisen PC; Blackwell B; Sullivan EK; Prum B; Shafranov G; Beck A
Ophthalmology 2004; 111: 2109-2116 (IGR: 6-3)


11350 Statistical evaluation of the diagnostic accuracy of methods used to determine the progression of visual field defects in glaucoma
Mayama C; Araie M; Suzuki Y; Ishida K; Yamamoto T; Kitazawa Y; Shirakashi M; Abe H; Tsukamoto H; Mishima HK
Ophthalmology 2004; 111: 2117-2125 (IGR: 6-3)


11337 Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study
Nouri-Mahdavi K; Hoffman D; Coleman AL; Liu G; Li G; Gaasterland D; Caprioli J; Advanced Glaucoma Intervention Study
Ophthalmology 2004; 111: 1627-1635 (IGR: 6-3)


10818 Central corneal thickness measurements with partial coherence interferometry, ultrasound, and the Orbscan system
Rainer G; Findl O; Petternel V; Kiss B; Drexler W; Skorpik C; Georgopoulos M; Schmetterer L
Ophthalmology 2004; 111: 875-9 (IGR: 6-2)


10736 Optic nerve head segmentation
Lowell J; Hunter A; Steel D; Basu A; Ryder R; Fletcher E; Kennedy L
IEEE Transactions on Medical Imaging 2004; 23: 256-64 (IGR: 6-2)


9111 Corneal thickness and endothelial cell density measured by non-contact specular microscopy and pachymetry in Rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension
Ollivier FJ; Brooks DE; Komßromy AM; Kńllberg ME; Andrew SE; Sapp HL; Sherwood MB; Dawson WW
Experimental Eye Research 2003; 76: 671-677 (IGR: 5-2)


9187 Episcleral venous pressure in younger and older subjects in the sitting and supine positions
Sultan M; Blondeau P
Journal of Glaucoma 2003; 12: 370-373 (IGR: 5-2)


8131 Molecular imaging of perfusion disturbances in glaucoma
Golubnitschaja O; Wunderlich K; Decker C; Monkemann H; Schild HH; Flammer J
Amino Acids 2002; 23: 293-299 (IGR: 4-3)


6631 Two methods of lens opacity measurements in glaucomas
Horn FK; Junemann AG; Korth M
Documenta Ophthalmologica 2001; 103: 105-117 (IGR: 4-1)


6636 Functional magnetic resonance imaging of the retina
Duong TQ; Ngan SC; Ugurbil K; Kim SG
Investigative Ophthalmology and Visual Science 2002; 43: 1176-1181 (IGR: 4-1)


6718 In vivo confocal microscopy in primary congenital glaucoma with megalocornea
Mastropasqua L; Carpineto P; Ciancaglini M; Nubile M; Doronzo E
Journal of Glaucoma 2002; 11: 83-89 (IGR: 4-1)


6719 Simple and inexpensive software designed for the evaluation of color
Otaka I; Kumagai K; Inagaki Y; Shimoyama M; Saegusa K; Hara T
American Journal of Ophthalmology 2002; 133: 140-142 (IGR: 4-1)


19023 Management of the Pulfrich phenomenon secondary to pigmentary glaucoma
Tong DT; Borsting E; Ridder WH
Optometry 2001; 72: 86-93 (IGR: 3-1)


6086 Diagnosis of glaucoma using telemedicine: the effect of compression on the evaluation of optic nerve head cup-disc ratio
Beauregard D; Lewis J; Piccolo M; Bedell H
Journal of Telemedicine and Telecare 2000; 6: S123-125 (IGR: 2-2)


6087 The contribution of magnetic resonance imaging in the differential diagnosis of optic nerve damage
Gass A; Moseley IF
Journal of the Neurological Sciences 2000; 172: S17-22 (IGR: 2-2)


6088 Telemedicine in the control of intra-ocular pressure
Michelson G; Striebel W; Prihoda W; Schmidt V
Journal of Telemedicine and Telecare 2000; 6: S126-128 (IGR: 2-2)


6089 International transmission of tele-ophthalmology images
Yogesan K; Constable IJ; Morgan W; Soebadi DY
Journal of Telemedicine and Telecare 2000; 6: 41-44 (IGR: 2-2)


5692 Telemedicine screening of glaucoma
Li HK; Tang RA; Oschner K; Koplos C; Grady J; Crump WJ
Telemedicine Journal 1999; 5:283-290 (IGR: 2-1)


5693 Multivariate approach for quantification of morphologic and functional damage in glaucoma
Martus P; JŘnemann A; Wisse M; Budde WM; Horn F; Korth M; Jonas JB
Investigative Ophthalmology and Visual Science 2000; 41: 1099-1110 (IGR: 2-1)


5694 Reflex lacrimation in patients with glaucoma and healthy control subjects by fluorophotometry
Tang NE; Zuure PL; Pardo RD; De Keizer RJ; Van Best JA
Investigative Ophthalmology and Visual Science 2000; 41:709-714 (IGR: 2-1)


15435 The application of teleophthalmology in examining patients with glaucoma: a pilot study
Tuulonen A; Ohinmaa A; Alanko H; Hyytinen P; Juutinen A; Toppinen E
Journal of Glaucoma 1999; 8: 367-373 (IGR: 1-3)


5304 A comparison of imaging techniques for diagnosing drusen of the optic nerve head
Kurz-Levin MM; Landau K
Archives of Ophthalmology 1999; 117: 1045-1049 (IGR: 1-2)


Issue 21-2

Change Issue


advertisement

Oculus