advertisement

Oculus

Abstract #82862 Published in IGR 20-4

Anterior Chamber Angles Classification in Anterior Segment OCT Images via Multi-Scale Regions Convolutional Neural Networks

Hao H; Hao H; Zhao Y; Fu H; Shang Q; Shang Q; Li F; Zhang X; Liu J
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 849-852


Angle-closure glaucoma is one of the major causes of blindness in Asia. In this paper, we present a new approach for the classification of the anterior chamber angles into open, narrowed, and closure, in anterior segment optical coherence tomography (AS-OCT), by learning the manual annotations from gonioscopy, so as to further assist the assessment of angle-closure glaucoma. The proposed framework firstly localizes the anterior chamber angle region automatically, which is the primary structural image cue for clinically identifying glaucoma. Then three scales of cropped chamber angle images are fed into our Multi-Scale Regions Convolutional Neural Networks (MSRCNN) architecture, in which three parallel convolutional neural networks are applied to extract feature representations. Finally, the representations are stacked to fully-connected layer for glaucoma type classification. The proposed method is evaluated across a dataset of 9728 anterior chamber angle images, and the experimental results show that the proposed method outperforms existing state-of-the-art methods in applicability, effectiveness, and accuracy.

Full article

Classification:

2.4 Anterior chamber angle (Part of: 2 Anatomical structures in glaucoma)
6.9.2.1 Anterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)
6.9.5 Other (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis)
6.30 Other (Part of: 6 Clinical examination methods)



Issue 20-4

Select Issue


advertisement

Oculus