advertisement

WGA Rescources

Abstract #106898 Published in IGR 23-3

Artificial intelligence in glaucoma: posterior segment optical coherence tomography

Gutierrez A; Chen TC
Current Opinions in Ophthalmology 2023; 34: 245-254


PURPOSE OF REVIEW: To summarize the recent literature on deep learning (DL) model applications in glaucoma detection and surveillance using posterior segment optical coherence tomography (OCT) imaging. RECENT FINDINGS: DL models use OCT derived parameters including retinal nerve fiber layer (RNFL) scans, macular scans, and optic nerve head (ONH) scans, as well as a combination of these parameters, to achieve high diagnostic accuracy in detecting glaucomatous optic neuropathy (GON). Although RNFL segmentation is the most widely used OCT parameter for glaucoma detection by ophthalmologists, newer DL models most commonly use a combination of parameters, which provide a more comprehensive approach. Compared to DL models for diagnosing glaucoma, DL models predicting glaucoma progression are less commonly studied but have also been developed. SUMMARY: DL models offer time-efficient, objective, and potential options in the management of glaucoma. Although artificial intelligence models have already been commercially accepted as diagnostic tools for other ophthalmic diseases, there is no commercially approved DL tool for the diagnosis of glaucoma, most likely in part due to the lack of a universal definition of glaucoma defined by OCT derived parameters alone (see Supplemental Digital Content 1 for video abstract, http://links.lww.com/COOP/A54).

Full article

Classification:

15 Miscellaneous



Issue 23-3

Change Issue


advertisement

Oculus