advertisement

Topcon

Abstract #59475 Published in IGR 16-3

Relationship Between Optic Nerve Appearance and Retinal Nerve Fiber Layer Thickness as Explored with Spectral Domain Optical Coherence Tomography

Aleman TS; Huang J; Garrity ST; Carter SB; Aleman WD; Ying GS; Tamhankar MA
Translational vision science & technology 2014; 3: 4


PURPOSE: To study the relationship between the appearance of the optic nerve and the retinal nerve fiber layer (RNFL) thickness determined by spectral domain optical coherence tomography (OCT). METHODS: Records from patients with spectral domain-OCT imaging in a neuro-ophthalmology practice were reviewed. Eyes with glaucoma/glaucoma suspicion, macular/optic nerve edema, pseudophakia, and with refractive errors > 6D were excluded. Optic nerve appearance by slit lamp biomicroscopy was related to the RNFL thickness by spectral domain-OCT and to visual field results. RESULTS: Ninety-one patients (176 eyes; mean age: 49 ± 15 years) were included. Eighty-three eyes (47%) showed optic nerve pallor; 89 eyes (50.6%) showed RNFL thinning (sectoral or average peripapillary). Average peripapillary RNFL thickness in eyes with pallor (mean ± SD = 76 ± 17 μm) was thinner compared to eyes without pallor (91 ± 14 μm, P < 0.001). Optic nerve pallor predicted RNFL thinning with a sensitivity of 69% and a specificity of 75%. Optic nerve appearance predicted RNFL thinning (with a sensitivity and specificity of 81%) when RNFL had thinned by ∼ 40%. Most patients with pallor had RNFL thinning with (66%) or without (25%) visual field loss; the remainder had normal RNFL and fields (5%) or with visual field abnormalities (4%). CONCLUSIONS: Optic nerve pallor as a predictor of RNFL thinning showed fair sensitivity and specificity, although it is optimally sensitive/specific only when substantial RNFL loss has occurred. TRANSLATIONAL RELEVANCE: Finding an acceptable relationship between the optic nerve appearance by ophthalmoscopy and spectral domain-OCT RNFL measures will help the clinician's interpretation of the information provided by this technology, which is gaining momentum in neuro-ophthalmic research.

Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA.

Full article

Classification:

2.13 Retina and retinal nerve fibre layer (Part of: 2 Anatomical structures in glaucoma)
2.14 Optic disc (Part of: 2 Anatomical structures in glaucoma)
6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)



Issue 16-3

Change Issue


advertisement

Topcon